Home | History | Annotate | Download | only in AArch64
      1 //===----- AArch64InstrInfo.td - AArch64 Instruction Info ----*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the AArch64 scalar instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // ARM Instruction Predicate Definitions.
     16 //
     17 def HasNEON          : Predicate<"Subtarget->hasNEON()">,
     18                                  AssemblerPredicate<"FeatureNEON", "neon">;
     19 def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
     20                                  AssemblerPredicate<"FeatureCrypto","crypto">;
     21 
     22 // Use fused MAC if more precision in FP computation is allowed.
     23 def UseFusedMAC      : Predicate<"(TM.Options.AllowFPOpFusion =="
     24                                  " FPOpFusion::Fast)">;
     25 include "AArch64InstrFormats.td"
     26 
     27 //===----------------------------------------------------------------------===//
     28 // Target-specific ISD nodes and profiles
     29 //===----------------------------------------------------------------------===//
     30 
     31 def SDT_A64ret : SDTypeProfile<0, 0, []>;
     32 def A64ret : SDNode<"AArch64ISD::Ret", SDT_A64ret, [SDNPHasChain,
     33                                                     SDNPOptInGlue,
     34                                                     SDNPVariadic]>;
     35 
     36 // (ins NZCV, Condition, Dest)
     37 def SDT_A64br_cc : SDTypeProfile<0, 3, [SDTCisVT<0, i32>]>;
     38 def A64br_cc : SDNode<"AArch64ISD::BR_CC", SDT_A64br_cc, [SDNPHasChain]>;
     39 
     40 // (outs Result), (ins NZCV, IfTrue, IfFalse, Condition)
     41 def SDT_A64select_cc : SDTypeProfile<1, 4, [SDTCisVT<1, i32>,
     42                                             SDTCisSameAs<0, 2>,
     43                                             SDTCisSameAs<2, 3>]>;
     44 def A64select_cc : SDNode<"AArch64ISD::SELECT_CC", SDT_A64select_cc>;
     45 
     46 // (outs NZCV), (ins LHS, RHS, Condition)
     47 def SDT_A64setcc : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,
     48                                         SDTCisSameAs<1, 2>]>;
     49 def A64setcc : SDNode<"AArch64ISD::SETCC", SDT_A64setcc>;
     50 
     51 
     52 // (outs GPR64), (ins)
     53 def A64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
     54 
     55 // A64 compares don't care about the cond really (they set all flags) so a
     56 // simple binary operator is useful.
     57 def A64cmp : PatFrag<(ops node:$lhs, node:$rhs),
     58                      (A64setcc node:$lhs, node:$rhs, cond)>;
     59 
     60 
     61 // When matching a notional (CMP op1, (sub 0, op2)), we'd like to use a CMN
     62 // instruction on the grounds that "op1 - (-op2) == op1 + op2". However, the C
     63 // and V flags can be set differently by this operation. It comes down to
     64 // whether "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are
     65 // then everything is fine. If not then the optimization is wrong. Thus general
     66 // comparisons are only valid if op2 != 0.
     67 
     68 // So, finally, the only LLVM-native comparisons that don't mention C and V are
     69 // SETEQ and SETNE. They're the only ones we can safely use CMN for in the
     70 // absence of information about op2.
     71 def equality_cond : PatLeaf<(cond), [{
     72   return N->get() == ISD::SETEQ || N->get() == ISD::SETNE;
     73 }]>;
     74 
     75 def A64cmn : PatFrag<(ops node:$lhs, node:$rhs),
     76                      (A64setcc node:$lhs, (sub 0, node:$rhs), equality_cond)>;
     77 
     78 // There are two layers of indirection here, driven by the following
     79 // considerations.
     80 //     + TableGen does not know CodeModel or Reloc so that decision should be
     81 //       made for a variable/address at ISelLowering.
     82 //     + The output of ISelLowering should be selectable (hence the Wrapper,
     83 //       rather than a bare target opcode)
     84 def SDTAArch64WrapperLarge : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
     85                                                   SDTCisSameAs<0, 2>,
     86                                                   SDTCisSameAs<0, 3>,
     87                                                   SDTCisSameAs<0, 4>,
     88                                                   SDTCisPtrTy<0>]>;
     89 
     90 def A64WrapperLarge :SDNode<"AArch64ISD::WrapperLarge", SDTAArch64WrapperLarge>;
     91 
     92 def SDTAArch64WrapperSmall : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
     93                                                   SDTCisSameAs<1, 2>,
     94                                                   SDTCisVT<3, i32>,
     95                                                   SDTCisPtrTy<0>]>;
     96 
     97 def A64WrapperSmall :SDNode<"AArch64ISD::WrapperSmall", SDTAArch64WrapperSmall>;
     98 
     99 
    100 def SDTAArch64GOTLoad : SDTypeProfile<1, 1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
    101 def A64GOTLoad : SDNode<"AArch64ISD::GOTLoad", SDTAArch64GOTLoad,
    102                         [SDNPHasChain]>;
    103 
    104 
    105 // (A64BFI LHS, RHS, LSB, Width)
    106 def SDTA64BFI : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
    107                                      SDTCisSameAs<1, 2>,
    108                                      SDTCisVT<3, i64>,
    109                                      SDTCisVT<4, i64>]>;
    110 
    111 def A64Bfi : SDNode<"AArch64ISD::BFI", SDTA64BFI>;
    112 
    113 // (A64EXTR HiReg, LoReg, LSB)
    114 def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
    115                                       SDTCisVT<3, i64>]>;
    116 def A64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>;
    117 
    118 // (A64[SU]BFX Field, ImmR, ImmS).
    119 //
    120 // Note that ImmR and ImmS are already encoded for the actual instructions. The
    121 // more natural LSB and Width mix together to form ImmR and ImmS, something
    122 // which TableGen can't handle.
    123 def SDTA64BFX : SDTypeProfile<1, 3, [SDTCisVT<2, i64>, SDTCisVT<3, i64>]>;
    124 def A64Sbfx : SDNode<"AArch64ISD::SBFX", SDTA64BFX>;
    125 
    126 def A64Ubfx : SDNode<"AArch64ISD::UBFX", SDTA64BFX>;
    127 
    128 //===----------------------------------------------------------------------===//
    129 // Call sequence pseudo-instructions
    130 //===----------------------------------------------------------------------===//
    131 
    132 
    133 def SDT_AArch64Call : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
    134 def AArch64Call : SDNode<"AArch64ISD::Call", SDT_AArch64Call,
    135                      [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
    136 
    137 def AArch64tcret : SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64Call,
    138                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    139 
    140 // The TLSDESCCALL node is a variant call which goes to an indirectly calculated
    141 // destination but needs a relocation against a fixed symbol. As such it has two
    142 // certain operands: the callee and the relocated variable.
    143 //
    144 // The TLS ABI only allows it to be selected to a BLR instructin (with
    145 // appropriate relocation).
    146 def SDTTLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
    147 
    148 def A64tlsdesc_blr : SDNode<"AArch64ISD::TLSDESCCALL", SDTTLSDescCall,
    149                             [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
    150                              SDNPVariadic]>;
    151 
    152 
    153 def SDT_AArch64CallSeqStart : SDCallSeqStart<[ SDTCisPtrTy<0> ]>;
    154 def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AArch64CallSeqStart,
    155                                   [SDNPHasChain, SDNPOutGlue]>;
    156 
    157 def SDT_AArch64CallSeqEnd   : SDCallSeqEnd<[ SDTCisPtrTy<0>, SDTCisPtrTy<1> ]>;
    158 def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END",   SDT_AArch64CallSeqEnd,
    159                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    160 
    161 
    162 
    163 // These pseudo-instructions have special semantics by virtue of being passed to
    164 // the InstrInfo constructor. CALLSEQ_START/CALLSEQ_END are produced by
    165 // LowerCall to (in our case) tell the back-end about stack adjustments for
    166 // arguments passed on the stack. Here we select those markers to
    167 // pseudo-instructions which explicitly set the stack, and finally in the
    168 // RegisterInfo we convert them to a true stack adjustment.
    169 let Defs = [XSP], Uses = [XSP] in {
    170   def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i64imm:$amt),
    171                                     [(AArch64callseq_start timm:$amt)]>;
    172 
    173   def ADJCALLSTACKUP : PseudoInst<(outs), (ins i64imm:$amt1, i64imm:$amt2),
    174                                  [(AArch64callseq_end timm:$amt1, timm:$amt2)]>;
    175 }
    176 
    177 //===----------------------------------------------------------------------===//
    178 // Atomic operation pseudo-instructions
    179 //===----------------------------------------------------------------------===//
    180 
    181 // These get selected from C++ code as a pretty much direct translation from the
    182 // generic DAG nodes. The one exception is the AtomicOrdering is added as an
    183 // operand so that the eventual lowering can make use of it and choose
    184 // acquire/release operations when required.
    185 
    186 let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1 in {
    187 multiclass AtomicSizes {
    188   def _I8 : PseudoInst<(outs GPR32:$dst),
    189                        (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
    190   def _I16 : PseudoInst<(outs GPR32:$dst),
    191                         (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
    192   def _I32 : PseudoInst<(outs GPR32:$dst),
    193                         (ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
    194   def _I64 : PseudoInst<(outs GPR64:$dst),
    195                         (ins GPR64xsp:$ptr, GPR64:$incr, i32imm:$ordering), []>;
    196 }
    197 }
    198 
    199 defm ATOMIC_LOAD_ADD  : AtomicSizes;
    200 defm ATOMIC_LOAD_SUB  : AtomicSizes;
    201 defm ATOMIC_LOAD_AND  : AtomicSizes;
    202 defm ATOMIC_LOAD_OR   : AtomicSizes;
    203 defm ATOMIC_LOAD_XOR  : AtomicSizes;
    204 defm ATOMIC_LOAD_NAND : AtomicSizes;
    205 defm ATOMIC_SWAP      : AtomicSizes;
    206 let Defs = [NZCV] in {
    207   // These operations need a CMP to calculate the correct value
    208   defm ATOMIC_LOAD_MIN  : AtomicSizes;
    209   defm ATOMIC_LOAD_MAX  : AtomicSizes;
    210   defm ATOMIC_LOAD_UMIN : AtomicSizes;
    211   defm ATOMIC_LOAD_UMAX : AtomicSizes;
    212 }
    213 
    214 class AtomicCmpSwap<RegisterClass GPRData>
    215   : PseudoInst<(outs GPRData:$dst),
    216                (ins GPR64xsp:$ptr, GPRData:$old, GPRData:$new,
    217                     i32imm:$ordering), []> {
    218   let usesCustomInserter = 1;
    219   let hasCtrlDep = 1;
    220   let mayLoad = 1;
    221   let mayStore = 1;
    222   let Defs = [NZCV];
    223 }
    224 
    225 def ATOMIC_CMP_SWAP_I8  : AtomicCmpSwap<GPR32>;
    226 def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<GPR32>;
    227 def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<GPR32>;
    228 def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<GPR64>;
    229 
    230 //===----------------------------------------------------------------------===//
    231 // Add-subtract (extended register) instructions
    232 //===----------------------------------------------------------------------===//
    233 // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP
    234 
    235 // The RHS of these operations is conceptually a sign/zero-extended
    236 // register, optionally shifted left by 1-4. The extension can be a
    237 // NOP (e.g. "sxtx" sign-extending a 64-bit register to 64-bits) but
    238 // must be specified with one exception:
    239 
    240 // If one of the registers is sp/wsp then LSL is an alias for UXTW in
    241 // 32-bit instructions and UXTX in 64-bit versions, the shift amount
    242 // is not optional in that case (but can explicitly be 0), and the
    243 // entire suffix can be skipped (e.g. "add sp, x3, x2").
    244 
    245 multiclass extend_operands<string PREFIX, string Diag> {
    246      def _asmoperand : AsmOperandClass {
    247          let Name = PREFIX;
    248          let RenderMethod = "addRegExtendOperands";
    249          let PredicateMethod = "isRegExtend<A64SE::" # PREFIX # ">";
    250          let DiagnosticType = "AddSubRegExtend" # Diag;
    251      }
    252 
    253      def _operand : Operand<i64>,
    254                     ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 4; }]> {
    255          let PrintMethod = "printRegExtendOperand<A64SE::" # PREFIX # ">";
    256          let DecoderMethod = "DecodeRegExtendOperand";
    257          let ParserMatchClass = !cast<AsmOperandClass>(PREFIX # "_asmoperand");
    258      }
    259 }
    260 
    261 defm UXTB : extend_operands<"UXTB", "Small">;
    262 defm UXTH : extend_operands<"UXTH", "Small">;
    263 defm UXTW : extend_operands<"UXTW", "Small">;
    264 defm UXTX : extend_operands<"UXTX", "Large">;
    265 defm SXTB : extend_operands<"SXTB", "Small">;
    266 defm SXTH : extend_operands<"SXTH", "Small">;
    267 defm SXTW : extend_operands<"SXTW", "Small">;
    268 defm SXTX : extend_operands<"SXTX", "Large">;
    269 
    270 def LSL_extasmoperand : AsmOperandClass {
    271     let Name = "RegExtendLSL";
    272     let RenderMethod = "addRegExtendOperands";
    273     let DiagnosticType = "AddSubRegExtendLarge";
    274 }
    275 
    276 def LSL_extoperand : Operand<i64> {
    277     let ParserMatchClass = LSL_extasmoperand;
    278 }
    279 
    280 
    281 // The patterns for various sign-extensions are a little ugly and
    282 // non-uniform because everything has already been promoted to the
    283 // legal i64 and i32 types. We'll wrap the various variants up in a
    284 // class for use later.
    285 class extend_types {
    286     dag uxtb; dag uxth; dag uxtw; dag uxtx;
    287     dag sxtb; dag sxth; dag sxtw; dag sxtx;
    288     ValueType ty;
    289     RegisterClass GPR;
    290 }
    291 
    292 def extends_to_i64 : extend_types {
    293     let uxtb = (and (anyext i32:$Rm), 255);
    294     let uxth = (and (anyext i32:$Rm), 65535);
    295     let uxtw = (zext i32:$Rm);
    296     let uxtx = (i64 $Rm);
    297 
    298     let sxtb = (sext_inreg (anyext i32:$Rm), i8);
    299     let sxth = (sext_inreg (anyext i32:$Rm), i16);
    300     let sxtw = (sext i32:$Rm);
    301     let sxtx = (i64 $Rm);
    302 
    303     let ty = i64;
    304     let GPR = GPR64xsp;
    305 }
    306 
    307 
    308 def extends_to_i32 : extend_types {
    309     let uxtb = (and i32:$Rm, 255);
    310     let uxth = (and i32:$Rm, 65535);
    311     let uxtw = (i32 i32:$Rm);
    312     let uxtx = (i32 i32:$Rm);
    313 
    314     let sxtb = (sext_inreg i32:$Rm, i8);
    315     let sxth = (sext_inreg i32:$Rm, i16);
    316     let sxtw = (i32 i32:$Rm);
    317     let sxtx = (i32 i32:$Rm);
    318 
    319     let ty = i32;
    320     let GPR = GPR32wsp;
    321 }
    322 
    323 // Now, six of the extensions supported are easy and uniform: if the source size
    324 // is 32-bits or less, then Rm is always a 32-bit register. We'll instantiate
    325 // those instructions in one block.
    326 
    327 // The uxtx/sxtx could potentially be merged in, but three facts dissuaded me:
    328 //     + It would break the naming scheme: either ADDxx_uxtx or ADDww_uxtx would
    329 //       be impossible.
    330 //     + Patterns are very different as well.
    331 //     + Passing different registers would be ugly (more fields in extend_types
    332 //       would probably be the best option).
    333 multiclass addsub_exts<bit sf, bit op, bit S, string asmop,
    334                        SDPatternOperator opfrag,
    335                        dag outs, extend_types exts> {
    336     def w_uxtb : A64I_addsubext<sf, op, S, 0b00, 0b000,
    337                     outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTB_operand:$Imm3),
    338                     !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    339                     [(opfrag exts.ty:$Rn, (shl exts.uxtb, UXTB_operand:$Imm3))],
    340                     NoItinerary>;
    341     def w_uxth : A64I_addsubext<sf, op, S, 0b00, 0b001,
    342                     outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTH_operand:$Imm3),
    343                     !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    344                     [(opfrag exts.ty:$Rn, (shl exts.uxth, UXTH_operand:$Imm3))],
    345                     NoItinerary>;
    346     def w_uxtw : A64I_addsubext<sf, op, S, 0b00, 0b010,
    347                     outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTW_operand:$Imm3),
    348                     !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    349                     [(opfrag exts.ty:$Rn, (shl exts.uxtw, UXTW_operand:$Imm3))],
    350                     NoItinerary>;
    351 
    352     def w_sxtb : A64I_addsubext<sf, op, S, 0b00, 0b100,
    353                     outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTB_operand:$Imm3),
    354                     !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    355                     [(opfrag exts.ty:$Rn, (shl exts.sxtb, SXTB_operand:$Imm3))],
    356                     NoItinerary>;
    357     def w_sxth : A64I_addsubext<sf, op, S, 0b00, 0b101,
    358                     outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTH_operand:$Imm3),
    359                     !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    360                     [(opfrag exts.ty:$Rn, (shl exts.sxth, SXTH_operand:$Imm3))],
    361                     NoItinerary>;
    362     def w_sxtw : A64I_addsubext<sf, op, S, 0b00, 0b110,
    363                     outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTW_operand:$Imm3),
    364                     !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    365                     [(opfrag exts.ty:$Rn, (shl exts.sxtw, SXTW_operand:$Imm3))],
    366                     NoItinerary>;
    367 }
    368 
    369 // These two could be merge in with the above, but their patterns aren't really
    370 // necessary and the naming-scheme would necessarily break:
    371 multiclass addsub_xxtx<bit op, bit S, string asmop, SDPatternOperator opfrag,
    372                        dag outs> {
    373     def x_uxtx : A64I_addsubext<0b1, op, S, 0b00, 0b011,
    374                    outs,
    375                    (ins GPR64xsp:$Rn, GPR64:$Rm, UXTX_operand:$Imm3),
    376                    !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    377                    [(opfrag i64:$Rn, (shl i64:$Rm, UXTX_operand:$Imm3))],
    378                    NoItinerary>;
    379 
    380     def x_sxtx : A64I_addsubext<0b1, op, S, 0b00, 0b111,
    381                    outs,
    382                    (ins GPR64xsp:$Rn, GPR64:$Rm, SXTX_operand:$Imm3),
    383                    !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    384                    [/* No Pattern: same as uxtx */],
    385                    NoItinerary>;
    386 }
    387 
    388 multiclass addsub_wxtx<bit op, bit S, string asmop, dag outs> {
    389     def w_uxtx : A64I_addsubext<0b0, op, S, 0b00, 0b011,
    390                               outs,
    391                               (ins GPR32wsp:$Rn, GPR32:$Rm, UXTX_operand:$Imm3),
    392                               !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    393                               [/* No pattern: probably same as uxtw */],
    394                               NoItinerary>;
    395 
    396     def w_sxtx : A64I_addsubext<0b0, op, S, 0b00, 0b111,
    397                               outs,
    398                               (ins GPR32wsp:$Rn, GPR32:$Rm, SXTX_operand:$Imm3),
    399                               !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    400                               [/* No Pattern: probably same as uxtw */],
    401                               NoItinerary>;
    402 }
    403 
    404 class SetRD<RegisterClass RC, SDPatternOperator op>
    405  : PatFrag<(ops node:$lhs, node:$rhs), (set RC:$Rd, (op node:$lhs, node:$rhs))>;
    406 class SetNZCV<SDPatternOperator op>
    407   : PatFrag<(ops node:$lhs, node:$rhs), (set NZCV, (op node:$lhs, node:$rhs))>;
    408 
    409 defm ADDxx :addsub_exts<0b1, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
    410                         (outs GPR64xsp:$Rd), extends_to_i64>,
    411             addsub_xxtx<     0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
    412                         (outs GPR64xsp:$Rd)>;
    413 defm ADDww :addsub_exts<0b0, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR32wsp, add>,
    414                         (outs GPR32wsp:$Rd), extends_to_i32>,
    415             addsub_wxtx<     0b0, 0b0, "add\t$Rd, ",
    416                         (outs GPR32wsp:$Rd)>;
    417 defm SUBxx :addsub_exts<0b1, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
    418                         (outs GPR64xsp:$Rd), extends_to_i64>,
    419             addsub_xxtx<     0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
    420                         (outs GPR64xsp:$Rd)>;
    421 defm SUBww :addsub_exts<0b0, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR32wsp, sub>,
    422                         (outs GPR32wsp:$Rd), extends_to_i32>,
    423             addsub_wxtx<     0b1, 0b0, "sub\t$Rd, ",
    424                         (outs GPR32wsp:$Rd)>;
    425 
    426 let Defs = [NZCV] in {
    427 defm ADDSxx :addsub_exts<0b1, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
    428                          (outs GPR64:$Rd), extends_to_i64>,
    429              addsub_xxtx<     0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
    430                          (outs GPR64:$Rd)>;
    431 defm ADDSww :addsub_exts<0b0, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR32, addc>,
    432                          (outs GPR32:$Rd), extends_to_i32>,
    433              addsub_wxtx<     0b0, 0b1, "adds\t$Rd, ",
    434                          (outs GPR32:$Rd)>;
    435 defm SUBSxx :addsub_exts<0b1, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
    436                          (outs GPR64:$Rd), extends_to_i64>,
    437              addsub_xxtx<     0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
    438                          (outs GPR64:$Rd)>;
    439 defm SUBSww :addsub_exts<0b0, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR32, subc>,
    440                          (outs GPR32:$Rd), extends_to_i32>,
    441              addsub_wxtx<     0b1, 0b1, "subs\t$Rd, ",
    442                          (outs GPR32:$Rd)>;
    443 
    444 
    445 let Rd = 0b11111, isCompare = 1 in {
    446 defm CMNx : addsub_exts<0b1, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
    447                         (outs), extends_to_i64>,
    448             addsub_xxtx<     0b0, 0b1, "cmn\t", SetNZCV<A64cmn>, (outs)>;
    449 defm CMNw : addsub_exts<0b0, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
    450                         (outs), extends_to_i32>,
    451             addsub_wxtx<     0b0, 0b1, "cmn\t", (outs)>;
    452 defm CMPx : addsub_exts<0b1, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
    453                         (outs), extends_to_i64>,
    454             addsub_xxtx<     0b1, 0b1, "cmp\t", SetNZCV<A64cmp>, (outs)>;
    455 defm CMPw : addsub_exts<0b0, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
    456                         (outs), extends_to_i32>,
    457             addsub_wxtx<     0b1, 0b1, "cmp\t", (outs)>;
    458 }
    459 }
    460 
    461 // Now patterns for the operation without a shift being needed. No patterns are
    462 // created for uxtx/sxtx since they're non-uniform and it's expected that
    463 // add/sub (shifted register) will handle those cases anyway.
    464 multiclass addsubext_noshift_patterns<string prefix, SDPatternOperator nodeop,
    465                                       extend_types exts> {
    466     def : Pat<(nodeop exts.ty:$Rn, exts.uxtb),
    467               (!cast<Instruction>(prefix # "w_uxtb") $Rn, $Rm, 0)>;
    468     def : Pat<(nodeop exts.ty:$Rn, exts.uxth),
    469               (!cast<Instruction>(prefix # "w_uxth") $Rn, $Rm, 0)>;
    470     def : Pat<(nodeop exts.ty:$Rn, exts.uxtw),
    471               (!cast<Instruction>(prefix # "w_uxtw") $Rn, $Rm, 0)>;
    472 
    473     def : Pat<(nodeop exts.ty:$Rn, exts.sxtb),
    474               (!cast<Instruction>(prefix # "w_sxtb") $Rn, $Rm, 0)>;
    475     def : Pat<(nodeop exts.ty:$Rn, exts.sxth),
    476               (!cast<Instruction>(prefix # "w_sxth") $Rn, $Rm, 0)>;
    477     def : Pat<(nodeop exts.ty:$Rn, exts.sxtw),
    478               (!cast<Instruction>(prefix # "w_sxtw") $Rn, $Rm, 0)>;
    479 }
    480 
    481 defm : addsubext_noshift_patterns<"ADDxx", add, extends_to_i64>;
    482 defm : addsubext_noshift_patterns<"ADDww", add, extends_to_i32>;
    483 defm : addsubext_noshift_patterns<"SUBxx", sub, extends_to_i64>;
    484 defm : addsubext_noshift_patterns<"SUBww", sub, extends_to_i32>;
    485 
    486 defm : addsubext_noshift_patterns<"CMNx", A64cmn, extends_to_i64>;
    487 defm : addsubext_noshift_patterns<"CMNw", A64cmn, extends_to_i32>;
    488 defm : addsubext_noshift_patterns<"CMPx", A64cmp, extends_to_i64>;
    489 defm : addsubext_noshift_patterns<"CMPw", A64cmp, extends_to_i32>;
    490 
    491 // An extend of "lsl #imm" is valid if and only if one of Rn and Rd is
    492 // sp/wsp. It is synonymous with uxtx/uxtw depending on the size of the
    493 // operation. Also permitted in this case is complete omission of the argument,
    494 // which implies "lsl #0".
    495 multiclass lsl_aliases<string asmop, Instruction inst, RegisterClass GPR_Rd,
    496                        RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
    497     def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
    498                     (inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
    499 
    500     def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm, $LSL"),
    501                 (inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
    502 
    503 }
    504 
    505 defm : lsl_aliases<"add",  ADDxxx_uxtx,  Rxsp, GPR64xsp, GPR64>;
    506 defm : lsl_aliases<"add",  ADDxxx_uxtx,  GPR64xsp, Rxsp, GPR64>;
    507 defm : lsl_aliases<"add",  ADDwww_uxtw,  Rwsp, GPR32wsp, GPR32>;
    508 defm : lsl_aliases<"add",  ADDwww_uxtw,  GPR32wsp, Rwsp, GPR32>;
    509 defm : lsl_aliases<"sub",  SUBxxx_uxtx,  Rxsp, GPR64xsp, GPR64>;
    510 defm : lsl_aliases<"sub",  SUBxxx_uxtx,  GPR64xsp, Rxsp, GPR64>;
    511 defm : lsl_aliases<"sub",  SUBwww_uxtw,  Rwsp, GPR32wsp, GPR32>;
    512 defm : lsl_aliases<"sub",  SUBwww_uxtw,  GPR32wsp, Rwsp, GPR32>;
    513 
    514 // Rd cannot be sp for flag-setting variants so only half of the aliases are
    515 // needed.
    516 defm : lsl_aliases<"adds", ADDSxxx_uxtx, GPR64, Rxsp, GPR64>;
    517 defm : lsl_aliases<"adds", ADDSwww_uxtw, GPR32, Rwsp, GPR32>;
    518 defm : lsl_aliases<"subs", SUBSxxx_uxtx, GPR64, Rxsp, GPR64>;
    519 defm : lsl_aliases<"subs", SUBSwww_uxtw, GPR32, Rwsp, GPR32>;
    520 
    521 // CMP unfortunately has to be different because the instruction doesn't have a
    522 // dest register.
