Home | History | Annotate | Download | only in IR
      1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the function verifier interface, that can be used for some
     11 // sanity checking of input to the system.
     12 //
     13 // Note that this does not provide full `Java style' security and verifications,
     14 // instead it just tries to ensure that code is well-formed.
     15 //
     16 //  * Both of a binary operator's parameters are of the same type
     17 //  * Verify that the indices of mem access instructions match other operands
     18 //  * Verify that arithmetic and other things are only performed on first-class
     19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
     20 //  * All of the constants in a switch statement are of the correct type
     21 //  * The code is in valid SSA form
     22 //  * It should be illegal to put a label into any other type (like a structure)
     23 //    or to return one. [except constant arrays!]
     24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
     25 //  * PHI nodes must have an entry for each predecessor, with no extras.
     26 //  * PHI nodes must be the first thing in a basic block, all grouped together
     27 //  * PHI nodes must have at least one entry
     28 //  * All basic blocks should only end with terminator insts, not contain them
     29 //  * The entry node to a function must not have predecessors
     30 //  * All Instructions must be embedded into a basic block
     31 //  * Functions cannot take a void-typed parameter
     32 //  * Verify that a function's argument list agrees with it's declared type.
     33 //  * It is illegal to specify a name for a void value.
     34 //  * It is illegal to have a internal global value with no initializer
     35 //  * It is illegal to have a ret instruction that returns a value that does not
     36 //    agree with the function return value type.
     37 //  * Function call argument types match the function prototype
     38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
     39 //    only by the unwind edge of an invoke instruction.
     40 //  * A landingpad instruction must be the first non-PHI instruction in the
     41 //    block.
     42 //  * All landingpad instructions must use the same personality function with
     43 //    the same function.
     44 //  * All other things that are tested by asserts spread about the code...
     45 //
     46 //===----------------------------------------------------------------------===//
     47 
     48 #include "llvm/Analysis/Verifier.h"
     49 #include "llvm/ADT/STLExtras.h"
     50 #include "llvm/ADT/SetVector.h"
     51 #include "llvm/ADT/SmallPtrSet.h"
     52 #include "llvm/ADT/SmallVector.h"
     53 #include "llvm/ADT/StringExtras.h"
     54 #include "llvm/Analysis/Dominators.h"
     55 #include "llvm/Assembly/Writer.h"
     56 #include "llvm/DebugInfo.h"
     57 #include "llvm/IR/CallingConv.h"
     58 #include "llvm/IR/Constants.h"
     59 #include "llvm/IR/DataLayout.h"
     60 #include "llvm/IR/DerivedTypes.h"
     61 #include "llvm/IR/InlineAsm.h"
     62 #include "llvm/IR/IntrinsicInst.h"
     63 #include "llvm/IR/LLVMContext.h"
     64 #include "llvm/IR/Metadata.h"
     65 #include "llvm/IR/Module.h"
     66 #include "llvm/InstVisitor.h"
     67 #include "llvm/Pass.h"
     68 #include "llvm/PassManager.h"
     69 #include "llvm/Support/CFG.h"
     70 #include "llvm/Support/CallSite.h"
     71 #include "llvm/Support/CommandLine.h"
     72 #include "llvm/Support/ConstantRange.h"
     73 #include "llvm/Support/Debug.h"
     74 #include "llvm/Support/ErrorHandling.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include <algorithm>
     77 #include <cstdarg>
     78 using namespace llvm;
     79 
     80 static cl::opt<bool> DisableDebugInfoVerifier("disable-debug-info-verifier",
     81                                               cl::init(false));
     82 
     83 namespace {  // Anonymous namespace for class
     84   struct PreVerifier : public FunctionPass {
     85     static char ID; // Pass ID, replacement for typeid
     86 
     87     PreVerifier() : FunctionPass(ID) {
     88       initializePreVerifierPass(*PassRegistry::getPassRegistry());
     89     }
     90 
     91     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     92       AU.setPreservesAll();
     93     }
     94 
     95     // Check that the prerequisites for successful DominatorTree construction
     96     // are satisfied.
     97     bool runOnFunction(Function &F) {
     98       bool Broken = false;
     99 
    100       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    101         if (I->empty() || !I->back().isTerminator()) {
    102           dbgs() << "Basic Block in function '" << F.getName()
    103                  << "' does not have terminator!\n";
    104           WriteAsOperand(dbgs(), I, true);
    105           dbgs() << "\n";
    106           Broken = true;
    107         }
    108       }
    109 
    110       if (Broken)
    111         report_fatal_error("Broken module, no Basic Block terminator!");
    112 
    113       return false;
    114     }
    115   };
    116 }
    117 
    118 char PreVerifier::ID = 0;
    119 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
    120                 false, false)
    121 static char &PreVerifyID = PreVerifier::ID;
    122 
    123 namespace {
    124   struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
    125     static char ID; // Pass ID, replacement for typeid
    126     bool Broken;          // Is this module found to be broken?
    127     VerifierFailureAction action;
    128                           // What to do if verification fails.
    129     Module *Mod;          // Module we are verifying right now
    130     LLVMContext *Context; // Context within which we are verifying
    131     DominatorTree *DT;    // Dominator Tree, caution can be null!
    132     const DataLayout *DL;
    133 
    134     std::string Messages;
    135     raw_string_ostream MessagesStr;
    136 
    137     /// InstInThisBlock - when verifying a basic block, keep track of all of the
    138     /// instructions we have seen so far.  This allows us to do efficient
    139     /// dominance checks for the case when an instruction has an operand that is
    140     /// an instruction in the same block.
    141     SmallPtrSet<Instruction*, 16> InstsInThisBlock;
    142 
    143     /// MDNodes - keep track of the metadata nodes that have been checked
    144     /// already.
    145     SmallPtrSet<MDNode *, 32> MDNodes;
    146 
    147     /// PersonalityFn - The personality function referenced by the
    148     /// LandingPadInsts. All LandingPadInsts within the same function must use
    149     /// the same personality function.
    150     const Value *PersonalityFn;
    151 
    152     /// Finder keeps track of all debug info MDNodes in a Module.
    153     DebugInfoFinder Finder;
    154 
    155     Verifier()
    156       : FunctionPass(ID), Broken(false),
    157         action(AbortProcessAction), Mod(0), Context(0), DT(0), DL(0),
    158         MessagesStr(Messages), PersonalityFn(0) {
    159       initializeVerifierPass(*PassRegistry::getPassRegistry());
    160     }
    161     explicit Verifier(VerifierFailureAction ctn)
    162       : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
    163         Context(0), DT(0), DL(0), MessagesStr(Messages), PersonalityFn(0) {
    164       initializeVerifierPass(*PassRegistry::getPassRegistry());
    165     }
    166 
    167     bool doInitialization(Module &M) {
    168       Mod = &M;
    169       Context = &M.getContext();
    170       Finder.reset();
    171 
    172       DL = getAnalysisIfAvailable<DataLayout>();
    173 
    174       // We must abort before returning back to the pass manager, or else the
    175       // pass manager may try to run other passes on the broken module.
    176       return abortIfBroken();
    177     }
    178 
    179     bool runOnFunction(Function &F) {
    180       // Get dominator information if we are being run by PassManager
    181       DT = &getAnalysis<DominatorTree>();
    182 
    183       Mod = F.getParent();
    184       if (!Context) Context = &F.getContext();
    185 
    186       visit(F);
    187       InstsInThisBlock.clear();
    188       PersonalityFn = 0;
    189 
    190       // We must abort before returning back to the pass manager, or else the
    191       // pass manager may try to run other passes on the broken module.
    192       return abortIfBroken();
    193     }
    194 
    195     bool doFinalization(Module &M) {
    196       // Scan through, checking all of the external function's linkage now...
    197       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    198         visitGlobalValue(*I);
    199 
    200         // Check to make sure function prototypes are okay.
    201         if (I->isDeclaration()) visitFunction(*I);
    202       }
    203 
    204       for (Module::global_iterator I = M.global_begin(), E = M.global_end();
    205            I != E; ++I)
    206         visitGlobalVariable(*I);
    207 
    208       for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
    209            I != E; ++I)
    210         visitGlobalAlias(*I);
    211 
    212       for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    213            E = M.named_metadata_end(); I != E; ++I)
    214         visitNamedMDNode(*I);
    215 
    216       visitModuleFlags(M);
    217 
    218       // Verify Debug Info.
    219       verifyDebugInfo(M);
    220 
    221       // If the module is broken, abort at this time.
    222       return abortIfBroken();
    223     }
    224 
    225     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    226       AU.setPreservesAll();
    227       AU.addRequiredID(PreVerifyID);
    228       AU.addRequired<DominatorTree>();
    229     }
    230 
    231     /// abortIfBroken - If the module is broken and we are supposed to abort on
    232     /// this condition, do so.
    233     ///
    234     bool abortIfBroken() {
    235       if (!Broken) return false;
    236       MessagesStr << "Broken module found, ";
    237       switch (action) {
    238       case AbortProcessAction:
    239         MessagesStr << "compilation aborted!\n";
    240         dbgs() << MessagesStr.str();
    241         // Client should choose different reaction if abort is not desired
    242         abort();
    243       case PrintMessageAction:
    244         MessagesStr << "verification continues.\n";
    245         dbgs() << MessagesStr.str();
    246         return false;
    247       case ReturnStatusAction:
    248         MessagesStr << "compilation terminated.\n";
    249         return true;
    250       }
    251       llvm_unreachable("Invalid action");
    252     }
    253 
    254 
    255     // Verification methods...
