Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //         keir (at) google.com (Keir Mierle)
     31 
     32 #ifndef CERES_INTERNAL_EVALUATOR_H_
     33 #define CERES_INTERNAL_EVALUATOR_H_
     34 
     35 #include <map>
     36 #include <string>
     37 #include <vector>
     38 
     39 #include "ceres/execution_summary.h"
     40 #include "ceres/internal/port.h"
     41 #include "ceres/types.h"
     42 
     43 namespace ceres {
     44 
     45 struct CRSMatrix;
     46 
     47 namespace internal {
     48 
     49 class Program;
     50 class SparseMatrix;
     51 
     52 // The Evaluator interface offers a way to interact with a least squares cost
     53 // function that is useful for an optimizer that wants to minimize the least
     54 // squares objective. This insulates the optimizer from issues like Jacobian
     55 // storage, parameterization, etc.
     56 class Evaluator {
     57  public:
     58   virtual ~Evaluator();
     59 
     60   struct Options {
     61     Options()
     62         : num_threads(1),
     63           num_eliminate_blocks(-1),
     64           linear_solver_type(DENSE_QR) {}
     65 
     66     int num_threads;
     67     int num_eliminate_blocks;
     68     LinearSolverType linear_solver_type;
     69   };
     70 
     71   static Evaluator* Create(const Options& options,
     72                            Program* program,
     73                            string* error);
     74 
     75   // This is used for computing the cost, residual and Jacobian for
     76   // returning to the user. For actually solving the optimization
     77   // problem, the optimization algorithm uses the ProgramEvaluator
     78   // objects directly.
     79   //
     80   // The residual, gradients and jacobian pointers can be NULL, in
     81   // which case they will not be evaluated. cost cannot be NULL.
     82   //
     83   // The parallelism of the evaluator is controlled by num_threads; it
     84   // should be at least 1.
     85   //
     86   // Note: That this function does not take a parameter vector as
     87   // input. The parameter blocks are evaluated on the values contained
     88   // in the arrays pointed to by their user_state pointers.
     89   //
     90   // Also worth noting is that this function mutates program by
     91   // calling Program::SetParameterOffsetsAndIndex() on it so that an
     92   // evaluator object can be constructed.
     93   static bool Evaluate(Program* program,
     94                        int num_threads,
     95                        double* cost,
     96                        vector<double>* residuals,
     97                        vector<double>* gradient,
     98                        CRSMatrix* jacobian);
     99 
    100   // Build and return a sparse matrix for storing and working with the Jacobian
    101   // of the objective function. The jacobian has dimensions
    102   // NumEffectiveParameters() by NumParameters(), and is typically extremely
    103   // sparse. Since the sparsity pattern of the Jacobian remains constant over
    104   // the lifetime of the optimization problem, this method is used to
    105   // instantiate a SparseMatrix object with the appropriate sparsity structure
    106   // (which can be an expensive operation) and then reused by the optimization
    107   // algorithm and the various linear solvers.
    108   //
    109   // It is expected that the classes implementing this interface will be aware
    110   // of their client's requirements for the kind of sparse matrix storage and
    111   // layout that is needed for an efficient implementation. For example
    112   // CompressedRowOptimizationProblem creates a compressed row representation of
    113   // the jacobian for use with CHOLMOD, where as BlockOptimizationProblem
    114   // creates a BlockSparseMatrix representation of the jacobian for use in the
    115   // Schur complement based methods.
    116   virtual SparseMatrix* CreateJacobian() const = 0;
    117 
    118 
    119   // Options struct to control Evaluator::Evaluate;
    120   struct EvaluateOptions {
    121     EvaluateOptions()
    122         : apply_loss_function(true) {
    123     }
    124 
    125     // If false, the loss function correction is not applied to the
    126     // residual blocks.
    127     bool apply_loss_function;
    128   };
    129 
    130   // Evaluate the cost function for the given state. Returns the cost,
    131   // residuals, and jacobian in the corresponding arguments. Both residuals and
    132   // jacobian are optional; to avoid computing them, pass NULL.
    133   //
    134   // If non-NULL, the Jacobian must have a suitable sparsity pattern; only the
    135   // values array of the jacobian is modified.
    136   //
    137   // state is an array of size NumParameters(), cost is a pointer to a single
    138   // double, and residuals is an array of doubles of size NumResiduals().
    139   virtual bool Evaluate(const EvaluateOptions& evaluate_options,
    140                         const double* state,
    141                         double* cost,
    142                         double* residuals,
    143                         double* gradient,
    144                         SparseMatrix* jacobian) = 0;
    145 
    146   // Variant of Evaluator::Evaluate where the user wishes to use the
    147   // default EvaluateOptions struct. This is mostly here as a
    148   // convenience method.
    149   bool Evaluate(const double* state,
    150                 double* cost,
    151                 double* residuals,
    152                 double* gradient,
    153                 SparseMatrix* jacobian) {
    154     return Evaluate(EvaluateOptions(),
    155                     state,
    156                     cost,
    157                     residuals,
    158                     gradient,
    159                     jacobian);
    160   }
    161 
    162   // Make a change delta (of size NumEffectiveParameters()) to state (of size
    163   // NumParameters()) and store the result in state_plus_delta.
    164   //
    165   // In the case that there are no parameterizations used, this is equivalent to
    166   //
    167   //   state_plus_delta[i] = state[i] + delta[i] ;
    168   //
    169   // however, the mapping is more complicated in the case of parameterizations
    170   // like quaternions. This is the same as the "Plus()" operation in
    171   // local_parameterization.h, but operating over the entire state vector for a
    172   // problem.
    173   virtual bool Plus(const double* state,
    174                     const double* delta,
    175                     double* state_plus_delta) const = 0;
    176 
    177   // The number of parameters in the optimization problem.
    178   virtual int NumParameters() const = 0;
    179 
    180   // This is the effective number of parameters that the optimizer may adjust.
    181   // This applies when there are parameterizations on some of the parameters.
    182   virtual int NumEffectiveParameters()  const = 0;
    183 
    184   // The number of residuals in the optimization problem.
    185   virtual int NumResiduals() const = 0;
    186 
    187   // The following two methods return copies instead of references so
    188   // that the base class implementation does not have to worry about
    189   // life time issues. Further, these calls are not expected to be
    190   // frequent or performance sensitive.
    191   virtual map<string, int> CallStatistics() const {
    192     return map<string, int>();
    193   }
    194 
    195   virtual map<string, double> TimeStatistics() const {
    196     return map<string, double>();
    197   }
    198 };
    199 
    200 }  // namespace internal
    201 }  // namespace ceres
    202 
    203 #endif  // CERES_INTERNAL_EVALUATOR_H_
    204