Home | History | Annotate | Download | only in complete
      1 #include "llvm/Analysis/Passes.h"
      2 #include "llvm/Analysis/Verifier.h"
      3 #include "llvm/ExecutionEngine/ExecutionEngine.h"
      4 #include "llvm/ExecutionEngine/JIT.h"
      5 #include "llvm/ExecutionEngine/MCJIT.h"
      6 #include "llvm/ExecutionEngine/ObjectCache.h"
      7 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
      8 #include "llvm/IR/DataLayout.h"
      9 #include "llvm/IR/DerivedTypes.h"
     10 #include "llvm/IR/IRBuilder.h"
     11 #include "llvm/IR/LLVMContext.h"
     12 #include "llvm/IR/Module.h"
     13 #include "llvm/IRReader/IRReader.h"
     14 #include "llvm/PassManager.h"
     15 #include "llvm/Support/CommandLine.h"
     16 #include "llvm/Support/FileSystem.h"
     17 #include "llvm/Support/Path.h"
     18 #include "llvm/Support/raw_ostream.h"
     19 #include "llvm/Support/SourceMgr.h"
     20 #include "llvm/Support/TargetSelect.h"
     21 #include "llvm/Transforms/Scalar.h"
     22 #include <cstdio>
     23 #include <map>
     24 #include <string>
     25 #include <vector>
     26 
     27 using namespace llvm;
     28 
     29 //===----------------------------------------------------------------------===//
     30 // Command-line options
     31 //===----------------------------------------------------------------------===//
     32 
     33 namespace {
     34   cl::opt<std::string>
     35   InputIR("input-IR",
     36               cl::desc("Specify the name of an IR file to load for function definitions"),
     37               cl::value_desc("input IR file name"));
     38 
     39   cl::opt<bool>
     40   VerboseOutput("verbose",
     41                 cl::desc("Enable verbose output (results, IR, etc.) to stderr"),
     42                 cl::init(false));
     43 
     44   cl::opt<bool>
     45   SuppressPrompts("suppress-prompts",
     46                   cl::desc("Disable printing the 'ready' prompt"),
     47                   cl::init(false));
     48 
     49   cl::opt<bool>
     50   DumpModulesOnExit("dump-modules",
     51                   cl::desc("Dump IR from modules to stderr on shutdown"),
     52                   cl::init(false));
     53 
     54   cl::opt<bool> UseMCJIT(
     55     "use-mcjit", cl::desc("Use the MCJIT execution engine"),
     56     cl::init(true));
     57 
     58   cl::opt<bool> EnableLazyCompilation(
     59     "enable-lazy-compilation", cl::desc("Enable lazy compilation when using the MCJIT engine"),
     60     cl::init(true));
     61 
     62   cl::opt<bool> UseObjectCache(
     63     "use-object-cache", cl::desc("Enable use of the MCJIT object caching"),
     64     cl::init(false));
     65 } // namespace
     66 
     67 //===----------------------------------------------------------------------===//
     68 // Lexer
     69 //===----------------------------------------------------------------------===//
     70 
     71 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
     72 // of these for known things.
     73 enum Token {
     74   tok_eof = -1,
     75 
     76   // commands
     77   tok_def = -2, tok_extern = -3,
     78 
     79   // primary
     80   tok_identifier = -4, tok_number = -5,
     81 
     82   // control
     83   tok_if = -6, tok_then = -7, tok_else = -8,
     84   tok_for = -9, tok_in = -10,
     85 
     86   // operators
     87   tok_binary = -11, tok_unary = -12,
     88 
     89   // var definition
     90   tok_var = -13
     91 };
     92 
     93 static std::string IdentifierStr;  // Filled in if tok_identifier
     94 static double NumVal;              // Filled in if tok_number
     95 
     96 /// gettok - Return the next token from standard input.
     97 static int gettok() {
     98   static int LastChar = ' ';
     99 
    100   // Skip any whitespace.
    101   while (isspace(LastChar))
    102     LastChar = getchar();
    103 
    104   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    105     IdentifierStr = LastChar;
    106     while (isalnum((LastChar = getchar())))
    107       IdentifierStr += LastChar;
    108 
    109     if (IdentifierStr == "def") return tok_def;
    110     if (IdentifierStr == "extern") return tok_extern;
    111     if (IdentifierStr == "if") return tok_if;
    112     if (IdentifierStr == "then") return tok_then;
    113     if (IdentifierStr == "else") return tok_else;
    114     if (IdentifierStr == "for") return tok_for;
    115     if (IdentifierStr == "in") return tok_in;
    116     if (IdentifierStr == "binary") return tok_binary;
    117     if (IdentifierStr == "unary") return tok_unary;
    118     if (IdentifierStr == "var") return tok_var;
    119     return tok_identifier;
    120   }
    121 
    122   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    123     std::string NumStr;
    124     do {
    125       NumStr += LastChar;
    126       LastChar = getchar();
    127     } while (isdigit(LastChar) || LastChar == '.');
    128 
    129     NumVal = strtod(NumStr.c_str(), 0);
    130     return tok_number;
    131   }
    132 
    133   if (LastChar == '#') {
    134     // Comment until end of line.
    135     do LastChar = getchar();
    136     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
    137 
    138     if (LastChar != EOF)
    139       return gettok();
    140   }
    141 
    142   // Check for end of file.  Don't eat the EOF.
    143   if (LastChar == EOF)
    144     return tok_eof;
    145 
    146   // Otherwise, just return the character as its ascii value.
    147   int ThisChar = LastChar;
    148   LastChar = getchar();
    149   return ThisChar;
    150 }
    151 
    152 //===----------------------------------------------------------------------===//
    153 // Abstract Syntax Tree (aka Parse Tree)
    154 //===----------------------------------------------------------------------===//
    155 
    156 /// ExprAST - Base class for all expression nodes.
    157 class ExprAST {
    158 public:
    159   virtual ~ExprAST() {}
    160   virtual Value *Codegen() = 0;
    161 };
    162 
    163 /// NumberExprAST - Expression class for numeric literals like "1.0".
    164 class NumberExprAST : public ExprAST {
    165   double Val;
    166 public:
    167   NumberExprAST(double val) : Val(val) {}
    168   virtual Value *Codegen();
    169 };
    170 
    171 /// VariableExprAST - Expression class for referencing a variable, like "a".
    172 class VariableExprAST : public ExprAST {
    173   std::string Name;
    174 public:
    175   VariableExprAST(const std::string &name) : Name(name) {}
    176   const std::string &getName() const { return Name; }
    177   virtual Value *Codegen();
    178 };
    179 
    180 /// UnaryExprAST - Expression class for a unary operator.
    181 class UnaryExprAST : public ExprAST {
    182   char Opcode;
    183   ExprAST *Operand;
    184 public:
    185   UnaryExprAST(char opcode, ExprAST *operand)
    186     : Opcode(opcode), Operand(operand) {}
    187   virtual Value *Codegen();
    188 };
    189 
    190 /// BinaryExprAST - Expression class for a binary operator.
    191 class BinaryExprAST : public ExprAST {
    192   char Op;
    193   ExprAST *LHS, *RHS;
    194 public:
    195   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    196     : Op(op), LHS(lhs), RHS(rhs) {}
    197   virtual Value *Codegen();
    198 };
    199 
    200 /// CallExprAST - Expression class for function calls.