    256     void visitGlobalValue(GlobalValue &GV);
    257     void visitGlobalVariable(GlobalVariable &GV);
    258     void visitGlobalAlias(GlobalAlias &GA);
    259     void visitNamedMDNode(NamedMDNode &NMD);
    260     void visitMDNode(MDNode &MD, Function *F);
    261     void visitModuleFlags(Module &M);
    262     void visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*> &SeenIDs,
    263                          SmallVectorImpl<MDNode*> &Requirements);
    264     void visitFunction(Function &F);
    265     void visitBasicBlock(BasicBlock &BB);
    266     using InstVisitor<Verifier>::visit;
    267 
    268     void visit(Instruction &I);
    269 
    270     void visitTruncInst(TruncInst &I);
    271     void visitZExtInst(ZExtInst &I);
    272     void visitSExtInst(SExtInst &I);
    273     void visitFPTruncInst(FPTruncInst &I);
    274     void visitFPExtInst(FPExtInst &I);
    275     void visitFPToUIInst(FPToUIInst &I);
    276     void visitFPToSIInst(FPToSIInst &I);
    277     void visitUIToFPInst(UIToFPInst &I);
    278     void visitSIToFPInst(SIToFPInst &I);
    279     void visitIntToPtrInst(IntToPtrInst &I);
    280     void visitPtrToIntInst(PtrToIntInst &I);
    281     void visitBitCastInst(BitCastInst &I);
    282     void visitPHINode(PHINode &PN);
    283     void visitBinaryOperator(BinaryOperator &B);
    284     void visitICmpInst(ICmpInst &IC);
    285     void visitFCmpInst(FCmpInst &FC);
    286     void visitExtractElementInst(ExtractElementInst &EI);
    287     void visitInsertElementInst(InsertElementInst &EI);
    288     void visitShuffleVectorInst(ShuffleVectorInst &EI);
    289     void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    290     void visitCallInst(CallInst &CI);
    291     void visitInvokeInst(InvokeInst &II);
    292     void visitGetElementPtrInst(GetElementPtrInst &GEP);
    293     void visitLoadInst(LoadInst &LI);
    294     void visitStoreInst(StoreInst &SI);
    295     void verifyDominatesUse(Instruction &I, unsigned i);
    296     void visitInstruction(Instruction &I);
    297     void visitTerminatorInst(TerminatorInst &I);
    298     void visitBranchInst(BranchInst &BI);
    299     void visitReturnInst(ReturnInst &RI);
    300     void visitSwitchInst(SwitchInst &SI);
    301     void visitIndirectBrInst(IndirectBrInst &BI);
    302     void visitSelectInst(SelectInst &SI);
    303     void visitUserOp1(Instruction &I);
    304     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    305     void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    306     void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
    307     void visitAtomicRMWInst(AtomicRMWInst &RMWI);
    308     void visitFenceInst(FenceInst &FI);
    309     void visitAllocaInst(AllocaInst &AI);
    310     void visitExtractValueInst(ExtractValueInst &EVI);
    311     void visitInsertValueInst(InsertValueInst &IVI);
    312     void visitLandingPadInst(LandingPadInst &LPI);
    313 
    314     void VerifyCallSite(CallSite CS);
    315     bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
    316                           int VT, unsigned ArgNo, std::string &Suffix);
    317     bool VerifyIntrinsicType(Type *Ty,
    318                              ArrayRef<Intrinsic::IITDescriptor> &Infos,
    319                              SmallVectorImpl<Type*> &ArgTys);
    320     bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
    321     void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
    322                               bool isFunction, const Value *V);
    323     void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
    324                               bool isReturnValue, const Value *V);
    325     void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
    326                              const Value *V);
    327 
    328     void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
    329     void VerifyConstantExprBitcastType(const ConstantExpr *CE);
    330 
    331     void verifyDebugInfo(Module &M);
    332 
    333     void WriteValue(const Value *V) {
    334       if (!V) return;
    335       if (isa<Instruction>(V)) {
    336         MessagesStr << *V << '\n';
    337       } else {
    338         WriteAsOperand(MessagesStr, V, true, Mod);
    339         MessagesStr << '\n';
    340       }
    341     }
    342 
    343     void WriteType(Type *T) {
    344       if (!T) return;
    345       MessagesStr << ' ' << *T;
    346     }
    347 
    348 
    349     // CheckFailed - A check failed, so print out the condition and the message
    350     // that failed.  This provides a nice place to put a breakpoint if you want
    351     // to see why something is not correct.
    352     void CheckFailed(const Twine &Message,
    353                      const Value *V1 = 0, const Value *V2 = 0,
    354                      const Value *V3 = 0, const Value *V4 = 0) {
    355       MessagesStr << Message.str() << "\n";
    356       WriteValue(V1);
    357       WriteValue(V2);
    358       WriteValue(V3);
    359       WriteValue(V4);
    360       Broken = true;
    361     }
    362 
    363     void CheckFailed(const Twine &Message, const Value *V1,
    364                      Type *T2, const Value *V3 = 0) {
    365       MessagesStr << Message.str() << "\n";
    366       WriteValue(V1);
    367       WriteType(T2);
    368       WriteValue(V3);
    369       Broken = true;
    370     }
    371 
    372     void CheckFailed(const Twine &Message, Type *T1,
    373                      Type *T2 = 0, Type *T3 = 0) {
    374       MessagesStr << Message.str() << "\n";
    375       WriteType(T1);
    376       WriteType(T2);
    377       WriteType(T3);
    378       Broken = true;
    379     }
    380   };
    381 } // End anonymous namespace
    382 
    383 char Verifier::ID = 0;
    384 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
    385 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
    386 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    387 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
    388 
    389 // Assert - We know that cond should be true, if not print an error message.
    390 #define Assert(C, M) \
    391   do { if (!(C)) { CheckFailed(M); return; } } while (0)
    392 #define Assert1(C, M, V1) \
    393   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    394 #define Assert2(C, M, V1, V2) \
    395   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    396 #define Assert3(C, M, V1, V2, V3) \
    397   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    398 #define Assert4(C, M, V1, V2, V3, V4) \
    399   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    400 
    401 void Verifier::visit(Instruction &I) {
    402   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    403     Assert1(I.getOperand(i) != 0, "Operand is null", &I);
    404   InstVisitor<Verifier>::visit(I);
    405 }
    406 
    407 
    408 void Verifier::visitGlobalValue(GlobalValue &GV) {
    409   Assert1(!GV.isDeclaration() ||
    410           GV.isMaterializable() ||
    411           GV.hasExternalLinkage() ||
    412           GV.hasDLLImportLinkage() ||
    413           GV.hasExternalWeakLinkage() ||
    414           (isa<GlobalAlias>(GV) &&
    415            (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
    416   "Global is external, but doesn't have external or dllimport or weak linkage!",
    417           &GV);
    418 
    419   Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
    420           "Global is marked as dllimport, but not external", &GV);
    421 
    422   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
    423           "Only global variables can have appending linkage!", &GV);
    424 
    425   if (GV.hasAppendingLinkage()) {
    426     GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    427     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
    428             "Only global arrays can have appending linkage!", GVar);
    429   }
    430 
    431   Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
    432           "linkonce_odr_auto_hide can only have default visibility!",
    433           &GV);
    434 }
    435 
    436 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
    437   if (GV.hasInitializer()) {
    438     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
    439             "Global variable initializer type does not match global "
    440             "variable type!", &GV);
    441 
    442     // If the global has common linkage, it must have a zero initializer and
    443     // cannot be constant.
    444     if (GV.hasCommonLinkage()) {
    445       Assert1(GV.getInitializer()->isNullValue(),
    446               "'common' global must have a zero initializer!", &GV);
    447       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
    448               &GV);
    449     }
    450   } else {
    451     Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
    452             GV.hasExternalWeakLinkage(),
    453             "invalid linkage type for global declaration", &GV);
    454   }
    455 
    456   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
    457                        GV.getName() == "llvm.global_dtors")) {
    458     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    459             "invalid linkage for intrinsic global variable", &GV);
    460     // Don't worry about emitting an error for it not being an array,
    461     // visitGlobalValue will complain on appending non-array.
    462     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
    463       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
    464       PointerType *FuncPtrTy =
    465           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
    466       Assert1(STy && STy->getNumElements() == 2 &&
    467               STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
    468               STy->getTypeAtIndex(1) == FuncPtrTy,
    469               "wrong type for intrinsic global variable", &GV);
    470     }
    471   }
    472 
    473   if (GV.hasName() && (GV.getName() == "llvm.used" ||
    474                        GV.getName() == "llvm.compiler.used")) {
    475     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    476             "invalid linkage for intrinsic global variable", &GV);
    477     Type *GVType = GV.getType()->getElementType();
    478     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
    479       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
    480       Assert1(PTy, "wrong type for intrinsic global variable", &GV);
    481       if (GV.hasInitializer()) {
    482         Constant *Init = GV.getInitializer();
    483         ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
    484         Assert1(InitArray, "wrong initalizer for intrinsic global variable",
    485                 Init);
    486         for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
    487           Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
    488           Assert1(
    489               isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
    490               "invalid llvm.used member", V);
    491           Assert1(V->hasName(), "members of llvm.used must be named", V);
    492         }
    493       }
    494     }
    495   }
    496 
    497   if (!GV.hasInitializer()) {
    498     visitGlobalValue(GV);
    499     return;
    500   }
    501 
    502   // Walk any aggregate initializers looking for bitcasts between address spaces
    503   SmallPtrSet<const Value *, 4> Visited;
    504   SmallVector<const Value *, 4> WorkStack;
    505   WorkStack.push_back(cast<Value>(GV.getInitializer()));
    506 
    507   while (!WorkStack.empty()) {
    508     const Value *V = WorkStack.pop_back_val();
    509     if (!Visited.insert(V))
    510       continue;
    511 
    512     if (const User *U = dyn_cast<User>(V)) {
    513       for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
    514         WorkStack.push_back(U->getOperand(I));
    515     }
    516 
    517     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    518       VerifyConstantExprBitcastType(CE);
    519       if (Broken)
    520         return;
    521     }
    522   }
    523 
    524   visitGlobalValue(GV);
    525 }
    526 
    527 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
    528   Assert1(!GA.getName().empty(),
    529           "Alias name cannot be empty!", &GA);
    530   Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
    531           GA.hasWeakLinkage(),
    532           "Alias should have external or external weak linkage!", &GA);
    533   Assert1(GA.getAliasee(),
    534           "Aliasee cannot be NULL!", &GA);
    535   Assert1(GA.getType() == GA.getAliasee()->getType(),
    536           "Alias and aliasee types should match!", &GA);
    537   Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
    538 
    539   Constant *Aliasee = GA.getAliasee();
    540 
    541   if (!isa<GlobalValue>(Aliasee)) {
    542     ConstantExpr *CE = dyn_cast<ConstantExpr>(Aliasee);
    543     Assert1(CE &&
    544             (CE->getOpcode() == Instruction::BitCast ||
    545              CE->getOpcode() == Instruction::GetElementPtr) &&
    546             isa<GlobalValue>(CE->getOperand(0)),
    547             "Aliasee should be either GlobalValue or bitcast of GlobalValue",
    548             &GA);
    549 
    550     if (CE->getOpcode() == Instruction::BitCast) {
    551       unsigned SrcAS = CE->getOperand(0)->getType()->getPointerAddressSpace();
    552       unsigned DstAS = CE->getType()->getPointerAddressSpace();
    553 
    554       Assert1(SrcAS == DstAS,
    555               "Alias bitcasts cannot be between different address spaces",
    556               &GA);
    557     }
    558   }
    559 
    560   const GlobalValue* Resolved = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
    561   Assert1(Resolved,
    562           "Aliasing chain should end with function or global variable", &GA);
    563 
    564   visitGlobalValue(GA);
    565 }
    566 
    567 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
    568   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    569     MDNode *MD = NMD.getOperand(i);
    570     if (!MD)
    571       continue;
    572 
    573     Assert1(!MD->isFunctionLocal(),
    574             "Named metadata operand cannot be function local!", MD);
    575     visitMDNode(*MD, 0);
    576   }
    577 }
    578 
    579 void Verifier::visitMDNode(MDNode &MD, Function *F) {
    580   // Only visit each node once.  Metadata can be mutually recursive, so this
    581   // avoids infinite recursion here, as well as being an optimization.
    582   if (!MDNodes.insert(&MD))
    583     return;
    584 
    585   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    586     Value *Op = MD.getOperand(i);
    587     if (!Op)
    588       continue;
    589     if (isa<Constant>(Op) || isa<MDString>(Op))
    590       continue;
    591     if (MDNode *N = dyn_cast<MDNode>(Op)) {
    592       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
    593               "Global metadata operand cannot be function local!", &MD, N);
    594       visitMDNode(*N, F);
    595       continue;
    596     }
    597     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
    598 
    599     // If this was an instruction, bb, or argument, verify that it is in the
    600     // function that we expect.