    523 multiclass cmp_lsl_aliases<string asmop, Instruction inst,
    524                        RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
    525     def : InstAlias<!strconcat(asmop, " $Rn, $Rm"),
    526                     (inst GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
    527 
    528     def : InstAlias<!strconcat(asmop, " $Rn, $Rm, $LSL"),
    529                     (inst GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
    530 }
    531 
    532 defm : cmp_lsl_aliases<"cmp", CMPxx_uxtx, Rxsp, GPR64>;
    533 defm : cmp_lsl_aliases<"cmp", CMPww_uxtw, Rwsp, GPR32>;
    534 defm : cmp_lsl_aliases<"cmn", CMNxx_uxtx, Rxsp, GPR64>;
    535 defm : cmp_lsl_aliases<"cmn", CMNww_uxtw, Rwsp, GPR32>;
    536 
    537 //===----------------------------------------------------------------------===//
    538 // Add-subtract (immediate) instructions
    539 //===----------------------------------------------------------------------===//
    540 // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, MOV
    541 
    542 // These instructions accept a 12-bit unsigned immediate, optionally shifted
    543 // left by 12 bits. Official assembly format specifies a 12 bit immediate with
    544 // one of "", "LSL #0", "LSL #12" supplementary operands.
    545 
    546 // There are surprisingly few ways to make this work with TableGen, so this
    547 // implementation has separate instructions for the "LSL #0" and "LSL #12"
    548 // variants.
    549 
    550 // If the MCInst retained a single combined immediate (which could be 0x123000,
    551 // for example) then both components (imm & shift) would have to be delegated to
    552 // a single assembly operand. This would entail a separate operand parser
    553 // (because the LSL would have to live in the same AArch64Operand as the
    554 // immediate to be accessible); assembly parsing is rather complex and
    555 // error-prone C++ code.
    556 //
    557 // By splitting the immediate, we can delegate handling this optional operand to
    558 // an InstAlias. Supporting functions to generate the correct MCInst are still
    559 // required, but these are essentially trivial and parsing can remain generic.
    560 //
    561 // Rejected plans with rationale:
    562 // ------------------------------
    563 //
    564 // In an ideal world you'de have two first class immediate operands (in
    565 // InOperandList, specifying imm12 and shift). Unfortunately this is not
    566 // selectable by any means I could discover.
    567 //
    568 // An Instruction with two MCOperands hidden behind a single entry in
    569 // InOperandList (expanded by ComplexPatterns and MIOperandInfo) was functional,
    570 // but required more C++ code to handle encoding/decoding. Parsing (the intended
    571 // main beneficiary) ended up equally complex because of the optional nature of
    572 // "LSL #0".
    573 //
    574 // Attempting to circumvent the need for a custom OperandParser above by giving
    575 // InstAliases without the "lsl #0" failed. add/sub could be accommodated but
    576 // the cmp/cmn aliases didn't use the MIOperandInfo to determine how operands
    577 // should be parsed: there was no way to accommodate an "lsl #12".
    578 
    579 let ParserMethod = "ParseImmWithLSLOperand",
    580     RenderMethod = "addImmWithLSLOperands" in {
    581   // Derived PredicateMethod fields are different for each
    582   def addsubimm_lsl0_asmoperand : AsmOperandClass {
    583     let Name = "AddSubImmLSL0";
    584     // If an error is reported against this operand, instruction could also be a
    585     // register variant.
    586     let DiagnosticType = "AddSubSecondSource";
    587   }
    588 
    589   def addsubimm_lsl12_asmoperand : AsmOperandClass {
    590     let Name = "AddSubImmLSL12";
    591     let DiagnosticType = "AddSubSecondSource";
    592   }
    593 }
    594 
    595 def shr_12_XFORM : SDNodeXForm<imm, [{
    596   return CurDAG->getTargetConstant(N->getSExtValue() >> 12, MVT::i32);
    597 }]>;
    598 
    599 def shr_12_neg_XFORM : SDNodeXForm<imm, [{
    600   return CurDAG->getTargetConstant((-N->getSExtValue()) >> 12, MVT::i32);
    601 }]>;
    602 
    603 def neg_XFORM : SDNodeXForm<imm, [{
    604   return CurDAG->getTargetConstant(-N->getSExtValue(), MVT::i32);
    605 }]>;
    606 
    607 
    608 multiclass addsub_imm_operands<ValueType ty> {
    609  let PrintMethod = "printAddSubImmLSL0Operand",
    610       EncoderMethod = "getAddSubImmOpValue",
    611       ParserMatchClass = addsubimm_lsl0_asmoperand in {
    612     def _posimm_lsl0 : Operand<ty>,
    613         ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff) == 0; }]>;
    614     def _negimm_lsl0 : Operand<ty>,
    615         ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff) == 0; }],
    616                 neg_XFORM>;
    617   }
    618 
    619   let PrintMethod = "printAddSubImmLSL12Operand",
    620       EncoderMethod = "getAddSubImmOpValue",
    621       ParserMatchClass = addsubimm_lsl12_asmoperand in {
    622     def _posimm_lsl12 : Operand<ty>,
    623         ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff000) == 0; }],
    624                 shr_12_XFORM>;
    625 
    626     def _negimm_lsl12 : Operand<ty>,
    627         ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff000) == 0; }],
    628                 shr_12_neg_XFORM>;
    629   }
    630 }
    631 
    632 // The add operands don't need any transformation
    633 defm addsubimm_operand_i32 : addsub_imm_operands<i32>;
    634 defm addsubimm_operand_i64 : addsub_imm_operands<i64>;
    635 
    636 multiclass addsubimm_varieties<string prefix, bit sf, bit op, bits<2> shift,
    637                                string asmop, string cmpasmop,
    638                                Operand imm_operand, Operand cmp_imm_operand,
    639                                RegisterClass GPR, RegisterClass GPRsp,
    640                                AArch64Reg ZR, ValueType Ty> {
    641     // All registers for non-S variants allow SP
    642   def _s : A64I_addsubimm<sf, op, 0b0, shift,
    643                          (outs GPRsp:$Rd),
    644                          (ins GPRsp:$Rn, imm_operand:$Imm12),
    645                          !strconcat(asmop, "\t$Rd, $Rn, $Imm12"),
    646                          [(set Ty:$Rd, (add Ty:$Rn, imm_operand:$Imm12))],
    647                          NoItinerary>;
    648 
    649 
    650   // S variants can read SP but would write to ZR
    651   def _S : A64I_addsubimm<sf, op, 0b1, shift,
    652                          (outs GPR:$Rd),
    653                          (ins GPRsp:$Rn, imm_operand:$Imm12),
    654                          !strconcat(asmop, "s\t$Rd, $Rn, $Imm12"),
    655                          [(set Ty:$Rd, (addc Ty:$Rn, imm_operand:$Imm12))],
    656                          NoItinerary> {
    657     let Defs = [NZCV];
    658   }
    659 
    660   // Note that the pattern here for ADDS is subtle. Canonically CMP
    661   // a, b becomes SUBS a, b. If b < 0 then this is equivalent to
    662   // ADDS a, (-b). This is not true in general.
    663   def _cmp : A64I_addsubimm<sf, op, 0b1, shift,
    664                             (outs), (ins GPRsp:$Rn, imm_operand:$Imm12),
    665                             !strconcat(cmpasmop, " $Rn, $Imm12"),
    666                             [(set NZCV,
    667                                   (A64cmp Ty:$Rn, cmp_imm_operand:$Imm12))],
    668                             NoItinerary> {
    669     let Rd = 0b11111;
    670     let Defs = [NZCV];
    671     let isCompare = 1;
    672   }
    673 }
    674 
    675 
    676 multiclass addsubimm_shifts<string prefix, bit sf, bit op,
    677            string asmop, string cmpasmop, string operand, string cmpoperand,
    678            RegisterClass GPR, RegisterClass GPRsp, AArch64Reg ZR,
    679            ValueType Ty> {
    680   defm _lsl0 : addsubimm_varieties<prefix # "_lsl0", sf, op, 0b00,
    681                                    asmop, cmpasmop,
    682                                    !cast<Operand>(operand # "_lsl0"),
    683                                    !cast<Operand>(cmpoperand # "_lsl0"),
    684                                    GPR, GPRsp, ZR, Ty>;
    685 
    686   defm _lsl12 : addsubimm_varieties<prefix # "_lsl12", sf, op, 0b01,
    687                                     asmop, cmpasmop,
    688                                     !cast<Operand>(operand # "_lsl12"),
    689                                     !cast<Operand>(cmpoperand # "_lsl12"),
    690                                     GPR, GPRsp, ZR, Ty>;
    691 }
    692 
    693 defm ADDwwi : addsubimm_shifts<"ADDwi", 0b0, 0b0, "add", "cmn",
    694                               "addsubimm_operand_i32_posimm",
    695                               "addsubimm_operand_i32_negimm",
    696                               GPR32, GPR32wsp, WZR, i32>;
    697 defm ADDxxi : addsubimm_shifts<"ADDxi", 0b1, 0b0, "add", "cmn",
    698                               "addsubimm_operand_i64_posimm",
    699                               "addsubimm_operand_i64_negimm",
    700                               GPR64, GPR64xsp, XZR, i64>;
    701 defm SUBwwi : addsubimm_shifts<"SUBwi", 0b0, 0b1, "sub", "cmp",
    702                               "addsubimm_operand_i32_negimm",
    703                               "addsubimm_operand_i32_posimm",
    704                               GPR32, GPR32wsp, WZR, i32>;
    705 defm SUBxxi : addsubimm_shifts<"SUBxi", 0b1, 0b1, "sub", "cmp",
    706                               "addsubimm_operand_i64_negimm",
    707                               "addsubimm_operand_i64_posimm",
    708                               GPR64, GPR64xsp, XZR, i64>;
    709 
    710 multiclass MOVsp<RegisterClass GPRsp, RegisterClass SP, Instruction addop> {
    711   def _fromsp : InstAlias<"mov $Rd, $Rn",
    712                           (addop GPRsp:$Rd, SP:$Rn, 0),
    713                           0b1>;
    714 
    715   def _tosp : InstAlias<"mov $Rd, $Rn",
    716                         (addop SP:$Rd, GPRsp:$Rn, 0),
    717                         0b1>;
    718 }
    719 
    720 // Recall Rxsp is a RegisterClass containing *just* xsp.
    721 defm MOVxx : MOVsp<GPR64xsp, Rxsp, ADDxxi_lsl0_s>;
    722 defm MOVww : MOVsp<GPR32wsp, Rwsp, ADDwwi_lsl0_s>;
    723 
    724 //===----------------------------------------------------------------------===//
    725 // Add-subtract (shifted register) instructions
    726 //===----------------------------------------------------------------------===//
    727 // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, NEG, NEGS
    728 
    729 //===-------------------------------
    730 // 1. The "shifed register" operands. Shared with logical insts.
    731 //===-------------------------------
    732 
    733 multiclass shift_operands<string prefix, string form> {
    734   def _asmoperand_i32 : AsmOperandClass {
    735     let Name = "Shift" # form # "i32";
    736     let RenderMethod = "addShiftOperands";
    737     let PredicateMethod = "isShift<A64SE::" # form # ", false>";
    738     let DiagnosticType = "AddSubRegShift32";
    739   }
    740 
    741   // Note that the operand type is intentionally i64 because the DAGCombiner
    742   // puts these into a canonical form.
    743   def _i32 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
    744     let ParserMatchClass
    745           = !cast<AsmOperandClass>(prefix # "_asmoperand_i32");
    746     let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
    747     let DecoderMethod = "Decode32BitShiftOperand";
    748   }
    749 
    750   def _asmoperand_i64 : AsmOperandClass {
    751       let Name = "Shift" # form # "i64";
    752       let RenderMethod = "addShiftOperands";
    753       let PredicateMethod = "isShift<A64SE::" # form # ", true>";
    754       let DiagnosticType = "AddSubRegShift64";
    755   }
    756 
    757   def _i64 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
    758     let ParserMatchClass
    759           = !cast<AsmOperandClass>(prefix # "_asmoperand_i64");
    760     let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
    761   }
    762 }
    763 
    764 defm lsl_operand : shift_operands<"lsl_operand", "LSL">;
    765 defm lsr_operand : shift_operands<"lsr_operand", "LSR">;
    766 defm asr_operand : shift_operands<"asr_operand", "ASR">;
    767 
    768 // Not used for add/sub, but defined here for completeness. The "logical
    769 // (shifted register)" instructions *do* have an ROR variant.
    770 defm ror_operand : shift_operands<"ror_operand", "ROR">;
    771 
    772 //===-------------------------------
    773 // 2. The basic 3.5-operand ADD/SUB/ADDS/SUBS instructions.
    774 //===-------------------------------
    775 
    776 // N.b. the commutable parameter is just !N. It will be first against the wall
    777 // when the revolution comes.
    778 multiclass addsub_shifts<string prefix, bit sf, bit op, bit s, bit commutable,
    779                          string asmop, SDPatternOperator opfrag, ValueType ty,
    780                          RegisterClass GPR, list<Register> defs> {
    781   let isCommutable = commutable, Defs = defs in {
    782   def _lsl : A64I_addsubshift<sf, op, s, 0b00,
    783                        (outs GPR:$Rd),
    784                        (ins GPR:$Rn, GPR:$Rm,
    785                             !cast<Operand>("lsl_operand_" # ty):$Imm6),
    786                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
    787                        [(set GPR:$Rd, (opfrag ty:$Rn, (shl ty:$Rm,
    788                             !cast<Operand>("lsl_operand_" # ty):$Imm6))
    789                        )],
    790                        NoItinerary>;
    791 
    792   def _lsr : A64I_addsubshift<sf, op, s, 0b01,
    793                        (outs GPR:$Rd),
    794                        (ins GPR:$Rn, GPR:$Rm,
    795                             !cast<Operand>("lsr_operand_" # ty):$Imm6),
    796                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
    797                        [(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm,
    798                             !cast<Operand>("lsr_operand_" # ty):$Imm6))
    799                        )],
    800                        NoItinerary>;
    801 
    802   def _asr : A64I_addsubshift<sf, op, s, 0b10,
    803                        (outs GPR:$Rd),
    804                        (ins GPR:$Rn, GPR:$Rm,
    805                             !cast<Operand>("asr_operand_" # ty):$Imm6),
    806                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
    807                        [(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm,
    808                             !cast<Operand>("asr_operand_" # ty):$Imm6))
    809                        )],
    810                        NoItinerary>;
    811   }
    812 
    813   def _noshift
    814       : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
    815                  (!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
    816                                                       GPR:$Rm, 0)>;
    817 
    818   def : Pat<(opfrag ty:$Rn, ty:$Rm),
    819             (!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
    820 }
    821 
    822 multiclass addsub_sizes<string prefix, bit op, bit s, bit commutable,
    823                          string asmop, SDPatternOperator opfrag,
    824                          list<Register> defs> {
    825   defm xxx : addsub_shifts<prefix # "xxx", 0b1, op, s,
    826                            commutable, asmop, opfrag, i64, GPR64, defs>;
    827   defm www : addsub_shifts<prefix # "www", 0b0, op, s,
    828                            commutable, asmop, opfrag, i32, GPR32, defs>;
    829 }
    830 
    831 
    832 defm ADD : addsub_sizes<"ADD", 0b0, 0b0, 0b1, "add", add, []>;
    833 defm SUB : addsub_sizes<"SUB", 0b1, 0b0, 0b0, "sub", sub, []>;
    834 
    835 defm ADDS : addsub_sizes<"ADDS", 0b0, 0b1, 0b1, "adds", addc, [NZCV]>;
    836 defm SUBS : addsub_sizes<"SUBS", 0b1, 0b1, 0b0, "subs", subc, [NZCV]>;
    837 
    838 //===-------------------------------
    839 // 1. The NEG/NEGS aliases
    840 //===-------------------------------
    841 
    842 multiclass neg_alias<Instruction INST, RegisterClass GPR, Register ZR,
    843                      ValueType ty, Operand shift_operand, SDNode shiftop> {
    844    def : InstAlias<"neg $Rd, $Rm, $Imm6",
    845                    (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
    846 
    847    def : Pat<(sub 0, (shiftop ty:$Rm, shift_operand:$Imm6)),
    848              (INST ZR, $Rm, shift_operand:$Imm6)>;
    849 }
    850 
    851 defm : neg_alias<SUBwww_lsl, GPR32, WZR, i32, lsl_operand_i32, shl>;
    852 defm : neg_alias<SUBwww_lsr, GPR32, WZR, i32, lsr_operand_i32, srl>;
    853 defm : neg_alias<SUBwww_asr, GPR32, WZR, i32, asr_operand_i32, sra>;
    854 def : InstAlias<"neg $Rd, $Rm", (SUBwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
    855 def : Pat<(sub 0, i32:$Rm), (SUBwww_lsl WZR, $Rm, 0)>;
    856 
    857 defm : neg_alias<SUBxxx_lsl, GPR64, XZR, i64, lsl_operand_i64, shl>;
    858 defm : neg_alias<SUBxxx_lsr, GPR64, XZR, i64, lsr_operand_i64, srl>;
    859 defm : neg_alias<SUBxxx_asr, GPR64, XZR, i64, asr_operand_i64, sra>;
    860 def : InstAlias<"neg $Rd, $Rm", (SUBxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
    861 def : Pat<(sub 0, i64:$Rm), (SUBxxx_lsl XZR, $Rm, 0)>;
    862 
    863 // NEGS doesn't get any patterns yet: defining multiple outputs means C++ has to
    864 // be involved.
    865 class negs_alias<Instruction INST, RegisterClass GPR,
    866                  Register ZR, Operand shift_operand, SDNode shiftop>
    867   : InstAlias<"negs $Rd, $Rm, $Imm6",
    868               (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
    869 
    870 def : negs_alias<SUBSwww_lsl, GPR32, WZR, lsl_operand_i32, shl>;
    871 def : negs_alias<SUBSwww_lsr, GPR32, WZR, lsr_operand_i32, srl>;
    872 def : negs_alias<SUBSwww_asr, GPR32, WZR, asr_operand_i32, sra>;
    873 def : InstAlias<"negs $Rd, $Rm", (SUBSwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
    874 
    875 def : negs_alias<SUBSxxx_lsl, GPR64, XZR, lsl_operand_i64, shl>;
    876 def : negs_alias<SUBSxxx_lsr, GPR64, XZR, lsr_operand_i64, srl>;
    877 def : negs_alias<SUBSxxx_asr, GPR64, XZR, asr_operand_i64, sra>;
    878 def : InstAlias<"negs $Rd, $Rm", (SUBSxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
    879 
    880 //===-------------------------------
    881 // 1. The CMP/CMN aliases
    882 //===-------------------------------
    883 
    884 multiclass cmp_shifts<string prefix, bit sf, bit op, bit commutable,
    885                       string asmop, SDPatternOperator opfrag, ValueType ty,
    886                       RegisterClass GPR> {
    887   let isCommutable = commutable, Rd = 0b11111, Defs = [NZCV] in {
    888   def _lsl : A64I_addsubshift<sf, op, 0b1, 0b00,
    889                        (outs),
    890                        (ins GPR:$Rn, GPR:$Rm,
    891                             !cast<Operand>("lsl_operand_" # ty):$Imm6),
    892                        !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
    893                        [(set NZCV, (opfrag ty:$Rn, (shl ty:$Rm,
    894                             !cast<Operand>("lsl_operand_" # ty):$Imm6))
    895                        )],
    896                        NoItinerary>;
    897 
    898   def _lsr : A64I_addsubshift<sf, op, 0b1, 0b01,
    899                        (outs),
    900                        (ins GPR:$Rn, GPR:$Rm,
    901                             !cast<Operand>("lsr_operand_" # ty):$Imm6),
    902                        !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
    903                        [(set NZCV, (opfrag ty:$Rn, (srl ty:$Rm,
    904                             !cast<Operand>("lsr_operand_" # ty):$Imm6))
    905                        )],
    906                        NoItinerary>;
    907 
    908   def _asr : A64I_addsubshift<sf, op, 0b1, 0b10,
    909                        (outs),
    910                        (ins GPR:$Rn, GPR:$Rm,
    911                             !cast<Operand>("asr_operand_" # ty):$Imm6),
    912                        !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
    913                        [(set NZCV, (opfrag ty:$Rn, (sra ty:$Rm,
    914                             !cast<Operand>("asr_operand_" # ty):$Imm6))
    915                        )],
    916                        NoItinerary>;
    917   }
    918 
    919   def _noshift
    920       : InstAlias<!strconcat(asmop, " $Rn, $Rm"),
    921                  (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
    922 
    923   def : Pat<(opfrag ty:$Rn, ty:$Rm),
    924             (!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
    925 }
    926 
    927 defm CMPww : cmp_shifts<"CMPww", 0b0, 0b1, 0b0, "cmp", A64cmp, i32, GPR32>;
    928 defm CMPxx : cmp_shifts<"CMPxx", 0b1, 0b1, 0b0, "cmp", A64cmp, i64, GPR64>;
    929 
    930 defm CMNww : cmp_shifts<"CMNww", 0b0, 0b0, 0b1, "cmn", A64cmn, i32, GPR32>;
    931 defm CMNxx : cmp_shifts<"CMNxx", 0b1, 0b0, 0b1, "cmn", A64cmn, i64, GPR64>;
    932 
    933 //===----------------------------------------------------------------------===//
    934 // Add-subtract (with carry) instructions
    935 //===----------------------------------------------------------------------===//
    936 // Contains: ADC, ADCS, SBC, SBCS + aliases NGC, NGCS
    937 
    938 multiclass A64I_addsubcarrySizes<bit op, bit s, string asmop> {
    939   let Uses = [NZCV] in {
    940     def www : A64I_addsubcarry<0b0, op, s, 0b000000,
    941                                (outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm),
    942                                !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
    943                                [], NoItinerary>;
    944 
    945     def xxx : A64I_addsubcarry<0b1, op, s, 0b000000,
    946                                (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm),
    947                                !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
    948                                [], NoItinerary>;
    949   }
    950 }
    951 
    952 let isCommutable = 1 in {
    953   defm ADC : A64I_addsubcarrySizes<0b0, 0b0, "adc">;
    954 }
    955 
    956 defm SBC : A64I_addsubcarrySizes<0b1, 0b0, "sbc">;
    957 
    958 let Defs = [NZCV] in {
    959   let isCommutable = 1 in {
    960     defm ADCS : A64I_addsubcarrySizes<0b0, 0b1, "adcs">;
    961   }
    962 
    963   defm SBCS : A64I_addsubcarrySizes<0b1, 0b1, "sbcs">;
    964 }
    965 
    966 def : InstAlias<"ngc $Rd, $Rm", (SBCwww GPR32:$Rd, WZR, GPR32:$Rm)>;
    967 def : InstAlias<"ngc $Rd, $Rm", (SBCxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
    968 def : InstAlias<"ngcs $Rd, $Rm", (SBCSwww GPR32:$Rd, WZR, GPR32:$Rm)>;
    969 def : InstAlias<"ngcs $Rd, $Rm", (SBCSxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
    970 
    971 // Note that adde and sube can form a chain longer than two (e.g. for 256-bit
    972 // addition). So the flag-setting instructions are appropriate.
    973 def : Pat<(adde i32:$Rn, i32:$Rm), (ADCSwww $Rn, $Rm)>;
    974 def : Pat<(adde i64:$Rn, i64:$Rm), (ADCSxxx $Rn, $Rm)>;
    975 def : Pat<(sube i32:$Rn, i32:$Rm), (SBCSwww $Rn, $Rm)>;
    976 def : Pat<(sube i64:$Rn, i64:$Rm), (SBCSxxx $Rn, $Rm)>;
    977 
    978 //===----------------------------------------------------------------------===//
    979 // Bitfield
    980 //===----------------------------------------------------------------------===//
    981 // Contains: SBFM, BFM, UBFM, [SU]XT[BHW], ASR, LSR, LSL, SBFI[ZX], BFI, BFXIL,
    982 //     UBFIZ, UBFX
    983 
    984 // Because of the rather complicated nearly-overlapping aliases, the decoding of
    985 // this range of instructions is handled manually. The architectural
    986 // instructions are BFM, SBFM and UBFM but a disassembler should never produce
    987 // these.
    988 //
    989 // In the end, the best option was to use BFM instructions for decoding under
    990 // almost all circumstances, but to create aliasing *Instructions* for each of
    991 // the canonical forms and specify a completely custom decoder which would
    992 // substitute the correct MCInst as needed.
    993 //
    994 // This also simplifies instruction selection, parsing etc because the MCInsts
    995 // have a shape that's closer to their use in code.
    996 
    997 //===-------------------------------
    998 // 1. The architectural BFM instructions
    999 //===-------------------------------
   1000 
   1001 def uimm5_asmoperand : AsmOperandClass {
   1002   let Name = "UImm5";
   1003   let PredicateMethod = "isUImm<5>";
   1004   let RenderMethod = "addImmOperands";
   1005   let DiagnosticType = "UImm5";
   1006 }
   1007 
   1008 def uimm6_asmoperand : AsmOperandClass {
   1009   let Name = "UImm6";
   1010   let PredicateMethod = "isUImm<6>";
   1011   let RenderMethod = "addImmOperands";
   1012   let DiagnosticType = "UImm6";
   1013 }
   1014 
   1015 def bitfield32_imm : Operand<i64>,
   1016                      ImmLeaf<i64, [{ return Imm >= 0 && Imm < 32; }]> {
   1017   let ParserMatchClass = uimm5_asmoperand;
   1018 
   1019   let DecoderMethod = "DecodeBitfield32ImmOperand";
   1020 }
   1021 
   1022 
   1023 def bitfield64_imm : Operand<i64>,
   1024                      ImmLeaf<i64, [{ return Imm >= 0 && Imm < 64; }]> {
   1025   let ParserMatchClass = uimm6_asmoperand;
   1026 
   1027   // Default decoder works in 64-bit case: the 6-bit field can take any value.
   1028 }
   1029 
   1030 multiclass A64I_bitfieldSizes<bits<2> opc, string asmop> {
   1031   def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
   1032                     (ins GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
   1033                     !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1034                     [], NoItinerary> {
   1035     let DecoderMethod = "DecodeBitfieldInstruction";
   1036   }
   1037 
   1038   def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
   1039                     (ins GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
   1040                     !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1041                     [], NoItinerary> {
   1042     let DecoderMethod = "DecodeBitfieldInstruction";
   1043   }
   1044 }
   1045 
   1046 defm SBFM : A64I_bitfieldSizes<0b00, "sbfm">;
   1047 defm UBFM : A64I_bitfieldSizes<0b10, "ubfm">;
   1048 
   1049 // BFM instructions modify the destination register rather than defining it
   1050 // completely.
   1051 def BFMwwii :
   1052   A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
   1053         (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
   1054         "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1055   let DecoderMethod = "DecodeBitfieldInstruction";
   1056   let Constraints = "$src = $Rd";
   1057 }
   1058 
   1059 def BFMxxii :
   1060   A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
   1061         (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
   1062         "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1063   let DecoderMethod = "DecodeBitfieldInstruction";
   1064   let Constraints = "$src = $Rd";
   1065 }
   1066 
   1067 
   1068 //===-------------------------------
   1069 // 2. Extend aliases to 64-bit dest
   1070 //===-------------------------------
   1071 
   1072 // Unfortunately the extensions that end up as 64-bits cannot be handled by an
   1073 // instruction alias: their syntax is (for example) "SXTB x0, w0", which needs
   1074 // to be mapped to "SBFM x0, x0, #0, 7" (changing the class of Rn). InstAlias is
   1075 // not capable of such a map as far as I'm aware
   1076 
   1077 // Note that these instructions are strictly more specific than the
   1078 // BFM ones (in ImmR) so they can handle their own decoding.