    201 class CallExprAST : public ExprAST {
    202   std::string Callee;
    203   std::vector<ExprAST*> Args;
    204 public:
    205   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    206     : Callee(callee), Args(args) {}
    207   virtual Value *Codegen();
    208 };
    209 
    210 /// IfExprAST - Expression class for if/then/else.
    211 class IfExprAST : public ExprAST {
    212   ExprAST *Cond, *Then, *Else;
    213 public:
    214   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    215   : Cond(cond), Then(then), Else(_else) {}
    216   virtual Value *Codegen();
    217 };
    218 
    219 /// ForExprAST - Expression class for for/in.
    220 class ForExprAST : public ExprAST {
    221   std::string VarName;
    222   ExprAST *Start, *End, *Step, *Body;
    223 public:
    224   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
    225              ExprAST *step, ExprAST *body)
    226     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    227   virtual Value *Codegen();
    228 };
    229 
    230 /// VarExprAST - Expression class for var/in
    231 class VarExprAST : public ExprAST {
    232   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    233   ExprAST *Body;
    234 public:
    235   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
    236              ExprAST *body)
    237   : VarNames(varnames), Body(body) {}
    238 
    239   virtual Value *Codegen();
    240 };
    241 
    242 /// PrototypeAST - This class represents the "prototype" for a function,
    243 /// which captures its argument names as well as if it is an operator.
    244 class PrototypeAST {
    245   std::string Name;
    246   std::vector<std::string> Args;
    247   bool isOperator;
    248   unsigned Precedence;  // Precedence if a binary op.
    249 public:
    250   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
    251                bool isoperator = false, unsigned prec = 0)
    252   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
    253 
    254   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
    255   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
    256 
    257   char getOperatorName() const {
    258     assert(isUnaryOp() || isBinaryOp());
    259     return Name[Name.size()-1];
    260   }
    261 
    262   unsigned getBinaryPrecedence() const { return Precedence; }
    263 
    264   Function *Codegen();
    265 
    266   void CreateArgumentAllocas(Function *F);
    267 };
    268 
    269 /// FunctionAST - This class represents a function definition itself.
    270 class FunctionAST {
    271   PrototypeAST *Proto;
    272   ExprAST *Body;
    273 public:
    274   FunctionAST(PrototypeAST *proto, ExprAST *body)
    275     : Proto(proto), Body(body) {}
    276 
    277   Function *Codegen();
    278 };
    279 
    280 //===----------------------------------------------------------------------===//
    281 // Parser
    282 //===----------------------------------------------------------------------===//
    283 
    284 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    285 /// token the parser is looking at.  getNextToken reads another token from the
    286 /// lexer and updates CurTok with its results.
    287 static int CurTok;
    288 static int getNextToken() {
    289   return CurTok = gettok();
    290 }
    291 
    292 /// BinopPrecedence - This holds the precedence for each binary operator that is
    293 /// defined.
    294 static std::map<char, int> BinopPrecedence;
    295 
    296 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    297 static int GetTokPrecedence() {
    298   if (!isascii(CurTok))
    299     return -1;
    300 
    301   // Make sure it's a declared binop.
    302   int TokPrec = BinopPrecedence[CurTok];
    303   if (TokPrec <= 0) return -1;
    304   return TokPrec;
    305 }
    306 
    307 /// Error* - These are little helper functions for error handling.
    308 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    309 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    310 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    311 
    312 static ExprAST *ParseExpression();
    313 
    314 /// identifierexpr
    315 ///   ::= identifier
    316 ///   ::= identifier '(' expression* ')'
    317 static ExprAST *ParseIdentifierExpr() {
    318   std::string IdName = IdentifierStr;
    319 
    320   getNextToken();  // eat identifier.
    321 
    322   if (CurTok != '(') // Simple variable ref.
    323     return new VariableExprAST(IdName);
    324 
    325   // Call.
    326   getNextToken();  // eat (
    327   std::vector<ExprAST*> Args;
    328   if (CurTok != ')') {
    329     while (1) {
    330       ExprAST *Arg = ParseExpression();
    331       if (!Arg) return 0;
    332       Args.push_back(Arg);
    333 
    334       if (CurTok == ')') break;
    335 
    336       if (CurTok != ',')
    337         return Error("Expected ')' or ',' in argument list");
    338       getNextToken();
    339     }
    340   }
    341 
    342   // Eat the ')'.
    343   getNextToken();
    344 
    345   return new CallExprAST(IdName, Args);
    346 }
    347 
    348 /// numberexpr ::= number
    349 static ExprAST *ParseNumberExpr() {
    350   ExprAST *Result = new NumberExprAST(NumVal);
    351   getNextToken(); // consume the number
    352   return Result;
    353 }
    354 
    355 /// parenexpr ::= '(' expression ')'
    356 static ExprAST *ParseParenExpr() {
    357   getNextToken();  // eat (.
    358   ExprAST *V = ParseExpression();
    359   if (!V) return 0;
    360 
    361   if (CurTok != ')')
    362     return Error("expected ')'");
    363   getNextToken();  // eat ).
    364   return V;
    365 }
    366 
    367 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    368 static ExprAST *ParseIfExpr() {
    369   getNextToken();  // eat the if.
    370 
    371   // condition.
    372   ExprAST *Cond = ParseExpression();
    373   if (!Cond) return 0;
    374 
    375   if (CurTok != tok_then)
    376     return Error("expected then");
    377   getNextToken();  // eat the then
    378 
    379   ExprAST *Then = ParseExpression();
    380   if (Then == 0) return 0;
    381 
    382   if (CurTok != tok_else)
    383     return Error("expected else");
    384 
    385   getNextToken();
    386 
    387   ExprAST *Else = ParseExpression();
    388   if (!Else) return 0;
    389 
    390   return new IfExprAST(Cond, Then, Else);
    391 }
    392 
    393 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    394 static ExprAST *ParseForExpr() {
    395   getNextToken();  // eat the for.
    396 
    397   if (CurTok != tok_identifier)
    398     return Error("expected identifier after for");
    399 
    400   std::string IdName = IdentifierStr;
    401   getNextToken();  // eat identifier.
    402 
    403   if (CurTok != '=')
    404     return Error("expected '=' after for");
    405   getNextToken();  // eat '='.
    406 
    407 
    408   ExprAST *Start = ParseExpression();
    409   if (Start == 0) return 0;
    410   if (CurTok != ',')
    411     return Error("expected ',' after for start value");
    412   getNextToken();
    413 
    414   ExprAST *End = ParseExpression();
    415   if (End == 0) return 0;
    416 
    417   // The step value is optional.
    418   ExprAST *Step = 0;
    419   if (CurTok == ',') {
    420     getNextToken();
    421     Step = ParseExpression();
    422     if (Step == 0) return 0;
    423   }
    424 
    425   if (CurTok != tok_in)
    426     return Error("expected 'in' after for");
    427   getNextToken();  // eat 'in'.
    428 
    429   ExprAST *Body = ParseExpression();
    430   if (Body == 0) return 0;
    431 
    432   return new ForExprAST(IdName, Start, End, Step, Body);
    433 }
    434 
    435 /// varexpr ::= 'var' identifier ('=' expression)?
    436 //                    (',' identifier ('=' expression)?)* 'in' expression
    437 static ExprAST *ParseVarExpr() {
    438   getNextToken();  // eat the var.
    439 
    440   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    441 
    442   // At least one variable name is required.