    601     Function *ActualF = 0;
    602     if (Instruction *I = dyn_cast<Instruction>(Op))
    603       ActualF = I->getParent()->getParent();
    604     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
    605       ActualF = BB->getParent();
    606     else if (Argument *A = dyn_cast<Argument>(Op))
    607       ActualF = A->getParent();
    608     assert(ActualF && "Unimplemented function local metadata case!");
    609 
    610     Assert2(ActualF == F, "function-local metadata used in wrong function",
    611             &MD, Op);
    612   }
    613 }
    614 
    615 void Verifier::visitModuleFlags(Module &M) {
    616   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
    617   if (!Flags) return;
    618 
    619   // Scan each flag, and track the flags and requirements.
    620   DenseMap<MDString*, MDNode*> SeenIDs;
    621   SmallVector<MDNode*, 16> Requirements;
    622   for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
    623     visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
    624   }
    625 
    626   // Validate that the requirements in the module are valid.
    627   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
    628     MDNode *Requirement = Requirements[I];
    629     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    630     Value *ReqValue = Requirement->getOperand(1);
    631 
    632     MDNode *Op = SeenIDs.lookup(Flag);
    633     if (!Op) {
    634       CheckFailed("invalid requirement on flag, flag is not present in module",
    635                   Flag);
    636       continue;
    637     }
    638 
    639     if (Op->getOperand(2) != ReqValue) {
    640       CheckFailed(("invalid requirement on flag, "
    641                    "flag does not have the required value"),
    642                   Flag);
    643       continue;
    644     }
    645   }
    646 }
    647 
    648 void Verifier::visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*>&SeenIDs,
    649                                SmallVectorImpl<MDNode*> &Requirements) {
    650   // Each module flag should have three arguments, the merge behavior (a
    651   // constant int), the flag ID (an MDString), and the value.
    652   Assert1(Op->getNumOperands() == 3,
    653           "incorrect number of operands in module flag", Op);
    654   ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
    655   MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
    656   Assert1(Behavior,
    657           "invalid behavior operand in module flag (expected constant integer)",
    658           Op->getOperand(0));
    659   unsigned BehaviorValue = Behavior->getZExtValue();
    660   Assert1(ID,
    661           "invalid ID operand in module flag (expected metadata string)",
    662           Op->getOperand(1));
    663 
    664   // Sanity check the values for behaviors with additional requirements.
    665   switch (BehaviorValue) {
    666   default:
    667     Assert1(false,
    668             "invalid behavior operand in module flag (unexpected constant)",
    669             Op->getOperand(0));
    670     break;
    671 
    672   case Module::Error:
    673   case Module::Warning:
    674   case Module::Override:
    675     // These behavior types accept any value.
    676     break;
    677 
    678   case Module::Require: {
    679     // The value should itself be an MDNode with two operands, a flag ID (an
    680     // MDString), and a value.
    681     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
    682     Assert1(Value && Value->getNumOperands() == 2,
    683             "invalid value for 'require' module flag (expected metadata pair)",
    684             Op->getOperand(2));
    685     Assert1(isa<MDString>(Value->getOperand(0)),
    686             ("invalid value for 'require' module flag "
    687              "(first value operand should be a string)"),
    688             Value->getOperand(0));
    689 
    690     // Append it to the list of requirements, to check once all module flags are
    691     // scanned.
    692     Requirements.push_back(Value);
    693     break;
    694   }
    695 
    696   case Module::Append:
    697   case Module::AppendUnique: {
    698     // These behavior types require the operand be an MDNode.
    699     Assert1(isa<MDNode>(Op->getOperand(2)),
    700             "invalid value for 'append'-type module flag "
    701             "(expected a metadata node)", Op->getOperand(2));
    702     break;
    703   }
    704   }
    705 
    706   // Unless this is a "requires" flag, check the ID is unique.
    707   if (BehaviorValue != Module::Require) {
    708     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
    709     Assert1(Inserted,
    710             "module flag identifiers must be unique (or of 'require' type)",
    711             ID);
    712   }
    713 }
    714 
    715 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
    716                                     bool isFunction, const Value *V) {
    717   unsigned Slot = ~0U;
    718   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
    719     if (Attrs.getSlotIndex(I) == Idx) {
    720       Slot = I;
    721       break;
    722     }
    723 
    724   assert(Slot != ~0U && "Attribute set inconsistency!");
    725 
    726   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
    727          I != E; ++I) {
    728     if (I->isStringAttribute())
    729       continue;
    730 
    731     if (I->getKindAsEnum() == Attribute::NoReturn ||
    732         I->getKindAsEnum() == Attribute::NoUnwind ||
    733         I->getKindAsEnum() == Attribute::NoInline ||
    734         I->getKindAsEnum() == Attribute::AlwaysInline ||
    735         I->getKindAsEnum() == Attribute::OptimizeForSize ||
    736         I->getKindAsEnum() == Attribute::StackProtect ||
    737         I->getKindAsEnum() == Attribute::StackProtectReq ||
    738         I->getKindAsEnum() == Attribute::StackProtectStrong ||
    739         I->getKindAsEnum() == Attribute::NoRedZone ||
    740         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
    741         I->getKindAsEnum() == Attribute::Naked ||
    742         I->getKindAsEnum() == Attribute::InlineHint ||
    743         I->getKindAsEnum() == Attribute::StackAlignment ||
    744         I->getKindAsEnum() == Attribute::UWTable ||
    745         I->getKindAsEnum() == Attribute::NonLazyBind ||
    746         I->getKindAsEnum() == Attribute::ReturnsTwice ||
    747         I->getKindAsEnum() == Attribute::SanitizeAddress ||
    748         I->getKindAsEnum() == Attribute::SanitizeThread ||
    749         I->getKindAsEnum() == Attribute::SanitizeMemory ||
    750         I->getKindAsEnum() == Attribute::MinSize ||
    751         I->getKindAsEnum() == Attribute::NoDuplicate ||
    752         I->getKindAsEnum() == Attribute::Builtin ||
    753         I->getKindAsEnum() == Attribute::NoBuiltin ||
    754         I->getKindAsEnum() == Attribute::Cold) {
    755       if (!isFunction) {
    756         CheckFailed("Attribute '" + I->getAsString() +
    757                     "' only applies to functions!", V);
    758         return;
    759       }
    760     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
    761                I->getKindAsEnum() == Attribute::ReadNone) {
    762       if (Idx == 0) {
    763         CheckFailed("Attribute '" + I->getAsString() +
    764                     "' does not apply to function returns");
    765         return;
    766       }
    767     } else if (isFunction) {
    768       CheckFailed("Attribute '" + I->getAsString() +
    769                   "' does not apply to functions!", V);
    770       return;
    771     }
    772   }
    773 }
    774 
    775 // VerifyParameterAttrs - Check the given attributes for an argument or return
    776 // value of the specified type.  The value V is printed in error messages.
    777 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
    778                                     bool isReturnValue, const Value *V) {
    779   if (!Attrs.hasAttributes(Idx))
    780     return;
    781 
    782   VerifyAttributeTypes(Attrs, Idx, false, V);
    783 
    784   if (isReturnValue)
    785     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
    786             !Attrs.hasAttribute(Idx, Attribute::Nest) &&
    787             !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
    788             !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
    789             !Attrs.hasAttribute(Idx, Attribute::Returned),
    790             "Attribute 'byval', 'nest', 'sret', 'nocapture', and 'returned' "
    791             "do not apply to return values!", V);
    792 
    793   // Check for mutually incompatible attributes.
    794   Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) &&
    795              Attrs.hasAttribute(Idx, Attribute::Nest)) ||
    796             (Attrs.hasAttribute(Idx, Attribute::ByVal) &&
    797              Attrs.hasAttribute(Idx, Attribute::StructRet)) ||
    798             (Attrs.hasAttribute(Idx, Attribute::Nest) &&
    799              Attrs.hasAttribute(Idx, Attribute::StructRet))), "Attributes "
    800           "'byval, nest, and sret' are incompatible!", V);
    801 
    802   Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) &&
    803              Attrs.hasAttribute(Idx, Attribute::Nest)) ||
    804             (Attrs.hasAttribute(Idx, Attribute::ByVal) &&
    805              Attrs.hasAttribute(Idx, Attribute::InReg)) ||
    806             (Attrs.hasAttribute(Idx, Attribute::Nest) &&
    807              Attrs.hasAttribute(Idx, Attribute::InReg))), "Attributes "
    808           "'byval, nest, and inreg' are incompatible!", V);
    809 
    810   Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
    811             Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
    812           "'sret and returned' are incompatible!", V);
    813 
    814   Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
    815             Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
    816           "'zeroext and signext' are incompatible!", V);
    817 
    818   Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
    819             Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
    820           "'readnone and readonly' are incompatible!", V);
    821 
    822   Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
    823             Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
    824           "'noinline and alwaysinline' are incompatible!", V);
    825 
    826   Assert1(!AttrBuilder(Attrs, Idx).
    827             hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
    828           "Wrong types for attribute: " +
    829           AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
    830 
    831   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    832     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) ||
    833             PTy->getElementType()->isSized(),
    834             "Attribute 'byval' does not support unsized types!", V);
    835   else
    836     Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
    837             "Attribute 'byval' only applies to parameters with pointer type!",
    838             V);
    839 }
    840 
    841 // VerifyFunctionAttrs - Check parameter attributes against a function type.
    842 // The value V is printed in error messages.
    843 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
    844                                    const Value *V) {
    845   if (Attrs.isEmpty())
    846     return;
    847 
    848   bool SawNest = false;
    849   bool SawReturned = false;
    850 
    851   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    852     unsigned Idx = Attrs.getSlotIndex(i);
    853 
    854     Type *Ty;
    855     if (Idx == 0)
    856       Ty = FT->getReturnType();
    857     else if (Idx-1 < FT->getNumParams())
    858       Ty = FT->getParamType(Idx-1);
    859     else
    860       break;  // VarArgs attributes, verified elsewhere.
    861 
    862     VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
    863 
    864     if (Idx == 0)
    865       continue;
    866 
    867     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
    868       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
    869       SawNest = true;
    870     }
    871 
    872     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
    873       Assert1(!SawReturned, "More than one parameter has attribute returned!",
    874               V);
    875       Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
    876               "argument and return types for 'returned' attribute", V);
    877       SawReturned = true;
    878     }
    879 
    880     if (Attrs.hasAttribute(Idx, Attribute::StructRet))
    881       Assert1(Idx == 1, "Attribute sret is not on first parameter!", V);
    882   }
    883 
    884   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
    885     return;
    886 
    887   VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
    888 
    889   Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
    890                                Attribute::ReadNone) &&
    891             Attrs.hasAttribute(AttributeSet::FunctionIndex,
    892                                Attribute::ReadOnly)),
    893           "Attributes 'readnone and readonly' are incompatible!", V);
    894 
    895   Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
    896                                Attribute::NoInline) &&
    897             Attrs.hasAttribute(AttributeSet::FunctionIndex,
    898                                Attribute::AlwaysInline)),
    899           "Attributes 'noinline and alwaysinline' are incompatible!", V);
    900 }
    901 
    902 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
    903   // Get the size of the types in bits, we'll need this later
    904   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
    905   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
    906 
    907   // BitCast implies a no-op cast of type only. No bits change.
    908   // However, you can't cast pointers to anything but pointers.
    909   Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
    910           "Bitcast requires both operands to be pointer or neither", V);
    911   Assert1(SrcBitSize == DestBitSize,
    912           "Bitcast requires types of same width", V);
    913 
    914   // Disallow aggregates.