   1079 class A64I_bf_ext<bit sf, bits<2> opc, RegisterClass GPRDest, ValueType dty,
   1080                     string asmop, bits<6> imms, dag pattern>
   1081   : A64I_bitfield<sf, opc, sf,
   1082                   (outs GPRDest:$Rd), (ins GPR32:$Rn),
   1083                   !strconcat(asmop, "\t$Rd, $Rn"),
   1084                   [(set dty:$Rd, pattern)], NoItinerary> {
   1085   let ImmR = 0b000000;
   1086   let ImmS = imms;
   1087 }
   1088 
   1089 // Signed extensions
   1090 def SXTBxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtb", 7,
   1091                          (sext_inreg (anyext i32:$Rn), i8)>;
   1092 def SXTBww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxtb", 7,
   1093                          (sext_inreg i32:$Rn, i8)>;
   1094 def SXTHxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxth", 15,
   1095                          (sext_inreg (anyext i32:$Rn), i16)>;
   1096 def SXTHww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxth", 15,
   1097                          (sext_inreg i32:$Rn, i16)>;
   1098 def SXTWxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtw", 31, (sext i32:$Rn)>;
   1099 
   1100 // Unsigned extensions
   1101 def UXTBww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxtb", 7,
   1102                          (and i32:$Rn, 255)>;
   1103 def UXTHww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxth", 15,
   1104                          (and i32:$Rn, 65535)>;
   1105 
   1106 // The 64-bit unsigned variants are not strictly architectural but recommended
   1107 // for consistency.
   1108 let isAsmParserOnly = 1 in {
   1109   def UXTBxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxtb", 7,
   1110                            (and (anyext i32:$Rn), 255)>;
   1111   def UXTHxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxth", 15,
   1112                            (and (anyext i32:$Rn), 65535)>;
   1113 }
   1114 
   1115 // Extra patterns for when the source register is actually 64-bits
   1116 // too. There's no architectural difference here, it's just LLVM
   1117 // shinanigans. There's no need for equivalent zero-extension patterns
   1118 // because they'll already be caught by logical (immediate) matching.
   1119 def : Pat<(sext_inreg i64:$Rn, i8),
   1120           (SXTBxw (EXTRACT_SUBREG $Rn, sub_32))>;
   1121 def : Pat<(sext_inreg i64:$Rn, i16),
   1122           (SXTHxw (EXTRACT_SUBREG $Rn, sub_32))>;
   1123 def : Pat<(sext_inreg i64:$Rn, i32),
   1124           (SXTWxw (EXTRACT_SUBREG $Rn, sub_32))>;
   1125 
   1126 
   1127 //===-------------------------------
   1128 // 3. Aliases for ASR and LSR (the simple shifts)
   1129 //===-------------------------------
   1130 
   1131 // These also handle their own decoding because ImmS being set makes
   1132 // them take precedence over BFM.
   1133 multiclass A64I_shift<bits<2> opc, string asmop, SDNode opnode> {
   1134   def wwi : A64I_bitfield<0b0, opc, 0b0,
   1135                     (outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR),
   1136                     !strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
   1137                     [(set i32:$Rd, (opnode i32:$Rn, bitfield32_imm:$ImmR))],
   1138                     NoItinerary> {
   1139     let ImmS = 31;
   1140   }
   1141 
   1142   def xxi : A64I_bitfield<0b1, opc, 0b1,
   1143                     (outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR),
   1144                     !strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
   1145                     [(set i64:$Rd, (opnode i64:$Rn, bitfield64_imm:$ImmR))],
   1146                     NoItinerary> {
   1147     let ImmS = 63;
   1148   }
   1149 
   1150 }
   1151 
   1152 defm ASR : A64I_shift<0b00, "asr", sra>;
   1153 defm LSR : A64I_shift<0b10, "lsr", srl>;
   1154 
   1155 //===-------------------------------
   1156 // 4. Aliases for LSL
   1157 //===-------------------------------
   1158 
   1159 // Unfortunately LSL and subsequent aliases are much more complicated. We need
   1160 // to be able to say certain output instruction fields depend in a complex
   1161 // manner on combinations of input assembly fields).
   1162 //
   1163 // MIOperandInfo *might* have been able to do it, but at the cost of
   1164 // significantly more C++ code.
   1165 
   1166 // N.b. contrary to usual practice these operands store the shift rather than
   1167 // the machine bits in an MCInst. The complexity overhead of consistency
   1168 // outweighed the benefits in this case (custom asmparser, printer and selection
   1169 // vs custom encoder).
   1170 def bitfield32_lsl_imm : Operand<i64>,
   1171                          ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
   1172   let ParserMatchClass = uimm5_asmoperand;
   1173   let EncoderMethod = "getBitfield32LSLOpValue";
   1174 }
   1175 
   1176 def bitfield64_lsl_imm : Operand<i64>,
   1177                          ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
   1178   let ParserMatchClass = uimm6_asmoperand;
   1179   let EncoderMethod = "getBitfield64LSLOpValue";
   1180 }
   1181 
   1182 class A64I_bitfield_lsl<bit sf, RegisterClass GPR, ValueType ty,
   1183                         Operand operand>
   1184   : A64I_bitfield<sf, 0b10, sf, (outs GPR:$Rd), (ins GPR:$Rn, operand:$FullImm),
   1185                   "lsl\t$Rd, $Rn, $FullImm",
   1186                   [(set ty:$Rd, (shl ty:$Rn, operand:$FullImm))],
   1187                   NoItinerary> {
   1188   bits<12> FullImm;
   1189   let ImmR = FullImm{5-0};
   1190   let ImmS = FullImm{11-6};
   1191 
   1192   // No disassembler allowed because it would overlap with BFM which does the
   1193   // actual work.
   1194   let isAsmParserOnly = 1;
   1195 }
   1196 
   1197 def LSLwwi : A64I_bitfield_lsl<0b0, GPR32, i32, bitfield32_lsl_imm>;
   1198 def LSLxxi : A64I_bitfield_lsl<0b1, GPR64, i64, bitfield64_lsl_imm>;
   1199 
   1200 //===-------------------------------
   1201 // 5. Aliases for bitfield extract instructions
   1202 //===-------------------------------
   1203 
   1204 def bfx32_width_asmoperand : AsmOperandClass {
   1205   let Name = "BFX32Width";
   1206   let PredicateMethod = "isBitfieldWidth<32>";
   1207   let RenderMethod = "addBFXWidthOperands";
   1208   let DiagnosticType = "Width32";
   1209 }
   1210 
   1211 def bfx32_width : Operand<i64>, ImmLeaf<i64, [{ return true; }]> {
   1212   let PrintMethod = "printBFXWidthOperand";
   1213   let ParserMatchClass = bfx32_width_asmoperand;
   1214 }
   1215 
   1216 def bfx64_width_asmoperand : AsmOperandClass {
   1217   let Name = "BFX64Width";
   1218   let PredicateMethod = "isBitfieldWidth<64>";
   1219   let RenderMethod = "addBFXWidthOperands";
   1220   let DiagnosticType = "Width64";
   1221 }
   1222 
   1223 def bfx64_width : Operand<i64> {
   1224   let PrintMethod = "printBFXWidthOperand";
   1225   let ParserMatchClass = bfx64_width_asmoperand;
   1226 }
   1227 
   1228 
   1229 multiclass A64I_bitfield_extract<bits<2> opc, string asmop, SDNode op> {
   1230   def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
   1231                        (ins GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
   1232                        !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1233                        [(set i32:$Rd, (op i32:$Rn, imm:$ImmR, imm:$ImmS))],
   1234                        NoItinerary> {
   1235     // As above, no disassembler allowed.
   1236     let isAsmParserOnly = 1;
   1237   }
   1238 
   1239   def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
   1240                        (ins GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
   1241                        !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1242                        [(set i64:$Rd, (op i64:$Rn, imm:$ImmR, imm:$ImmS))],
   1243                        NoItinerary> {
   1244     // As above, no disassembler allowed.
   1245     let isAsmParserOnly = 1;
   1246   }
   1247 }
   1248 
   1249 defm SBFX :  A64I_bitfield_extract<0b00, "sbfx", A64Sbfx>;
   1250 defm UBFX :  A64I_bitfield_extract<0b10, "ubfx", A64Ubfx>;
   1251 
   1252 // Again, variants based on BFM modify Rd so need it as an input too.
   1253 def BFXILwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
   1254            (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
   1255            "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1256   // As above, no disassembler allowed.
   1257   let isAsmParserOnly = 1;
   1258   let Constraints = "$src = $Rd";
   1259 }
   1260 
   1261 def BFXILxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
   1262            (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
   1263            "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1264   // As above, no disassembler allowed.
   1265   let isAsmParserOnly = 1;
   1266   let Constraints = "$src = $Rd";
   1267 }
   1268 
   1269 // SBFX instructions can do a 1-instruction sign-extension of boolean values.
   1270 def : Pat<(sext_inreg i64:$Rn, i1), (SBFXxxii $Rn, 0, 0)>;
   1271 def : Pat<(sext_inreg i32:$Rn, i1), (SBFXwwii $Rn, 0, 0)>;
   1272 def : Pat<(i64 (sext_inreg (anyext i32:$Rn), i1)),
   1273           (SBFXxxii (SUBREG_TO_REG (i64 0), $Rn, sub_32), 0, 0)>;
   1274 
   1275 // UBFX makes sense as an implementation of a 64-bit zero-extension too. Could
   1276 // use either 64-bit or 32-bit variant, but 32-bit might be more efficient.
   1277 def : Pat<(zext i32:$Rn), (SUBREG_TO_REG (i64 0), (UBFXwwii $Rn, 0, 31),
   1278                                          sub_32)>;
   1279 
   1280 //===-------------------------------
   1281 // 6. Aliases for bitfield insert instructions
   1282 //===-------------------------------
   1283 
   1284 def bfi32_lsb_asmoperand : AsmOperandClass {
   1285   let Name = "BFI32LSB";
   1286   let PredicateMethod = "isUImm<5>";
   1287   let RenderMethod = "addBFILSBOperands<32>";
   1288   let DiagnosticType = "UImm5";
   1289 }
   1290 
   1291 def bfi32_lsb : Operand<i64>,
   1292                 ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
   1293   let PrintMethod = "printBFILSBOperand<32>";
   1294   let ParserMatchClass = bfi32_lsb_asmoperand;
   1295 }
   1296 
   1297 def bfi64_lsb_asmoperand : AsmOperandClass {
   1298   let Name = "BFI64LSB";
   1299   let PredicateMethod = "isUImm<6>";
   1300   let RenderMethod = "addBFILSBOperands<64>";
   1301   let DiagnosticType = "UImm6";
   1302 }
   1303 
   1304 def bfi64_lsb : Operand<i64>,
   1305                 ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
   1306   let PrintMethod = "printBFILSBOperand<64>";
   1307   let ParserMatchClass = bfi64_lsb_asmoperand;
   1308 }
   1309 
   1310 // Width verification is performed during conversion so width operand can be
   1311 // shared between 32/64-bit cases. Still needed for the print method though
   1312 // because ImmR encodes "width - 1".
   1313 def bfi32_width_asmoperand : AsmOperandClass {
   1314   let Name = "BFI32Width";
   1315   let PredicateMethod = "isBitfieldWidth<32>";
   1316   let RenderMethod = "addBFIWidthOperands";
   1317   let DiagnosticType = "Width32";
   1318 }
   1319 
   1320 def bfi32_width : Operand<i64>,
   1321                   ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 32; }]> {
   1322   let PrintMethod = "printBFIWidthOperand";
   1323   let ParserMatchClass = bfi32_width_asmoperand;
   1324 }
   1325 
   1326 def bfi64_width_asmoperand : AsmOperandClass {
   1327   let Name = "BFI64Width";
   1328   let PredicateMethod = "isBitfieldWidth<64>";
   1329   let RenderMethod = "addBFIWidthOperands";
   1330   let DiagnosticType = "Width64";
   1331 }
   1332 
   1333 def bfi64_width : Operand<i64>,
   1334                   ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 64; }]> {
   1335   let PrintMethod = "printBFIWidthOperand";
   1336   let ParserMatchClass = bfi64_width_asmoperand;
   1337 }
   1338 
   1339 multiclass A64I_bitfield_insert<bits<2> opc, string asmop> {
   1340   def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
   1341                            (ins GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
   1342                            !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1343                            [], NoItinerary> {
   1344     // As above, no disassembler allowed.
   1345     let isAsmParserOnly = 1;
   1346   }
   1347 
   1348   def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
   1349                            (ins GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
   1350                            !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1351                            [], NoItinerary> {
   1352     // As above, no disassembler allowed.
   1353     let isAsmParserOnly = 1;
   1354   }
   1355 }
   1356 
   1357 defm SBFIZ :  A64I_bitfield_insert<0b00, "sbfiz">;
   1358 defm UBFIZ :  A64I_bitfield_insert<0b10, "ubfiz">;
   1359 
   1360 
   1361 def BFIwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
   1362                 (ins GPR32:$src, GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
   1363                 "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1364   // As above, no disassembler allowed.
   1365   let isAsmParserOnly = 1;
   1366   let Constraints = "$src = $Rd";
   1367 }
   1368 
   1369 def BFIxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
   1370                 (ins GPR64:$src, GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
   1371                 "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1372   // As above, no disassembler allowed.
   1373   let isAsmParserOnly = 1;
   1374   let Constraints = "$src = $Rd";
   1375 }
   1376 
   1377 //===----------------------------------------------------------------------===//
   1378 // Compare and branch (immediate)
   1379 //===----------------------------------------------------------------------===//
   1380 // Contains: CBZ, CBNZ
   1381 
   1382 class label_asmoperand<int width, int scale> : AsmOperandClass {
   1383   let Name = "Label" # width # "_" # scale;
   1384   let PredicateMethod = "isLabel<" # width # "," # scale # ">";
   1385   let RenderMethod = "addLabelOperands<" # width # ", " # scale # ">";
   1386   let DiagnosticType = "Label";
   1387 }
   1388 
   1389 def label_wid19_scal4_asmoperand : label_asmoperand<19, 4>;
   1390 
   1391 // All conditional immediate branches are the same really: 19 signed bits scaled
   1392 // by the instruction-size (4).
   1393 def bcc_target : Operand<OtherVT> {
   1394   // This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
   1395   let ParserMatchClass = label_wid19_scal4_asmoperand;
   1396   let PrintMethod = "printLabelOperand<19, 4>";
   1397   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_condbr>";
   1398   let OperandType = "OPERAND_PCREL";
   1399 }
   1400 
   1401 multiclass cmpbr_sizes<bit op, string asmop, ImmLeaf SETOP> {
   1402   let isBranch = 1, isTerminator = 1 in {
   1403   def x : A64I_cmpbr<0b1, op,
   1404                      (outs),
   1405                      (ins GPR64:$Rt, bcc_target:$Label),
   1406                      !strconcat(asmop,"\t$Rt, $Label"),
   1407                      [(A64br_cc (A64cmp i64:$Rt, 0), SETOP, bb:$Label)],
   1408                      NoItinerary>;
   1409 
   1410   def w : A64I_cmpbr<0b0, op,
   1411                      (outs),
   1412                      (ins GPR32:$Rt, bcc_target:$Label),
   1413                      !strconcat(asmop,"\t$Rt, $Label"),
   1414                      [(A64br_cc (A64cmp i32:$Rt, 0), SETOP, bb:$Label)],
   1415                      NoItinerary>;
   1416   }
   1417 }
   1418 
   1419 defm CBZ  : cmpbr_sizes<0b0, "cbz",  ImmLeaf<i32, [{
   1420   return Imm == A64CC::EQ;
   1421 }]> >;
   1422 defm CBNZ : cmpbr_sizes<0b1, "cbnz", ImmLeaf<i32, [{
   1423   return Imm == A64CC::NE;
   1424 }]> >;
   1425 
   1426 //===----------------------------------------------------------------------===//
   1427 // Conditional branch (immediate) instructions
   1428 //===----------------------------------------------------------------------===//
   1429 // Contains: B.cc
   1430 
   1431 def cond_code_asmoperand : AsmOperandClass {
   1432   let Name = "CondCode";
   1433   let DiagnosticType = "CondCode";
   1434 }
   1435 
   1436 def cond_code : Operand<i32>, ImmLeaf<i32, [{
   1437   return Imm >= 0 && Imm <= 15;
   1438 }]> {
   1439   let PrintMethod = "printCondCodeOperand";
   1440   let ParserMatchClass = cond_code_asmoperand;
   1441 }
   1442 
   1443 def Bcc : A64I_condbr<0b0, 0b0, (outs),
   1444                 (ins cond_code:$Cond, bcc_target:$Label),
   1445                 "b.$Cond $Label", [(A64br_cc NZCV, (i32 imm:$Cond), bb:$Label)],
   1446                 NoItinerary> {
   1447   let Uses = [NZCV];
   1448   let isBranch = 1;
   1449   let isTerminator = 1;
   1450 }
   1451 
   1452 //===----------------------------------------------------------------------===//
   1453 // Conditional compare (immediate) instructions
   1454 //===----------------------------------------------------------------------===//
   1455 // Contains: CCMN, CCMP
   1456 
   1457 def uimm4_asmoperand : AsmOperandClass {
   1458   let Name = "UImm4";
   1459   let PredicateMethod = "isUImm<4>";
   1460   let RenderMethod = "addImmOperands";
   1461   let DiagnosticType = "UImm4";
   1462 }
   1463 
   1464 def uimm4 : Operand<i32> {
   1465   let ParserMatchClass = uimm4_asmoperand;
   1466 }
   1467 
   1468 def uimm5 : Operand<i32> {
   1469   let ParserMatchClass = uimm5_asmoperand;
   1470 }
   1471 
   1472 // The only difference between this operand and the one for instructions like
   1473 // B.cc is that it's parsed manually. The other get parsed implicitly as part of
   1474 // the mnemonic handling.
   1475 def cond_code_op_asmoperand : AsmOperandClass {
   1476   let Name = "CondCodeOp";
   1477   let RenderMethod = "addCondCodeOperands";
   1478   let PredicateMethod = "isCondCode";
   1479   let ParserMethod = "ParseCondCodeOperand";
   1480   let DiagnosticType = "CondCode";
   1481 }
   1482 
   1483 def cond_code_op : Operand<i32> {
   1484   let PrintMethod = "printCondCodeOperand";
   1485   let ParserMatchClass = cond_code_op_asmoperand;
   1486 }
   1487 
   1488 class A64I_condcmpimmImpl<bit sf, bit op, RegisterClass GPR, string asmop>
   1489   : A64I_condcmpimm<sf, op, 0b0, 0b0, 0b1, (outs),
   1490                 (ins GPR:$Rn, uimm5:$UImm5, uimm4:$NZCVImm, cond_code_op:$Cond),
   1491                 !strconcat(asmop, "\t$Rn, $UImm5, $NZCVImm, $Cond"),
   1492                 [], NoItinerary> {
   1493   let Defs = [NZCV];
   1494 }
   1495 
   1496 def CCMNwi : A64I_condcmpimmImpl<0b0, 0b0, GPR32, "ccmn">;
   1497 def CCMNxi : A64I_condcmpimmImpl<0b1, 0b0, GPR64, "ccmn">;
   1498 def CCMPwi : A64I_condcmpimmImpl<0b0, 0b1, GPR32, "ccmp">;
   1499 def CCMPxi : A64I_condcmpimmImpl<0b1, 0b1, GPR64, "ccmp">;
   1500 
   1501 //===----------------------------------------------------------------------===//
   1502 // Conditional compare (register) instructions
   1503 //===----------------------------------------------------------------------===//
   1504 // Contains: CCMN, CCMP
   1505 
   1506 class A64I_condcmpregImpl<bit sf, bit op, RegisterClass GPR, string asmop>
   1507   : A64I_condcmpreg<sf, op, 0b0, 0b0, 0b1,
   1508                     (outs),
   1509                     (ins GPR:$Rn, GPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
   1510                     !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
   1511                     [], NoItinerary> {
   1512   let Defs = [NZCV];
   1513 }
   1514 
   1515 def CCMNww : A64I_condcmpregImpl<0b0, 0b0, GPR32, "ccmn">;
   1516 def CCMNxx : A64I_condcmpregImpl<0b1, 0b0, GPR64, "ccmn">;
   1517 def CCMPww : A64I_condcmpregImpl<0b0, 0b1, GPR32, "ccmp">;
   1518 def CCMPxx : A64I_condcmpregImpl<0b1, 0b1, GPR64, "ccmp">;
   1519 
   1520 //===----------------------------------------------------------------------===//
   1521 // Conditional select instructions
   1522 //===----------------------------------------------------------------------===//
   1523 // Contains: CSEL, CSINC, CSINV, CSNEG + aliases CSET, CSETM, CINC, CINV, CNEG
   1524 
   1525 // Condition code which is encoded as the inversion (semantically rather than
   1526 // bitwise) in the instruction.
   1527 def inv_cond_code_op_asmoperand : AsmOperandClass {
   1528   let Name = "InvCondCodeOp";
   1529   let RenderMethod = "addInvCondCodeOperands";
   1530   let PredicateMethod = "isCondCode";
   1531   let ParserMethod = "ParseCondCodeOperand";
   1532   let DiagnosticType = "CondCode";
   1533 }
   1534 
   1535 def inv_cond_code_op : Operand<i32> {
   1536   let ParserMatchClass = inv_cond_code_op_asmoperand;
   1537 }
   1538 
   1539 // Having a separate operand for the selectable use-case is debatable, but gives
   1540 // consistency with cond_code.
   1541 def inv_cond_XFORM : SDNodeXForm<imm, [{
   1542   A64CC::CondCodes CC = static_cast<A64CC::CondCodes>(N->getZExtValue());
   1543   return CurDAG->getTargetConstant(A64InvertCondCode(CC), MVT::i32);
   1544 }]>;
   1545 
   1546 def inv_cond_code
   1547   : ImmLeaf<i32, [{ return Imm >= 0 && Imm <= 15; }], inv_cond_XFORM>;
   1548 
   1549 
   1550 multiclass A64I_condselSizes<bit op, bits<2> op2, string asmop,
   1551                              SDPatternOperator select> {
   1552   let Uses = [NZCV] in {
   1553     def wwwc : A64I_condsel<0b0, op, 0b0, op2,
   1554                             (outs GPR32:$Rd),
   1555                             (ins GPR32:$Rn, GPR32:$Rm, cond_code_op:$Cond),
   1556                             !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
   1557                             [(set i32:$Rd, (select i32:$Rn, i32:$Rm))],
   1558                             NoItinerary>;
   1559 
   1560 
   1561     def xxxc : A64I_condsel<0b1, op, 0b0, op2,
   1562                             (outs GPR64:$Rd),
   1563                             (ins GPR64:$Rn, GPR64:$Rm, cond_code_op:$Cond),
   1564                             !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
   1565                             [(set i64:$Rd, (select i64:$Rn, i64:$Rm))],
   1566                             NoItinerary>;
   1567   }
   1568 }
   1569 
   1570 def simple_select
   1571   : PatFrag<(ops node:$lhs, node:$rhs),
   1572             (A64select_cc NZCV, node:$lhs, node:$rhs, (i32 imm:$Cond))>;
   1573 
   1574 class complex_select<SDPatternOperator opnode>
   1575   : PatFrag<(ops node:$lhs, node:$rhs),
   1576         (A64select_cc NZCV, node:$lhs, (opnode node:$rhs), (i32 imm:$Cond))>;
   1577 
   1578 
   1579 defm CSEL : A64I_condselSizes<0b0, 0b00, "csel", simple_select>;
   1580 defm CSINC : A64I_condselSizes<0b0, 0b01, "csinc",
   1581                                complex_select<PatFrag<(ops node:$val),
   1582                                                       (add node:$val, 1)>>>;
   1583 defm CSINV : A64I_condselSizes<0b1, 0b00, "csinv", complex_select<not>>;
   1584 defm CSNEG : A64I_condselSizes<0b1, 0b01, "csneg", complex_select<ineg>>;
   1585 
   1586 // Now the instruction aliases, which fit nicely into LLVM's model:
   1587 
   1588 def : InstAlias<"cset $Rd, $Cond",
   1589                 (CSINCwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
   1590 def : InstAlias<"cset $Rd, $Cond",
   1591                 (CSINCxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
   1592 def : InstAlias<"csetm $Rd, $Cond",
   1593                 (CSINVwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
   1594 def : InstAlias<"csetm $Rd, $Cond",
   1595                 (CSINVxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
   1596 def : InstAlias<"cinc $Rd, $Rn, $Cond",
   1597            (CSINCwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
   1598 def : InstAlias<"cinc $Rd, $Rn, $Cond",
   1599            (CSINCxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
   1600 def : InstAlias<"cinv $Rd, $Rn, $Cond",
   1601            (CSINVwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
   1602 def : InstAlias<"cinv $Rd, $Rn, $Cond",
   1603            (CSINVxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
   1604 def : InstAlias<"cneg $Rd, $Rn, $Cond",
   1605            (CSNEGwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
   1606 def : InstAlias<"cneg $Rd, $Rn, $Cond",
   1607            (CSNEGxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
   1608 
   1609 // Finally some helper patterns.
   1610 
   1611 // For CSET (a.k.a. zero-extension of icmp)
   1612 def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
   1613           (CSINCwwwc WZR, WZR, cond_code:$Cond)>;
   1614 def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
   1615           (CSINCwwwc WZR, WZR, inv_cond_code:$Cond)>;
   1616 
   1617 def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
   1618           (CSINCxxxc XZR, XZR, cond_code:$Cond)>;
   1619 def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
   1620           (CSINCxxxc XZR, XZR, inv_cond_code:$Cond)>;
   1621 
   1622 // For CSETM (a.k.a. sign-extension of icmp)
   1623 def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
   1624           (CSINVwwwc WZR, WZR, cond_code:$Cond)>;
   1625 def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
   1626           (CSINVwwwc WZR, WZR, inv_cond_code:$Cond)>;
   1627 
   1628 def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
   1629           (CSINVxxxc XZR, XZR, cond_code:$Cond)>;
   1630 def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
   1631           (CSINVxxxc XZR, XZR, inv_cond_code:$Cond)>;
   1632 
   1633 // CINC, CINV and CNEG get dealt with automatically, which leaves the issue of
   1634 // commutativity. The instructions are to complex for isCommutable to be used,
   1635 // so we have to create the patterns manually:
   1636 
   1637 // No commutable pattern for CSEL since the commuted version is isomorphic.