    443   if (CurTok != tok_identifier)
    444     return Error("expected identifier after var");
    445 
    446   while (1) {
    447     std::string Name = IdentifierStr;
    448     getNextToken();  // eat identifier.
    449 
    450     // Read the optional initializer.
    451     ExprAST *Init = 0;
    452     if (CurTok == '=') {
    453       getNextToken(); // eat the '='.
    454 
    455       Init = ParseExpression();
    456       if (Init == 0) return 0;
    457     }
    458 
    459     VarNames.push_back(std::make_pair(Name, Init));
    460 
    461     // End of var list, exit loop.
    462     if (CurTok != ',') break;
    463     getNextToken(); // eat the ','.
    464 
    465     if (CurTok != tok_identifier)
    466       return Error("expected identifier list after var");
    467   }
    468 
    469   // At this point, we have to have 'in'.
    470   if (CurTok != tok_in)
    471     return Error("expected 'in' keyword after 'var'");
    472   getNextToken();  // eat 'in'.
    473 
    474   ExprAST *Body = ParseExpression();
    475   if (Body == 0) return 0;
    476 
    477   return new VarExprAST(VarNames, Body);
    478 }
    479 
    480 /// primary
    481 ///   ::= identifierexpr
    482 ///   ::= numberexpr
    483 ///   ::= parenexpr
    484 ///   ::= ifexpr
    485 ///   ::= forexpr
    486 ///   ::= varexpr
    487 static ExprAST *ParsePrimary() {
    488   switch (CurTok) {
    489   default: return Error("unknown token when expecting an expression");
    490   case tok_identifier: return ParseIdentifierExpr();
    491   case tok_number:     return ParseNumberExpr();
    492   case '(':            return ParseParenExpr();
    493   case tok_if:         return ParseIfExpr();
    494   case tok_for:        return ParseForExpr();
    495   case tok_var:        return ParseVarExpr();
    496   }
    497 }
    498 
    499 /// unary
    500 ///   ::= primary
    501 ///   ::= '!' unary
    502 static ExprAST *ParseUnary() {
    503   // If the current token is not an operator, it must be a primary expr.
    504   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    505     return ParsePrimary();
    506 
    507   // If this is a unary operator, read it.
    508   int Opc = CurTok;
    509   getNextToken();
    510   if (ExprAST *Operand = ParseUnary())
    511     return new UnaryExprAST(Opc, Operand);
    512   return 0;
    513 }
    514 
    515 /// binoprhs
    516 ///   ::= ('+' unary)*
    517 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    518   // If this is a binop, find its precedence.
    519   while (1) {
    520     int TokPrec = GetTokPrecedence();
    521 
    522     // If this is a binop that binds at least as tightly as the current binop,
    523     // consume it, otherwise we are done.
    524     if (TokPrec < ExprPrec)
    525       return LHS;
    526 
    527     // Okay, we know this is a binop.
    528     int BinOp = CurTok;
    529     getNextToken();  // eat binop
    530 
    531     // Parse the unary expression after the binary operator.
    532     ExprAST *RHS = ParseUnary();
    533     if (!RHS) return 0;
    534 
    535     // If BinOp binds less tightly with RHS than the operator after RHS, let
    536     // the pending operator take RHS as its LHS.
    537     int NextPrec = GetTokPrecedence();
    538     if (TokPrec < NextPrec) {
    539       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    540       if (RHS == 0) return 0;
    541     }
    542 
    543     // Merge LHS/RHS.
    544     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    545   }
    546 }
    547 
    548 /// expression
    549 ///   ::= unary binoprhs
    550 ///
    551 static ExprAST *ParseExpression() {
    552   ExprAST *LHS = ParseUnary();
    553   if (!LHS) return 0;
    554 
    555   return ParseBinOpRHS(0, LHS);
    556 }
    557 
    558 /// prototype
    559 ///   ::= id '(' id* ')'
    560 ///   ::= binary LETTER number? (id, id)
    561 ///   ::= unary LETTER (id)
    562 static PrototypeAST *ParsePrototype() {
    563   std::string FnName;
    564 
    565   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
    566   unsigned BinaryPrecedence = 30;
    567 
    568   switch (CurTok) {
    569   default:
    570     return ErrorP("Expected function name in prototype");
    571   case tok_identifier:
    572     FnName = IdentifierStr;
    573     Kind = 0;
    574     getNextToken();
    575     break;
    576   case tok_unary:
    577     getNextToken();
    578     if (!isascii(CurTok))
    579       return ErrorP("Expected unary operator");
    580     FnName = "unary";
    581     FnName += (char)CurTok;
    582     Kind = 1;
    583     getNextToken();
    584     break;
    585   case tok_binary:
    586     getNextToken();
    587     if (!isascii(CurTok))
    588       return ErrorP("Expected binary operator");
    589     FnName = "binary";
    590     FnName += (char)CurTok;
    591     Kind = 2;
    592     getNextToken();
    593 
    594     // Read the precedence if present.
    595     if (CurTok == tok_number) {
    596       if (NumVal < 1 || NumVal > 100)
    597         return ErrorP("Invalid precedecnce: must be 1..100");
    598       BinaryPrecedence = (unsigned)NumVal;
    599       getNextToken();
    600     }
    601     break;
    602   }
    603 
    604   if (CurTok != '(')
    605     return ErrorP("Expected '(' in prototype");
    606 
    607   std::vector<std::string> ArgNames;
    608   while (getNextToken() == tok_identifier)
    609     ArgNames.push_back(IdentifierStr);
    610   if (CurTok != ')')
    611     return ErrorP("Expected ')' in prototype");
    612 
    613   // success.
    614   getNextToken();  // eat ')'.
    615 
    616   // Verify right number of names for operator.
    617   if (Kind && ArgNames.size() != Kind)
    618     return ErrorP("Invalid number of operands for operator");
    619 
    620   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    621 }
    622 
    623 /// definition ::= 'def' prototype expression
    624 static FunctionAST *ParseDefinition() {
    625   getNextToken();  // eat def.
    626   PrototypeAST *Proto = ParsePrototype();
    627   if (Proto == 0) return 0;
    628 
    629   if (ExprAST *E = ParseExpression())
    630     return new FunctionAST(Proto, E);
    631   return 0;
    632 }
    633 
    634 /// toplevelexpr ::= expression
    635 static FunctionAST *ParseTopLevelExpr() {
    636   if (ExprAST *E = ParseExpression()) {
    637     // Make an anonymous proto.
    638     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    639     return new FunctionAST(Proto, E);
    640   }
    641   return 0;
    642 }
    643 
    644 /// external ::= 'extern' prototype
    645 static PrototypeAST *ParseExtern() {
    646   getNextToken();  // eat extern.