    915   Assert1(!SrcTy->isAggregateType(),
    916           "Bitcast operand must not be aggregate", V);
    917   Assert1(!DestTy->isAggregateType(),
    918           "Bitcast type must not be aggregate", V);
    919 
    920   // Without datalayout, assume all address spaces are the same size.
    921   // Don't check if both types are not pointers.
    922   // Skip casts between scalars and vectors.
    923   if (!DL ||
    924       !SrcTy->isPtrOrPtrVectorTy() ||
    925       !DestTy->isPtrOrPtrVectorTy() ||
    926       SrcTy->isVectorTy() != DestTy->isVectorTy()) {
    927     return;
    928   }
    929 
    930   unsigned SrcAS = SrcTy->getPointerAddressSpace();
    931   unsigned DstAS = DestTy->getPointerAddressSpace();
    932 
    933   unsigned SrcASSize = DL->getPointerSizeInBits(SrcAS);
    934   unsigned DstASSize = DL->getPointerSizeInBits(DstAS);
    935   Assert1(SrcASSize == DstASSize,
    936           "Bitcasts between pointers of different address spaces must have "
    937           "the same size pointers, otherwise use PtrToInt/IntToPtr.", V);
    938 }
    939 
    940 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
    941   if (CE->getOpcode() == Instruction::BitCast) {
    942     Type *SrcTy = CE->getOperand(0)->getType();
    943     Type *DstTy = CE->getType();
    944     VerifyBitcastType(CE, DstTy, SrcTy);
    945   }
    946 }
    947 
    948 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
    949   if (Attrs.getNumSlots() == 0)
    950     return true;
    951 
    952   unsigned LastSlot = Attrs.getNumSlots() - 1;
    953   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
    954   if (LastIndex <= Params
    955       || (LastIndex == AttributeSet::FunctionIndex
    956           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
    957     return true;
    958 
    959   return false;
    960 }
    961 
    962 // visitFunction - Verify that a function is ok.
    963 //
    964 void Verifier::visitFunction(Function &F) {
    965   // Check function arguments.
    966   FunctionType *FT = F.getFunctionType();
    967   unsigned NumArgs = F.arg_size();
    968 
    969   Assert1(Context == &F.getContext(),
    970           "Function context does not match Module context!", &F);
    971 
    972   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
    973   Assert2(FT->getNumParams() == NumArgs,
    974           "# formal arguments must match # of arguments for function type!",
    975           &F, FT);
    976   Assert1(F.getReturnType()->isFirstClassType() ||
    977           F.getReturnType()->isVoidTy() ||
    978           F.getReturnType()->isStructTy(),
    979           "Functions cannot return aggregate values!", &F);
    980 
    981   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
    982           "Invalid struct return type!", &F);
    983 
    984   AttributeSet Attrs = F.getAttributes();
    985 
    986   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
    987           "Attribute after last parameter!", &F);
    988 
    989   // Check function attributes.
    990   VerifyFunctionAttrs(FT, Attrs, &F);
    991 
    992   // On function declarations/definitions, we do not support the builtin
    993   // attribute. We do not check this in VerifyFunctionAttrs since that is
    994   // checking for Attributes that can/can not ever be on functions.
    995   Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
    996                               Attribute::Builtin),
    997           "Attribute 'builtin' can only be applied to a callsite.", &F);
    998 
    999   // Check that this function meets the restrictions on this calling convention.
   1000   switch (F.getCallingConv()) {
   1001   default:
   1002     break;
   1003   case CallingConv::C:
   1004     break;
   1005   case CallingConv::Fast:
   1006   case CallingConv::Cold:
   1007   case CallingConv::X86_FastCall:
   1008   case CallingConv::X86_ThisCall:
   1009   case CallingConv::Intel_OCL_BI:
   1010   case CallingConv::PTX_Kernel:
   1011   case CallingConv::PTX_Device:
   1012     Assert1(!F.isVarArg(),
   1013             "Varargs functions must have C calling conventions!", &F);
   1014     break;
   1015   }
   1016 
   1017   bool isLLVMdotName = F.getName().size() >= 5 &&
   1018                        F.getName().substr(0, 5) == "llvm.";
   1019 
   1020   // Check that the argument values match the function type for this function...
   1021   unsigned i = 0;
   1022   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
   1023        I != E; ++I, ++i) {
   1024     Assert2(I->getType() == FT->getParamType(i),
   1025             "Argument value does not match function argument type!",
   1026             I, FT->getParamType(i));
   1027     Assert1(I->getType()->isFirstClassType(),
   1028             "Function arguments must have first-class types!", I);
   1029     if (!isLLVMdotName)
   1030       Assert2(!I->getType()->isMetadataTy(),
   1031               "Function takes metadata but isn't an intrinsic", I, &F);
   1032   }
   1033 
   1034   if (F.isMaterializable()) {
   1035     // Function has a body somewhere we can't see.
   1036   } else if (F.isDeclaration()) {
   1037     Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
   1038             F.hasExternalWeakLinkage(),
   1039             "invalid linkage type for function declaration", &F);
   1040   } else {
   1041     // Verify that this function (which has a body) is not named "llvm.*".  It
   1042     // is not legal to define intrinsics.
   1043     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
   1044 
   1045     // Check the entry node
   1046     BasicBlock *Entry = &F.getEntryBlock();
   1047     Assert1(pred_begin(Entry) == pred_end(Entry),
   1048             "Entry block to function must not have predecessors!", Entry);
   1049 
   1050     // The address of the entry block cannot be taken, unless it is dead.
   1051     if (Entry->hasAddressTaken()) {
   1052       Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
   1053               "blockaddress may not be used with the entry block!", Entry);
   1054     }
   1055   }
   1056 
   1057   // If this function is actually an intrinsic, verify that it is only used in
   1058   // direct call/invokes, never having its "address taken".
   1059   if (F.getIntrinsicID()) {
   1060     const User *U;
   1061     if (F.hasAddressTaken(&U))
   1062       Assert1(0, "Invalid user of intrinsic instruction!", U);
   1063   }
   1064 }
   1065 
   1066 // verifyBasicBlock - Verify that a basic block is well formed...
   1067 //
   1068 void Verifier::visitBasicBlock(BasicBlock &BB) {
   1069   InstsInThisBlock.clear();
   1070 
   1071   // Ensure that basic blocks have terminators!
   1072   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
   1073 
   1074   // Check constraints that this basic block imposes on all of the PHI nodes in
   1075   // it.
   1076   if (isa<PHINode>(BB.front())) {
   1077     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
   1078     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
   1079     std::sort(Preds.begin(), Preds.end());
   1080     PHINode *PN;
   1081     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
   1082       // Ensure that PHI nodes have at least one entry!
   1083       Assert1(PN->getNumIncomingValues() != 0,
   1084               "PHI nodes must have at least one entry.  If the block is dead, "
   1085               "the PHI should be removed!", PN);
   1086       Assert1(PN->getNumIncomingValues() == Preds.size(),
   1087               "PHINode should have one entry for each predecessor of its "
   1088               "parent basic block!", PN);
   1089 
   1090       // Get and sort all incoming values in the PHI node...
   1091       Values.clear();
   1092       Values.reserve(PN->getNumIncomingValues());
   1093       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1094         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
   1095                                         PN->getIncomingValue(i)));
   1096       std::sort(Values.begin(), Values.end());
   1097 
   1098       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
   1099         // Check to make sure that if there is more than one entry for a
   1100         // particular basic block in this PHI node, that the incoming values are
   1101         // all identical.
   1102         //
   1103         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
   1104                 Values[i].second == Values[i-1].second,
   1105                 "PHI node has multiple entries for the same basic block with "
   1106                 "different incoming values!", PN, Values[i].first,
   1107                 Values[i].second, Values[i-1].second);
   1108 
   1109         // Check to make sure that the predecessors and PHI node entries are
   1110         // matched up.
   1111         Assert3(Values[i].first == Preds[i],
   1112                 "PHI node entries do not match predecessors!", PN,
   1113                 Values[i].first, Preds[i]);
   1114       }
   1115     }
   1116   }
   1117 }
   1118 
   1119 void Verifier::visitTerminatorInst(TerminatorInst &I) {
   1120   // Ensure that terminators only exist at the end of the basic block.
   1121   Assert1(&I == I.getParent()->getTerminator(),
   1122           "Terminator found in the middle of a basic block!", I.getParent());
   1123   visitInstruction(I);
   1124 }
   1125 
   1126 void Verifier::visitBranchInst(BranchInst &BI) {
   1127   if (BI.isConditional()) {
   1128     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
   1129             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
   1130   }
   1131   visitTerminatorInst(BI);
   1132 }
   1133 
   1134 void Verifier::visitReturnInst(ReturnInst &RI) {
   1135   Function *F = RI.getParent()->getParent();
   1136   unsigned N = RI.getNumOperands();
   1137   if (F->getReturnType()->isVoidTy())
   1138     Assert2(N == 0,
   1139             "Found return instr that returns non-void in Function of void "
   1140             "return type!", &RI, F->getReturnType());
   1141   else
   1142     Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
   1143             "Function return type does not match operand "
   1144             "type of return inst!", &RI, F->getReturnType());
   1145 
   1146   // Check to make sure that the return value has necessary properties for
   1147   // terminators...
   1148   visitTerminatorInst(RI);
   1149 }
   1150 
   1151 void Verifier::visitSwitchInst(SwitchInst &SI) {
   1152   // Check to make sure that all of the constants in the switch instruction
   1153   // have the same type as the switched-on value.
   1154   Type *SwitchTy = SI.getCondition()->getType();
   1155   IntegerType *IntTy = cast<IntegerType>(SwitchTy);
   1156   IntegersSubsetToBB Mapping;
   1157   std::map<IntegersSubset::Range, unsigned> RangeSetMap;
   1158   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
   1159     IntegersSubset CaseRanges = i.getCaseValueEx();
   1160     for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
   1161       IntegersSubset::Range r = CaseRanges.getItem(ri);
   1162       Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
   1163               "Switch constants must all be same type as switch value!", &SI);
   1164       Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
   1165               "Switch constants must all be same type as switch value!", &SI);
   1166       Mapping.add(r);
   1167       RangeSetMap[r] = i.getCaseIndex();
   1168     }
   1169   }
   1170 
   1171   IntegersSubsetToBB::RangeIterator errItem;
   1172   if (!Mapping.verify(errItem)) {
   1173     unsigned CaseIndex = RangeSetMap[errItem->first];
   1174     SwitchInst::CaseIt i(&SI, CaseIndex);
   1175     Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
   1176   }
   1177 
   1178   visitTerminatorInst(SI);
   1179 }
   1180 
   1181 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
   1182   Assert1(BI.getAddress()->getType()->isPointerTy(),
   1183           "Indirectbr operand must have pointer type!", &BI);
   1184   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
   1185     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
   1186             "Indirectbr destinations must all have pointer type!", &BI);
   1187 
   1188   visitTerminatorInst(BI);
   1189 }
   1190 
   1191 void Verifier::visitSelectInst(SelectInst &SI) {
   1192   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
   1193                                           SI.getOperand(2)),
   1194           "Invalid operands for select instruction!", &SI);
   1195 
   1196   Assert1(SI.getTrueValue()->getType() == SI.getType(),
   1197           "Select values must have same type as select instruction!", &SI);
   1198   visitInstruction(SI);
   1199 }
   1200 
   1201 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
   1202 /// a pass, if any exist, it's an error.