   1638 
   1639 // CSINC
   1640 def :Pat<(A64select_cc NZCV, (add i32:$Rm, 1), i32:$Rn, inv_cond_code:$Cond),
   1641          (CSINCwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
   1642 def :Pat<(A64select_cc NZCV, (add i64:$Rm, 1), i64:$Rn, inv_cond_code:$Cond),
   1643          (CSINCxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
   1644 
   1645 // CSINV
   1646 def :Pat<(A64select_cc NZCV, (not i32:$Rm), i32:$Rn, inv_cond_code:$Cond),
   1647          (CSINVwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
   1648 def :Pat<(A64select_cc NZCV, (not i64:$Rm), i64:$Rn, inv_cond_code:$Cond),
   1649          (CSINVxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
   1650 
   1651 // CSNEG
   1652 def :Pat<(A64select_cc NZCV, (ineg i32:$Rm), i32:$Rn, inv_cond_code:$Cond),
   1653          (CSNEGwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
   1654 def :Pat<(A64select_cc NZCV, (ineg i64:$Rm), i64:$Rn, inv_cond_code:$Cond),
   1655          (CSNEGxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
   1656 
   1657 //===----------------------------------------------------------------------===//
   1658 // Data Processing (1 source) instructions
   1659 //===----------------------------------------------------------------------===//
   1660 // Contains: RBIT, REV16, REV, REV32, CLZ, CLS.
   1661 
   1662 // We define an unary operator which always fails. We will use this to
   1663 // define unary operators that cannot be matched.
   1664 
   1665 class A64I_dp_1src_impl<bit sf, bits<6> opcode, string asmop,
   1666                    list<dag> patterns, RegisterClass GPRrc,
   1667                    InstrItinClass itin>:
   1668       A64I_dp_1src<sf,
   1669                    0,
   1670                    0b00000,
   1671                    opcode,
   1672                    !strconcat(asmop, "\t$Rd, $Rn"),
   1673                    (outs GPRrc:$Rd),
   1674                    (ins GPRrc:$Rn),
   1675                    patterns,
   1676                    itin>;
   1677 
   1678 multiclass A64I_dp_1src <bits<6> opcode, string asmop> {
   1679   let hasSideEffects = 0 in {
   1680     def ww : A64I_dp_1src_impl<0b0, opcode, asmop, [], GPR32, NoItinerary>;
   1681     def xx : A64I_dp_1src_impl<0b1, opcode, asmop, [], GPR64, NoItinerary>;
   1682   }
   1683 }
   1684 
   1685 defm RBIT  : A64I_dp_1src<0b000000, "rbit">;
   1686 defm CLS   : A64I_dp_1src<0b000101, "cls">;
   1687 defm CLZ   : A64I_dp_1src<0b000100, "clz">;
   1688 
   1689 def : Pat<(ctlz i32:$Rn), (CLZww $Rn)>;
   1690 def : Pat<(ctlz i64:$Rn), (CLZxx $Rn)>;
   1691 def : Pat<(ctlz_zero_undef i32:$Rn), (CLZww $Rn)>;
   1692 def : Pat<(ctlz_zero_undef i64:$Rn), (CLZxx $Rn)>;
   1693 
   1694 def : Pat<(cttz i32:$Rn), (CLZww (RBITww $Rn))>;
   1695 def : Pat<(cttz i64:$Rn), (CLZxx (RBITxx $Rn))>;
   1696 def : Pat<(cttz_zero_undef i32:$Rn), (CLZww (RBITww $Rn))>;
   1697 def : Pat<(cttz_zero_undef i64:$Rn), (CLZxx (RBITxx $Rn))>;
   1698 
   1699 
   1700 def REVww : A64I_dp_1src_impl<0b0, 0b000010, "rev",
   1701                               [(set i32:$Rd, (bswap i32:$Rn))],
   1702                               GPR32, NoItinerary>;
   1703 def REVxx : A64I_dp_1src_impl<0b1, 0b000011, "rev",
   1704                               [(set i64:$Rd, (bswap i64:$Rn))],
   1705                               GPR64, NoItinerary>;
   1706 def REV32xx : A64I_dp_1src_impl<0b1, 0b000010, "rev32",
   1707                           [(set i64:$Rd, (bswap (rotr i64:$Rn, (i64 32))))],
   1708                           GPR64, NoItinerary>;
   1709 def REV16ww : A64I_dp_1src_impl<0b0, 0b000001, "rev16",
   1710                           [(set i32:$Rd, (bswap (rotr i32:$Rn, (i64 16))))],
   1711                           GPR32,
   1712                           NoItinerary>;
   1713 def REV16xx : A64I_dp_1src_impl<0b1, 0b000001, "rev16", [], GPR64, NoItinerary>;
   1714 
   1715 //===----------------------------------------------------------------------===//
   1716 // Data Processing (2 sources) instructions
   1717 //===----------------------------------------------------------------------===//
   1718 // Contains: CRC32C?[BHWX], UDIV, SDIV, LSLV, LSRV, ASRV, RORV + aliases LSL,
   1719 //           LSR, ASR, ROR
   1720 
   1721 
   1722 class dp_2src_impl<bit sf, bits<6> opcode, string asmop, list<dag> patterns,
   1723                    RegisterClass GPRsp,
   1724                    InstrItinClass itin>:
   1725       A64I_dp_2src<sf,
   1726                    opcode,
   1727                    0,
   1728                    !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
   1729                    (outs GPRsp:$Rd),
   1730                    (ins GPRsp:$Rn, GPRsp:$Rm),
   1731                    patterns,
   1732                    itin>;
   1733 
   1734 multiclass dp_2src_crc<bit c, string asmop> {
   1735   def B_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 0},
   1736                            !strconcat(asmop, "b"), [], GPR32, NoItinerary>;
   1737   def H_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 1},
   1738                            !strconcat(asmop, "h"), [], GPR32, NoItinerary>;
   1739   def W_www : dp_2src_impl<0b0, {0, 1, 0, c, 1, 0},
   1740                            !strconcat(asmop, "w"), [], GPR32, NoItinerary>;
   1741   def X_wwx : A64I_dp_2src<0b1, {0, 1, 0, c, 1, 1}, 0b0,
   1742                            !strconcat(asmop, "x\t$Rd, $Rn, $Rm"),
   1743                            (outs GPR32:$Rd), (ins GPR32:$Rn, GPR64:$Rm), [],
   1744                            NoItinerary>;
   1745 }
   1746 
   1747 multiclass dp_2src_zext <bits<6> opcode, string asmop, SDPatternOperator op> {
   1748    def www : dp_2src_impl<0b0,
   1749                          opcode,
   1750                          asmop,
   1751                          [(set i32:$Rd,
   1752                                (op i32:$Rn, (i64 (zext i32:$Rm))))],
   1753                          GPR32,
   1754                          NoItinerary>;
   1755    def xxx : dp_2src_impl<0b1,
   1756                          opcode,
   1757                          asmop,
   1758                          [(set i64:$Rd, (op i64:$Rn, i64:$Rm))],
   1759                          GPR64,
   1760                          NoItinerary>;
   1761 }
   1762 
   1763 
   1764 multiclass dp_2src <bits<6> opcode, string asmop, SDPatternOperator op> {
   1765     def www : dp_2src_impl<0b0,
   1766                          opcode,
   1767                          asmop,
   1768                          [(set i32:$Rd, (op i32:$Rn, i32:$Rm))],
   1769                          GPR32,
   1770                          NoItinerary>;
   1771    def xxx : dp_2src_impl<0b1,
   1772                          opcode,
   1773                          asmop,
   1774                          [(set i64:$Rd, (op i64:$Rn, i64:$Rm))],
   1775                          GPR64,
   1776                          NoItinerary>;
   1777 }
   1778 
   1779 // Here we define the data processing 2 source instructions.
   1780 defm CRC32  : dp_2src_crc<0b0, "crc32">;
   1781 defm CRC32C : dp_2src_crc<0b1, "crc32c">;
   1782 
   1783 defm UDIV : dp_2src<0b000010, "udiv", udiv>;
   1784 defm SDIV : dp_2src<0b000011, "sdiv", sdiv>;
   1785 
   1786 defm LSLV : dp_2src_zext<0b001000, "lsl", shl>;
   1787 defm LSRV : dp_2src_zext<0b001001, "lsr", srl>;
   1788 defm ASRV : dp_2src_zext<0b001010, "asr", sra>;
   1789 defm RORV : dp_2src_zext<0b001011, "ror", rotr>;
   1790 
   1791 // Extra patterns for an incoming 64-bit value for a 32-bit
   1792 // operation. Since the LLVM operations are undefined (as in C) if the
   1793 // RHS is out of range, it's perfectly permissible to discard the high
   1794 // bits of the GPR64.
   1795 def : Pat<(shl i32:$Rn, i64:$Rm),
   1796           (LSLVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
   1797 def : Pat<(srl i32:$Rn, i64:$Rm),
   1798           (LSRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
   1799 def : Pat<(sra i32:$Rn, i64:$Rm),
   1800           (ASRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
   1801 def : Pat<(rotr i32:$Rn, i64:$Rm),
   1802           (RORVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
   1803 
   1804 // Here we define the aliases for the data processing 2 source instructions.
   1805 def LSL_mnemonic : MnemonicAlias<"lslv", "lsl">;
   1806 def LSR_mnemonic : MnemonicAlias<"lsrv", "lsr">;
   1807 def ASR_menmonic : MnemonicAlias<"asrv", "asr">;
   1808 def ROR_menmonic : MnemonicAlias<"rorv", "ror">;
   1809 
   1810 //===----------------------------------------------------------------------===//
   1811 // Data Processing (3 sources) instructions
   1812 //===----------------------------------------------------------------------===//
   1813 // Contains: MADD, MSUB, SMADDL, SMSUBL, SMULH, UMADDL, UMSUBL, UMULH
   1814 //    + aliases MUL, MNEG, SMULL, SMNEGL, UMULL, UMNEGL
   1815 
   1816 class A64I_dp3_4operand<bit sf, bits<6> opcode, RegisterClass AccReg,
   1817                         ValueType AccTy, RegisterClass SrcReg,
   1818                         string asmop, dag pattern>
   1819   : A64I_dp3<sf, opcode,
   1820              (outs AccReg:$Rd), (ins SrcReg:$Rn, SrcReg:$Rm, AccReg:$Ra),
   1821              !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Ra"),
   1822              [(set AccTy:$Rd, pattern)], NoItinerary> {
   1823   RegisterClass AccGPR = AccReg;
   1824   RegisterClass SrcGPR = SrcReg;
   1825 }
   1826 
   1827 def MADDwwww : A64I_dp3_4operand<0b0, 0b000000, GPR32, i32, GPR32, "madd",
   1828                                  (add i32:$Ra, (mul i32:$Rn, i32:$Rm))>;
   1829 def MADDxxxx : A64I_dp3_4operand<0b1, 0b000000, GPR64, i64, GPR64, "madd",
   1830                                  (add i64:$Ra, (mul i64:$Rn, i64:$Rm))>;
   1831 
   1832 def MSUBwwww : A64I_dp3_4operand<0b0, 0b000001, GPR32, i32, GPR32, "msub",
   1833                                  (sub i32:$Ra, (mul i32:$Rn, i32:$Rm))>;
   1834 def MSUBxxxx : A64I_dp3_4operand<0b1, 0b000001, GPR64, i64, GPR64, "msub",
   1835                                  (sub i64:$Ra, (mul i64:$Rn, i64:$Rm))>;
   1836 
   1837 def SMADDLxwwx : A64I_dp3_4operand<0b1, 0b000010, GPR64, i64, GPR32, "smaddl",
   1838                      (add i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
   1839 def SMSUBLxwwx : A64I_dp3_4operand<0b1, 0b000011, GPR64, i64, GPR32, "smsubl",
   1840                      (sub i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
   1841 
   1842 def UMADDLxwwx : A64I_dp3_4operand<0b1, 0b001010, GPR64, i64, GPR32, "umaddl",
   1843                      (add i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
   1844 def UMSUBLxwwx : A64I_dp3_4operand<0b1, 0b001011, GPR64, i64, GPR32, "umsubl",
   1845                      (sub i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
   1846 
   1847 let isCommutable = 1, PostEncoderMethod = "fixMulHigh" in {
   1848   def UMULHxxx : A64I_dp3<0b1, 0b001100, (outs GPR64:$Rd),
   1849                           (ins GPR64:$Rn, GPR64:$Rm),
   1850                           "umulh\t$Rd, $Rn, $Rm",
   1851                           [(set i64:$Rd, (mulhu i64:$Rn, i64:$Rm))],
   1852                           NoItinerary>;
   1853 
   1854   def SMULHxxx : A64I_dp3<0b1, 0b000100, (outs GPR64:$Rd),
   1855                           (ins GPR64:$Rn, GPR64:$Rm),
   1856                           "smulh\t$Rd, $Rn, $Rm",
   1857                           [(set i64:$Rd, (mulhs i64:$Rn, i64:$Rm))],
   1858                           NoItinerary>;
   1859 }
   1860 
   1861 multiclass A64I_dp3_3operand<string asmop, A64I_dp3_4operand INST,
   1862                              Register ZR, dag pattern> {
   1863   def : InstAlias<asmop # " $Rd, $Rn, $Rm",
   1864                   (INST INST.AccGPR:$Rd, INST.SrcGPR:$Rn, INST.SrcGPR:$Rm, ZR)>;
   1865 
   1866   def : Pat<pattern, (INST $Rn, $Rm, ZR)>;
   1867 }
   1868 
   1869 defm : A64I_dp3_3operand<"mul", MADDwwww, WZR, (mul i32:$Rn, i32:$Rm)>;
   1870 defm : A64I_dp3_3operand<"mul", MADDxxxx, XZR, (mul i64:$Rn, i64:$Rm)>;
   1871 
   1872 defm : A64I_dp3_3operand<"mneg", MSUBwwww, WZR,
   1873                          (sub 0, (mul i32:$Rn, i32:$Rm))>;
   1874 defm : A64I_dp3_3operand<"mneg", MSUBxxxx, XZR,
   1875                          (sub 0, (mul i64:$Rn, i64:$Rm))>;
   1876 
   1877 defm : A64I_dp3_3operand<"smull", SMADDLxwwx, XZR,
   1878                          (mul (i64 (sext i32:$Rn)), (sext i32:$Rm))>;
   1879 defm : A64I_dp3_3operand<"smnegl", SMSUBLxwwx, XZR,
   1880                        (sub 0, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
   1881 
   1882 defm : A64I_dp3_3operand<"umull", UMADDLxwwx, XZR,
   1883                          (mul (i64 (zext i32:$Rn)), (zext i32:$Rm))>;
   1884 defm : A64I_dp3_3operand<"umnegl", UMSUBLxwwx, XZR,
   1885                        (sub 0, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
   1886 
   1887 
   1888 //===----------------------------------------------------------------------===//
   1889 // Exception generation
   1890 //===----------------------------------------------------------------------===//
   1891 // Contains: SVC, HVC, SMC, BRK, HLT, DCPS1, DCPS2, DCPS3
   1892 
   1893 def uimm16_asmoperand : AsmOperandClass {
   1894   let Name = "UImm16";
   1895   let PredicateMethod = "isUImm<16>";
   1896   let RenderMethod = "addImmOperands";
   1897   let DiagnosticType = "UImm16";
   1898 }
   1899 
   1900 def uimm16 : Operand<i32> {
   1901   let ParserMatchClass = uimm16_asmoperand;
   1902 }
   1903 
   1904 class A64I_exceptImpl<bits<3> opc, bits<2> ll, string asmop>
   1905   : A64I_exception<opc, 0b000, ll, (outs), (ins uimm16:$UImm16),
   1906                    !strconcat(asmop, "\t$UImm16"), [], NoItinerary> {
   1907   let isBranch = 1;
   1908   let isTerminator = 1;
   1909 }
   1910 
   1911 def SVCi : A64I_exceptImpl<0b000, 0b01, "svc">;
   1912 def HVCi : A64I_exceptImpl<0b000, 0b10, "hvc">;
   1913 def SMCi : A64I_exceptImpl<0b000, 0b11, "smc">;
   1914 def BRKi : A64I_exceptImpl<0b001, 0b00, "brk">;
   1915 def HLTi : A64I_exceptImpl<0b010, 0b00, "hlt">;
   1916 
   1917 def DCPS1i : A64I_exceptImpl<0b101, 0b01, "dcps1">;
   1918 def DCPS2i : A64I_exceptImpl<0b101, 0b10, "dcps2">;
   1919 def DCPS3i : A64I_exceptImpl<0b101, 0b11, "dcps3">;
   1920 
   1921 // The immediate is optional for the DCPS instructions, defaulting to 0.
   1922 def : InstAlias<"dcps1", (DCPS1i 0)>;
   1923 def : InstAlias<"dcps2", (DCPS2i 0)>;
   1924 def : InstAlias<"dcps3", (DCPS3i 0)>;
   1925 
   1926 //===----------------------------------------------------------------------===//
   1927 // Extract (immediate)
   1928 //===----------------------------------------------------------------------===//
   1929 // Contains: EXTR + alias ROR
   1930 
   1931 def EXTRwwwi : A64I_extract<0b0, 0b000, 0b0,
   1932                             (outs GPR32:$Rd),
   1933                             (ins GPR32:$Rn, GPR32:$Rm, bitfield32_imm:$LSB),
   1934                             "extr\t$Rd, $Rn, $Rm, $LSB",
   1935                             [(set i32:$Rd,
   1936                                   (A64Extr i32:$Rn, i32:$Rm, imm:$LSB))],
   1937                             NoItinerary>;
   1938 def EXTRxxxi : A64I_extract<0b1, 0b000, 0b1,
   1939                             (outs GPR64:$Rd),
   1940                             (ins GPR64:$Rn, GPR64:$Rm, bitfield64_imm:$LSB),
   1941                             "extr\t$Rd, $Rn, $Rm, $LSB",
   1942                             [(set i64:$Rd,
   1943                                   (A64Extr i64:$Rn, i64:$Rm, imm:$LSB))],
   1944                             NoItinerary>;
   1945 
   1946 def : InstAlias<"ror $Rd, $Rs, $LSB",
   1947                (EXTRwwwi GPR32:$Rd, GPR32:$Rs, GPR32:$Rs, bitfield32_imm:$LSB)>;
   1948 def : InstAlias<"ror $Rd, $Rs, $LSB",
   1949                (EXTRxxxi GPR64:$Rd, GPR64:$Rs, GPR64:$Rs, bitfield64_imm:$LSB)>;
   1950 
   1951 def : Pat<(rotr i32:$Rn, bitfield32_imm:$LSB),
   1952           (EXTRwwwi $Rn, $Rn, bitfield32_imm:$LSB)>;
   1953 def : Pat<(rotr i64:$Rn, bitfield64_imm:$LSB),
   1954           (EXTRxxxi $Rn, $Rn, bitfield64_imm:$LSB)>;
   1955 
   1956 //===----------------------------------------------------------------------===//
   1957 // Floating-point compare instructions
   1958 //===----------------------------------------------------------------------===//
   1959 // Contains: FCMP, FCMPE
   1960 
   1961 def fpzero_asmoperand : AsmOperandClass {
   1962   let Name = "FPZero";
   1963   let ParserMethod = "ParseFPImmOperand";
   1964   let DiagnosticType = "FPZero";
   1965 }
   1966 
   1967 def fpz32 : Operand<f32>,
   1968             ComplexPattern<f32, 1, "SelectFPZeroOperand", [fpimm]> {
   1969   let ParserMatchClass = fpzero_asmoperand;
   1970   let PrintMethod = "printFPZeroOperand";
   1971   let DecoderMethod = "DecodeFPZeroOperand";
   1972 }
   1973 
   1974 def fpz64 : Operand<f64>,
   1975             ComplexPattern<f64, 1, "SelectFPZeroOperand", [fpimm]> {
   1976   let ParserMatchClass = fpzero_asmoperand;
   1977   let PrintMethod = "printFPZeroOperand";
   1978   let DecoderMethod = "DecodeFPZeroOperand";
   1979 }
   1980 
   1981 multiclass A64I_fpcmpSignal<bits<2> type, bit imm, dag ins, dag pattern> {
   1982   def _quiet : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b0, imm, 0b0, 0b0, 0b0},
   1983                           (outs), ins, "fcmp\t$Rn, $Rm", [pattern],
   1984                           NoItinerary> {
   1985     let Defs = [NZCV];
   1986   }
   1987 
   1988   def _sig : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b1, imm, 0b0, 0b0, 0b0},
   1989                         (outs), ins, "fcmpe\t$Rn, $Rm", [], NoItinerary> {
   1990     let Defs = [NZCV];
   1991   }
   1992 }
   1993 
   1994 defm FCMPss : A64I_fpcmpSignal<0b00, 0b0, (ins FPR32:$Rn, FPR32:$Rm),
   1995                                (set NZCV, (A64cmp f32:$Rn, f32:$Rm))>;
   1996 defm FCMPdd : A64I_fpcmpSignal<0b01, 0b0, (ins FPR64:$Rn, FPR64:$Rm),
   1997                                (set NZCV, (A64cmp f64:$Rn, f64:$Rm))>;
   1998 
   1999 // What would be Rm should be written as 0; note that even though it's called
   2000 // "$Rm" here to fit in with the InstrFormats, it's actually an immediate.
   2001 defm FCMPsi : A64I_fpcmpSignal<0b00, 0b1, (ins FPR32:$Rn, fpz32:$Rm),
   2002                                (set NZCV, (A64cmp f32:$Rn, fpz32:$Rm))>;
   2003 
   2004 defm FCMPdi : A64I_fpcmpSignal<0b01, 0b1, (ins FPR64:$Rn, fpz64:$Rm),
   2005                                (set NZCV, (A64cmp f64:$Rn, fpz64:$Rm))>;
   2006 
   2007 
   2008 //===----------------------------------------------------------------------===//
   2009 // Floating-point conditional compare instructions
   2010 //===----------------------------------------------------------------------===//
   2011 // Contains: FCCMP, FCCMPE
   2012 
   2013 class A64I_fpccmpImpl<bits<2> type, bit op, RegisterClass FPR, string asmop>
   2014   : A64I_fpccmp<0b0, 0b0, type, op,
   2015                 (outs),
   2016                 (ins FPR:$Rn, FPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
   2017                 !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
   2018                 [], NoItinerary> {
   2019   let Defs = [NZCV];
   2020 }
   2021 
   2022 def FCCMPss : A64I_fpccmpImpl<0b00, 0b0, FPR32, "fccmp">;
   2023 def FCCMPEss : A64I_fpccmpImpl<0b00, 0b1, FPR32, "fccmpe">;
   2024 def FCCMPdd : A64I_fpccmpImpl<0b01, 0b0, FPR64, "fccmp">;
   2025 def FCCMPEdd : A64I_fpccmpImpl<0b01, 0b1, FPR64, "fccmpe">;
   2026 
   2027 //===----------------------------------------------------------------------===//
   2028 // Floating-point conditional select instructions
   2029 //===----------------------------------------------------------------------===//
   2030 // Contains: FCSEL
   2031 
   2032 let Uses = [NZCV] in {
   2033   def FCSELsssc : A64I_fpcondsel<0b0, 0b0, 0b00, (outs FPR32:$Rd),
   2034                                  (ins FPR32:$Rn, FPR32:$Rm, cond_code_op:$Cond),
   2035                                  "fcsel\t$Rd, $Rn, $Rm, $Cond",
   2036                                  [(set f32:$Rd, 
   2037                                        (simple_select f32:$Rn, f32:$Rm))],
   2038                                  NoItinerary>;
   2039 
   2040 
   2041   def FCSELdddc : A64I_fpcondsel<0b0, 0b0, 0b01, (outs FPR64:$Rd),
   2042                                  (ins FPR64:$Rn, FPR64:$Rm, cond_code_op:$Cond),
   2043                                  "fcsel\t$Rd, $Rn, $Rm, $Cond",
   2044                                  [(set f64:$Rd,
   2045                                        (simple_select f64:$Rn, f64:$Rm))],
   2046                                  NoItinerary>;
   2047 }
   2048 
   2049 //===----------------------------------------------------------------------===//
   2050 // Floating-point data-processing (1 source)
   2051 //===----------------------------------------------------------------------===//
   2052 // Contains: FMOV, FABS, FNEG, FSQRT, FCVT, FRINT[NPMZAXI].
   2053 
   2054 def FPNoUnop : PatFrag<(ops node:$val), (fneg node:$val),
   2055                        [{ (void)N; return false; }]>;
   2056 
   2057 // First we do the fairly trivial bunch with uniform "OP s, s" and "OP d, d"
   2058 // syntax. Default to no pattern because most are odd enough not to have one.
   2059 multiclass A64I_fpdp1sizes<bits<6> opcode, string asmstr,
   2060                            SDPatternOperator opnode = FPNoUnop> {
   2061   def ss : A64I_fpdp1<0b0, 0b0, 0b00, opcode, (outs FPR32:$Rd), (ins FPR32:$Rn),
   2062                      !strconcat(asmstr, "\t$Rd, $Rn"),
   2063                      [(set f32:$Rd, (opnode f32:$Rn))],
   2064                      NoItinerary>;
   2065 
   2066   def dd : A64I_fpdp1<0b0, 0b0, 0b01, opcode, (outs FPR64:$Rd), (ins FPR64:$Rn),
   2067                      !strconcat(asmstr, "\t$Rd, $Rn"),
   2068                      [(set f64:$Rd, (opnode f64:$Rn))],
   2069                      NoItinerary>;
   2070 }
   2071 
   2072 defm FMOV   : A64I_fpdp1sizes<0b000000, "fmov">;
   2073 defm FABS   : A64I_fpdp1sizes<0b000001, "fabs", fabs>;
   2074 defm FNEG   : A64I_fpdp1sizes<0b000010, "fneg", fneg>;
   2075 defm FSQRT  : A64I_fpdp1sizes<0b000011, "fsqrt", fsqrt>;
   2076 
   2077 defm FRINTN : A64I_fpdp1sizes<0b001000, "frintn">;
   2078 defm FRINTP : A64I_fpdp1sizes<0b001001, "frintp", fceil>;
   2079 defm FRINTM : A64I_fpdp1sizes<0b001010, "frintm", ffloor>;
   2080 defm FRINTZ : A64I_fpdp1sizes<0b001011, "frintz", ftrunc>;
   2081 defm FRINTA : A64I_fpdp1sizes<0b001100, "frinta">;
   2082 defm FRINTX : A64I_fpdp1sizes<0b001110, "frintx", frint>;
   2083 defm FRINTI : A64I_fpdp1sizes<0b001111, "frinti", fnearbyint>;
   2084 
   2085 // The FCVT instrucitons have different source and destination register-types,
   2086 // but the fields are uniform everywhere a D-register (say) crops up. Package
   2087 // this information in a Record.