    647   return ParsePrototype();
    648 }
    649 
    650 //===----------------------------------------------------------------------===//
    651 // Quick and dirty hack
    652 //===----------------------------------------------------------------------===//
    653 
    654 // FIXME: Obviously we can do better than this
    655 std::string GenerateUniqueName(const char *root)
    656 {
    657   static int i = 0;
    658   char s[16];
    659   sprintf(s, "%s%d", root, i++);
    660   std::string S = s;
    661   return S;
    662 }
    663 
    664 std::string MakeLegalFunctionName(std::string Name)
    665 {
    666   std::string NewName;
    667   if (!Name.length())
    668       return GenerateUniqueName("anon_func_");
    669 
    670   // Start with what we have
    671   NewName = Name;
    672 
    673   // Look for a numberic first character
    674   if (NewName.find_first_of("0123456789") == 0) {
    675     NewName.insert(0, 1, 'n');
    676   }
    677 
    678   // Replace illegal characters with their ASCII equivalent
    679   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
    680   size_t pos;
    681   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
    682     char old_c = NewName.at(pos);
    683     char new_str[16];
    684     sprintf(new_str, "%d", (int)old_c);
    685     NewName = NewName.replace(pos, 1, new_str);
    686   }
    687 
    688   return NewName;
    689 }
    690 
    691 //===----------------------------------------------------------------------===//
    692 // MCJIT object cache class
    693 //===----------------------------------------------------------------------===//
    694 
    695 class MCJITObjectCache : public ObjectCache {
    696 public:
    697   MCJITObjectCache() {
    698     // Set IR cache directory
    699     sys::fs::current_path(CacheDir);
    700     sys::path::append(CacheDir, "toy_object_cache");
    701   }
    702 
    703   virtual ~MCJITObjectCache() {
    704   }
    705 
    706   virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
    707     // Get the ModuleID
    708     const std::string ModuleID = M->getModuleIdentifier();
    709 
    710     // If we've flagged this as an IR file, cache it
    711     if (0 == ModuleID.compare(0, 3, "IR:")) {
    712       std::string IRFileName = ModuleID.substr(3);
    713       SmallString<128>IRCacheFile = CacheDir;
    714       sys::path::append(IRCacheFile, IRFileName);
    715       if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
    716         fprintf(stderr, "Unable to create cache directory\n");
    717         return;
    718       }
    719       std::string ErrStr;
    720       raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
    721       IRObjectFile << Obj->getBuffer();
    722     }
    723   }
    724 
    725   // MCJIT will call this function before compiling any module
    726   // MCJIT takes ownership of both the MemoryBuffer object and the memory
    727   // to which it refers.
    728   virtual MemoryBuffer* getObject(const Module* M) {
    729     // Get the ModuleID
    730     const std::string ModuleID = M->getModuleIdentifier();
    731 
    732     // If we've flagged this as an IR file, cache it
    733     if (0 == ModuleID.compare(0, 3, "IR:")) {
    734       std::string IRFileName = ModuleID.substr(3);
    735       SmallString<128> IRCacheFile = CacheDir;
    736       sys::path::append(IRCacheFile, IRFileName);
    737       if (!sys::fs::exists(IRCacheFile.str())) {
    738         // This file isn't in our cache
    739         return NULL;
    740       }
    741       OwningPtr<MemoryBuffer> IRObjectBuffer;
    742       MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
    743       // MCJIT will want to write into this buffer, and we don't want that
    744       // because the file has probably just been mmapped.  Instead we make
    745       // a copy.  The filed-based buffer will be released when it goes
    746       // out of scope.
    747       return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
    748     }
    749 
    750     return NULL;
    751   }
    752 
    753 private:
    754   SmallString<128> CacheDir;
    755 };
    756 
    757 //===----------------------------------------------------------------------===//
    758 // IR input file handler
    759 //===----------------------------------------------------------------------===//
    760 
    761 Module* parseInputIR(std::string InputFile, LLVMContext &Context) {
    762   SMDiagnostic Err;
    763   Module *M = ParseIRFile(InputFile, Err, Context);
    764   if (!M) {
    765     Err.print("IR parsing failed: ", errs());
    766     return NULL;
    767   }
    768 
    769   char ModID[256];
    770   sprintf(ModID, "IR:%s", InputFile.c_str());
    771   M->setModuleIdentifier(ModID);
    772   return M;
    773 }
    774 
    775 //===----------------------------------------------------------------------===//
    776 // Helper class for execution engine abstraction
    777 //===----------------------------------------------------------------------===//
    778 
    779 class BaseHelper
    780 {
    781 public:
    782   BaseHelper() {}
    783   virtual ~BaseHelper() {}
    784 
    785   virtual Function *getFunction(const std::string FnName) = 0;
    786   virtual Module *getModuleForNewFunction() = 0;
    787   virtual void *getPointerToFunction(Function* F) = 0;
    788   virtual void *getPointerToNamedFunction(const std::string &Name) = 0;
    789   virtual void closeCurrentModule() = 0;
    790   virtual void runFPM(Function &F) = 0;
    791   virtual void dump();
    792 };
    793 
    794 //===----------------------------------------------------------------------===//
    795 // Helper class for JIT execution engine
    796 //===----------------------------------------------------------------------===//
    797 
    798 class JITHelper : public BaseHelper {
    799 public:
    800   JITHelper(LLVMContext &Context) {
    801     // Make the module, which holds all the code.
    802     if (!InputIR.empty()) {
    803       TheModule = parseInputIR(InputIR, Context);
    804     } else {
    805       TheModule = new Module("my cool jit", Context);
    806     }
    807 
    808     // Create the JIT.  This takes ownership of the module.
    809     std::string ErrStr;
    810     TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
    811     if (!TheExecutionEngine) {
    812       fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
    813       exit(1);
    814     }
    815 
    816     TheFPM = new FunctionPassManager(TheModule);
    817 
    818     // Set up the optimizer pipeline.  Start with registering info about how the
    819     // target lays out data structures.
    820     TheFPM->add(new DataLayout(*TheExecutionEngine->getDataLayout()));
    821     // Provide basic AliasAnalysis support for GVN.
    822     TheFPM->add(createBasicAliasAnalysisPass());
    823     // Promote allocas to registers.
    824     TheFPM->add(createPromoteMemoryToRegisterPass());
    825     // Do simple "peephole" optimizations and bit-twiddling optzns.
    826     TheFPM->add(createInstructionCombiningPass());
    827     // Reassociate expressions.
    828     TheFPM->add(createReassociatePass());
    829     // Eliminate Common SubExpressions.
    830     TheFPM->add(createGVNPass());
    831     // Simplify the control flow graph (deleting unreachable blocks, etc).