   1203 ///
   1204 void Verifier::visitUserOp1(Instruction &I) {
   1205   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
   1206 }
   1207 
   1208 void Verifier::visitTruncInst(TruncInst &I) {
   1209   // Get the source and destination types
   1210   Type *SrcTy = I.getOperand(0)->getType();
   1211   Type *DestTy = I.getType();
   1212 
   1213   // Get the size of the types in bits, we'll need this later
   1214   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1215   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1216 
   1217   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
   1218   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
   1219   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1220           "trunc source and destination must both be a vector or neither", &I);
   1221   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
   1222 
   1223   visitInstruction(I);
   1224 }
   1225 
   1226 void Verifier::visitZExtInst(ZExtInst &I) {
   1227   // Get the source and destination types
   1228   Type *SrcTy = I.getOperand(0)->getType();
   1229   Type *DestTy = I.getType();
   1230 
   1231   // Get the size of the types in bits, we'll need this later
   1232   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
   1233   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
   1234   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1235           "zext source and destination must both be a vector or neither", &I);
   1236   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1237   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1238 
   1239   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
   1240 
   1241   visitInstruction(I);
   1242 }
   1243 
   1244 void Verifier::visitSExtInst(SExtInst &I) {
   1245   // Get the source and destination types
   1246   Type *SrcTy = I.getOperand(0)->getType();
   1247   Type *DestTy = I.getType();
   1248 
   1249   // Get the size of the types in bits, we'll need this later
   1250   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1251   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1252 
   1253   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
   1254   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
   1255   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1256           "sext source and destination must both be a vector or neither", &I);
   1257   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
   1258 
   1259   visitInstruction(I);
   1260 }
   1261 
   1262 void Verifier::visitFPTruncInst(FPTruncInst &I) {
   1263   // Get the source and destination types
   1264   Type *SrcTy = I.getOperand(0)->getType();
   1265   Type *DestTy = I.getType();
   1266   // Get the size of the types in bits, we'll need this later
   1267   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1268   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1269 
   1270   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
   1271   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
   1272   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1273           "fptrunc source and destination must both be a vector or neither",&I);
   1274   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
   1275 
   1276   visitInstruction(I);
   1277 }
   1278 
   1279 void Verifier::visitFPExtInst(FPExtInst &I) {
   1280   // Get the source and destination types
   1281   Type *SrcTy = I.getOperand(0)->getType();
   1282   Type *DestTy = I.getType();
   1283 
   1284   // Get the size of the types in bits, we'll need this later
   1285   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1286   unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1287 
   1288   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
   1289   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
   1290   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1291           "fpext source and destination must both be a vector or neither", &I);
   1292   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
   1293 
   1294   visitInstruction(I);
   1295 }
   1296 
   1297 void Verifier::visitUIToFPInst(UIToFPInst &I) {
   1298   // Get the source and destination types
   1299   Type *SrcTy = I.getOperand(0)->getType();
   1300   Type *DestTy = I.getType();
   1301 
   1302   bool SrcVec = SrcTy->isVectorTy();
   1303   bool DstVec = DestTy->isVectorTy();
   1304 
   1305   Assert1(SrcVec == DstVec,
   1306           "UIToFP source and dest must both be vector or scalar", &I);
   1307   Assert1(SrcTy->isIntOrIntVectorTy(),
   1308           "UIToFP source must be integer or integer vector", &I);
   1309   Assert1(DestTy->isFPOrFPVectorTy(),
   1310           "UIToFP result must be FP or FP vector", &I);
   1311 
   1312   if (SrcVec && DstVec)
   1313     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1314             cast<VectorType>(DestTy)->getNumElements(),
   1315             "UIToFP source and dest vector length mismatch", &I);
   1316 
   1317   visitInstruction(I);
   1318 }
   1319 
   1320 void Verifier::visitSIToFPInst(SIToFPInst &I) {
   1321   // Get the source and destination types
   1322   Type *SrcTy = I.getOperand(0)->getType();
   1323   Type *DestTy = I.getType();
   1324 
   1325   bool SrcVec = SrcTy->isVectorTy();
   1326   bool DstVec = DestTy->isVectorTy();
   1327 
   1328   Assert1(SrcVec == DstVec,
   1329           "SIToFP source and dest must both be vector or scalar", &I);
   1330   Assert1(SrcTy->isIntOrIntVectorTy(),
   1331           "SIToFP source must be integer or integer vector", &I);
   1332   Assert1(DestTy->isFPOrFPVectorTy(),
   1333           "SIToFP result must be FP or FP vector", &I);
   1334 
   1335   if (SrcVec && DstVec)
   1336     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1337             cast<VectorType>(DestTy)->getNumElements(),
   1338             "SIToFP source and dest vector length mismatch", &I);
   1339 
   1340   visitInstruction(I);
   1341 }
   1342 
   1343 void Verifier::visitFPToUIInst(FPToUIInst &I) {
   1344   // Get the source and destination types
   1345   Type *SrcTy = I.getOperand(0)->getType();
   1346   Type *DestTy = I.getType();
   1347 
   1348   bool SrcVec = SrcTy->isVectorTy();
   1349   bool DstVec = DestTy->isVectorTy();
   1350 
   1351   Assert1(SrcVec == DstVec,
   1352           "FPToUI source and dest must both be vector or scalar", &I);
   1353   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
   1354           &I);
   1355   Assert1(DestTy->isIntOrIntVectorTy(),
   1356           "FPToUI result must be integer or integer vector", &I);
   1357 
   1358   if (SrcVec && DstVec)
   1359     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1360             cast<VectorType>(DestTy)->getNumElements(),
   1361             "FPToUI source and dest vector length mismatch", &I);
   1362 
   1363   visitInstruction(I);
   1364 }
   1365 
   1366 void Verifier::visitFPToSIInst(FPToSIInst &I) {
   1367   // Get the source and destination types
   1368   Type *SrcTy = I.getOperand(0)->getType();
   1369   Type *DestTy = I.getType();
   1370 
   1371   bool SrcVec = SrcTy->isVectorTy();
   1372   bool DstVec = DestTy->isVectorTy();
   1373 
   1374   Assert1(SrcVec == DstVec,
   1375           "FPToSI source and dest must both be vector or scalar", &I);
   1376   Assert1(SrcTy->isFPOrFPVectorTy(),
   1377           "FPToSI source must be FP or FP vector", &I);
   1378   Assert1(DestTy->isIntOrIntVectorTy(),
   1379           "FPToSI result must be integer or integer vector", &I);
   1380 
   1381   if (SrcVec && DstVec)
   1382     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1383             cast<VectorType>(DestTy)->getNumElements(),
   1384             "FPToSI source and dest vector length mismatch", &I);
   1385 
   1386   visitInstruction(I);
   1387 }
   1388 
   1389 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
   1390   // Get the source and destination types
   1391   Type *SrcTy = I.getOperand(0)->getType();
   1392   Type *DestTy = I.getType();
   1393 
   1394   Assert1(SrcTy->getScalarType()->isPointerTy(),
   1395           "PtrToInt source must be pointer", &I);
   1396   Assert1(DestTy->getScalarType()->isIntegerTy(),
   1397           "PtrToInt result must be integral", &I);
   1398   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1399           "PtrToInt type mismatch", &I);
   1400 
   1401   if (SrcTy->isVectorTy()) {
   1402     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   1403     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   1404     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
   1405           "PtrToInt Vector width mismatch", &I);
   1406   }
   1407 
   1408   visitInstruction(I);
   1409 }
   1410 
   1411 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
   1412   // Get the source and destination types
   1413   Type *SrcTy = I.getOperand(0)->getType();
   1414   Type *DestTy = I.getType();
   1415 
   1416   Assert1(SrcTy->getScalarType()->isIntegerTy(),
   1417           "IntToPtr source must be an integral", &I);
   1418   Assert1(DestTy->getScalarType()->isPointerTy(),
   1419           "IntToPtr result must be a pointer",&I);
   1420   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1421           "IntToPtr type mismatch", &I);
   1422   if (SrcTy->isVectorTy()) {
   1423     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   1424     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   1425     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
   1426           "IntToPtr Vector width mismatch", &I);
   1427   }
   1428   visitInstruction(I);
   1429 }
   1430 
   1431 void Verifier::visitBitCastInst(BitCastInst &I) {
   1432   Type *SrcTy = I.getOperand(0)->getType();
   1433   Type *DestTy = I.getType();
   1434   VerifyBitcastType(&I, DestTy, SrcTy);
   1435   visitInstruction(I);
   1436 }
   1437 
   1438 /// visitPHINode - Ensure that a PHI node is well formed.
   1439 ///
   1440 void Verifier::visitPHINode(PHINode &PN) {
   1441   // Ensure that the PHI nodes are all grouped together at the top of the block.
   1442   // This can be tested by checking whether the instruction before this is
   1443   // either nonexistent (because this is begin()) or is a PHI node.  If not,
   1444   // then there is some other instruction before a PHI.
   1445   Assert2(&PN == &PN.getParent()->front() ||
   1446           isa<PHINode>(--BasicBlock::iterator(&PN)),
   1447           "PHI nodes not grouped at top of basic block!",
   1448           &PN, PN.getParent());
   1449 
   1450   // Check that all of the values of the PHI node have the same type as the
   1451   // result, and that the incoming blocks are really basic blocks.
   1452   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1453     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
   1454             "PHI node operands are not the same type as the result!", &PN);
   1455   }
   1456 
   1457   // All other PHI node constraints are checked in the visitBasicBlock method.
   1458 
   1459   visitInstruction(PN);
   1460 }
   1461 
   1462 void Verifier::VerifyCallSite(CallSite CS) {
   1463   Instruction *I = CS.getInstruction();
   1464 
   1465   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
   1466           "Called function must be a pointer!", I);
   1467   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
   1468 
   1469   Assert1(FPTy->getElementType()->isFunctionTy(),
   1470           "Called function is not pointer to function type!", I);
   1471   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
   1472 
   1473   // Verify that the correct number of arguments are being passed
   1474   if (FTy->isVarArg())
   1475     Assert1(CS.arg_size() >= FTy->getNumParams(),
   1476             "Called function requires more parameters than were provided!",I);
   1477   else
   1478     Assert1(CS.arg_size() == FTy->getNumParams(),
   1479             "Incorrect number of arguments passed to called function!", I);
   1480 
   1481   // Verify that all arguments to the call match the function type.
   1482   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1483     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
   1484             "Call parameter type does not match function signature!",
   1485             CS.getArgument(i), FTy->getParamType(i), I);
   1486 
   1487   AttributeSet Attrs = CS.getAttributes();
   1488 
   1489   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
   1490           "Attribute after last parameter!", I);
   1491 
   1492   // Verify call attributes.
   1493   VerifyFunctionAttrs(FTy, Attrs, I);
   1494 
   1495   if (FTy->isVarArg()) {
   1496     // FIXME? is 'nest' even legal here?
   1497     bool SawNest = false;
   1498     bool SawReturned = false;
   1499 
   1500     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
   1501       if (Attrs.hasAttribute(Idx, Attribute::Nest))
   1502         SawNest = true;
   1503       if (Attrs.hasAttribute(Idx, Attribute::Returned))
   1504         SawReturned = true;
   1505     }
   1506 
   1507     // Check attributes on the varargs part.