   2088 class FCVTRegType<RegisterClass rc, bits<2> fld, ValueType vt> {
   2089     RegisterClass Class = rc;
   2090     ValueType VT = vt;
   2091     bit t1 = fld{1};
   2092     bit t0 = fld{0};
   2093 }
   2094 
   2095 def FCVT16 : FCVTRegType<FPR16, 0b11, f16>;
   2096 def FCVT32 : FCVTRegType<FPR32, 0b00, f32>;
   2097 def FCVT64 : FCVTRegType<FPR64, 0b01, f64>;
   2098 
   2099 class A64I_fpdp1_fcvt<FCVTRegType DestReg, FCVTRegType SrcReg, SDNode opnode>
   2100   : A64I_fpdp1<0b0, 0b0, {SrcReg.t1, SrcReg.t0},
   2101                {0,0,0,1, DestReg.t1, DestReg.t0},
   2102                (outs DestReg.Class:$Rd), (ins SrcReg.Class:$Rn),
   2103                "fcvt\t$Rd, $Rn",
   2104                [(set DestReg.VT:$Rd, (opnode SrcReg.VT:$Rn))], NoItinerary>;
   2105 
   2106 def FCVTds : A64I_fpdp1_fcvt<FCVT64, FCVT32, fextend>;
   2107 def FCVThs : A64I_fpdp1_fcvt<FCVT16, FCVT32, fround>;
   2108 def FCVTsd : A64I_fpdp1_fcvt<FCVT32, FCVT64, fround>;
   2109 def FCVThd : A64I_fpdp1_fcvt<FCVT16, FCVT64, fround>;
   2110 def FCVTsh : A64I_fpdp1_fcvt<FCVT32, FCVT16, fextend>;
   2111 def FCVTdh : A64I_fpdp1_fcvt<FCVT64, FCVT16, fextend>;
   2112 
   2113 
   2114 //===----------------------------------------------------------------------===//
   2115 // Floating-point data-processing (2 sources) instructions
   2116 //===----------------------------------------------------------------------===//
   2117 // Contains: FMUL, FDIV, FADD, FSUB, FMAX, FMIN, FMAXNM, FMINNM, FNMUL
   2118 
   2119 def FPNoBinop : PatFrag<(ops node:$lhs, node:$rhs), (fadd node:$lhs, node:$rhs),
   2120                       [{ (void)N; return false; }]>;
   2121 
   2122 multiclass A64I_fpdp2sizes<bits<4> opcode, string asmstr,
   2123                            SDPatternOperator opnode> {
   2124   def sss : A64I_fpdp2<0b0, 0b0, 0b00, opcode,
   2125                       (outs FPR32:$Rd),
   2126                       (ins FPR32:$Rn, FPR32:$Rm),
   2127                       !strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
   2128                       [(set f32:$Rd, (opnode f32:$Rn, f32:$Rm))],
   2129                       NoItinerary>;
   2130 
   2131   def ddd : A64I_fpdp2<0b0, 0b0, 0b01, opcode,
   2132                       (outs FPR64:$Rd),
   2133                       (ins FPR64:$Rn, FPR64:$Rm),
   2134                       !strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
   2135                       [(set f64:$Rd, (opnode f64:$Rn, f64:$Rm))],
   2136                       NoItinerary>;
   2137 }
   2138 
   2139 let isCommutable = 1 in {
   2140   defm FMUL   : A64I_fpdp2sizes<0b0000, "fmul", fmul>;
   2141   defm FADD   : A64I_fpdp2sizes<0b0010, "fadd", fadd>;
   2142 
   2143   // No patterns for these.
   2144   defm FMAX   : A64I_fpdp2sizes<0b0100, "fmax", FPNoBinop>;
   2145   defm FMIN   : A64I_fpdp2sizes<0b0101, "fmin", FPNoBinop>;
   2146   defm FMAXNM : A64I_fpdp2sizes<0b0110, "fmaxnm", FPNoBinop>;
   2147   defm FMINNM : A64I_fpdp2sizes<0b0111, "fminnm", FPNoBinop>;
   2148 
   2149   defm FNMUL  : A64I_fpdp2sizes<0b1000, "fnmul",
   2150                                 PatFrag<(ops node:$lhs, node:$rhs),
   2151                                         (fneg (fmul node:$lhs, node:$rhs))> >;
   2152 }
   2153 
   2154 defm FDIV : A64I_fpdp2sizes<0b0001, "fdiv", fdiv>;
   2155 defm FSUB : A64I_fpdp2sizes<0b0011, "fsub", fsub>;
   2156 
   2157 //===----------------------------------------------------------------------===//
   2158 // Floating-point data-processing (3 sources) instructions
   2159 //===----------------------------------------------------------------------===//
   2160 // Contains: FMADD, FMSUB, FNMADD, FNMSUB
   2161 
   2162 def fmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
   2163                     (fma (fneg node:$Rn),  node:$Rm, node:$Ra)>;
   2164 def fnmadd : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
   2165                      (fma node:$Rn,  node:$Rm, (fneg node:$Ra))>;
   2166 def fnmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
   2167                      (fma (fneg node:$Rn),  node:$Rm, (fneg node:$Ra))>;
   2168 
   2169 class A64I_fpdp3Impl<string asmop, RegisterClass FPR, ValueType VT,
   2170                      bits<2> type, bit o1, bit o0, SDPatternOperator fmakind>
   2171   : A64I_fpdp3<0b0, 0b0, type, o1, o0, (outs FPR:$Rd),
   2172                (ins FPR:$Rn, FPR:$Rm, FPR:$Ra),
   2173                !strconcat(asmop,"\t$Rd, $Rn, $Rm, $Ra"),
   2174                [(set VT:$Rd, (fmakind VT:$Rn, VT:$Rm, VT:$Ra))],
   2175                NoItinerary>;
   2176 
   2177 def FMADDssss  : A64I_fpdp3Impl<"fmadd",  FPR32, f32, 0b00, 0b0, 0b0, fma>;
   2178 def FMSUBssss  : A64I_fpdp3Impl<"fmsub",  FPR32, f32, 0b00, 0b0, 0b1, fmsub>;
   2179 def FNMADDssss : A64I_fpdp3Impl<"fnmadd", FPR32, f32, 0b00, 0b1, 0b0, fnmadd>;
   2180 def FNMSUBssss : A64I_fpdp3Impl<"fnmsub", FPR32, f32, 0b00, 0b1, 0b1, fnmsub>;
   2181 
   2182 def FMADDdddd  : A64I_fpdp3Impl<"fmadd",  FPR64, f64, 0b01, 0b0, 0b0, fma>;
   2183 def FMSUBdddd  : A64I_fpdp3Impl<"fmsub",  FPR64, f64, 0b01, 0b0, 0b1, fmsub>;
   2184 def FNMADDdddd : A64I_fpdp3Impl<"fnmadd", FPR64, f64, 0b01, 0b1, 0b0, fnmadd>;
   2185 def FNMSUBdddd : A64I_fpdp3Impl<"fnmsub", FPR64, f64, 0b01, 0b1, 0b1, fnmsub>;
   2186 
   2187 // Extra patterns for when we're allowed to optimise separate multiplication and
   2188 // addition.
   2189 let Predicates = [UseFusedMAC] in {
   2190 def : Pat<(fadd FPR32:$Ra, (fmul FPR32:$Rn, FPR32:$Rm)),
   2191           (FMADDssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2192 def : Pat<(fsub FPR32:$Ra, (fmul FPR32:$Rn, FPR32:$Rm)),
   2193           (FMSUBssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2194 def : Pat<(fsub (fmul FPR32:$Rn, FPR32:$Rm), FPR32:$Ra),
   2195           (FNMADDssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2196 def : Pat<(fsub (fneg FPR32:$Ra), (fmul FPR32:$Rn, FPR32:$Rm)),
   2197           (FNMSUBssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2198 
   2199 def : Pat<(fadd FPR64:$Ra, (fmul FPR64:$Rn, FPR64:$Rm)),
   2200           (FMADDdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2201 def : Pat<(fsub FPR64:$Ra, (fmul FPR64:$Rn, FPR64:$Rm)),
   2202           (FMSUBdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2203 def : Pat<(fsub (fmul FPR64:$Rn, FPR64:$Rm), FPR64:$Ra),
   2204           (FNMADDdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2205 def : Pat<(fsub (fneg FPR64:$Ra), (fmul FPR64:$Rn, FPR64:$Rm)),
   2206           (FNMSUBdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2207 }
   2208 
   2209 
   2210 //===----------------------------------------------------------------------===//
   2211 // Floating-point <-> fixed-point conversion instructions
   2212 //===----------------------------------------------------------------------===//
   2213 // Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
   2214 
   2215 // #1-#32 allowed, encoded as "64 - <specified imm>
   2216 def fixedpos_asmoperand_i32 : AsmOperandClass {
   2217   let Name = "CVTFixedPos32";
   2218   let RenderMethod = "addCVTFixedPosOperands";
   2219   let PredicateMethod = "isCVTFixedPos<32>";
   2220   let DiagnosticType = "CVTFixedPos32";
   2221 }
   2222 
   2223 // Also encoded as "64 - <specified imm>" but #1-#64 allowed.
   2224 def fixedpos_asmoperand_i64 : AsmOperandClass {
   2225   let Name = "CVTFixedPos64";
   2226   let RenderMethod = "addCVTFixedPosOperands";
   2227   let PredicateMethod = "isCVTFixedPos<64>";
   2228   let DiagnosticType = "CVTFixedPos64";
   2229 }
   2230 
   2231 // We need the cartesian product of f32/f64 i32/i64 operands for
   2232 // conversions:
   2233 //   + Selection needs to use operands of correct floating type
   2234 //   + Assembly parsing and decoding depend on integer width
   2235 class cvtfix_i32_op<ValueType FloatVT>
   2236   : Operand<FloatVT>,
   2237     ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm]> {
   2238   let ParserMatchClass = fixedpos_asmoperand_i32;
   2239   let DecoderMethod = "DecodeCVT32FixedPosOperand";
   2240   let PrintMethod = "printCVTFixedPosOperand";
   2241 }
   2242 
   2243 class cvtfix_i64_op<ValueType FloatVT>
   2244   : Operand<FloatVT>,
   2245     ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm]> {
   2246   let ParserMatchClass = fixedpos_asmoperand_i64;
   2247   let PrintMethod = "printCVTFixedPosOperand";
   2248 }
   2249 
   2250 // Because of the proliferation of weird operands, it's not really
   2251 // worth going for a multiclass here. Oh well.
   2252 
   2253 class A64I_fptofix<bit sf, bits<2> type, bits<3> opcode,
   2254                    RegisterClass GPR, RegisterClass FPR, 
   2255                    ValueType DstTy, ValueType SrcTy, 
   2256                    Operand scale_op, string asmop, SDNode cvtop>
   2257   : A64I_fpfixed<sf, 0b0, type, 0b11, opcode,
   2258                  (outs GPR:$Rd), (ins FPR:$Rn, scale_op:$Scale),
   2259                  !strconcat(asmop, "\t$Rd, $Rn, $Scale"),
   2260                  [(set DstTy:$Rd, (cvtop (fmul SrcTy:$Rn, scale_op:$Scale)))],
   2261                  NoItinerary>;
   2262 
   2263 def FCVTZSwsi : A64I_fptofix<0b0, 0b00, 0b000, GPR32, FPR32, i32, f32,
   2264                              cvtfix_i32_op<f32>, "fcvtzs", fp_to_sint>;
   2265 def FCVTZSxsi : A64I_fptofix<0b1, 0b00, 0b000, GPR64, FPR32, i64, f32,
   2266                              cvtfix_i64_op<f32>, "fcvtzs", fp_to_sint>;
   2267 def FCVTZUwsi : A64I_fptofix<0b0, 0b00, 0b001, GPR32, FPR32, i32, f32,
   2268                              cvtfix_i32_op<f32>, "fcvtzu", fp_to_uint>;
   2269 def FCVTZUxsi : A64I_fptofix<0b1, 0b00, 0b001, GPR64, FPR32, i64, f32,
   2270                              cvtfix_i64_op<f32>, "fcvtzu", fp_to_uint>;
   2271 
   2272 def FCVTZSwdi : A64I_fptofix<0b0, 0b01, 0b000, GPR32, FPR64, i32, f64,
   2273                              cvtfix_i32_op<f64>, "fcvtzs", fp_to_sint>;
   2274 def FCVTZSxdi : A64I_fptofix<0b1, 0b01, 0b000, GPR64, FPR64, i64, f64,
   2275                              cvtfix_i64_op<f64>, "fcvtzs", fp_to_sint>;
   2276 def FCVTZUwdi : A64I_fptofix<0b0, 0b01, 0b001, GPR32, FPR64, i32, f64,
   2277                              cvtfix_i32_op<f64>, "fcvtzu", fp_to_uint>;
   2278 def FCVTZUxdi : A64I_fptofix<0b1, 0b01, 0b001, GPR64, FPR64, i64, f64,
   2279                              cvtfix_i64_op<f64>, "fcvtzu", fp_to_uint>;
   2280 
   2281 
   2282 class A64I_fixtofp<bit sf, bits<2> type, bits<3> opcode,
   2283                    RegisterClass FPR, RegisterClass GPR,
   2284                    ValueType DstTy, ValueType SrcTy,
   2285                    Operand scale_op, string asmop, SDNode cvtop>
   2286   : A64I_fpfixed<sf, 0b0, type, 0b00, opcode,
   2287                  (outs FPR:$Rd), (ins GPR:$Rn, scale_op:$Scale),
   2288                  !strconcat(asmop, "\t$Rd, $Rn, $Scale"),
   2289                  [(set DstTy:$Rd, (fdiv (cvtop SrcTy:$Rn), scale_op:$Scale))],
   2290                  NoItinerary>;
   2291 
   2292 def SCVTFswi : A64I_fixtofp<0b0, 0b00, 0b010, FPR32, GPR32, f32, i32,
   2293                             cvtfix_i32_op<f32>, "scvtf", sint_to_fp>;
   2294 def SCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b010, FPR32, GPR64, f32, i64,
   2295                             cvtfix_i64_op<f32>, "scvtf", sint_to_fp>;
   2296 def UCVTFswi : A64I_fixtofp<0b0, 0b00, 0b011, FPR32, GPR32, f32, i32,
   2297                             cvtfix_i32_op<f32>, "ucvtf", uint_to_fp>;
   2298 def UCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b011, FPR32, GPR64, f32, i64,
   2299                             cvtfix_i64_op<f32>, "ucvtf", uint_to_fp>;
   2300 def SCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b010, FPR64, GPR32, f64, i32,
   2301                             cvtfix_i32_op<f64>, "scvtf", sint_to_fp>;
   2302 def SCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b010, FPR64, GPR64, f64, i64,
   2303                             cvtfix_i64_op<f64>, "scvtf", sint_to_fp>;
   2304 def UCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b011, FPR64, GPR32, f64, i32,
   2305                             cvtfix_i32_op<f64>, "ucvtf", uint_to_fp>;
   2306 def UCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b011, FPR64, GPR64, f64, i64,
   2307                             cvtfix_i64_op<f64>, "ucvtf", uint_to_fp>;
   2308 
   2309 //===----------------------------------------------------------------------===//
   2310 // Floating-point <-> integer conversion instructions
   2311 //===----------------------------------------------------------------------===//
   2312 // Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
   2313 
   2314 class A64I_fpintI<bit sf, bits<2> type, bits<2> rmode, bits<3> opcode,
   2315                    RegisterClass DestPR, RegisterClass SrcPR, string asmop>
   2316   : A64I_fpint<sf, 0b0, type, rmode, opcode, (outs DestPR:$Rd), (ins SrcPR:$Rn),
   2317                !strconcat(asmop, "\t$Rd, $Rn"), [], NoItinerary>;
   2318 
   2319 multiclass A64I_fptointRM<bits<2> rmode, bit o2, string asmop> {
   2320   def Sws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 0},
   2321                         GPR32, FPR32, asmop # "s">;
   2322   def Sxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 0},
   2323                         GPR64, FPR32, asmop # "s">;
   2324   def Uws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 1},
   2325                         GPR32, FPR32, asmop # "u">;
   2326   def Uxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 1},
   2327                         GPR64, FPR32, asmop # "u">;
   2328 
   2329   def Swd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 0},
   2330                         GPR32, FPR64, asmop # "s">;
   2331   def Sxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 0},
   2332                         GPR64, FPR64, asmop # "s">;
   2333   def Uwd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 1},
   2334                         GPR32, FPR64, asmop # "u">;
   2335   def Uxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 1},
   2336                         GPR64, FPR64, asmop # "u">;
   2337 }
   2338 
   2339 defm FCVTN : A64I_fptointRM<0b00, 0b0, "fcvtn">;
   2340 defm FCVTP : A64I_fptointRM<0b01, 0b0, "fcvtp">;
   2341 defm FCVTM : A64I_fptointRM<0b10, 0b0, "fcvtm">;
   2342 defm FCVTZ : A64I_fptointRM<0b11, 0b0, "fcvtz">;
   2343 defm FCVTA : A64I_fptointRM<0b00, 0b1, "fcvta">;
   2344 
   2345 def : Pat<(i32 (fp_to_sint f32:$Rn)), (FCVTZSws $Rn)>;
   2346 def : Pat<(i64 (fp_to_sint f32:$Rn)), (FCVTZSxs $Rn)>;
   2347 def : Pat<(i32 (fp_to_uint f32:$Rn)), (FCVTZUws $Rn)>;
   2348 def : Pat<(i64 (fp_to_uint f32:$Rn)), (FCVTZUxs $Rn)>;
   2349 def : Pat<(i32 (fp_to_sint f64:$Rn)), (FCVTZSwd $Rn)>;
   2350 def : Pat<(i64 (fp_to_sint f64:$Rn)), (FCVTZSxd $Rn)>;
   2351 def : Pat<(i32 (fp_to_uint f64:$Rn)), (FCVTZUwd $Rn)>;
   2352 def : Pat<(i64 (fp_to_uint f64:$Rn)), (FCVTZUxd $Rn)>;
   2353 
   2354 multiclass A64I_inttofp<bit o0, string asmop> {
   2355   def CVTFsw : A64I_fpintI<0b0, 0b00, 0b00, {0, 1, o0}, FPR32, GPR32, asmop>;
   2356   def CVTFsx : A64I_fpintI<0b1, 0b00, 0b00, {0, 1, o0}, FPR32, GPR64, asmop>;
   2357   def CVTFdw : A64I_fpintI<0b0, 0b01, 0b00, {0, 1, o0}, FPR64, GPR32, asmop>;
   2358   def CVTFdx : A64I_fpintI<0b1, 0b01, 0b00, {0, 1, o0}, FPR64, GPR64, asmop>;
   2359 }
   2360 
   2361 defm S : A64I_inttofp<0b0, "scvtf">;
   2362 defm U : A64I_inttofp<0b1, "ucvtf">;
   2363 
   2364 def : Pat<(f32 (sint_to_fp i32:$Rn)), (SCVTFsw $Rn)>;
   2365 def : Pat<(f32 (sint_to_fp i64:$Rn)), (SCVTFsx $Rn)>;
   2366 def : Pat<(f64 (sint_to_fp i32:$Rn)), (SCVTFdw $Rn)>;
   2367 def : Pat<(f64 (sint_to_fp i64:$Rn)), (SCVTFdx $Rn)>;
   2368 def : Pat<(f32 (uint_to_fp i32:$Rn)), (UCVTFsw $Rn)>;
   2369 def : Pat<(f32 (uint_to_fp i64:$Rn)), (UCVTFsx $Rn)>;
   2370 def : Pat<(f64 (uint_to_fp i32:$Rn)), (UCVTFdw $Rn)>;
   2371 def : Pat<(f64 (uint_to_fp i64:$Rn)), (UCVTFdx $Rn)>;
   2372 
   2373 def FMOVws : A64I_fpintI<0b0, 0b00, 0b00, 0b110, GPR32, FPR32, "fmov">;
   2374 def FMOVsw : A64I_fpintI<0b0, 0b00, 0b00, 0b111, FPR32, GPR32, "fmov">;
   2375 def FMOVxd : A64I_fpintI<0b1, 0b01, 0b00, 0b110, GPR64, FPR64, "fmov">;
   2376 def FMOVdx : A64I_fpintI<0b1, 0b01, 0b00, 0b111, FPR64, GPR64, "fmov">;
   2377 
   2378 def : Pat<(i32 (bitconvert f32:$Rn)), (FMOVws $Rn)>;
   2379 def : Pat<(f32 (bitconvert i32:$Rn)), (FMOVsw $Rn)>;
   2380 def : Pat<(i64 (bitconvert f64:$Rn)), (FMOVxd $Rn)>;
   2381 def : Pat<(f64 (bitconvert i64:$Rn)), (FMOVdx $Rn)>;
   2382 
   2383 def lane1_asmoperand : AsmOperandClass {
   2384   let Name = "Lane1";
   2385   let RenderMethod = "addImmOperands";
   2386   let DiagnosticType = "Lane1";
   2387 }
   2388 
   2389 def lane1 : Operand<i32> {
   2390   let ParserMatchClass = lane1_asmoperand;
   2391   let PrintMethod = "printBareImmOperand";
   2392 }
   2393 
   2394 let DecoderMethod =  "DecodeFMOVLaneInstruction" in {
   2395   def FMOVxv : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b110,
   2396                           (outs GPR64:$Rd), (ins VPR128:$Rn, lane1:$Lane),
   2397                           "fmov\t$Rd, $Rn.d[$Lane]", [], NoItinerary>;
   2398 
   2399   def FMOVvx : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b111,
   2400                           (outs VPR128:$Rd), (ins GPR64:$Rn, lane1:$Lane),
   2401                           "fmov\t$Rd.d[$Lane], $Rn", [], NoItinerary>;
   2402 }
   2403 
   2404 def : InstAlias<"fmov $Rd, $Rn.2d[$Lane]",
   2405                 (FMOVxv GPR64:$Rd, VPR128:$Rn, lane1:$Lane), 0b0>;
   2406 
   2407 def : InstAlias<"fmov $Rd.2d[$Lane], $Rn",
   2408                 (FMOVvx VPR128:$Rd, GPR64:$Rn, lane1:$Lane), 0b0>;
   2409 
   2410 //===----------------------------------------------------------------------===//
   2411 // Floating-point immediate instructions
   2412 //===----------------------------------------------------------------------===//
   2413 // Contains: FMOV
   2414 
   2415 def fpimm_asmoperand : AsmOperandClass {
   2416   let Name = "FMOVImm";
   2417   let ParserMethod = "ParseFPImmOperand";
   2418   let DiagnosticType = "FPImm";
   2419 }
   2420 
   2421 // The MCOperand for these instructions are the encoded 8-bit values.
   2422 def SDXF_fpimm : SDNodeXForm<fpimm, [{
   2423   uint32_t Imm8;
   2424   A64Imms::isFPImm(N->getValueAPF(), Imm8);
   2425   return CurDAG->getTargetConstant(Imm8, MVT::i32);
   2426 }]>;
   2427 
   2428 class fmov_operand<ValueType FT>
   2429   : Operand<i32>,
   2430     PatLeaf<(FT fpimm), [{ return A64Imms::isFPImm(N->getValueAPF()); }],
   2431             SDXF_fpimm> {
   2432   let PrintMethod = "printFPImmOperand";
   2433   let ParserMatchClass = fpimm_asmoperand;
   2434 }
   2435 
   2436 def fmov32_operand : fmov_operand<f32>;
   2437 def fmov64_operand : fmov_operand<f64>;
   2438 
   2439 class A64I_fpimm_impl<bits<2> type, RegisterClass Reg, ValueType VT,
   2440                       Operand fmov_operand>
   2441   : A64I_fpimm<0b0, 0b0, type, 0b00000,
   2442                (outs Reg:$Rd),
   2443                (ins fmov_operand:$Imm8),
   2444                "fmov\t$Rd, $Imm8",
   2445                [(set VT:$Rd, fmov_operand:$Imm8)],
   2446                NoItinerary>;
   2447 
   2448 def FMOVsi : A64I_fpimm_impl<0b00, FPR32, f32, fmov32_operand>;
   2449 def FMOVdi : A64I_fpimm_impl<0b01, FPR64, f64, fmov64_operand>;
   2450 
   2451 //===----------------------------------------------------------------------===//
   2452 // Load-register (literal) instructions
   2453 //===----------------------------------------------------------------------===//
   2454 // Contains: LDR, LDRSW, PRFM
   2455 
   2456 def ldrlit_label_asmoperand : AsmOperandClass {
   2457   let Name = "LoadLitLabel";
   2458   let RenderMethod = "addLabelOperands<19, 4>";
   2459   let DiagnosticType = "Label";
   2460 }
   2461 
   2462 def ldrlit_label : Operand<i64> {
   2463   let EncoderMethod = "getLoadLitLabelOpValue";
   2464 
   2465   // This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
   2466   let PrintMethod = "printLabelOperand<19, 4>";
   2467   let ParserMatchClass = ldrlit_label_asmoperand;
   2468   let OperandType = "OPERAND_PCREL";
   2469 }
   2470 
   2471 // Various instructions take an immediate value (which can always be used),
   2472 // where some numbers have a symbolic name to make things easier. These operands
   2473 // and the associated functions abstract away the differences.
   2474 multiclass namedimm<string prefix, string mapper> {
   2475   def _asmoperand : AsmOperandClass {
   2476     let Name = "NamedImm" # prefix;
   2477     let PredicateMethod = "isUImm";
   2478     let RenderMethod = "addImmOperands";
   2479     let ParserMethod = "ParseNamedImmOperand<" # mapper # ">";
   2480     let DiagnosticType = "NamedImm_" # prefix;
   2481   }
   2482 
   2483   def _op : Operand<i32> {
   2484     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
   2485     let PrintMethod = "printNamedImmOperand<" # mapper # ">";
   2486     let DecoderMethod = "DecodeNamedImmOperand<" # mapper # ">";
   2487   }
   2488 }
   2489 
   2490 defm prefetch : namedimm<"prefetch", "A64PRFM::PRFMMapper">;
   2491 
   2492 class A64I_LDRlitSimple<bits<2> opc, bit v, RegisterClass OutReg,
   2493                       list<dag> patterns = []>
   2494    : A64I_LDRlit<opc, v, (outs OutReg:$Rt), (ins ldrlit_label:$Imm19),
   2495                  "ldr\t$Rt, $Imm19", patterns, NoItinerary>;
   2496 
   2497 let mayLoad = 1 in {
   2498   def LDRw_lit : A64I_LDRlitSimple<0b00, 0b0, GPR32>;
   2499   def LDRx_lit : A64I_LDRlitSimple<0b01, 0b0, GPR64>;
   2500 }
   2501 
   2502 def LDRs_lit  : A64I_LDRlitSimple<0b00, 0b1, FPR32>;
   2503 def LDRd_lit  : A64I_LDRlitSimple<0b01, 0b1, FPR64>;
   2504 
   2505 let mayLoad = 1 in {
   2506   def LDRq_lit : A64I_LDRlitSimple<0b10, 0b1, FPR128>;
   2507 
   2508 
   2509   def LDRSWx_lit : A64I_LDRlit<0b10, 0b0,
   2510                                (outs GPR64:$Rt),
   2511                                (ins ldrlit_label:$Imm19),
   2512                                "ldrsw\t$Rt, $Imm19",
   2513                                [], NoItinerary>;
   2514 
   2515   def PRFM_lit : A64I_LDRlit<0b11, 0b0,
   2516                              (outs), (ins prefetch_op:$Rt, ldrlit_label:$Imm19),
   2517                              "prfm\t$Rt, $Imm19",
   2518                              [], NoItinerary>;
   2519 }
   2520 
   2521 //===----------------------------------------------------------------------===//
   2522 // Load-store exclusive instructions
   2523 //===----------------------------------------------------------------------===//
   2524 // Contains: STXRB, STXRH, STXR, LDXRB, LDXRH, LDXR. STXP, LDXP, STLXRB,
   2525 //           STLXRH, STLXR, LDAXRB, LDAXRH, LDAXR, STLXP, LDAXP, STLRB,
   2526 //           STLRH, STLR, LDARB, LDARH, LDAR
   2527 
   2528 // Since these instructions have the undefined register bits set to 1 in
   2529 // their canonical form, we need a post encoder method to set those bits
   2530 // to 1 when encoding these instructions. We do this using the
   2531 // fixLoadStoreExclusive function. This function has template parameters:
   2532 //
   2533 // fixLoadStoreExclusive<int hasRs, int hasRt2>
   2534 //
   2535 // hasRs indicates that the instruction uses the Rs field, so we won't set
   2536 // it to 1 (and the same for Rt2). We don't need template parameters for
   2537 // the other register fiels since Rt and Rn are always used.