    832     TheFPM->add(createCFGSimplificationPass());
    833 
    834     TheFPM->doInitialization();
    835   }
    836 
    837   virtual ~JITHelper() {
    838     if (TheFPM)
    839       delete TheFPM;
    840     if (TheExecutionEngine)
    841       delete TheExecutionEngine;
    842   }
    843 
    844   virtual Function *getFunction(const std::string FnName) {
    845     assert(TheModule);
    846     return TheModule->getFunction(FnName);
    847   }
    848 
    849   virtual Module *getModuleForNewFunction() {
    850     assert(TheModule);
    851     return TheModule;
    852   }
    853 
    854   virtual void *getPointerToFunction(Function* F) {
    855     assert(TheExecutionEngine);
    856     return TheExecutionEngine->getPointerToFunction(F);
    857   }
    858 
    859   virtual void *getPointerToNamedFunction(const std::string &Name) {
    860     return TheExecutionEngine->getPointerToNamedFunction(Name);
    861   }
    862 
    863   virtual void runFPM(Function &F) {
    864     assert(TheFPM);
    865     TheFPM->run(F);
    866   }
    867 
    868   virtual void closeCurrentModule() {
    869     // This should never be called for JIT
    870     assert(false);
    871   }
    872 
    873   virtual void dump() {
    874     assert(TheModule);
    875     TheModule->dump();
    876   }
    877 
    878 private:
    879   Module *TheModule;
    880   ExecutionEngine *TheExecutionEngine;
    881   FunctionPassManager *TheFPM;
    882 };
    883 
    884 //===----------------------------------------------------------------------===//
    885 // MCJIT helper class
    886 //===----------------------------------------------------------------------===//
    887 
    888 class MCJITHelper : public BaseHelper
    889 {
    890 public:
    891   MCJITHelper(LLVMContext& C) : Context(C), CurrentModule(NULL) {
    892     if (!InputIR.empty()) {
    893       Module *M = parseInputIR(InputIR, Context);
    894       Modules.push_back(M);
    895       if (!EnableLazyCompilation)
    896         compileModule(M);
    897     }
    898   }
    899   ~MCJITHelper();
    900 
    901   Function *getFunction(const std::string FnName);
    902   Module *getModuleForNewFunction();
    903   void *getPointerToFunction(Function* F);
    904   void *getPointerToNamedFunction(const std::string &Name);
    905   void closeCurrentModule();
    906   virtual void runFPM(Function &F) {} // Not needed, see compileModule
    907   void dump();
    908 
    909 protected:
    910   ExecutionEngine *compileModule(Module *M);
    911 
    912 private:
    913   typedef std::vector<Module*> ModuleVector;
    914 
    915   MCJITObjectCache OurObjectCache;
    916 
    917   LLVMContext  &Context;
    918   ModuleVector  Modules;
    919 
    920   std::map<Module *, ExecutionEngine *> EngineMap;
    921 
    922   Module       *CurrentModule;
    923 };
    924 
    925 class HelpingMemoryManager : public SectionMemoryManager
    926 {
    927   HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
    928   void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
    929 
    930 public:
    931   HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
    932   virtual ~HelpingMemoryManager() {}
    933 
    934   /// This method returns the address of the specified function.
    935   /// Our implementation will attempt to find functions in other
    936   /// modules associated with the MCJITHelper to cross link functions
    937   /// from one generated module to another.
    938   ///
    939   /// If \p AbortOnFailure is false and no function with the given name is
    940   /// found, this function returns a null pointer. Otherwise, it prints a
    941   /// message to stderr and aborts.
    942   virtual void *getPointerToNamedFunction(const std::string &Name,
    943                                           bool AbortOnFailure = true);
    944 private:
    945   MCJITHelper *MasterHelper;
    946 };
    947 
    948 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
    949                                         bool AbortOnFailure)
    950 {
    951   // Try the standard symbol resolution first, but ask it not to abort.
    952   void *pfn = RTDyldMemoryManager::getPointerToNamedFunction(Name, false);
    953   if (pfn)
    954     return pfn;
    955 
    956   pfn = MasterHelper->getPointerToNamedFunction(Name);
    957   if (!pfn && AbortOnFailure)
    958     report_fatal_error("Program used external function '" + Name +
    959                         "' which could not be resolved!");
    960   return pfn;
    961 }
    962 
    963 MCJITHelper::~MCJITHelper()
    964 {
    965   // Walk the vector of modules.
    966   ModuleVector::iterator it, end;
    967   for (it = Modules.begin(), end = Modules.end();
    968        it != end; ++it) {
    969     // See if we have an execution engine for this module.
    970     std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
    971     // If we have an EE, the EE owns the module so just delete the EE.
    972     if (mapIt != EngineMap.end()) {
    973       delete mapIt->second;
    974     } else {
    975       // Otherwise, we still own the module.  Delete it now.
    976       delete *it;
    977     }
    978   }
    979 }
    980 
    981 Function *MCJITHelper::getFunction(const std::string FnName) {
    982   ModuleVector::iterator begin = Modules.begin();
    983   ModuleVector::iterator end = Modules.end();
    984   ModuleVector::iterator it;
    985   for (it = begin; it != end; ++it) {
    986     Function *F = (*it)->getFunction(FnName);
    987     if (F) {
    988       if (*it == CurrentModule)
    989           return F;
    990 
    991       assert(CurrentModule != NULL);
    992 
    993       // This function is in a module that has already been JITed.
    994       // We just need a prototype for external linkage.
    995       Function *PF = CurrentModule->getFunction(FnName);
    996       if (PF && !PF->empty()) {
    997         ErrorF("redefinition of function across modules");
    998         return 0;
    999       }
   1000 
   1001       // If we don't have a prototype yet, create one.
   1002       if (!PF)
   1003         PF = Function::Create(F->getFunctionType(),
   1004                                       Function::ExternalLinkage,
   1005                                       FnName,
   1006                                       CurrentModule);
   1007       return PF;
   1008     }
   1009   }
   1010   return NULL;
   1011 }
   1012 
   1013 Module *MCJITHelper::getModuleForNewFunction() {
   1014   // If we have a Module that hasn't been JITed, use that.
   1015   if (CurrentModule)
   1016     return CurrentModule;
   1017 
   1018   // Otherwise create a new Module.
   1019   std::string ModName = GenerateUniqueName("mcjit_module_");
   1020   Module *M = new Module(ModName, Context);
   1021   Modules.push_back(M);
   1022   CurrentModule = M;
   1023 
   1024   return M;
   1025 }
   1026 
   1027 ExecutionEngine *MCJITHelper::compileModule(Module *M) {
   1028   assert(EngineMap.find(M) == EngineMap.end());
   1029 
   1030   if (M == CurrentModule)
   1031     closeCurrentModule();
   1032 
   1033   std::string ErrStr;
   1034   ExecutionEngine *EE = EngineBuilder(M)
   1035                             .setErrorStr(&ErrStr)
   1036                             .setUseMCJIT(true)
   1037                             .setMCJITMemoryManager(new HelpingMemoryManager(this))
   1038                             .create();
   1039   if (!EE) {
   1040     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
   1041     exit(1);
   1042   }
   1043 
   1044   if (UseObjectCache)
   1045     EE->setObjectCache(&OurObjectCache);
   1046   // Get the ModuleID so we can identify IR input files
   1047   const std::string ModuleID = M->getModuleIdentifier();
   1048 
   1049   // If we've flagged this as an IR file, it doesn't need function passes run.
   1050   if (0 != ModuleID.compare(0, 3, "IR:")) {
   1051     FunctionPassManager *FPM = 0;
   1052 
   1053     // Create a FPM for this module
   1054     FPM = new FunctionPassManager(M);
   1055 
   1056     // Set up the optimizer pipeline.  Start with registering info about how the
   1057     // target lays out data structures.
   1058     FPM->add(new DataLayout(*EE->getDataLayout()));
   1059     // Provide basic AliasAnalysis support for GVN.
   1060     FPM->add(createBasicAliasAnalysisPass());
   1061     // Promote allocas to registers.
   1062     FPM->add(createPromoteMemoryToRegisterPass());
   1063     // Do simple "peephole" optimizations and bit-twiddling optzns.
   1064     FPM->add(createInstructionCombiningPass());
   1065     // Reassociate expressions.
   1066     FPM->add(createReassociatePass());
   1067     // Eliminate Common SubExpressions.
   1068     FPM->add(createGVNPass());
   1069     // Simplify the control flow graph (deleting unreachable blocks, etc).