   1508     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
   1509       Type *Ty = CS.getArgument(Idx-1)->getType();
   1510       VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
   1511 
   1512       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
   1513         Assert1(!SawNest, "More than one parameter has attribute nest!", I);
   1514         SawNest = true;
   1515       }
   1516 
   1517       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
   1518         Assert1(!SawReturned, "More than one parameter has attribute returned!",
   1519                 I);
   1520         Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
   1521                 "Incompatible argument and return types for 'returned' "
   1522                 "attribute", I);
   1523         SawReturned = true;
   1524       }
   1525 
   1526       Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
   1527               "Attribute 'sret' cannot be used for vararg call arguments!", I);
   1528     }
   1529   }
   1530 
   1531   // Verify that there's no metadata unless it's a direct call to an intrinsic.
   1532   if (CS.getCalledFunction() == 0 ||
   1533       !CS.getCalledFunction()->getName().startswith("llvm.")) {
   1534     for (FunctionType::param_iterator PI = FTy->param_begin(),
   1535            PE = FTy->param_end(); PI != PE; ++PI)
   1536       Assert1(!(*PI)->isMetadataTy(),
   1537               "Function has metadata parameter but isn't an intrinsic", I);
   1538   }
   1539 
   1540   // If the call site has the 'builtin' attribute, verify that it's applied to a
   1541   // direct call to a function with the 'nobuiltin' attribute.
   1542   if (CS.hasFnAttr(Attribute::Builtin))
   1543     Assert1(CS.getCalledFunction() &&
   1544             CS.getCalledFunction()->hasFnAttribute(Attribute::NoBuiltin),
   1545             "Attribute 'builtin' can only be used in a call to a function with "
   1546             "the 'nobuiltin' attribute.", I);
   1547 
   1548   visitInstruction(*I);
   1549 }
   1550 
   1551 void Verifier::visitCallInst(CallInst &CI) {
   1552   VerifyCallSite(&CI);
   1553 
   1554   if (Function *F = CI.getCalledFunction())
   1555     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   1556       visitIntrinsicFunctionCall(ID, CI);
   1557 }
   1558 
   1559 void Verifier::visitInvokeInst(InvokeInst &II) {
   1560   VerifyCallSite(&II);
   1561 
   1562   // Verify that there is a landingpad instruction as the first non-PHI
   1563   // instruction of the 'unwind' destination.
   1564   Assert1(II.getUnwindDest()->isLandingPad(),
   1565           "The unwind destination does not have a landingpad instruction!",&II);
   1566 
   1567   visitTerminatorInst(II);
   1568 }
   1569 
   1570 /// visitBinaryOperator - Check that both arguments to the binary operator are
   1571 /// of the same type!
   1572 ///
   1573 void Verifier::visitBinaryOperator(BinaryOperator &B) {
   1574   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
   1575           "Both operands to a binary operator are not of the same type!", &B);
   1576 
   1577   switch (B.getOpcode()) {
   1578   // Check that integer arithmetic operators are only used with
   1579   // integral operands.
   1580   case Instruction::Add:
   1581   case Instruction::Sub:
   1582   case Instruction::Mul:
   1583   case Instruction::SDiv:
   1584   case Instruction::UDiv:
   1585   case Instruction::SRem:
   1586   case Instruction::URem:
   1587     Assert1(B.getType()->isIntOrIntVectorTy(),
   1588             "Integer arithmetic operators only work with integral types!", &B);
   1589     Assert1(B.getType() == B.getOperand(0)->getType(),
   1590             "Integer arithmetic operators must have same type "
   1591             "for operands and result!", &B);
   1592     break;
   1593   // Check that floating-point arithmetic operators are only used with
   1594   // floating-point operands.
   1595   case Instruction::FAdd:
   1596   case Instruction::FSub:
   1597   case Instruction::FMul:
   1598   case Instruction::FDiv:
   1599   case Instruction::FRem:
   1600     Assert1(B.getType()->isFPOrFPVectorTy(),
   1601             "Floating-point arithmetic operators only work with "
   1602             "floating-point types!", &B);
   1603     Assert1(B.getType() == B.getOperand(0)->getType(),
   1604             "Floating-point arithmetic operators must have same type "
   1605             "for operands and result!", &B);
   1606     break;
   1607   // Check that logical operators are only used with integral operands.
   1608   case Instruction::And:
   1609   case Instruction::Or:
   1610   case Instruction::Xor:
   1611     Assert1(B.getType()->isIntOrIntVectorTy(),
   1612             "Logical operators only work with integral types!", &B);
   1613     Assert1(B.getType() == B.getOperand(0)->getType(),
   1614             "Logical operators must have same type for operands and result!",
   1615             &B);
   1616     break;
   1617   case Instruction::Shl:
   1618   case Instruction::LShr:
   1619   case Instruction::AShr:
   1620     Assert1(B.getType()->isIntOrIntVectorTy(),
   1621             "Shifts only work with integral types!", &B);
   1622     Assert1(B.getType() == B.getOperand(0)->getType(),
   1623             "Shift return type must be same as operands!", &B);
   1624     break;
   1625   default:
   1626     llvm_unreachable("Unknown BinaryOperator opcode!");
   1627   }
   1628 
   1629   visitInstruction(B);
   1630 }
   1631 
   1632 void Verifier::visitICmpInst(ICmpInst &IC) {
   1633   // Check that the operands are the same type
   1634   Type *Op0Ty = IC.getOperand(0)->getType();
   1635   Type *Op1Ty = IC.getOperand(1)->getType();
   1636   Assert1(Op0Ty == Op1Ty,
   1637           "Both operands to ICmp instruction are not of the same type!", &IC);
   1638   // Check that the operands are the right type
   1639   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
   1640           "Invalid operand types for ICmp instruction", &IC);
   1641   // Check that the predicate is valid.
   1642   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
   1643           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
   1644           "Invalid predicate in ICmp instruction!", &IC);
   1645 
   1646   visitInstruction(IC);
   1647 }
   1648 
   1649 void Verifier::visitFCmpInst(FCmpInst &FC) {
   1650   // Check that the operands are the same type
   1651   Type *Op0Ty = FC.getOperand(0)->getType();
   1652   Type *Op1Ty = FC.getOperand(1)->getType();
   1653   Assert1(Op0Ty == Op1Ty,
   1654           "Both operands to FCmp instruction are not of the same type!", &FC);
   1655   // Check that the operands are the right type
   1656   Assert1(Op0Ty->isFPOrFPVectorTy(),
   1657           "Invalid operand types for FCmp instruction", &FC);
   1658   // Check that the predicate is valid.
   1659   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
   1660           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
   1661           "Invalid predicate in FCmp instruction!", &FC);
   1662 
   1663   visitInstruction(FC);
   1664 }
   1665 
   1666 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
   1667   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
   1668                                               EI.getOperand(1)),
   1669           "Invalid extractelement operands!", &EI);
   1670   visitInstruction(EI);
   1671 }
   1672 
   1673 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
   1674   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
   1675                                              IE.getOperand(1),
   1676                                              IE.getOperand(2)),
   1677           "Invalid insertelement operands!", &IE);
   1678   visitInstruction(IE);
   1679 }
   1680 
   1681 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
   1682   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
   1683                                              SV.getOperand(2)),
   1684           "Invalid shufflevector operands!", &SV);
   1685   visitInstruction(SV);
   1686 }
   1687 
   1688 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1689   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
   1690 
   1691   Assert1(isa<PointerType>(TargetTy),
   1692     "GEP base pointer is not a vector or a vector of pointers", &GEP);
   1693   Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
   1694           "GEP into unsized type!", &GEP);
   1695   Assert1(GEP.getPointerOperandType()->isVectorTy() ==
   1696           GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
   1697           &GEP);
   1698 
   1699   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
   1700   Type *ElTy =
   1701     GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
   1702   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
   1703 
   1704   Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
   1705           cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
   1706           == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
   1707 
   1708   if (GEP.getPointerOperandType()->isVectorTy()) {
   1709     // Additional checks for vector GEPs.