   2538 
   2539 // This operand parses a GPR64xsp register, followed by an optional immediate
   2540 // #0.
   2541 def GPR64xsp0_asmoperand : AsmOperandClass {
   2542   let Name = "GPR64xsp0";
   2543   let PredicateMethod = "isWrappedReg";
   2544   let RenderMethod = "addRegOperands";
   2545   let ParserMethod = "ParseLSXAddressOperand";
   2546   // Diagnostics are provided by ParserMethod
   2547 }
   2548 
   2549 def GPR64xsp0 : RegisterOperand<GPR64xsp> {
   2550   let ParserMatchClass = GPR64xsp0_asmoperand;
   2551 }
   2552 
   2553 //===----------------------------------
   2554 // Store-exclusive (releasing & normal)
   2555 //===----------------------------------
   2556 
   2557 class A64I_SRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2558                         dag ins, list<dag> pat,
   2559                         InstrItinClass itin> :
   2560        A64I_LDSTex_stn <size,
   2561                         opcode{2}, 0, opcode{1}, opcode{0},
   2562                         outs, ins,
   2563                         !strconcat(asm, "\t$Rs, $Rt, [$Rn]"),
   2564                         pat, itin> {
   2565   let mayStore = 1;
   2566   let PostEncoderMethod = "fixLoadStoreExclusive<1,0>";
   2567 }
   2568 
   2569 multiclass A64I_SRex<string asmstr, bits<3> opcode, string prefix> {
   2570   def _byte:  A64I_SRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
   2571                               (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2572                               [], NoItinerary>;
   2573 
   2574   def _hword:  A64I_SRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
   2575                                (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2576                                [],NoItinerary>;
   2577 
   2578   def _word:  A64I_SRexs_impl<0b10, opcode, asmstr,
   2579                               (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2580                               [], NoItinerary>;
   2581 
   2582   def _dword: A64I_SRexs_impl<0b11, opcode, asmstr,
   2583                               (outs GPR32:$Rs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
   2584                               [], NoItinerary>;
   2585 }
   2586 
   2587 defm STXR  : A64I_SRex<"stxr",  0b000, "STXR">;
   2588 defm STLXR : A64I_SRex<"stlxr", 0b001, "STLXR">;
   2589 
   2590 //===----------------------------------
   2591 // Loads
   2592 //===----------------------------------
   2593 
   2594 class A64I_LRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2595                         dag ins, list<dag> pat,
   2596                         InstrItinClass itin> :
   2597         A64I_LDSTex_tn <size,
   2598                         opcode{2}, 1, opcode{1}, opcode{0},
   2599                         outs, ins,
   2600                         !strconcat(asm, "\t$Rt, [$Rn]"),
   2601                         pat, itin> {
   2602   let mayLoad = 1;
   2603   let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
   2604 }
   2605 
   2606 multiclass A64I_LRex<string asmstr, bits<3> opcode> {
   2607   def _byte:  A64I_LRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
   2608                             (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
   2609                             [], NoItinerary>;
   2610 
   2611   def _hword:  A64I_LRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
   2612                             (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
   2613                             [], NoItinerary>;
   2614 
   2615   def _word:  A64I_LRexs_impl<0b10, opcode, asmstr,
   2616                             (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
   2617                             [], NoItinerary>;
   2618 
   2619   def _dword: A64I_LRexs_impl<0b11, opcode, asmstr,
   2620                             (outs GPR64:$Rt), (ins GPR64xsp0:$Rn),
   2621                             [], NoItinerary>;
   2622 }
   2623 
   2624 defm LDXR  : A64I_LRex<"ldxr",  0b000>;
   2625 defm LDAXR : A64I_LRex<"ldaxr", 0b001>;
   2626 defm LDAR  : A64I_LRex<"ldar",  0b101>;
   2627 
   2628 class acquiring_load<PatFrag base>
   2629   : PatFrag<(ops node:$ptr), (base node:$ptr), [{
   2630   AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
   2631   return Ordering == Acquire || Ordering == SequentiallyConsistent;
   2632 }]>;
   2633 
   2634 def atomic_load_acquire_8  : acquiring_load<atomic_load_8>;
   2635 def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
   2636 def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
   2637 def atomic_load_acquire_64 : acquiring_load<atomic_load_64>;
   2638 
   2639 def : Pat<(atomic_load_acquire_8  i64:$Rn), (LDAR_byte  $Rn)>;
   2640 def : Pat<(atomic_load_acquire_16 i64:$Rn), (LDAR_hword $Rn)>;
   2641 def : Pat<(atomic_load_acquire_32 i64:$Rn), (LDAR_word  $Rn)>;
   2642 def : Pat<(atomic_load_acquire_64 i64:$Rn), (LDAR_dword $Rn)>;
   2643 
   2644 //===----------------------------------
   2645 // Store-release (no exclusivity)
   2646 //===----------------------------------
   2647 
   2648 class A64I_SLexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2649                         dag ins, list<dag> pat,
   2650                         InstrItinClass itin> :
   2651         A64I_LDSTex_tn <size,
   2652                         opcode{2}, 0, opcode{1}, opcode{0},
   2653                         outs, ins,
   2654                         !strconcat(asm, "\t$Rt, [$Rn]"),
   2655                         pat, itin> {
   2656   let mayStore = 1;
   2657   let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
   2658 }
   2659 
   2660 class releasing_store<PatFrag base>
   2661   : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
   2662   AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
   2663   return Ordering == Release || Ordering == SequentiallyConsistent;
   2664 }]>;
   2665 
   2666 def atomic_store_release_8  : releasing_store<atomic_store_8>;
   2667 def atomic_store_release_16 : releasing_store<atomic_store_16>;
   2668 def atomic_store_release_32 : releasing_store<atomic_store_32>;
   2669 def atomic_store_release_64 : releasing_store<atomic_store_64>;
   2670 
   2671 multiclass A64I_SLex<string asmstr, bits<3> opcode, string prefix> {
   2672   def _byte:  A64I_SLexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
   2673                             (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2674                             [(atomic_store_release_8 i64:$Rn, i32:$Rt)],
   2675                             NoItinerary>;
   2676 
   2677   def _hword:  A64I_SLexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
   2678                            (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2679                            [(atomic_store_release_16 i64:$Rn, i32:$Rt)],
   2680                            NoItinerary>;
   2681 
   2682   def _word:  A64I_SLexs_impl<0b10, opcode, asmstr,
   2683                            (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2684                            [(atomic_store_release_32 i64:$Rn, i32:$Rt)],
   2685                            NoItinerary>;
   2686 
   2687   def _dword: A64I_SLexs_impl<0b11, opcode, asmstr,
   2688                            (outs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
   2689                            [(atomic_store_release_64 i64:$Rn, i64:$Rt)],
   2690                            NoItinerary>;
   2691 }
   2692 
   2693 defm STLR  : A64I_SLex<"stlr", 0b101, "STLR">;
   2694 
   2695 //===----------------------------------
   2696 // Store-exclusive pair (releasing & normal)
   2697 //===----------------------------------
   2698 
   2699 class A64I_SPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2700                         dag ins, list<dag> pat,
   2701                         InstrItinClass itin> :
   2702      A64I_LDSTex_stt2n <size,
   2703                         opcode{2}, 0, opcode{1}, opcode{0},
   2704                         outs, ins,
   2705                         !strconcat(asm, "\t$Rs, $Rt, $Rt2, [$Rn]"),
   2706                         pat, itin> {
   2707   let mayStore = 1;
   2708 }
   2709 
   2710 
   2711 multiclass A64I_SPex<string asmstr, bits<3> opcode> {
   2712   def _word:  A64I_SPexs_impl<0b10, opcode, asmstr, (outs),
   2713                             (ins GPR32:$Rs, GPR32:$Rt, GPR32:$Rt2,
   2714                                  GPR64xsp0:$Rn),
   2715                             [], NoItinerary>;
   2716 
   2717   def _dword: A64I_SPexs_impl<0b11, opcode, asmstr, (outs),
   2718                             (ins GPR32:$Rs, GPR64:$Rt, GPR64:$Rt2,
   2719                                             GPR64xsp0:$Rn),
   2720                             [], NoItinerary>;
   2721 }
   2722 
   2723 defm STXP  : A64I_SPex<"stxp", 0b010>;
   2724 defm STLXP : A64I_SPex<"stlxp", 0b011>;
   2725 
   2726 //===----------------------------------
   2727 // Load-exclusive pair (acquiring & normal)
   2728 //===----------------------------------
   2729 
   2730 class A64I_LPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2731                         dag ins, list<dag> pat,
   2732                         InstrItinClass itin> :
   2733       A64I_LDSTex_tt2n <size,
   2734                         opcode{2}, 1, opcode{1}, opcode{0},
   2735                         outs, ins,
   2736                         !strconcat(asm, "\t$Rt, $Rt2, [$Rn]"),
   2737                         pat, itin>{
   2738   let mayLoad = 1;
   2739   let DecoderMethod = "DecodeLoadPairExclusiveInstruction";
   2740   let PostEncoderMethod = "fixLoadStoreExclusive<0,1>";
   2741 }
   2742 
   2743 multiclass A64I_LPex<string asmstr, bits<3> opcode> {
   2744   def _word:  A64I_LPexs_impl<0b10, opcode, asmstr,
   2745                             (outs GPR32:$Rt, GPR32:$Rt2),
   2746                             (ins GPR64xsp0:$Rn),
   2747                             [], NoItinerary>;
   2748 
   2749   def _dword: A64I_LPexs_impl<0b11, opcode, asmstr,
   2750                             (outs GPR64:$Rt, GPR64:$Rt2),
   2751                             (ins GPR64xsp0:$Rn),
   2752                             [], NoItinerary>;
   2753 }
   2754 
   2755 defm LDXP  : A64I_LPex<"ldxp", 0b010>;
   2756 defm LDAXP : A64I_LPex<"ldaxp", 0b011>;
   2757 
   2758 //===----------------------------------------------------------------------===//
   2759 // Load-store register (unscaled immediate) instructions
   2760 //===----------------------------------------------------------------------===//
   2761 // Contains: LDURB, LDURH, LDRUSB, LDRUSH, LDRUSW, STUR, STURB, STURH and PRFUM
   2762 //
   2763 // and
   2764 //
   2765 //===----------------------------------------------------------------------===//
   2766 // Load-store register (register offset) instructions
   2767 //===----------------------------------------------------------------------===//
   2768 // Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
   2769 //
   2770 // and
   2771 //
   2772 //===----------------------------------------------------------------------===//
   2773 // Load-store register (unsigned immediate) instructions
   2774 //===----------------------------------------------------------------------===//
   2775 // Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
   2776 //
   2777 // and
   2778 //
   2779 //===----------------------------------------------------------------------===//
   2780 // Load-store register (immediate post-indexed) instructions
   2781 //===----------------------------------------------------------------------===//
   2782 // Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
   2783 //
   2784 // and
   2785 //
   2786 //===----------------------------------------------------------------------===//
   2787 // Load-store register (immediate pre-indexed) instructions
   2788 //===----------------------------------------------------------------------===//
   2789 // Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
   2790 
   2791 // Note that patterns are much later on in a completely separate section (they
   2792 // need ADRPxi to be defined).
   2793 
   2794 //===-------------------------------
   2795 // 1. Various operands needed
   2796 //===-------------------------------
   2797 
   2798 //===-------------------------------
   2799 // 1.1 Unsigned 12-bit immediate operands
   2800 //===-------------------------------
   2801 // The addressing mode for these instructions consists of an unsigned 12-bit
   2802 // immediate which is scaled by the size of the memory access.
   2803 //
   2804 // We represent this in the MC layer by two operands:
   2805 //     1. A base register.
   2806 //     2. A 12-bit immediate: not multiplied by access size, so "LDR x0,[x0,#8]"
   2807 //        would have '1' in this field.
   2808 // This means that separate functions are needed for converting representations
   2809 // which *are* aware of the intended access size.
   2810 
   2811 // Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
   2812 // know the access size via some means. An isolated operand does not have this
   2813 // information unless told from here, which means we need separate tablegen
   2814 // Operands for each access size. This multiclass takes care of instantiating
   2815 // the correct template functions in the rest of the backend.
   2816 
   2817 //===-------------------------------
   2818 // 1.1 Unsigned 12-bit immediate operands
   2819 //===-------------------------------
   2820 
   2821 multiclass offsets_uimm12<int MemSize, string prefix> {
   2822   def uimm12_asmoperand : AsmOperandClass {
   2823     let Name = "OffsetUImm12_" # MemSize;
   2824     let PredicateMethod = "isOffsetUImm12<" # MemSize # ">";
   2825     let RenderMethod = "addOffsetUImm12Operands<" # MemSize # ">";
   2826     let DiagnosticType = "LoadStoreUImm12_" # MemSize;
   2827   }
   2828 
   2829   // Pattern is really no more than an ImmLeaf, but predicated on MemSize which
   2830   // complicates things beyond TableGen's ken.
   2831   def uimm12 : Operand<i64>,
   2832                ComplexPattern<i64, 1, "SelectOffsetUImm12<" # MemSize # ">"> {
   2833     let ParserMatchClass
   2834       = !cast<AsmOperandClass>(prefix # uimm12_asmoperand);
   2835 
   2836     let PrintMethod = "printOffsetUImm12Operand<" # MemSize # ">";
   2837     let EncoderMethod = "getOffsetUImm12OpValue<" # MemSize # ">";
   2838   }
   2839 }
   2840 
   2841 defm byte_  : offsets_uimm12<1, "byte_">;
   2842 defm hword_ : offsets_uimm12<2, "hword_">;
   2843 defm word_  : offsets_uimm12<4, "word_">;
   2844 defm dword_ : offsets_uimm12<8, "dword_">;
   2845 defm qword_ : offsets_uimm12<16, "qword_">;
   2846 
   2847 //===-------------------------------
   2848 // 1.1 Signed 9-bit immediate operands
   2849 //===-------------------------------
   2850 
   2851 // The MCInst is expected to store the bit-wise encoding of the value,
   2852 // which amounts to lopping off the extended sign bits.
   2853 def SDXF_simm9 : SDNodeXForm<imm, [{
   2854   return CurDAG->getTargetConstant(N->getZExtValue() & 0x1ff, MVT::i32);
   2855 }]>;
   2856 
   2857 def simm9_asmoperand : AsmOperandClass {
   2858   let Name = "SImm9";
   2859   let PredicateMethod = "isSImm<9>";
   2860   let RenderMethod = "addSImmOperands<9>";
   2861   let DiagnosticType = "LoadStoreSImm9";
   2862 }
   2863 
   2864 def simm9 : Operand<i64>,
   2865             ImmLeaf<i64, [{ return Imm >= -0x100 && Imm <= 0xff; }],
   2866             SDXF_simm9> {
   2867   let PrintMethod = "printOffsetSImm9Operand";
   2868   let ParserMatchClass = simm9_asmoperand;
   2869 }
   2870 
   2871 
   2872 //===-------------------------------
   2873 // 1.3 Register offset extensions
   2874 //===-------------------------------
   2875 
   2876 // The assembly-syntax for these addressing-modes is:
   2877 //    [<Xn|SP>, <R><m> {, <extend> {<amount>}}]
   2878 //
   2879 // The essential semantics are:
   2880 //     + <amount> is a shift: #<log(transfer size)> or #0
   2881 //     + <R> can be W or X.
   2882 //     + If <R> is W, <extend> can be UXTW or SXTW
   2883 //     + If <R> is X, <extend> can be LSL or SXTX
   2884 //
   2885 // The trickiest of those constraints is that Rm can be either GPR32 or GPR64,
   2886 // which will need separate instructions for LLVM type-consistency. We'll also
   2887 // need separate operands, of course.
   2888 multiclass regexts<int MemSize, int RmSize, RegisterClass GPR,
   2889                    string Rm, string prefix> {
   2890   def regext_asmoperand : AsmOperandClass {
   2891     let Name = "AddrRegExtend_" # MemSize # "_" #  Rm;
   2892     let PredicateMethod = "isAddrRegExtend<" # MemSize # "," # RmSize # ">";
   2893     let RenderMethod = "addAddrRegExtendOperands<" # MemSize # ">";
   2894     let DiagnosticType = "LoadStoreExtend" # RmSize # "_" # MemSize;
   2895   }
   2896 
   2897   def regext : Operand<i64> {
   2898     let PrintMethod
   2899       = "printAddrRegExtendOperand<" # MemSize # ", " # RmSize # ">";
   2900 
   2901     let DecoderMethod = "DecodeAddrRegExtendOperand";
   2902     let ParserMatchClass
   2903       = !cast<AsmOperandClass>(prefix # regext_asmoperand);
   2904   }
   2905 }
   2906 
   2907 multiclass regexts_wx<int MemSize, string prefix> {
   2908   // Rm is an X-register if LSL or SXTX are specified as the shift.
   2909   defm Xm_ : regexts<MemSize, 64, GPR64, "Xm", prefix # "Xm_">;
   2910 
   2911   // Rm is a W-register if UXTW or SXTW are specified as the shift.
   2912   defm Wm_ : regexts<MemSize, 32, GPR32, "Wm", prefix # "Wm_">;
   2913 }
   2914 
   2915 defm byte_  : regexts_wx<1, "byte_">;
   2916 defm hword_ : regexts_wx<2, "hword_">;
   2917 defm word_  : regexts_wx<4, "word_">;
   2918 defm dword_ : regexts_wx<8, "dword_">;
   2919 defm qword_ : regexts_wx<16, "qword_">;
   2920 
   2921 
   2922 //===------------------------------
   2923 // 2. The instructions themselves.
   2924 //===------------------------------
   2925 
   2926 // We have the following instructions to implement:
   2927 // |                 | B     | H     | W     | X      |
   2928 // |-----------------+-------+-------+-------+--------|
   2929 // | unsigned str    | STRB  | STRH  | STR   | STR    |
   2930 // | unsigned ldr    | LDRB  | LDRH  | LDR   | LDR    |
   2931 // | signed ldr to W | LDRSB | LDRSH | -     | -      |
   2932 // | signed ldr to X | LDRSB | LDRSH | LDRSW | (PRFM) |
   2933 
   2934 // This will instantiate the LDR/STR instructions you'd expect to use for an
   2935 // unsigned datatype (first two rows above) or floating-point register, which is
   2936 // reasonably uniform across all access sizes.
   2937 
   2938 
   2939 //===------------------------------
   2940 // 2.1 Regular instructions
   2941 //===------------------------------
   2942 
   2943 // This class covers the basic unsigned or irrelevantly-signed loads and stores,
   2944 // to general-purpose and floating-point registers.
   2945 
   2946 class AddrParams<string prefix> {
   2947   Operand uimm12 = !cast<Operand>(prefix # "_uimm12");
   2948 
   2949   Operand regextWm = !cast<Operand>(prefix # "_Wm_regext");
   2950   Operand regextXm = !cast<Operand>(prefix # "_Xm_regext");
   2951 }
   2952 
   2953 def byte_addrparams : AddrParams<"byte">;
   2954 def hword_addrparams : AddrParams<"hword">;
   2955 def word_addrparams : AddrParams<"word">;
   2956 def dword_addrparams : AddrParams<"dword">;
   2957 def qword_addrparams : AddrParams<"qword">;
   2958 
   2959 multiclass A64I_LDRSTR_unsigned<string prefix, bits<2> size, bit v,
   2960                                 bit high_opc, string asmsuffix,
   2961                                 RegisterClass GPR, AddrParams params> {
   2962   // Unsigned immediate
   2963   def _STR : A64I_LSunsigimm<size, v, {high_opc, 0b0},
   2964                      (outs), (ins GPR:$Rt, GPR64xsp:$Rn, params.uimm12:$UImm12),
   2965                      "str" # asmsuffix # "\t$Rt, [$Rn, $UImm12]",
   2966                      [], NoItinerary> {
   2967     let mayStore = 1;
   2968   }
   2969   def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn]",
   2970                 (!cast<Instruction>(prefix # "_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   2971 
   2972   def _LDR : A64I_LSunsigimm<size, v, {high_opc, 0b1},
   2973                       (outs GPR:$Rt), (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
   2974                       "ldr" #  asmsuffix # "\t$Rt, [$Rn, $UImm12]",
   2975                       [], NoItinerary> {
   2976     let mayLoad = 1;
   2977   }
   2978   def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn]",
   2979                 (!cast<Instruction>(prefix # "_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   2980 
   2981   // Register offset (four of these: load/store and Wm/Xm).
   2982   let mayLoad = 1 in {
   2983     def _Wm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b0,
   2984                             (outs GPR:$Rt),
   2985                             (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
   2986                             "ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
   2987                             [], NoItinerary>;
   2988 
   2989     def _Xm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b1,
   2990                             (outs GPR:$Rt),
   2991                             (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
   2992                             "ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
   2993                             [], NoItinerary>;
   2994   }
   2995   def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn, $Rm]",
   2996         (!cast<Instruction>(prefix # "_Xm_RegOffset_LDR") GPR:$Rt, GPR64xsp:$Rn,
   2997                                                           GPR64:$Rm, 2)>;
   2998 
   2999   let mayStore = 1 in {
   3000     def _Wm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b0,
   3001                                   (outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR32:$Rm,
   3002                                                params.regextWm:$Ext),
   3003                                   "str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
   3004                                   [], NoItinerary>;
   3005 
   3006     def _Xm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b1,
   3007                                   (outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR64:$Rm,
   3008                                                params.regextXm:$Ext),
   3009                                   "str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
   3010                                   [], NoItinerary>;
   3011   }
   3012   def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn, $Rm]",
   3013       (!cast<Instruction>(prefix # "_Xm_RegOffset_STR") GPR:$Rt, GPR64xsp:$Rn,
   3014                                                         GPR64:$Rm, 2)>;
   3015 
   3016   // Unaligned immediate
   3017   def _STUR : A64I_LSunalimm<size, v, {high_opc, 0b0},
   3018                              (outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   3019                              "stur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
   3020                              [], NoItinerary> {
   3021     let mayStore = 1;
   3022   }
   3023   def : InstAlias<"stur" # asmsuffix # " $Rt, [$Rn]",
   3024                (!cast<Instruction>(prefix # "_STUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   3025 
   3026   def _LDUR : A64I_LSunalimm<size, v, {high_opc, 0b1},
   3027                              (outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
   3028                              "ldur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
   3029                              [], NoItinerary> {
   3030     let mayLoad = 1;
   3031   }
   3032   def : InstAlias<"ldur" # asmsuffix # " $Rt, [$Rn]",
   3033                (!cast<Instruction>(prefix # "_LDUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   3034 
   3035   // Post-indexed
   3036   def _PostInd_STR : A64I_LSpostind<size, v, {high_opc, 0b0},
   3037                                (outs GPR64xsp:$Rn_wb),
   3038                                (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   3039                                "str" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
   3040                                [], NoItinerary> {
   3041     let Constraints = "$Rn = $Rn_wb";
   3042     let mayStore = 1;
   3043 
   3044     // Decoder only needed for unpredictability checking (FIXME).
   3045     let DecoderMethod = "DecodeSingleIndexedInstruction";
   3046   }
   3047 
   3048   def _PostInd_LDR : A64I_LSpostind<size, v, {high_opc, 0b1},
   3049                                     (outs GPR:$Rt, GPR64xsp:$Rn_wb),
   3050                                     (ins GPR64xsp:$Rn, simm9:$SImm9),
   3051                                     "ldr" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
   3052                                     [], NoItinerary> {
   3053     let mayLoad = 1;
   3054     let Constraints = "$Rn = $Rn_wb";
   3055     let DecoderMethod = "DecodeSingleIndexedInstruction";
   3056   }
   3057 
   3058   // Pre-indexed
   3059   def _PreInd_STR : A64I_LSpreind<size, v, {high_opc, 0b0},
   3060                                (outs GPR64xsp:$Rn_wb),
   3061                                (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   3062                                "str" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
   3063                                [], NoItinerary> {
   3064     let Constraints = "$Rn = $Rn_wb";
   3065     let mayStore = 1;
   3066 
   3067     // Decoder only needed for unpredictability checking (FIXME).
   3068     let DecoderMethod = "DecodeSingleIndexedInstruction";
   3069   }
   3070 
   3071   def _PreInd_LDR : A64I_LSpreind<size, v, {high_opc, 0b1},
   3072                                     (outs GPR:$Rt, GPR64xsp:$Rn_wb),
   3073                                     (ins GPR64xsp:$Rn, simm9:$SImm9),
   3074                                     "ldr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
   3075                                     [], NoItinerary> {
   3076     let mayLoad = 1;
   3077     let Constraints = "$Rn = $Rn_wb";
   3078     let DecoderMethod = "DecodeSingleIndexedInstruction";
   3079   }
   3080 
   3081 }
   3082 
   3083 // STRB/LDRB: First define the instructions
   3084 defm LS8
   3085   : A64I_LDRSTR_unsigned<"LS8", 0b00, 0b0, 0b0, "b", GPR32, byte_addrparams>;
   3086 
   3087 // STRH/LDRH
   3088 defm LS16
   3089   : A64I_LDRSTR_unsigned<"LS16", 0b01, 0b0, 0b0, "h", GPR32, hword_addrparams>;
   3090 
   3091 
   3092 // STR/LDR to/from a W register
   3093 defm LS32
   3094   : A64I_LDRSTR_unsigned<"LS32", 0b10, 0b0, 0b0, "", GPR32, word_addrparams>;
   3095 
   3096 // STR/LDR to/from an X register
   3097 defm LS64
   3098   : A64I_LDRSTR_unsigned<"LS64", 0b11, 0b0, 0b0, "", GPR64, dword_addrparams>;
   3099 
   3100 // STR/LDR to/from a B register
   3101 defm LSFP8
   3102   : A64I_LDRSTR_unsigned<"LSFP8", 0b00, 0b1, 0b0, "", FPR8, byte_addrparams>;
   3103 
   3104 // STR/LDR to/from an H register
   3105 defm LSFP16
   3106   : A64I_LDRSTR_unsigned<"LSFP16", 0b01, 0b1, 0b0, "", FPR16, hword_addrparams>;
   3107 
   3108 // STR/LDR to/from an S register
   3109 defm LSFP32
   3110   : A64I_LDRSTR_unsigned<"LSFP32", 0b10, 0b1, 0b0, "", FPR32, word_addrparams>;
   3111 // STR/LDR to/from a D register
   3112 defm LSFP64
   3113   : A64I_LDRSTR_unsigned<"LSFP64", 0b11, 0b1, 0b0, "", FPR64, dword_addrparams>;
   3114 // STR/LDR to/from a Q register
   3115 defm LSFP128
   3116   : A64I_LDRSTR_unsigned<"LSFP128", 0b00, 0b1, 0b1, "", FPR128,
   3117                          qword_addrparams>;
   3118 
   3119 //===------------------------------
   3120 // 2.3 Signed loads
   3121 //===------------------------------
   3122 
   3123 // Byte and half-word signed loads can both go into either an X or a W register,
   3124 // so it's worth factoring out. Signed word loads don't fit because there is no
   3125 // W version.