   1070     FPM->add(createCFGSimplificationPass());
   1071 
   1072     FPM->doInitialization();
   1073 
   1074     // For each function in the module
   1075     Module::iterator it;
   1076     Module::iterator end = M->end();
   1077     for (it = M->begin(); it != end; ++it) {
   1078       // Run the FPM on this function
   1079       FPM->run(*it);
   1080     }
   1081 
   1082     delete FPM;
   1083   }
   1084 
   1085   EE->finalizeObject();
   1086 
   1087   // Store this engine
   1088   EngineMap[M] = EE;
   1089 
   1090   return EE;
   1091 }
   1092 
   1093 void *MCJITHelper::getPointerToFunction(Function* F) {
   1094   // Look for this function in an existing module
   1095   ModuleVector::iterator begin = Modules.begin();
   1096   ModuleVector::iterator end = Modules.end();
   1097   ModuleVector::iterator it;
   1098   std::string FnName = F->getName();
   1099   for (it = begin; it != end; ++it) {
   1100     Function *MF = (*it)->getFunction(FnName);
   1101     if (MF == F) {
   1102       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
   1103       if (eeIt != EngineMap.end()) {
   1104         void *P = eeIt->second->getPointerToFunction(F);
   1105         if (P)
   1106           return P;
   1107       } else {
   1108         ExecutionEngine *EE = compileModule(*it);
   1109         void *P = EE->getPointerToFunction(F);
   1110         if (P)
   1111           return P;
   1112       }
   1113     }
   1114   }
   1115   return NULL;
   1116 }
   1117 
   1118 void MCJITHelper::closeCurrentModule() {
   1119     // If we have an open module (and we should), pack it up
   1120   if (CurrentModule) {
   1121     CurrentModule = NULL;
   1122   }
   1123 }
   1124 
   1125 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
   1126 {
   1127   // Look for the functions in our modules, compiling only as necessary
   1128   ModuleVector::iterator begin = Modules.begin();
   1129   ModuleVector::iterator end = Modules.end();
   1130   ModuleVector::iterator it;
   1131   for (it = begin; it != end; ++it) {
   1132     Function *F = (*it)->getFunction(Name);
   1133     if (F && !F->empty()) {
   1134       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
   1135       if (eeIt != EngineMap.end()) {
   1136         void *P = eeIt->second->getPointerToFunction(F);
   1137         if (P)
   1138           return P;
   1139       } else {
   1140         ExecutionEngine *EE = compileModule(*it);
   1141         void *P = EE->getPointerToFunction(F);
   1142         if (P)
   1143           return P;
   1144       }
   1145     }
   1146   }
   1147   return NULL;
   1148 }
   1149 
   1150 void MCJITHelper::dump()
   1151 {
   1152   ModuleVector::iterator begin = Modules.begin();
   1153   ModuleVector::iterator end = Modules.end();
   1154   ModuleVector::iterator it;
   1155   for (it = begin; it != end; ++it)
   1156     (*it)->dump();
   1157 }
   1158 
   1159 //===----------------------------------------------------------------------===//
   1160 // Code Generation
   1161 //===----------------------------------------------------------------------===//
   1162 
   1163 static BaseHelper *TheHelper;
   1164 static IRBuilder<> Builder(getGlobalContext());
   1165 static std::map<std::string, AllocaInst*> NamedValues;
   1166 
   1167 Value *ErrorV(const char *Str) { Error(Str); return 0; }
   1168 
   1169 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
   1170 /// the function.  This is used for mutable variables etc.
   1171 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
   1172                                           const std::string &VarName) {
   1173   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
   1174                  TheFunction->getEntryBlock().begin());
   1175   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
   1176                            VarName.c_str());
   1177 }
   1178 
   1179 Value *NumberExprAST::Codegen() {
   1180   return ConstantFP::get(getGlobalContext(), APFloat(Val));
   1181 }
   1182 
   1183 Value *VariableExprAST::Codegen() {
   1184   // Look this variable up in the function.
   1185   Value *V = NamedValues[Name];
   1186   if (V == 0) return ErrorV("Unknown variable name");
   1187 
   1188   // Load the value.
   1189   return Builder.CreateLoad(V, Name.c_str());
   1190 }
   1191 
   1192 Value *UnaryExprAST::Codegen() {
   1193   Value *OperandV = Operand->Codegen();
   1194   if (OperandV == 0) return 0;
   1195   Function *F;
   1196   if (UseMCJIT)
   1197     F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
   1198   else
   1199     F = TheHelper->getFunction(std::string("unary")+Opcode);
   1200   if (F == 0)
   1201     return ErrorV("Unknown unary operator");
   1202 
   1203   return Builder.CreateCall(F, OperandV, "unop");
   1204 }
   1205 
   1206 Value *BinaryExprAST::Codegen() {
   1207   // Special case '=' because we don't want to emit the LHS as an expression.
   1208   if (Op == '=') {
   1209     // Assignment requires the LHS to be an identifier.
   1210     // This assume we're building without RTTI because LLVM builds that way by
   1211     // default.  If you build LLVM with RTTI this can be changed to a
   1212     // dynamic_cast for automatic error checking.
   1213     VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
   1214     if (!LHSE)
   1215       return ErrorV("destination of '=' must be a variable");
   1216     // Codegen the RHS.
   1217     Value *Val = RHS->Codegen();
   1218     if (Val == 0) return 0;
   1219 
   1220     // Look up the name.
   1221     Value *Variable = NamedValues[LHSE->getName()];
   1222     if (Variable == 0) return ErrorV("Unknown variable name");
   1223 
   1224     Builder.CreateStore(Val, Variable);
   1225     return Val;
   1226   }
   1227 
   1228   Value *L = LHS->Codegen();
   1229   Value *R = RHS->Codegen();
   1230   if (L == 0 || R == 0) return 0;
   1231 
   1232   switch (Op) {
   1233   case '+': return Builder.CreateFAdd(L, R, "addtmp");
   1234   case '-': return Builder.CreateFSub(L, R, "subtmp");
   1235   case '*': return Builder.CreateFMul(L, R, "multmp");
   1236   case '/': return Builder.CreateFDiv(L, R, "divtmp");
   1237   case '<':
   1238     L = Builder.CreateFCmpULT(L, R, "cmptmp");
   1239     // Convert bool 0/1 to double 0.0 or 1.0
   1240     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
   1241                                 "booltmp");
   1242   default: break;
   1243   }
   1244 
   1245   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
   1246   // a call to it.
   1247   Function *F;
   1248   if (UseMCJIT)
   1249     F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
   1250   else
   1251     F = TheHelper->getFunction(std::string("binary")+Op);
   1252   assert(F && "binary operator not found!");
   1253 
   1254   Value *Ops[] = { L, R };
   1255   return Builder.CreateCall(F, Ops, "binop");
   1256 }
   1257 
   1258 Value *CallExprAST::Codegen() {
   1259   // Look up the name in the global module table.
   1260   Function *CalleeF = TheHelper->getFunction(Callee);
   1261   if (CalleeF == 0) {
   1262     char error_str[64];
   1263     sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
   1264     return ErrorV(error_str);
   1265   }
   1266 
   1267   // If argument mismatch error.
   1268   if (CalleeF->arg_size() != Args.size())
   1269     return ErrorV("Incorrect # arguments passed");
   1270 
   1271   std::vector<Value*> ArgsV;
   1272   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   1273     ArgsV.push_back(Args[i]->Codegen());
   1274     if (ArgsV.back() == 0) return 0;
   1275   }
   1276 
   1277   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
   1278 }
   1279 
   1280 Value *IfExprAST::Codegen() {
   1281   Value *CondV = Cond->Codegen();
   1282   if (CondV == 0) return 0;
   1283 
   1284   // Convert condition to a bool by comparing equal to 0.0.