   1710     unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
   1711     Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
   1712             "Vector GEP result width doesn't match operand's", &GEP);
   1713     for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
   1714       Type *IndexTy = Idxs[i]->getType();
   1715       Assert1(IndexTy->isVectorTy(),
   1716               "Vector GEP must have vector indices!", &GEP);
   1717       unsigned IndexWidth = IndexTy->getVectorNumElements();
   1718       Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
   1719     }
   1720   }
   1721   visitInstruction(GEP);
   1722 }
   1723 
   1724 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
   1725   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
   1726 }
   1727 
   1728 void Verifier::visitLoadInst(LoadInst &LI) {
   1729   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
   1730   Assert1(PTy, "Load operand must be a pointer.", &LI);
   1731   Type *ElTy = PTy->getElementType();
   1732   Assert2(ElTy == LI.getType(),
   1733           "Load result type does not match pointer operand type!", &LI, ElTy);
   1734   if (LI.isAtomic()) {
   1735     Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
   1736             "Load cannot have Release ordering", &LI);
   1737     Assert1(LI.getAlignment() != 0,
   1738             "Atomic load must specify explicit alignment", &LI);
   1739     if (!ElTy->isPointerTy()) {
   1740       Assert2(ElTy->isIntegerTy(),
   1741               "atomic store operand must have integer type!",
   1742               &LI, ElTy);
   1743       unsigned Size = ElTy->getPrimitiveSizeInBits();
   1744       Assert2(Size >= 8 && !(Size & (Size - 1)),
   1745               "atomic store operand must be power-of-two byte-sized integer",
   1746               &LI, ElTy);
   1747     }
   1748   } else {
   1749     Assert1(LI.getSynchScope() == CrossThread,
   1750             "Non-atomic load cannot have SynchronizationScope specified", &LI);
   1751   }
   1752 
   1753   if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
   1754     unsigned NumOperands = Range->getNumOperands();
   1755     Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
   1756     unsigned NumRanges = NumOperands / 2;
   1757     Assert1(NumRanges >= 1, "It should have at least one range!", Range);
   1758 
   1759     ConstantRange LastRange(1); // Dummy initial value
   1760     for (unsigned i = 0; i < NumRanges; ++i) {
   1761       ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
   1762       Assert1(Low, "The lower limit must be an integer!", Low);
   1763       ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
   1764       Assert1(High, "The upper limit must be an integer!", High);
   1765       Assert1(High->getType() == Low->getType() &&
   1766               High->getType() == ElTy, "Range types must match load type!",
   1767               &LI);
   1768 
   1769       APInt HighV = High->getValue();
   1770       APInt LowV = Low->getValue();
   1771       ConstantRange CurRange(LowV, HighV);
   1772       Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
   1773               "Range must not be empty!", Range);
   1774       if (i != 0) {
   1775         Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
   1776                 "Intervals are overlapping", Range);
   1777         Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
   1778                 Range);
   1779         Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
   1780                 Range);
   1781       }
   1782       LastRange = ConstantRange(LowV, HighV);
   1783     }
   1784     if (NumRanges > 2) {
   1785       APInt FirstLow =
   1786         dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
   1787       APInt FirstHigh =
   1788         dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
   1789       ConstantRange FirstRange(FirstLow, FirstHigh);
   1790       Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
   1791               "Intervals are overlapping", Range);
   1792       Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
   1793               Range);
   1794     }
   1795 
   1796 
   1797   }
   1798 
   1799   visitInstruction(LI);
   1800 }
   1801 
   1802 void Verifier::visitStoreInst(StoreInst &SI) {
   1803   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
   1804   Assert1(PTy, "Store operand must be a pointer.", &SI);
   1805   Type *ElTy = PTy->getElementType();
   1806   Assert2(ElTy == SI.getOperand(0)->getType(),
   1807           "Stored value type does not match pointer operand type!",
   1808           &SI, ElTy);
   1809   if (SI.isAtomic()) {
   1810     Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
   1811             "Store cannot have Acquire ordering", &SI);
   1812     Assert1(SI.getAlignment() != 0,
   1813             "Atomic store must specify explicit alignment", &SI);
   1814     if (!ElTy->isPointerTy()) {
   1815       Assert2(ElTy->isIntegerTy(),
   1816               "atomic store operand must have integer type!",
   1817               &SI, ElTy);
   1818       unsigned Size = ElTy->getPrimitiveSizeInBits();
   1819       Assert2(Size >= 8 && !(Size & (Size - 1)),
   1820               "atomic store operand must be power-of-two byte-sized integer",
   1821               &SI, ElTy);
   1822     }
   1823   } else {
   1824     Assert1(SI.getSynchScope() == CrossThread,
   1825             "Non-atomic store cannot have SynchronizationScope specified", &SI);
   1826   }
   1827   visitInstruction(SI);
   1828 }
   1829 
   1830 void Verifier::visitAllocaInst(AllocaInst &AI) {
   1831   PointerType *PTy = AI.getType();
   1832   Assert1(PTy->getAddressSpace() == 0,
   1833           "Allocation instruction pointer not in the generic address space!",
   1834           &AI);
   1835   Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
   1836           &AI);
   1837   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
   1838           "Alloca array size must have integer type", &AI);
   1839   visitInstruction(AI);
   1840 }
   1841 
   1842 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
   1843   Assert1(CXI.getOrdering() != NotAtomic,
   1844           "cmpxchg instructions must be atomic.", &CXI);
   1845   Assert1(CXI.getOrdering() != Unordered,
   1846           "cmpxchg instructions cannot be unordered.", &CXI);
   1847   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
   1848   Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
   1849   Type *ElTy = PTy->getElementType();
   1850   Assert2(ElTy->isIntegerTy(),
   1851           "cmpxchg operand must have integer type!",
   1852           &CXI, ElTy);
   1853   unsigned Size = ElTy->getPrimitiveSizeInBits();
   1854   Assert2(Size >= 8 && !(Size & (Size - 1)),
   1855           "cmpxchg operand must be power-of-two byte-sized integer",
   1856           &CXI, ElTy);
   1857   Assert2(ElTy == CXI.getOperand(1)->getType(),
   1858           "Expected value type does not match pointer operand type!",
   1859           &CXI, ElTy);
   1860   Assert2(ElTy == CXI.getOperand(2)->getType(),
   1861           "Stored value type does not match pointer operand type!",
   1862           &CXI, ElTy);
   1863   visitInstruction(CXI);
   1864 }
   1865 
   1866 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
   1867   Assert1(RMWI.getOrdering() != NotAtomic,
   1868           "atomicrmw instructions must be atomic.", &RMWI);
   1869   Assert1(RMWI.getOrdering() != Unordered,
   1870           "atomicrmw instructions cannot be unordered.", &RMWI);
   1871   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
   1872   Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
   1873   Type *ElTy = PTy->getElementType();
   1874   Assert2(ElTy->isIntegerTy(),
   1875           "atomicrmw operand must have integer type!",
   1876           &RMWI, ElTy);
   1877   unsigned Size = ElTy->getPrimitiveSizeInBits();
   1878   Assert2(Size >= 8 && !(Size & (Size - 1)),
   1879           "atomicrmw operand must be power-of-two byte-sized integer",
   1880           &RMWI, ElTy);
   1881   Assert2(ElTy == RMWI.getOperand(1)->getType(),
   1882           "Argument value type does not match pointer operand type!",
   1883           &RMWI, ElTy);
   1884   Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
   1885           RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
   1886           "Invalid binary operation!", &RMWI);
   1887   visitInstruction(RMWI);
   1888 }
   1889 
   1890 void Verifier::visitFenceInst(FenceInst &FI) {
   1891   const AtomicOrdering Ordering = FI.getOrdering();
   1892   Assert1(Ordering == Acquire || Ordering == Release ||
   1893           Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
   1894           "fence instructions may only have "
   1895           "acquire, release, acq_rel, or seq_cst ordering.", &FI);
   1896   visitInstruction(FI);
   1897 }
   1898 
   1899 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
   1900   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
   1901                                            EVI.getIndices()) ==
   1902           EVI.getType(),
   1903           "Invalid ExtractValueInst operands!", &EVI);
   1904 
   1905   visitInstruction(EVI);
   1906 }
   1907 
   1908 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
   1909   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
   1910                                            IVI.getIndices()) ==
   1911           IVI.getOperand(1)->getType(),
   1912           "Invalid InsertValueInst operands!", &IVI);
   1913 
   1914   visitInstruction(IVI);
   1915 }
   1916 
   1917 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
   1918   BasicBlock *BB = LPI.getParent();
   1919 
   1920   // The landingpad instruction is ill-formed if it doesn't have any clauses and
   1921   // isn't a cleanup.
   1922   Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
   1923           "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
   1924 
   1925   // The landingpad instruction defines its parent as a landing pad block. The
   1926   // landing pad block may be branched to only by the unwind edge of an invoke.
   1927   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
   1928     const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
   1929     Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
   1930             "Block containing LandingPadInst must be jumped to "
   1931             "only by the unwind edge of an invoke.", &LPI);
   1932   }
   1933 
   1934   // The landingpad instruction must be the first non-PHI instruction in the
   1935   // block.
   1936   Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
   1937           "LandingPadInst not the first non-PHI instruction in the block.",
   1938           &LPI);
   1939 
   1940   // The personality functions for all landingpad instructions within the same
   1941   // function should match.
   1942   if (PersonalityFn)
   1943     Assert1(LPI.getPersonalityFn() == PersonalityFn,
   1944             "Personality function doesn't match others in function", &LPI);
   1945   PersonalityFn = LPI.getPersonalityFn();
   1946 
   1947   // All operands must be constants.
   1948   Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
   1949           &LPI);
   1950   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
   1951     Value *Clause = LPI.getClause(i);
   1952     Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
   1953     if (LPI.isCatch(i)) {
   1954       Assert1(isa<PointerType>(Clause->getType()),
   1955               "Catch operand does not have pointer type!", &LPI);
   1956     } else {
   1957       Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
   1958       Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
   1959               "Filter operand is not an array of constants!", &LPI);
   1960     }
   1961   }
   1962 
   1963   visitInstruction(LPI);
   1964 }
   1965 
   1966 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
   1967   Instruction *Op = cast<Instruction>(I.getOperand(i));
   1968   // If the we have an invalid invoke, don't try to compute the dominance.
   1969   // We already reject it in the invoke specific checks and the dominance
   1970   // computation doesn't handle multiple edges.
   1971   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
   1972     if (II->getNormalDest() == II->getUnwindDest())
   1973       return;
   1974   }
   1975 
   1976   const Use &U = I.getOperandUse(i);
   1977   Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
   1978           "Instruction does not dominate all uses!", Op, &I);
   1979 }
   1980 
   1981 /// verifyInstruction - Verify that an instruction is well formed.
   1982 ///
   1983 void Verifier::visitInstruction(Instruction &I) {
   1984   BasicBlock *BB = I.getParent();
   1985   Assert1(BB, "Instruction not embedded in basic block!", &I);
   1986 
   1987   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
   1988     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
   1989          UI != UE; ++UI)
   1990       Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
   1991               "Only PHI nodes may reference their own value!", &I);
   1992   }
   1993 
   1994   // Check that void typed values don't have names
   1995   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
   1996           "Instruction has a name, but provides a void value!", &I);
   1997 
   1998   // Check that the return value of the instruction is either void or a legal
   1999   // value type.
   2000   Assert1(I.getType()->isVoidTy() ||
   2001           I.getType()->isFirstClassType(),
   2002           "Instruction returns a non-scalar type!", &I);
   2003 
   2004   // Check that the instruction doesn't produce metadata. Calls are already
   2005   // checked against the callee type.
   2006   Assert1(!I.getType()->isMetadataTy() ||
   2007           isa<CallInst>(I) || isa<InvokeInst>(I),
   2008           "Invalid use of metadata!", &I);
   2009 
   2010   // Check that all uses of the instruction, if they are instructions
   2011   // themselves, actually have parent basic blocks.  If the use is not an
   2012   // instruction, it is an error!
   2013   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
   2014        UI != UE; ++UI) {
   2015     if (Instruction *Used = dyn_cast<Instruction>(*UI))
   2016       Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
   2017               " embedded in a basic block!", &I, Used);
   2018     else {
   2019       CheckFailed("Use of instruction is not an instruction!", *UI);
   2020       return;
   2021     }
   2022   }
   2023 
   2024   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   2025     Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
   2026 
   2027     // Check to make sure that only first-class-values are operands to
   2028     // instructions.
   2029     if (!I.getOperand(i)->getType()->isFirstClassType()) {
   2030       Assert1(0, "Instruction operands must be first-class values!", &I);
   2031     }
   2032 
   2033     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
   2034       // Check to make sure that the "address of" an intrinsic function is never
   2035       // taken.
   2036       Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
   2037               "Cannot take the address of an intrinsic!", &I);
   2038       Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
   2039               F->getIntrinsicID() == Intrinsic::donothing,
   2040               "Cannot invoke an intrinsinc other than donothing", &I);
   2041       Assert1(F->getParent() == Mod, "Referencing function in another module!",
   2042               &I);
   2043     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
   2044       Assert1(OpBB->getParent() == BB->getParent(),
   2045               "Referring to a basic block in another function!", &I);
   2046     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
   2047       Assert1(OpArg->getParent() == BB->getParent(),
   2048               "Referring to an argument in another function!", &I);
   2049     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
   2050       Assert1(GV->getParent() == Mod, "Referencing global in another module!",
   2051               &I);
   2052     } else if (isa<Instruction>(I.getOperand(i))) {
   2053       verifyDominatesUse(I, i);
   2054     } else if (isa<InlineAsm>(I.getOperand(i))) {
   2055       Assert1((i + 1 == e && isa<CallInst>(I)) ||
   2056               (i + 3 == e && isa<InvokeInst>(I)),
   2057               "Cannot take the address of an inline asm!", &I);
   2058     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
   2059       if (CE->getType()->isPtrOrPtrVectorTy()) {
   2060         // If we have a ConstantExpr pointer, we need to see if it came from an
   2061         // illegal bitcast (inttoptr <constant int> )
   2062         SmallVector<const ConstantExpr *, 4> Stack;
   2063         SmallPtrSet<const ConstantExpr *, 4> Visited;
   2064         Stack.push_back(CE);
   2065 
   2066         while (!Stack.empty()) {
   2067           const ConstantExpr *V = Stack.pop_back_val();
   2068           if (!Visited.insert(V))
   2069             continue;
   2070 
   2071           VerifyConstantExprBitcastType(V);
   2072 
   2073           for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
   2074             if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
   2075               Stack.push_back(Op);
   2076           }
   2077         }
   2078       }
   2079     }
   2080   }
   2081 
   2082   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
   2083     Assert1(I.getType()->isFPOrFPVectorTy(),
   2084             "fpmath requires a floating point result!", &I);
   2085     Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
   2086     Value *Op0 = MD->getOperand(0);
   2087     if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
   2088       APFloat Accuracy = CFP0->getValueAPF();
   2089       Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
   2090               "fpmath accuracy not a positive number!", &I);
   2091     } else {
   2092       Assert1(false, "invalid fpmath accuracy!", &I);
   2093     }
   2094   }
   2095 
   2096   MDNode *MD = I.getMetadata(LLVMContext::MD_range);
   2097   Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
   2098 
   2099   if (!DisableDebugInfoVerifier) {
   2100     MD = I.getMetadata(LLVMContext::MD_dbg);
   2101     Finder.processLocation(DILocation(MD));
   2102   }
   2103 
   2104   InstsInThisBlock.insert(&I);
   2105 }
   2106 
   2107 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
   2108 /// intrinsic argument or return value) matches the type constraints specified
   2109 /// by the .td file (e.g. an "any integer" argument really is an integer).