   3126 multiclass A64I_LDR_signed<bits<2> size, string asmopcode, AddrParams params,
   3127                            string prefix> {
   3128   // Unsigned offset
   3129   def w : A64I_LSunsigimm<size, 0b0, 0b11,
   3130                           (outs GPR32:$Rt),
   3131                           (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
   3132                           "ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
   3133                           [], NoItinerary> {
   3134     let mayLoad = 1;
   3135   }
   3136   def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
   3137                   (!cast<Instruction>(prefix # w) GPR32:$Rt, GPR64xsp:$Rn, 0)>;
   3138 
   3139   def x : A64I_LSunsigimm<size, 0b0, 0b10,
   3140                           (outs GPR64:$Rt),
   3141                           (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
   3142                           "ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
   3143                           [], NoItinerary> {
   3144     let mayLoad = 1;
   3145   }
   3146   def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
   3147                   (!cast<Instruction>(prefix # x) GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3148 
   3149   // Register offset
   3150   let mayLoad = 1 in {
   3151     def w_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b0,
   3152                             (outs GPR32:$Rt),
   3153                             (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
   3154                             "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
   3155                             [], NoItinerary>;
   3156 
   3157     def w_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b1,
   3158                             (outs GPR32:$Rt),
   3159                             (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
   3160                             "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
   3161                             [], NoItinerary>;
   3162 
   3163     def x_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b0,
   3164                             (outs GPR64:$Rt),
   3165                             (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
   3166                             "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
   3167                             [], NoItinerary>;
   3168 
   3169     def x_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b1,
   3170                             (outs GPR64:$Rt),
   3171                             (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
   3172                             "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
   3173                             [], NoItinerary>;
   3174   }
   3175   def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
   3176         (!cast<Instruction>(prefix # "w_Xm_RegOffset") GPR32:$Rt, GPR64xsp:$Rn,
   3177                                                        GPR64:$Rm, 2)>;
   3178 
   3179   def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
   3180         (!cast<Instruction>(prefix # "x_Xm_RegOffset") GPR64:$Rt, GPR64xsp:$Rn,
   3181                                                        GPR64:$Rm, 2)>;
   3182 
   3183 
   3184   let mayLoad = 1 in {
   3185     // Unaligned offset
   3186     def w_U : A64I_LSunalimm<size, 0b0, 0b11,
   3187                              (outs GPR32:$Rt),
   3188                              (ins GPR64xsp:$Rn, simm9:$SImm9),
   3189                              "ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
   3190                              [], NoItinerary>;
   3191 
   3192     def x_U : A64I_LSunalimm<size, 0b0, 0b10,
   3193                              (outs GPR64:$Rt),
   3194                              (ins GPR64xsp:$Rn, simm9:$SImm9),
   3195                              "ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
   3196                              [], NoItinerary>;
   3197 
   3198 
   3199     // Post-indexed
   3200     def w_PostInd : A64I_LSpostind<size, 0b0, 0b11,
   3201                                  (outs GPR32:$Rt, GPR64xsp:$Rn_wb),
   3202                                  (ins GPR64xsp:$Rn, simm9:$SImm9),
   3203                                  "ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
   3204                                  [], NoItinerary> {
   3205       let Constraints = "$Rn = $Rn_wb";
   3206       let DecoderMethod = "DecodeSingleIndexedInstruction";
   3207     }
   3208 
   3209     def x_PostInd : A64I_LSpostind<size, 0b0, 0b10,
   3210                                    (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
   3211                                    (ins GPR64xsp:$Rn, simm9:$SImm9),
   3212                                    "ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
   3213                                    [], NoItinerary> {
   3214       let Constraints = "$Rn = $Rn_wb";
   3215       let DecoderMethod = "DecodeSingleIndexedInstruction";
   3216     }
   3217 
   3218     // Pre-indexed
   3219     def w_PreInd : A64I_LSpreind<size, 0b0, 0b11,
   3220                                  (outs GPR32:$Rt, GPR64xsp:$Rn_wb),
   3221                                  (ins GPR64xsp:$Rn, simm9:$SImm9),
   3222                                  "ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
   3223                                  [], NoItinerary> {
   3224       let Constraints = "$Rn = $Rn_wb";
   3225       let DecoderMethod = "DecodeSingleIndexedInstruction";
   3226     }
   3227 
   3228     def x_PreInd : A64I_LSpreind<size, 0b0, 0b10,
   3229                                  (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
   3230                                  (ins GPR64xsp:$Rn, simm9:$SImm9),
   3231                                  "ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
   3232                                  [], NoItinerary> {
   3233       let Constraints = "$Rn = $Rn_wb";
   3234       let DecoderMethod = "DecodeSingleIndexedInstruction";
   3235     }
   3236   } // let mayLoad = 1
   3237 }
   3238 
   3239 // LDRSB
   3240 defm LDRSB : A64I_LDR_signed<0b00, "b", byte_addrparams, "LDRSB">;
   3241 // LDRSH
   3242 defm LDRSH : A64I_LDR_signed<0b01, "h", hword_addrparams, "LDRSH">;
   3243 
   3244 // LDRSW: load a 32-bit register, sign-extending to 64-bits.
   3245 def LDRSWx
   3246     : A64I_LSunsigimm<0b10, 0b0, 0b10,
   3247                     (outs GPR64:$Rt),
   3248                     (ins GPR64xsp:$Rn, word_uimm12:$UImm12),
   3249                     "ldrsw\t$Rt, [$Rn, $UImm12]",
   3250                     [], NoItinerary> {
   3251   let mayLoad = 1;
   3252 }
   3253 def : InstAlias<"ldrsw $Rt, [$Rn]", (LDRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3254 
   3255 let mayLoad = 1 in {
   3256   def LDRSWx_Wm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b0,
   3257                              (outs GPR64:$Rt),
   3258                              (ins GPR64xsp:$Rn, GPR32:$Rm, word_Wm_regext:$Ext),
   3259                              "ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
   3260                              [], NoItinerary>;
   3261 
   3262   def LDRSWx_Xm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b1,
   3263                              (outs GPR64:$Rt),
   3264                              (ins GPR64xsp:$Rn, GPR64:$Rm, word_Xm_regext:$Ext),
   3265                              "ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
   3266                              [], NoItinerary>;
   3267 }
   3268 def : InstAlias<"ldrsw $Rt, [$Rn, $Rm]",
   3269                 (LDRSWx_Xm_RegOffset GPR64:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>;
   3270 
   3271 
   3272 def LDURSWx
   3273     : A64I_LSunalimm<0b10, 0b0, 0b10,
   3274                     (outs GPR64:$Rt),
   3275                     (ins GPR64xsp:$Rn, simm9:$SImm9),
   3276                     "ldursw\t$Rt, [$Rn, $SImm9]",
   3277                     [], NoItinerary> {
   3278   let mayLoad = 1;
   3279 }
   3280 def : InstAlias<"ldursw $Rt, [$Rn]", (LDURSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3281 
   3282 def LDRSWx_PostInd
   3283     : A64I_LSpostind<0b10, 0b0, 0b10,
   3284                     (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
   3285                     (ins GPR64xsp:$Rn, simm9:$SImm9),
   3286                     "ldrsw\t$Rt, [$Rn], $SImm9",
   3287                     [], NoItinerary> {
   3288   let mayLoad = 1;
   3289   let Constraints = "$Rn = $Rn_wb";
   3290   let DecoderMethod = "DecodeSingleIndexedInstruction";
   3291 }
   3292 
   3293 def LDRSWx_PreInd : A64I_LSpreind<0b10, 0b0, 0b10,
   3294                                  (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
   3295                                  (ins GPR64xsp:$Rn, simm9:$SImm9),
   3296                                  "ldrsw\t$Rt, [$Rn, $SImm9]!",
   3297                                  [], NoItinerary> {
   3298   let mayLoad = 1;
   3299   let Constraints = "$Rn = $Rn_wb";
   3300   let DecoderMethod = "DecodeSingleIndexedInstruction";
   3301 }
   3302 
   3303 //===------------------------------
   3304 // 2.4 Prefetch operations
   3305 //===------------------------------
   3306 
   3307 def PRFM : A64I_LSunsigimm<0b11, 0b0, 0b10, (outs),
   3308                  (ins prefetch_op:$Rt, GPR64xsp:$Rn, dword_uimm12:$UImm12),
   3309                  "prfm\t$Rt, [$Rn, $UImm12]",
   3310                  [], NoItinerary> {
   3311   let mayLoad = 1;
   3312 }
   3313 def : InstAlias<"prfm $Rt, [$Rn]",
   3314                 (PRFM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
   3315 
   3316 let mayLoad = 1 in {
   3317   def PRFM_Wm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b0, (outs),
   3318                                         (ins prefetch_op:$Rt, GPR64xsp:$Rn,
   3319                                              GPR32:$Rm, dword_Wm_regext:$Ext),
   3320                                         "prfm\t$Rt, [$Rn, $Rm, $Ext]",
   3321                                         [], NoItinerary>;
   3322   def PRFM_Xm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b1, (outs),
   3323                                         (ins prefetch_op:$Rt, GPR64xsp:$Rn,
   3324                                              GPR64:$Rm, dword_Xm_regext:$Ext),
   3325                                         "prfm\t$Rt, [$Rn, $Rm, $Ext]",
   3326                                         [], NoItinerary>;
   3327 }
   3328 
   3329 def : InstAlias<"prfm $Rt, [$Rn, $Rm]",
   3330                 (PRFM_Xm_RegOffset prefetch_op:$Rt, GPR64xsp:$Rn,
   3331                                    GPR64:$Rm, 2)>;
   3332 
   3333 
   3334 def PRFUM : A64I_LSunalimm<0b11, 0b0, 0b10, (outs),
   3335                          (ins prefetch_op:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   3336                          "prfum\t$Rt, [$Rn, $SImm9]",
   3337                          [], NoItinerary> {
   3338   let mayLoad = 1;
   3339 }
   3340 def : InstAlias<"prfum $Rt, [$Rn]",
   3341                 (PRFUM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
   3342 
   3343 //===----------------------------------------------------------------------===//
   3344 // Load-store register (unprivileged) instructions
   3345 //===----------------------------------------------------------------------===//
   3346 // Contains: LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB and STTRH
   3347 
   3348 // These instructions very much mirror the "unscaled immediate" loads, but since
   3349 // there are no floating-point variants we need to split them out into their own
   3350 // section to avoid instantiation of "ldtr d0, [sp]" etc.
   3351 
   3352 multiclass A64I_LDTRSTTR<bits<2> size, string asmsuffix, RegisterClass GPR,
   3353                          string prefix> {
   3354   def _UnPriv_STR : A64I_LSunpriv<size, 0b0, 0b00,
   3355                               (outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   3356                               "sttr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
   3357                               [], NoItinerary> {
   3358     let mayStore = 1;
   3359   }
   3360 
   3361   def : InstAlias<"sttr" # asmsuffix # " $Rt, [$Rn]",
   3362          (!cast<Instruction>(prefix # "_UnPriv_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   3363 
   3364   def _UnPriv_LDR : A64I_LSunpriv<size, 0b0, 0b01,
   3365                                (outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
   3366                                "ldtr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
   3367                                [], NoItinerary> {
   3368     let mayLoad = 1;
   3369   }
   3370 
   3371   def : InstAlias<"ldtr" # asmsuffix # " $Rt, [$Rn]",
   3372          (!cast<Instruction>(prefix # "_UnPriv_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   3373 
   3374 }
   3375 
   3376 // STTRB/LDTRB: First define the instructions
   3377 defm LS8 : A64I_LDTRSTTR<0b00, "b", GPR32, "LS8">;
   3378 
   3379 // STTRH/LDTRH
   3380 defm LS16 : A64I_LDTRSTTR<0b01, "h", GPR32, "LS16">;
   3381 
   3382 // STTR/LDTR to/from a W register
   3383 defm LS32 : A64I_LDTRSTTR<0b10, "", GPR32, "LS32">;
   3384 
   3385 // STTR/LDTR to/from an X register
   3386 defm LS64 : A64I_LDTRSTTR<0b11, "", GPR64, "LS64">;
   3387 
   3388 // Now a class for the signed instructions that can go to either 32 or 64
   3389 // bits...
   3390 multiclass A64I_LDTR_signed<bits<2> size, string asmopcode, string prefix> {
   3391   let mayLoad = 1 in {
   3392     def w : A64I_LSunpriv<size, 0b0, 0b11,
   3393                           (outs GPR32:$Rt),
   3394                           (ins GPR64xsp:$Rn, simm9:$SImm9),
   3395                           "ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
   3396                           [], NoItinerary>;
   3397 
   3398     def x : A64I_LSunpriv<size, 0b0, 0b10,
   3399                           (outs GPR64:$Rt),
   3400                           (ins GPR64xsp:$Rn, simm9:$SImm9),
   3401                           "ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
   3402                           [], NoItinerary>;
   3403   }
   3404 
   3405   def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
   3406                  (!cast<Instruction>(prefix # "w") GPR32:$Rt, GPR64xsp:$Rn, 0)>;
   3407 
   3408   def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
   3409                  (!cast<Instruction>(prefix # "x") GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3410 
   3411 }
   3412 
   3413 // LDTRSB
   3414 defm LDTRSB : A64I_LDTR_signed<0b00, "b", "LDTRSB">;
   3415 // LDTRSH
   3416 defm LDTRSH : A64I_LDTR_signed<0b01, "h", "LDTRSH">;
   3417 
   3418 // And finally LDTRSW which only goes to 64 bits.
   3419 def LDTRSWx : A64I_LSunpriv<0b10, 0b0, 0b10,
   3420                             (outs GPR64:$Rt),
   3421                             (ins GPR64xsp:$Rn, simm9:$SImm9),
   3422                             "ldtrsw\t$Rt, [$Rn, $SImm9]",
   3423                             [], NoItinerary> {
   3424   let mayLoad = 1;
   3425 }
   3426 def : InstAlias<"ldtrsw $Rt, [$Rn]", (LDTRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3427 
   3428 //===----------------------------------------------------------------------===//
   3429 // Load-store register pair (offset) instructions
   3430 //===----------------------------------------------------------------------===//
   3431 //
   3432 // and
   3433 //
   3434 //===----------------------------------------------------------------------===//
   3435 // Load-store register pair (post-indexed) instructions
   3436 //===----------------------------------------------------------------------===//
   3437 // Contains: STP, LDP, LDPSW
   3438 //
   3439 // and
   3440 //
   3441 //===----------------------------------------------------------------------===//
   3442 // Load-store register pair (pre-indexed) instructions
   3443 //===----------------------------------------------------------------------===//
   3444 // Contains: STP, LDP, LDPSW
   3445 //
   3446 // and
   3447 //
   3448 //===----------------------------------------------------------------------===//
   3449 // Load-store non-temporal register pair (offset) instructions
   3450 //===----------------------------------------------------------------------===//
   3451 // Contains: STNP, LDNP
   3452 
   3453 
   3454 // Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
   3455 // know the access size via some means. An isolated operand does not have this
   3456 // information unless told from here, which means we need separate tablegen
   3457 // Operands for each access size. This multiclass takes care of instantiating
   3458 // the correct template functions in the rest of the backend.
   3459 
   3460 multiclass offsets_simm7<string MemSize, string prefix> {
   3461   // The bare signed 7-bit immediate is used in post-indexed instructions, but
   3462   // because of the scaling performed a generic "simm7" operand isn't
   3463   // appropriate here either.
   3464   def simm7_asmoperand : AsmOperandClass {
   3465     let Name = "SImm7_Scaled" # MemSize;
   3466     let PredicateMethod = "isSImm7Scaled<" # MemSize # ">";
   3467     let RenderMethod = "addSImm7ScaledOperands<" # MemSize # ">";
   3468     let DiagnosticType = "LoadStoreSImm7_" # MemSize;
   3469   }
   3470 
   3471   def simm7 : Operand<i64> {
   3472     let PrintMethod = "printSImm7ScaledOperand<" # MemSize # ">";
   3473     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "simm7_asmoperand");
   3474   }
   3475 }
   3476 
   3477 defm word_  : offsets_simm7<"4", "word_">;
   3478 defm dword_ : offsets_simm7<"8", "dword_">;
   3479 defm qword_ : offsets_simm7<"16", "qword_">;
   3480 
   3481 multiclass A64I_LSPsimple<bits<2> opc, bit v, RegisterClass SomeReg,
   3482                           Operand simm7, string prefix> {
   3483   def _STR : A64I_LSPoffset<opc, v, 0b0, (outs),
   3484                     (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
   3485                     "stp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3486     let mayStore = 1;
   3487     let DecoderMethod = "DecodeLDSTPairInstruction";
   3488   }
   3489   def : InstAlias<"stp $Rt, $Rt2, [$Rn]",
   3490                   (!cast<Instruction>(prefix # "_STR") SomeReg:$Rt,
   3491                                                 SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
   3492 
   3493   def _LDR : A64I_LSPoffset<opc, v, 0b1,
   3494                             (outs SomeReg:$Rt, SomeReg:$Rt2),
   3495                             (ins GPR64xsp:$Rn, simm7:$SImm7),
   3496                             "ldp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3497     let mayLoad = 1;
   3498     let DecoderMethod = "DecodeLDSTPairInstruction";
   3499   }
   3500   def : InstAlias<"ldp $Rt, $Rt2, [$Rn]",
   3501                   (!cast<Instruction>(prefix # "_LDR") SomeReg:$Rt,
   3502                                                 SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
   3503 
   3504   def _PostInd_STR : A64I_LSPpostind<opc, v, 0b0,
   3505                                (outs GPR64xsp:$Rn_wb),
   3506                                (ins SomeReg:$Rt, SomeReg:$Rt2,
   3507                                     GPR64xsp:$Rn,
   3508                                     simm7:$SImm7),
   3509                                "stp\t$Rt, $Rt2, [$Rn], $SImm7",
   3510                                [], NoItinerary> {
   3511     let mayStore = 1;
   3512     let Constraints = "$Rn = $Rn_wb";
   3513 
   3514     // Decoder only needed for unpredictability checking (FIXME).
   3515     let DecoderMethod = "DecodeLDSTPairInstruction";
   3516   }
   3517 
   3518   def _PostInd_LDR : A64I_LSPpostind<opc, v, 0b1,
   3519                         (outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
   3520                         (ins GPR64xsp:$Rn, simm7:$SImm7),
   3521                         "ldp\t$Rt, $Rt2, [$Rn], $SImm7",
   3522                         [], NoItinerary> {
   3523     let mayLoad = 1;
   3524     let Constraints = "$Rn = $Rn_wb";
   3525     let DecoderMethod = "DecodeLDSTPairInstruction";
   3526   }
   3527 
   3528   def _PreInd_STR : A64I_LSPpreind<opc, v, 0b0, (outs GPR64xsp:$Rn_wb),
   3529                     (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
   3530                     "stp\t$Rt, $Rt2, [$Rn, $SImm7]!",
   3531                     [], NoItinerary> {
   3532     let mayStore = 1;
   3533     let Constraints = "$Rn = $Rn_wb";
   3534     let DecoderMethod = "DecodeLDSTPairInstruction";
   3535   }
   3536 
   3537   def _PreInd_LDR : A64I_LSPpreind<opc, v, 0b1,
   3538                               (outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
   3539                               (ins GPR64xsp:$Rn, simm7:$SImm7),
   3540                               "ldp\t$Rt, $Rt2, [$Rn, $SImm7]!",
   3541                               [], NoItinerary> {
   3542     let mayLoad = 1;
   3543     let Constraints = "$Rn = $Rn_wb";
   3544     let DecoderMethod = "DecodeLDSTPairInstruction";
   3545   }
   3546 
   3547   def _NonTemp_STR : A64I_LSPnontemp<opc, v, 0b0, (outs),
   3548                     (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
   3549                     "stnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3550     let mayStore = 1;
   3551     let DecoderMethod = "DecodeLDSTPairInstruction";
   3552   }
   3553   def : InstAlias<"stnp $Rt, $Rt2, [$Rn]",
   3554                   (!cast<Instruction>(prefix # "_NonTemp_STR") SomeReg:$Rt,
   3555                                                 SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
   3556 
   3557   def _NonTemp_LDR : A64I_LSPnontemp<opc, v, 0b1,
   3558                             (outs SomeReg:$Rt, SomeReg:$Rt2),
   3559                             (ins GPR64xsp:$Rn, simm7:$SImm7),
   3560                             "ldnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3561     let mayLoad = 1;
   3562     let DecoderMethod = "DecodeLDSTPairInstruction";
   3563   }
   3564   def : InstAlias<"ldnp $Rt, $Rt2, [$Rn]",
   3565                   (!cast<Instruction>(prefix # "_NonTemp_LDR") SomeReg:$Rt,
   3566                                                 SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
   3567 
   3568 }
   3569 
   3570 
   3571 defm LSPair32 : A64I_LSPsimple<0b00, 0b0, GPR32, word_simm7, "LSPair32">;
   3572 defm LSPair64 : A64I_LSPsimple<0b10, 0b0, GPR64, dword_simm7, "LSPair64">;
   3573 defm LSFPPair32 : A64I_LSPsimple<0b00, 0b1, FPR32, word_simm7, "LSFPPair32">;
   3574 defm LSFPPair64 : A64I_LSPsimple<0b01, 0b1, FPR64,  dword_simm7, "LSFPPair64">;
   3575 defm LSFPPair128 : A64I_LSPsimple<0b10, 0b1, FPR128, qword_simm7,
   3576                                   "LSFPPair128">;
   3577 
   3578 
   3579 def LDPSWx : A64I_LSPoffset<0b01, 0b0, 0b1,
   3580                            (outs GPR64:$Rt, GPR64:$Rt2),
   3581                            (ins GPR64xsp:$Rn, word_simm7:$SImm7),
   3582                            "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3583   let mayLoad = 1;
   3584   let DecoderMethod = "DecodeLDSTPairInstruction";
   3585 }
   3586 def : InstAlias<"ldpsw $Rt, $Rt2, [$Rn]",
   3587                 (LDPSWx GPR64:$Rt, GPR64:$Rt2, GPR64xsp:$Rn, 0)>;
   3588 
   3589 def LDPSWx_PostInd : A64I_LSPpostind<0b01, 0b0, 0b1,
   3590                                   (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
   3591                                   (ins GPR64xsp:$Rn, word_simm7:$SImm7),
   3592                                   "ldpsw\t$Rt, $Rt2, [$Rn], $SImm7",
   3593                                   [], NoItinerary> {
   3594   let mayLoad = 1;
   3595   let Constraints = "$Rn = $Rn_wb";
   3596   let DecoderMethod = "DecodeLDSTPairInstruction";
   3597 }
   3598 
   3599 def LDPSWx_PreInd : A64I_LSPpreind<0b01, 0b0, 0b1,
   3600                                    (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
   3601                                    (ins GPR64xsp:$Rn, word_simm7:$SImm7),
   3602                                    "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]!",
   3603                                    [], NoItinerary> {
   3604   let mayLoad = 1;
   3605   let Constraints = "$Rn = $Rn_wb";
   3606   let DecoderMethod = "DecodeLDSTPairInstruction";
   3607 }
   3608 
   3609 //===----------------------------------------------------------------------===//
   3610 // Logical (immediate) instructions
   3611 //===----------------------------------------------------------------------===//
   3612 // Contains: AND, ORR, EOR, ANDS, + aliases TST, MOV
   3613 
   3614 multiclass logical_imm_operands<string prefix, string note,
   3615                                 int size, ValueType VT> {
   3616   def _asmoperand : AsmOperandClass {
   3617     let Name = "LogicalImm" # note # size;
   3618     let PredicateMethod = "isLogicalImm" # note # "<" # size # ">";
   3619     let RenderMethod = "addLogicalImmOperands<" # size # ">";
   3620     let DiagnosticType = "LogicalSecondSource";
   3621   }
   3622 
   3623   def _operand
   3624         : Operand<VT>, ComplexPattern<VT, 1, "SelectLogicalImm", [imm]> {
   3625     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
   3626     let PrintMethod = "printLogicalImmOperand<" # size # ">";
   3627     let DecoderMethod = "DecodeLogicalImmOperand<" # size # ">";
   3628   }
   3629 }
   3630 
   3631 defm logical_imm32 : logical_imm_operands<"logical_imm32", "", 32, i32>;
   3632 defm logical_imm64 : logical_imm_operands<"logical_imm64", "", 64, i64>;
   3633 
   3634 // The mov versions only differ in assembly parsing, where they
   3635 // exclude values representable with either MOVZ or MOVN.
   3636 defm logical_imm32_mov
   3637   : logical_imm_operands<"logical_imm32_mov", "MOV", 32, i32>;
   3638 defm logical_imm64_mov
   3639   : logical_imm_operands<"logical_imm64_mov", "MOV", 64, i64>;
   3640 
   3641 
   3642 multiclass A64I_logimmSizes<bits<2> opc, string asmop, SDNode opnode> {
   3643   def wwi : A64I_logicalimm<0b0, opc, (outs GPR32wsp:$Rd),
   3644                          (ins GPR32:$Rn, logical_imm32_operand:$Imm),
   3645                          !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
   3646                          [(set i32:$Rd,
   3647                                (opnode i32:$Rn, logical_imm32_operand:$Imm))],
   3648                          NoItinerary>;
   3649 
   3650   def xxi : A64I_logicalimm<0b1, opc, (outs GPR64xsp:$Rd),
   3651                          (ins GPR64:$Rn, logical_imm64_operand:$Imm),
   3652                          !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
   3653                          [(set i64:$Rd,
   3654                                (opnode i64:$Rn, logical_imm64_operand:$Imm))],
   3655                          NoItinerary>;
   3656 }
   3657 
   3658 defm AND : A64I_logimmSizes<0b00, "and", and>;
   3659 defm ORR : A64I_logimmSizes<0b01, "orr", or>;
   3660 defm EOR : A64I_logimmSizes<0b10, "eor", xor>;
   3661 
   3662 let Defs = [NZCV] in {
   3663   def ANDSwwi : A64I_logicalimm<0b0, 0b11, (outs GPR32:$Rd),
   3664                                 (ins GPR32:$Rn, logical_imm32_operand:$Imm),
   3665                                 "ands\t$Rd, $Rn, $Imm",
   3666                                 [], NoItinerary>;
   3667 
   3668   def ANDSxxi : A64I_logicalimm<0b1, 0b11, (outs GPR64:$Rd),
   3669                                 (ins GPR64:$Rn, logical_imm64_operand:$Imm),
   3670                                 "ands\t$Rd, $Rn, $Imm",
   3671                                 [], NoItinerary>;
   3672 }
   3673 
   3674 
   3675 def : InstAlias<"tst $Rn, $Imm",
   3676                 (ANDSwwi WZR, GPR32:$Rn, logical_imm32_operand:$Imm)>;
   3677 def : InstAlias<"tst $Rn, $Imm",
   3678                 (ANDSxxi XZR, GPR64:$Rn, logical_imm64_operand:$Imm)>;
   3679 def : InstAlias<"mov $Rd, $Imm",
   3680                 (ORRwwi GPR32wsp:$Rd, WZR, logical_imm32_mov_operand:$Imm)>;
   3681 def : InstAlias<"mov $Rd, $Imm",
   3682                 (ORRxxi GPR64xsp:$Rd, XZR, logical_imm64_mov_operand:$Imm)>;
   3683 
   3684 //===----------------------------------------------------------------------===//
   3685 // Logical (shifted register) instructions
   3686 //===----------------------------------------------------------------------===//
   3687 // Contains: AND, BIC, ORR, ORN, EOR, EON, ANDS, BICS + aliases TST, MVN, MOV
   3688 
   3689 // Operand for optimizing (icmp (and LHS, RHS), 0, SomeCode). In theory "ANDS"
   3690 // behaves differently for unsigned comparisons, so we defensively only allow
   3691 // signed or n/a as the operand. In practice "unsigned greater than 0" is "not
   3692 // equal to 0" and LLVM gives us this.