   1285   CondV = Builder.CreateFCmpONE(CondV,
   1286                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1287                                 "ifcond");
   1288 
   1289   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1290 
   1291   // Create blocks for the then and else cases.  Insert the 'then' block at the
   1292   // end of the function.
   1293   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
   1294   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
   1295   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
   1296 
   1297   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
   1298 
   1299   // Emit then value.
   1300   Builder.SetInsertPoint(ThenBB);
   1301 
   1302   Value *ThenV = Then->Codegen();
   1303   if (ThenV == 0) return 0;
   1304 
   1305   Builder.CreateBr(MergeBB);
   1306   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
   1307   ThenBB = Builder.GetInsertBlock();
   1308 
   1309   // Emit else block.
   1310   TheFunction->getBasicBlockList().push_back(ElseBB);
   1311   Builder.SetInsertPoint(ElseBB);
   1312 
   1313   Value *ElseV = Else->Codegen();
   1314   if (ElseV == 0) return 0;
   1315 
   1316   Builder.CreateBr(MergeBB);
   1317   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
   1318   ElseBB = Builder.GetInsertBlock();
   1319 
   1320   // Emit merge block.
   1321   TheFunction->getBasicBlockList().push_back(MergeBB);
   1322   Builder.SetInsertPoint(MergeBB);
   1323   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
   1324                                   "iftmp");
   1325 
   1326   PN->addIncoming(ThenV, ThenBB);
   1327   PN->addIncoming(ElseV, ElseBB);
   1328   return PN;
   1329 }
   1330 
   1331 Value *ForExprAST::Codegen() {
   1332   // Output this as:
   1333   //   var = alloca double
   1334   //   ...
   1335   //   start = startexpr
   1336   //   store start -> var
   1337   //   goto loop
   1338   // loop:
   1339   //   ...
   1340   //   bodyexpr
   1341   //   ...
   1342   // loopend:
   1343   //   step = stepexpr
   1344   //   endcond = endexpr
   1345   //
   1346   //   curvar = load var
   1347   //   nextvar = curvar + step
   1348   //   store nextvar -> var
   1349   //   br endcond, loop, endloop
   1350   // outloop:
   1351 
   1352   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1353 
   1354   // Create an alloca for the variable in the entry block.
   1355   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1356 
   1357   // Emit the start code first, without 'variable' in scope.
   1358   Value *StartVal = Start->Codegen();
   1359   if (StartVal == 0) return 0;
   1360 
   1361   // Store the value into the alloca.
   1362   Builder.CreateStore(StartVal, Alloca);
   1363 
   1364   // Make the new basic block for the loop header, inserting after current
   1365   // block.
   1366   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
   1367 
   1368   // Insert an explicit fall through from the current block to the LoopBB.
   1369   Builder.CreateBr(LoopBB);
   1370 
   1371   // Start insertion in LoopBB.
   1372   Builder.SetInsertPoint(LoopBB);
   1373 
   1374   // Within the loop, the variable is defined equal to the PHI node.  If it
   1375   // shadows an existing variable, we have to restore it, so save it now.
   1376   AllocaInst *OldVal = NamedValues[VarName];
   1377   NamedValues[VarName] = Alloca;
   1378 
   1379   // Emit the body of the loop.  This, like any other expr, can change the
   1380   // current BB.  Note that we ignore the value computed by the body, but don't
   1381   // allow an error.
   1382   if (Body->Codegen() == 0)
   1383     return 0;
   1384 
   1385   // Emit the step value.
   1386   Value *StepVal;
   1387   if (Step) {
   1388     StepVal = Step->Codegen();
   1389     if (StepVal == 0) return 0;
   1390   } else {
   1391     // If not specified, use 1.0.
   1392     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
   1393   }
   1394 
   1395   // Compute the end condition.
   1396   Value *EndCond = End->Codegen();
   1397   if (EndCond == 0) return EndCond;
   1398 
   1399   // Reload, increment, and restore the alloca.  This handles the case where
   1400   // the body of the loop mutates the variable.
   1401   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
   1402   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
   1403   Builder.CreateStore(NextVar, Alloca);
   1404 
   1405   // Convert condition to a bool by comparing equal to 0.0.
   1406   EndCond = Builder.CreateFCmpONE(EndCond,
   1407                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1408                                   "loopcond");
   1409 
   1410   // Create the "after loop" block and insert it.
   1411   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
   1412 
   1413   // Insert the conditional branch into the end of LoopEndBB.
   1414   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
   1415 
   1416   // Any new code will be inserted in AfterBB.
   1417   Builder.SetInsertPoint(AfterBB);
   1418 
   1419   // Restore the unshadowed variable.
   1420   if (OldVal)
   1421     NamedValues[VarName] = OldVal;
   1422   else
   1423     NamedValues.erase(VarName);
   1424 
   1425 
   1426   // for expr always returns 0.0.
   1427   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
   1428 }
   1429 
   1430 Value *VarExprAST::Codegen() {
   1431   std::vector<AllocaInst *> OldBindings;
   1432 
   1433   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1434 
   1435   // Register all variables and emit their initializer.
   1436   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
   1437     const std::string &VarName = VarNames[i].first;
   1438     ExprAST *Init = VarNames[i].second;
   1439 
   1440     // Emit the initializer before adding the variable to scope, this prevents
   1441     // the initializer from referencing the variable itself, and permits stuff
   1442     // like this:
   1443     //  var a = 1 in
   1444     //    var a = a in ...   # refers to outer 'a'.
   1445     Value *InitVal;
   1446     if (Init) {
   1447       InitVal = Init->Codegen();
   1448       if (InitVal == 0) return 0;
   1449     } else { // If not specified, use 0.0.
   1450       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
   1451     }
   1452 
   1453     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1454     Builder.CreateStore(InitVal, Alloca);
   1455 
   1456     // Remember the old variable binding so that we can restore the binding when
   1457     // we unrecurse.
   1458     OldBindings.push_back(NamedValues[VarName]);
   1459 
   1460     // Remember this binding.
   1461     NamedValues[VarName] = Alloca;
   1462   }
   1463 
   1464   // Codegen the body, now that all vars are in scope.
   1465   Value *BodyVal = Body->Codegen();
   1466   if (BodyVal == 0) return 0;
   1467 
   1468   // Pop all our variables from scope.
   1469   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
   1470     NamedValues[VarNames[i].first] = OldBindings[i];
   1471 
   1472   // Return the body computation.
   1473   return BodyVal;
   1474 }
   1475 
   1476 Function *PrototypeAST::Codegen() {
   1477   // Make the function type:  double(double,double) etc.
   1478   std::vector<Type*> Doubles(Args.size(),
   1479                              Type::getDoubleTy(getGlobalContext()));
   1480   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
   1481                                        Doubles, false);
   1482 
   1483   std::string FnName;
   1484   if (UseMCJIT)
   1485     FnName = MakeLegalFunctionName(Name);
   1486   else
   1487     FnName = Name;
   1488 
   1489   Module* M = TheHelper->getModuleForNewFunction();
   1490   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
   1491 
   1492   // FIXME: Implement duplicate function detection.
   1493   // The check below will only work if the duplicate is in the open module.
   1494   // If F conflicted, there was already something named 'Name'.  If it has a
   1495   // body, don't allow redefinition or reextern.
   1496   if (F->getName() != FnName) {
   1497     // Delete the one we just made and get the existing one.
   1498     F->eraseFromParent();
   1499     F = M->getFunction(FnName);
   1500     // If F already has a body, reject this.