   2110 ///
   2111 /// This return true on error but does not print a message.
   2112 bool Verifier::VerifyIntrinsicType(Type *Ty,
   2113                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
   2114                                    SmallVectorImpl<Type*> &ArgTys) {
   2115   using namespace Intrinsic;
   2116 
   2117   // If we ran out of descriptors, there are too many arguments.
   2118   if (Infos.empty()) return true;
   2119   IITDescriptor D = Infos.front();
   2120   Infos = Infos.slice(1);
   2121 
   2122   switch (D.Kind) {
   2123   case IITDescriptor::Void: return !Ty->isVoidTy();
   2124   case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
   2125   case IITDescriptor::Metadata: return !Ty->isMetadataTy();
   2126   case IITDescriptor::Half: return !Ty->isHalfTy();
   2127   case IITDescriptor::Float: return !Ty->isFloatTy();
   2128   case IITDescriptor::Double: return !Ty->isDoubleTy();
   2129   case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
   2130   case IITDescriptor::Vector: {
   2131     VectorType *VT = dyn_cast<VectorType>(Ty);
   2132     return VT == 0 || VT->getNumElements() != D.Vector_Width ||
   2133            VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
   2134   }
   2135   case IITDescriptor::Pointer: {
   2136     PointerType *PT = dyn_cast<PointerType>(Ty);
   2137     return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
   2138            VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
   2139   }
   2140 
   2141   case IITDescriptor::Struct: {
   2142     StructType *ST = dyn_cast<StructType>(Ty);
   2143     if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
   2144       return true;
   2145 
   2146     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
   2147       if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
   2148         return true;
   2149     return false;
   2150   }
   2151 
   2152   case IITDescriptor::Argument:
   2153     // Two cases here - If this is the second occurrence of an argument, verify
   2154     // that the later instance matches the previous instance.
   2155     if (D.getArgumentNumber() < ArgTys.size())
   2156       return Ty != ArgTys[D.getArgumentNumber()];
   2157 
   2158     // Otherwise, if this is the first instance of an argument, record it and
   2159     // verify the "Any" kind.
   2160     assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
   2161     ArgTys.push_back(Ty);
   2162 
   2163     switch (D.getArgumentKind()) {
   2164     case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
   2165     case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
   2166     case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
   2167     case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
   2168     }
   2169     llvm_unreachable("all argument kinds not covered");
   2170 
   2171   case IITDescriptor::ExtendVecArgument:
   2172     // This may only be used when referring to a previous vector argument.
   2173     return D.getArgumentNumber() >= ArgTys.size() ||
   2174            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
   2175            VectorType::getExtendedElementVectorType(
   2176                        cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
   2177 
   2178   case IITDescriptor::TruncVecArgument:
   2179     // This may only be used when referring to a previous vector argument.
   2180     return D.getArgumentNumber() >= ArgTys.size() ||
   2181            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
   2182            VectorType::getTruncatedElementVectorType(
   2183                          cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
   2184   }
   2185   llvm_unreachable("unhandled");
   2186 }
   2187 
   2188 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
   2189 ///
   2190 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
   2191   Function *IF = CI.getCalledFunction();
   2192   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
   2193           IF);
   2194 
   2195   // Verify that the intrinsic prototype lines up with what the .td files
   2196   // describe.
   2197   FunctionType *IFTy = IF->getFunctionType();
   2198   Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
   2199 
   2200   SmallVector<Intrinsic::IITDescriptor, 8> Table;
   2201   getIntrinsicInfoTableEntries(ID, Table);
   2202   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
   2203 
   2204   SmallVector<Type *, 4> ArgTys;
   2205   Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
   2206           "Intrinsic has incorrect return type!", IF);
   2207   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
   2208     Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
   2209             "Intrinsic has incorrect argument type!", IF);
   2210   Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
   2211 
   2212   // Now that we have the intrinsic ID and the actual argument types (and we
   2213   // know they are legal for the intrinsic!) get the intrinsic name through the
   2214   // usual means.  This allows us to verify the mangling of argument types into
   2215   // the name.
   2216   Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
   2217           "Intrinsic name not mangled correctly for type arguments!", IF);
   2218 
   2219   // If the intrinsic takes MDNode arguments, verify that they are either global
   2220   // or are local to *this* function.
   2221   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
   2222     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
   2223       visitMDNode(*MD, CI.getParent()->getParent());
   2224 
   2225   switch (ID) {
   2226   default:
   2227     break;
   2228   case Intrinsic::ctlz:  // llvm.ctlz
   2229   case Intrinsic::cttz:  // llvm.cttz
   2230     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   2231             "is_zero_undef argument of bit counting intrinsics must be a "
   2232             "constant int", &CI);
   2233     break;
   2234   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
   2235     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
   2236                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
   2237     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
   2238     Assert1(MD->getNumOperands() == 1,
   2239                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
   2240     if (!DisableDebugInfoVerifier)
   2241       Finder.processDeclare(cast<DbgDeclareInst>(&CI));
   2242   } break;
   2243   case Intrinsic::dbg_value: { //llvm.dbg.value
   2244     if (!DisableDebugInfoVerifier) {
   2245       Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
   2246               "invalid llvm.dbg.value intrinsic call 1", &CI);
   2247       Finder.processValue(cast<DbgValueInst>(&CI));
   2248     }
   2249     break;
   2250   }
   2251   case Intrinsic::memcpy:
   2252   case Intrinsic::memmove:
   2253   case Intrinsic::memset:
   2254     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
   2255             "alignment argument of memory intrinsics must be a constant int",
   2256             &CI);
   2257     Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
   2258             "isvolatile argument of memory intrinsics must be a constant int",
   2259             &CI);
   2260     break;
   2261   case Intrinsic::gcroot:
   2262   case Intrinsic::gcwrite:
   2263   case Intrinsic::gcread:
   2264     if (ID == Intrinsic::gcroot) {
   2265       AllocaInst *AI =
   2266         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
   2267       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
   2268       Assert1(isa<Constant>(CI.getArgOperand(1)),
   2269               "llvm.gcroot parameter #2 must be a constant.", &CI);
   2270       if (!AI->getType()->getElementType()->isPointerTy()) {
   2271         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
   2272                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
   2273                 "or argument #2 must be a non-null constant.", &CI);
   2274       }
   2275     }
   2276 
   2277     Assert1(CI.getParent()->getParent()->hasGC(),
   2278             "Enclosing function does not use GC.", &CI);
   2279     break;
   2280   case Intrinsic::init_trampoline:
   2281     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
   2282             "llvm.init_trampoline parameter #2 must resolve to a function.",
   2283             &CI);
   2284     break;
   2285   case Intrinsic::prefetch:
   2286     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
   2287             isa<ConstantInt>(CI.getArgOperand(2)) &&
   2288             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
   2289             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
   2290             "invalid arguments to llvm.prefetch",
   2291             &CI);
   2292     break;
   2293   case Intrinsic::stackprotector:
   2294     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
   2295             "llvm.stackprotector parameter #2 must resolve to an alloca.",
   2296             &CI);
   2297     break;
   2298   case Intrinsic::lifetime_start:
   2299   case Intrinsic::lifetime_end:
   2300   case Intrinsic::invariant_start:
   2301     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
   2302             "size argument of memory use markers must be a constant integer",
   2303             &CI);
   2304     break;
   2305   case Intrinsic::invariant_end:
   2306     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   2307             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
   2308     break;
   2309   }
   2310 }
   2311 
   2312 void Verifier::verifyDebugInfo(Module &M) {
   2313   // Verify Debug Info.
   2314   if (!DisableDebugInfoVerifier) {
   2315     Finder.processModule(M);
   2316 
   2317     for (DebugInfoFinder::iterator I = Finder.compile_unit_begin(),
   2318          E = Finder.compile_unit_end(); I != E; ++I)
   2319       Assert1(DICompileUnit(*I).Verify(), "DICompileUnit does not Verify!", *I);
   2320     for (DebugInfoFinder::iterator I = Finder.subprogram_begin(),
   2321          E = Finder.subprogram_end(); I != E; ++I)
   2322       Assert1(DISubprogram(*I).Verify(), "DISubprogram does not Verify!", *I);
   2323     for (DebugInfoFinder::iterator I = Finder.global_variable_begin(),
   2324          E = Finder.global_variable_end(); I != E; ++I)
   2325       Assert1(DIGlobalVariable(*I).Verify(),
   2326               "DIGlobalVariable does not Verify!", *I);
   2327     for (DebugInfoFinder::iterator I = Finder.type_begin(),
   2328          E = Finder.type_end(); I != E; ++I)
   2329       Assert1(DIType(*I).Verify(), "DIType does not Verify!", *I);
   2330     for (DebugInfoFinder::iterator I = Finder.scope_begin(),
   2331          E = Finder.scope_end(); I != E; ++I)
   2332       Assert1(DIScope(*I).Verify(), "DIScope does not Verify!", *I);
   2333   }
   2334 }
   2335 
   2336 //===----------------------------------------------------------------------===//
   2337 //  Implement the public interfaces to this file...
   2338 //===----------------------------------------------------------------------===//
   2339 
   2340 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
   2341   return new Verifier(action);
   2342 }
   2343 
   2344 
   2345 /// verifyFunction - Check a function for errors, printing messages on stderr.
   2346 /// Return true if the function is corrupt.
   2347 ///
   2348 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
   2349   Function &F = const_cast<Function&>(f);
   2350   assert(!F.isDeclaration() && "Cannot verify external functions");
   2351 
   2352   FunctionPassManager FPM(F.getParent());
   2353   Verifier *V = new Verifier(action);
   2354   FPM.add(V);
   2355   FPM.run(F);
   2356   return V->Broken;
   2357 }
   2358 
   2359 /// verifyModule - Check a module for errors, printing messages on stderr.
   2360 /// Return true if the module is corrupt.
   2361 ///
   2362 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
   2363                         std::string *ErrorInfo) {
   2364   PassManager PM;
   2365   Verifier *V = new Verifier(action);
   2366   PM.add(V);
   2367   PM.run(const_cast<Module&>(M));
   2368 
   2369   if (ErrorInfo && V->Broken)
   2370     *ErrorInfo = V->MessagesStr.str();
   2371   return V->Broken;
   2372 }
   2373