   1501     if (!F->empty()) {
   1502       ErrorF("redefinition of function");
   1503       return 0;
   1504     }
   1505     // If F took a different number of args, reject.
   1506     if (F->arg_size() != Args.size()) {
   1507       ErrorF("redefinition of function with different # args");
   1508       return 0;
   1509     }
   1510   }
   1511 
   1512   // Set names for all arguments.
   1513   unsigned Idx = 0;
   1514   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
   1515        ++AI, ++Idx)
   1516     AI->setName(Args[Idx]);
   1517 
   1518   return F;
   1519 }
   1520 
   1521 /// CreateArgumentAllocas - Create an alloca for each argument and register the
   1522 /// argument in the symbol table so that references to it will succeed.
   1523 void PrototypeAST::CreateArgumentAllocas(Function *F) {
   1524   Function::arg_iterator AI = F->arg_begin();
   1525   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
   1526     // Create an alloca for this variable.
   1527     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
   1528 
   1529     // Store the initial value into the alloca.
   1530     Builder.CreateStore(AI, Alloca);
   1531 
   1532     // Add arguments to variable symbol table.
   1533     NamedValues[Args[Idx]] = Alloca;
   1534   }
   1535 }
   1536 
   1537 Function *FunctionAST::Codegen() {
   1538   NamedValues.clear();
   1539 
   1540   Function *TheFunction = Proto->Codegen();
   1541   if (TheFunction == 0)
   1542     return 0;
   1543 
   1544   // If this is an operator, install it.
   1545   if (Proto->isBinaryOp())
   1546     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
   1547 
   1548   // Create a new basic block to start insertion into.
   1549   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
   1550   Builder.SetInsertPoint(BB);
   1551 
   1552   // Add all arguments to the symbol table and create their allocas.
   1553   Proto->CreateArgumentAllocas(TheFunction);
   1554 
   1555   if (Value *RetVal = Body->Codegen()) {
   1556     // Finish off the function.
   1557     Builder.CreateRet(RetVal);
   1558 
   1559     // Validate the generated code, checking for consistency.
   1560     verifyFunction(*TheFunction);
   1561 
   1562     // Optimize the function.
   1563     if (!UseMCJIT)
   1564       TheHelper->runFPM(*TheFunction);
   1565 
   1566     return TheFunction;
   1567   }
   1568 
   1569   // Error reading body, remove function.
   1570   TheFunction->eraseFromParent();
   1571 
   1572   if (Proto->isBinaryOp())
   1573     BinopPrecedence.erase(Proto->getOperatorName());
   1574   return 0;
   1575 }
   1576 
   1577 //===----------------------------------------------------------------------===//
   1578 // Top-Level parsing and JIT Driver
   1579 //===----------------------------------------------------------------------===//
   1580 
   1581 static void HandleDefinition() {
   1582   if (FunctionAST *F = ParseDefinition()) {
   1583     if (UseMCJIT && EnableLazyCompilation)
   1584       TheHelper->closeCurrentModule();
   1585     Function *LF = F->Codegen();
   1586     if (LF && VerboseOutput) {
   1587       fprintf(stderr, "Read function definition:");
   1588       LF->dump();
   1589     }
   1590   } else {
   1591     // Skip token for error recovery.
   1592     getNextToken();
   1593   }
   1594 }
   1595 
   1596 static void HandleExtern() {
   1597   if (PrototypeAST *P = ParseExtern()) {
   1598     Function *F = P->Codegen();
   1599     if (F && VerboseOutput) {
   1600       fprintf(stderr, "Read extern: ");
   1601       F->dump();
   1602     }
   1603   } else {
   1604     // Skip token for error recovery.
   1605     getNextToken();
   1606   }
   1607 }
   1608 
   1609 static void HandleTopLevelExpression() {
   1610   // Evaluate a top-level expression into an anonymous function.
   1611   if (FunctionAST *F = ParseTopLevelExpr()) {
   1612     if (Function *LF = F->Codegen()) {
   1613       // JIT the function, returning a function pointer.
   1614       void *FPtr = TheHelper->getPointerToFunction(LF);
   1615       // Cast it to the right type (takes no arguments, returns a double) so we
   1616       // can call it as a native function.
   1617       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1618       double Result = FP();
   1619       if (VerboseOutput)
   1620         fprintf(stderr, "Evaluated to %f\n", Result);
   1621     }
   1622   } else {
   1623     // Skip token for error recovery.
   1624     getNextToken();
   1625   }
   1626 }
   1627 
   1628 /// top ::= definition | external | expression | ';'
   1629 static void MainLoop() {
   1630   while (1) {
   1631     if (!SuppressPrompts)
   1632       fprintf(stderr, "ready> ");
   1633     switch (CurTok) {
   1634     case tok_eof:    return;
   1635     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1636     case tok_def:    HandleDefinition(); break;
   1637     case tok_extern: HandleExtern(); break;
   1638     default:         HandleTopLevelExpression(); break;
   1639     }
   1640   }
   1641 }
   1642 
   1643 //===----------------------------------------------------------------------===//
   1644 // "Library" functions that can be "extern'd" from user code.
   1645 //===----------------------------------------------------------------------===//
   1646 
   1647 /// putchard - putchar that takes a double and returns 0.
   1648 extern "C"
   1649 double putchard(double X) {
   1650   putchar((char)X);
   1651   return 0;
   1652 }
   1653 
   1654 /// printd - printf that takes a double prints it as "%f\n", returning 0.
   1655 extern "C"
   1656 double printd(double X) {
   1657   printf("%f", X);
   1658   return 0;
   1659 }
   1660 
   1661 extern "C"
   1662 double printlf() {
   1663   printf("\n");
   1664   return 0;
   1665 }
   1666 
   1667 //===----------------------------------------------------------------------===//
   1668 // Main driver code.
   1669 //===----------------------------------------------------------------------===//
   1670 
   1671 int main(int argc, char **argv) {
   1672   InitializeNativeTarget();
   1673   if (UseMCJIT) {
   1674     InitializeNativeTargetAsmPrinter();
   1675     InitializeNativeTargetAsmParser();
   1676   }
   1677   LLVMContext &Context = getGlobalContext();
   1678 
   1679   cl::ParseCommandLineOptions(argc, argv,
   1680                               "Kaleidoscope example program\n");
   1681 
   1682   // Install standard binary operators.
   1683   // 1 is lowest precedence.
   1684   BinopPrecedence['='] = 2;
   1685   BinopPrecedence['<'] = 10;
   1686   BinopPrecedence['+'] = 20;
   1687   BinopPrecedence['-'] = 20;
   1688   BinopPrecedence['/'] = 40;
   1689   BinopPrecedence['*'] = 40;  // highest.
   1690 
   1691   // Make the Helper, which holds all the code.
   1692   if (UseMCJIT)
   1693     TheHelper = new MCJITHelper(Context);
   1694   else
   1695     TheHelper = new JITHelper(Context);
   1696 
   1697   // Prime the first token.
   1698   if (!SuppressPrompts)
   1699     fprintf(stderr, "ready> ");
   1700   getNextToken();
   1701 
   1702   // Run the main "interpreter loop" now.
   1703   MainLoop();
   1704 
   1705   // Print out all of the generated code.
   1706   if (DumpModulesOnExit)
   1707     TheHelper->dump();
   1708 
   1709   return 0;
   1710 }
   1711