   3693 def signed_cond : PatLeaf<(cond), [{
   3694   return !isUnsignedIntSetCC(N->get());
   3695 }]>;
   3696 
   3697 
   3698 // These instructions share their "shift" operands with add/sub (shifted
   3699 // register instructions). They are defined there.
   3700 
   3701 // N.b. the commutable parameter is just !N. It will be first against the wall
   3702 // when the revolution comes.
   3703 multiclass logical_shifts<string prefix, bit sf, bits<2> opc,
   3704                           bit N, bit commutable,
   3705                           string asmop, SDPatternOperator opfrag, ValueType ty,
   3706                           RegisterClass GPR, list<Register> defs> {
   3707   let isCommutable = commutable, Defs = defs in {
   3708   def _lsl : A64I_logicalshift<sf, opc, 0b00, N,
   3709                        (outs GPR:$Rd),
   3710                        (ins GPR:$Rn, GPR:$Rm,
   3711                             !cast<Operand>("lsl_operand_" # ty):$Imm6),
   3712                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
   3713                        [(set ty:$Rd, (opfrag ty:$Rn, (shl ty:$Rm,
   3714                             !cast<Operand>("lsl_operand_" # ty):$Imm6))
   3715                        )],
   3716                        NoItinerary>;
   3717 
   3718   def _lsr : A64I_logicalshift<sf, opc, 0b01, N,
   3719                        (outs GPR:$Rd),
   3720                        (ins GPR:$Rn, GPR:$Rm,
   3721                             !cast<Operand>("lsr_operand_" # ty):$Imm6),
   3722                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
   3723                        [(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm,
   3724                             !cast<Operand>("lsr_operand_" # ty):$Imm6))
   3725                        )],
   3726                        NoItinerary>;
   3727 
   3728   def _asr : A64I_logicalshift<sf, opc, 0b10, N,
   3729                        (outs GPR:$Rd),
   3730                        (ins GPR:$Rn, GPR:$Rm,
   3731                             !cast<Operand>("asr_operand_" # ty):$Imm6),
   3732                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
   3733                        [(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm,
   3734                             !cast<Operand>("asr_operand_" # ty):$Imm6))
   3735                        )],
   3736                        NoItinerary>;
   3737 
   3738   def _ror : A64I_logicalshift<sf, opc, 0b11, N,
   3739                        (outs GPR:$Rd),
   3740                        (ins GPR:$Rn, GPR:$Rm,
   3741                             !cast<Operand>("ror_operand_" # ty):$Imm6),
   3742                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
   3743                        [(set ty:$Rd, (opfrag ty:$Rn, (rotr ty:$Rm,
   3744                             !cast<Operand>("ror_operand_" # ty):$Imm6))
   3745                        )],
   3746                        NoItinerary>;
   3747   }
   3748 
   3749   def _noshift
   3750       : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
   3751                  (!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
   3752                                                       GPR:$Rm, 0)>;
   3753 
   3754   def : Pat<(opfrag ty:$Rn, ty:$Rm),
   3755             (!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
   3756 }
   3757 
   3758 multiclass logical_sizes<string prefix, bits<2> opc, bit N, bit commutable,
   3759                          string asmop, SDPatternOperator opfrag,
   3760                          list<Register> defs> {
   3761   defm xxx : logical_shifts<prefix # "xxx", 0b1, opc, N,
   3762                             commutable, asmop, opfrag, i64, GPR64, defs>;
   3763   defm www : logical_shifts<prefix # "www", 0b0, opc, N,
   3764                             commutable, asmop, opfrag, i32, GPR32, defs>;
   3765 }
   3766 
   3767 
   3768 defm AND : logical_sizes<"AND", 0b00, 0b0, 0b1, "and", and, []>;
   3769 defm ORR : logical_sizes<"ORR", 0b01, 0b0, 0b1, "orr", or, []>;
   3770 defm EOR : logical_sizes<"EOR", 0b10, 0b0, 0b1, "eor", xor, []>;
   3771 defm ANDS : logical_sizes<"ANDS", 0b11, 0b0, 0b1, "ands",
   3772              PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs),
   3773                      [{ (void)N; return false; }]>,
   3774              [NZCV]>;
   3775 
   3776 defm BIC : logical_sizes<"BIC", 0b00, 0b1, 0b0, "bic",
   3777                          PatFrag<(ops node:$lhs, node:$rhs),
   3778                                  (and node:$lhs, (not node:$rhs))>, []>;
   3779 defm ORN : logical_sizes<"ORN", 0b01, 0b1, 0b0, "orn",
   3780                          PatFrag<(ops node:$lhs, node:$rhs),
   3781                                  (or node:$lhs, (not node:$rhs))>, []>;
   3782 defm EON : logical_sizes<"EON", 0b10, 0b1, 0b0, "eon",
   3783                          PatFrag<(ops node:$lhs, node:$rhs),
   3784                                  (xor node:$lhs, (not node:$rhs))>, []>;
   3785 defm BICS : logical_sizes<"BICS", 0b11, 0b1, 0b0, "bics",
   3786                           PatFrag<(ops node:$lhs, node:$rhs),
   3787                                   (and node:$lhs, (not node:$rhs)),
   3788                                   [{ (void)N; return false; }]>,
   3789                           [NZCV]>;
   3790 
   3791 multiclass tst_shifts<string prefix, bit sf, ValueType ty, RegisterClass GPR> {
   3792   let isCommutable = 1, Rd = 0b11111, Defs = [NZCV] in {
   3793   def _lsl : A64I_logicalshift<sf, 0b11, 0b00, 0b0,
   3794                        (outs),
   3795                        (ins GPR:$Rn, GPR:$Rm,
   3796                             !cast<Operand>("lsl_operand_" # ty):$Imm6),
   3797                        "tst\t$Rn, $Rm, $Imm6",
   3798                        [(set NZCV, (A64setcc (and ty:$Rn, (shl ty:$Rm,
   3799                            !cast<Operand>("lsl_operand_" # ty):$Imm6)),
   3800                                           0, signed_cond))],
   3801                        NoItinerary>;
   3802 
   3803 
   3804   def _lsr : A64I_logicalshift<sf, 0b11, 0b01, 0b0,
   3805                        (outs),
   3806                        (ins GPR:$Rn, GPR:$Rm,
   3807                             !cast<Operand>("lsr_operand_" # ty):$Imm6),
   3808                        "tst\t$Rn, $Rm, $Imm6",
   3809                        [(set NZCV, (A64setcc (and ty:$Rn, (srl ty:$Rm,
   3810                            !cast<Operand>("lsr_operand_" # ty):$Imm6)),
   3811                                           0, signed_cond))],
   3812                        NoItinerary>;
   3813 
   3814   def _asr : A64I_logicalshift<sf, 0b11, 0b10, 0b0,
   3815                        (outs),
   3816                        (ins GPR:$Rn, GPR:$Rm,
   3817                             !cast<Operand>("asr_operand_" # ty):$Imm6),
   3818                        "tst\t$Rn, $Rm, $Imm6",
   3819                        [(set NZCV, (A64setcc (and ty:$Rn, (sra ty:$Rm,
   3820                            !cast<Operand>("asr_operand_" # ty):$Imm6)),
   3821                                           0, signed_cond))],
   3822                        NoItinerary>;
   3823 
   3824   def _ror : A64I_logicalshift<sf, 0b11, 0b11, 0b0,
   3825                        (outs),
   3826                        (ins GPR:$Rn, GPR:$Rm,
   3827                             !cast<Operand>("ror_operand_" # ty):$Imm6),
   3828                        "tst\t$Rn, $Rm, $Imm6",
   3829                        [(set NZCV, (A64setcc (and ty:$Rn, (rotr ty:$Rm,
   3830                            !cast<Operand>("ror_operand_" # ty):$Imm6)),
   3831                                           0, signed_cond))],
   3832                        NoItinerary>;
   3833   }
   3834 
   3835   def _noshift : InstAlias<"tst $Rn, $Rm",
   3836                      (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
   3837 
   3838   def : Pat<(A64setcc (and ty:$Rn, ty:$Rm), 0, signed_cond),
   3839             (!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
   3840 }
   3841 
   3842 defm TSTxx : tst_shifts<"TSTxx", 0b1, i64, GPR64>;
   3843 defm TSTww : tst_shifts<"TSTww", 0b0, i32, GPR32>;
   3844 
   3845 
   3846 multiclass mvn_shifts<string prefix, bit sf, ValueType ty, RegisterClass GPR> {
   3847   let isCommutable = 0, Rn = 0b11111 in {
   3848   def _lsl : A64I_logicalshift<sf, 0b01, 0b00, 0b1,
   3849                        (outs GPR:$Rd),
   3850                        (ins GPR:$Rm,
   3851                             !cast<Operand>("lsl_operand_" # ty):$Imm6),
   3852                        "mvn\t$Rd, $Rm, $Imm6",
   3853                        [(set ty:$Rd, (not (shl ty:$Rm,
   3854                          !cast<Operand>("lsl_operand_" # ty):$Imm6)))],
   3855                        NoItinerary>;
   3856 
   3857 
   3858   def _lsr : A64I_logicalshift<sf, 0b01, 0b01, 0b1,
   3859                        (outs GPR:$Rd),
   3860                        (ins GPR:$Rm,
   3861                             !cast<Operand>("lsr_operand_" # ty):$Imm6),
   3862                        "mvn\t$Rd, $Rm, $Imm6",
   3863                        [(set ty:$Rd, (not (srl ty:$Rm,
   3864                          !cast<Operand>("lsr_operand_" # ty):$Imm6)))],
   3865                        NoItinerary>;
   3866 
   3867   def _asr : A64I_logicalshift<sf, 0b01, 0b10, 0b1,
   3868                        (outs GPR:$Rd),
   3869                        (ins GPR:$Rm,
   3870                             !cast<Operand>("asr_operand_" # ty):$Imm6),
   3871                        "mvn\t$Rd, $Rm, $Imm6",
   3872                        [(set ty:$Rd, (not (sra ty:$Rm,
   3873                          !cast<Operand>("asr_operand_" # ty):$Imm6)))],
   3874                        NoItinerary>;
   3875 
   3876   def _ror : A64I_logicalshift<sf, 0b01, 0b11, 0b1,
   3877                        (outs GPR:$Rd),
   3878                        (ins GPR:$Rm,
   3879                             !cast<Operand>("ror_operand_" # ty):$Imm6),
   3880                        "mvn\t$Rd, $Rm, $Imm6",
   3881                        [(set ty:$Rd, (not (rotr ty:$Rm,
   3882                          !cast<Operand>("lsl_operand_" # ty):$Imm6)))],
   3883                        NoItinerary>;
   3884   }
   3885 
   3886   def _noshift : InstAlias<"mvn $Rn, $Rm",
   3887                      (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
   3888 
   3889   def : Pat<(not ty:$Rm),
   3890             (!cast<Instruction>(prefix # "_lsl") $Rm, 0)>;
   3891 }
   3892 
   3893 defm MVNxx : mvn_shifts<"MVNxx", 0b1, i64, GPR64>;
   3894 defm MVNww : mvn_shifts<"MVNww", 0b0, i32, GPR32>;
   3895 
   3896 def MOVxx :InstAlias<"mov $Rd, $Rm", (ORRxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
   3897 def MOVww :InstAlias<"mov $Rd, $Rm", (ORRwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
   3898 
   3899 //===----------------------------------------------------------------------===//
   3900 // Move wide (immediate) instructions
   3901 //===----------------------------------------------------------------------===//
   3902 // Contains: MOVN, MOVZ, MOVK + MOV aliases
   3903 
   3904 // A wide variety of different relocations are needed for variants of these
   3905 // instructions, so it turns out that we need a different operand for all of
   3906 // them.
   3907 multiclass movw_operands<string prefix, string instname, int width> {
   3908   def _imm_asmoperand : AsmOperandClass {
   3909     let Name = instname # width # "Shifted" # shift;
   3910     let PredicateMethod = "is" # instname # width # "Imm";
   3911     let RenderMethod = "addMoveWideImmOperands";
   3912     let ParserMethod = "ParseImmWithLSLOperand";
   3913     let DiagnosticType = "MOVWUImm16";
   3914   }
   3915 
   3916   def _imm : Operand<i64> {
   3917     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_imm_asmoperand");
   3918     let PrintMethod = "printMoveWideImmOperand";
   3919     let EncoderMethod = "getMoveWideImmOpValue";
   3920     let DecoderMethod = "DecodeMoveWideImmOperand<" # width # ">";
   3921 
   3922     let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
   3923   }
   3924 }
   3925 
   3926 defm movn32 : movw_operands<"movn32", "MOVN", 32>;
   3927 defm movn64 : movw_operands<"movn64", "MOVN", 64>;
   3928 defm movz32 : movw_operands<"movz32", "MOVZ", 32>;
   3929 defm movz64 : movw_operands<"movz64", "MOVZ", 64>;
   3930 defm movk32 : movw_operands<"movk32", "MOVK", 32>;
   3931 defm movk64 : movw_operands<"movk64", "MOVK", 64>;
   3932 
   3933 multiclass A64I_movwSizes<bits<2> opc, string asmop, dag ins32bit,
   3934                           dag ins64bit> {
   3935 
   3936   def wii : A64I_movw<0b0, opc, (outs GPR32:$Rd), ins32bit,
   3937                       !strconcat(asmop, "\t$Rd, $FullImm"),
   3938                       [], NoItinerary> {
   3939     bits<18> FullImm;
   3940     let UImm16 = FullImm{15-0};
   3941     let Shift = FullImm{17-16};
   3942   }
   3943 
   3944   def xii : A64I_movw<0b1, opc, (outs GPR64:$Rd), ins64bit,
   3945                       !strconcat(asmop, "\t$Rd, $FullImm"),
   3946                       [], NoItinerary> {
   3947     bits<18> FullImm;
   3948     let UImm16 = FullImm{15-0};
   3949     let Shift = FullImm{17-16};
   3950   }
   3951 }
   3952 
   3953 let isMoveImm = 1, isReMaterializable = 1,
   3954     isAsCheapAsAMove = 1, hasSideEffects = 0 in {
   3955   defm MOVN : A64I_movwSizes<0b00, "movn",
   3956                              (ins movn32_imm:$FullImm),
   3957                              (ins movn64_imm:$FullImm)>;
   3958 
   3959   // Some relocations are able to convert between a MOVZ and a MOVN. If these
   3960   // are applied the instruction must be emitted with the corresponding bits as
   3961   // 0, which means a MOVZ needs to override that bit from the default.
   3962   let PostEncoderMethod = "fixMOVZ" in
   3963   defm MOVZ : A64I_movwSizes<0b10, "movz",
   3964                              (ins movz32_imm:$FullImm),
   3965                              (ins movz64_imm:$FullImm)>;
   3966 }
   3967 
   3968 let Constraints = "$src = $Rd" in
   3969 defm MOVK : A64I_movwSizes<0b11, "movk",
   3970                            (ins GPR32:$src, movk32_imm:$FullImm),
   3971                            (ins GPR64:$src, movk64_imm:$FullImm)>;
   3972 
   3973 
   3974 // And now the "MOV" aliases. These also need their own operands because what
   3975 // they accept is completely different to what the base instructions accept.
   3976 multiclass movalias_operand<string prefix, string basename,
   3977                             string immpredicate, int width> {
   3978   def _asmoperand : AsmOperandClass {
   3979     let Name = basename # width # "MovAlias";
   3980     let PredicateMethod
   3981           = "isMoveWideMovAlias<" # width # ", A64Imms::" # immpredicate # ">";
   3982     let RenderMethod
   3983       = "addMoveWideMovAliasOperands<" # width # ", "
   3984                                        # "A64Imms::" # immpredicate # ">";
   3985   }
   3986 
   3987   def _movimm : Operand<i64> {
   3988     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
   3989 
   3990     let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
   3991   }
   3992 }
   3993 
   3994 defm movz32 : movalias_operand<"movz32", "MOVZ", "isMOVZImm", 32>;
   3995 defm movz64 : movalias_operand<"movz64", "MOVZ", "isMOVZImm", 64>;
   3996 defm movn32 : movalias_operand<"movn32", "MOVN", "isOnlyMOVNImm", 32>;
   3997 defm movn64 : movalias_operand<"movn64", "MOVN", "isOnlyMOVNImm", 64>;
   3998 
   3999 // FIXME: these are officially canonical aliases, but TableGen is too limited to
   4000 // print them at the moment. I believe in this case an "AliasPredicate" method
   4001 // will need to be implemented. to allow it, as well as the more generally
   4002 // useful handling of non-register, non-constant operands.
   4003 class movalias<Instruction INST, RegisterClass GPR, Operand operand>
   4004   : InstAlias<"mov $Rd, $FullImm", (INST GPR:$Rd, operand:$FullImm)>;
   4005 
   4006 def : movalias<MOVZwii, GPR32, movz32_movimm>;
   4007 def : movalias<MOVZxii, GPR64, movz64_movimm>;
   4008 def : movalias<MOVNwii, GPR32, movn32_movimm>;
   4009 def : movalias<MOVNxii, GPR64, movn64_movimm>;
   4010 
   4011 def movw_addressref_g0 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<0>">;
   4012 def movw_addressref_g1 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<1>">;
   4013 def movw_addressref_g2 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<2>">;
   4014 def movw_addressref_g3 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<3>">;
   4015 
   4016 def : Pat<(A64WrapperLarge movw_addressref_g3:$G3, movw_addressref_g2:$G2,
   4017                            movw_addressref_g1:$G1, movw_addressref_g0:$G0),
   4018           (MOVKxii (MOVKxii (MOVKxii (MOVZxii movw_addressref_g3:$G3),
   4019                                      movw_addressref_g2:$G2),
   4020                             movw_addressref_g1:$G1),
   4021                    movw_addressref_g0:$G0)>;
   4022 
   4023 //===----------------------------------------------------------------------===//
   4024 // PC-relative addressing instructions
   4025 //===----------------------------------------------------------------------===//
   4026 // Contains: ADR, ADRP
   4027 
   4028 def adr_label : Operand<i64> {
   4029   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_adr_prel>";
   4030 
   4031   // This label is a 21-bit offset from PC, unscaled
   4032   let PrintMethod = "printLabelOperand<21, 1>";
   4033   let ParserMatchClass = label_asmoperand<21, 1>;
   4034   let OperandType = "OPERAND_PCREL";
   4035 }
   4036 
   4037 def adrp_label_asmoperand : AsmOperandClass {
   4038   let Name = "AdrpLabel";
   4039   let RenderMethod = "addLabelOperands<21, 4096>";
   4040   let DiagnosticType = "Label";
   4041 }
   4042 
   4043 def adrp_label : Operand<i64> {
   4044   let EncoderMethod = "getAdrpLabelOpValue";
   4045 
   4046   // This label is a 21-bit offset from PC, scaled by the page-size: 4096.
   4047   let PrintMethod = "printLabelOperand<21, 4096>";
   4048   let ParserMatchClass = adrp_label_asmoperand;
   4049   let OperandType = "OPERAND_PCREL";
   4050 }
   4051 
   4052 let hasSideEffects = 0 in {
   4053   def ADRxi : A64I_PCADR<0b0, (outs GPR64:$Rd), (ins adr_label:$Label),
   4054                          "adr\t$Rd, $Label", [], NoItinerary>;
   4055 
   4056   def ADRPxi : A64I_PCADR<0b1, (outs GPR64:$Rd), (ins adrp_label:$Label),
   4057                           "adrp\t$Rd, $Label", [], NoItinerary>;
   4058 }
   4059 
   4060 //===----------------------------------------------------------------------===//
   4061 // System instructions
   4062 //===----------------------------------------------------------------------===//
   4063 // Contains: HINT, CLREX, DSB, DMB, ISB, MSR, SYS, SYSL, MRS
   4064 //    + aliases IC, DC, AT, TLBI, NOP, YIELD, WFE, WFI, SEV, SEVL
   4065 
   4066 // Op1 and Op2 fields are sometimes simple 3-bit unsigned immediate values.
   4067 def uimm3_asmoperand : AsmOperandClass {
   4068   let Name = "UImm3";
   4069   let PredicateMethod = "isUImm<3>";
   4070   let RenderMethod = "addImmOperands";
   4071   let DiagnosticType = "UImm3";
   4072 }
   4073 
   4074 def uimm3 : Operand<i32> {
   4075   let ParserMatchClass = uimm3_asmoperand;
   4076 }
   4077 
   4078 // The HINT alias can accept a simple unsigned 7-bit immediate.
   4079 def uimm7_asmoperand : AsmOperandClass {
   4080   let Name = "UImm7";
   4081   let PredicateMethod = "isUImm<7>";
   4082   let RenderMethod = "addImmOperands";
   4083   let DiagnosticType = "UImm7";
   4084 }
   4085 
   4086 def uimm7 : Operand<i32> {
   4087   let ParserMatchClass = uimm7_asmoperand;
   4088 }
   4089 
   4090 // Multiclass namedimm is defined with the prefetch operands. Most of these fit
   4091 // into the NamedImmMapper scheme well: they either accept a named operand or
   4092 // any immediate under a particular value (which may be 0, implying no immediate
   4093 // is allowed).
   4094 defm dbarrier : namedimm<"dbarrier", "A64DB::DBarrierMapper">;
   4095 defm isb : namedimm<"isb", "A64ISB::ISBMapper">;
   4096 defm ic : namedimm<"ic", "A64IC::ICMapper">;
   4097 defm dc : namedimm<"dc", "A64DC::DCMapper">;
   4098 defm at : namedimm<"at", "A64AT::ATMapper">;
   4099 defm tlbi : namedimm<"tlbi", "A64TLBI::TLBIMapper">;
   4100 
   4101 // However, MRS and MSR are more complicated for a few reasons:
   4102 //   * There are ~1000 generic names S3_<op1>_<CRn>_<CRm>_<Op2> which have an
   4103 //     implementation-defined effect
   4104 //   * Most registers are shared, but some are read-only or write-only.
   4105 //   * There is a variant of MSR which accepts the same register name (SPSel),
   4106 //     but which would have a different encoding.
   4107 
   4108 // In principle these could be resolved in with more complicated subclasses of
   4109 // NamedImmMapper, however that imposes an overhead on other "named
   4110 // immediates". Both in concrete terms with virtual tables and in unnecessary
   4111 // abstraction.
   4112 
   4113 // The solution adopted here is to take the MRS/MSR Mappers out of the usual
   4114 // hierarchy (they're not derived from NamedImmMapper) and to add logic for
   4115 // their special situation.
   4116 def mrs_asmoperand : AsmOperandClass {
   4117   let Name = "MRS";
   4118   let ParserMethod = "ParseSysRegOperand";
   4119   let DiagnosticType = "MRS";
   4120 }
   4121 
   4122 def mrs_op : Operand<i32> {
   4123   let ParserMatchClass = mrs_asmoperand;
   4124   let PrintMethod = "printMRSOperand";
   4125   let DecoderMethod = "DecodeMRSOperand";
   4126 }
   4127 
   4128 def msr_asmoperand : AsmOperandClass {
   4129   let Name = "MSRWithReg";
   4130 
   4131   // Note that SPSel is valid for both this and the pstate operands, but with
   4132   // different immediate encodings. This is why these operands provide a string
   4133   // AArch64Operand rather than an immediate. The overlap is small enough that
   4134   // it could be resolved with hackery now, but who can say in future?
   4135   let ParserMethod = "ParseSysRegOperand";
   4136   let DiagnosticType = "MSR";
   4137 }
   4138 
   4139 def msr_op : Operand<i32> {
   4140   let ParserMatchClass = msr_asmoperand;
   4141   let PrintMethod = "printMSROperand";
   4142   let DecoderMethod = "DecodeMSROperand";
   4143 }
   4144 
   4145 def pstate_asmoperand : AsmOperandClass {
   4146   let Name = "MSRPState";
   4147   // See comment above about parser.
   4148   let ParserMethod = "ParseSysRegOperand";
   4149   let DiagnosticType = "MSR";
   4150 }
   4151 
   4152 def pstate_op : Operand<i32> {
   4153   let ParserMatchClass = pstate_asmoperand;
   4154   let PrintMethod = "printNamedImmOperand<A64PState::PStateMapper>";
   4155   let DecoderMethod = "DecodeNamedImmOperand<A64PState::PStateMapper>";
   4156 }
   4157 
   4158 // When <CRn> is specified, an assembler should accept something like "C4", not
   4159 // the usual "#4" immediate.
   4160 def CRx_asmoperand : AsmOperandClass {
   4161   let Name = "CRx";
   4162   let PredicateMethod = "isUImm<4>";
   4163   let RenderMethod = "addImmOperands";
   4164   let ParserMethod = "ParseCRxOperand";
   4165   // Diagnostics are handled in all cases by ParseCRxOperand.
   4166 }
   4167 
   4168 def CRx : Operand<i32> {
   4169   let ParserMatchClass = CRx_asmoperand;
   4170   let PrintMethod = "printCRxOperand";
   4171 }
   4172 
   4173 
   4174 // Finally, we can start defining the instructions.
   4175 
   4176 // HINT is straightforward, with a few aliases.
   4177 def HINTi : A64I_system<0b0, (outs), (ins uimm7:$UImm7), "hint\t$UImm7",
   4178                         [], NoItinerary> {
   4179   bits<7> UImm7;
   4180   let CRm = UImm7{6-3};
   4181   let Op2 = UImm7{2-0};
   4182 
   4183   let Op0 = 0b00;
   4184   let Op1 = 0b011;
   4185   let CRn = 0b0010;
   4186   let Rt = 0b11111;
   4187 }
   4188 
   4189 def : InstAlias<"nop", (HINTi 0)>;
   4190 def : InstAlias<"yield", (HINTi 1)>;
   4191 def : InstAlias<"wfe", (HINTi 2)>;
   4192 def : InstAlias<"wfi", (HINTi 3)>;
   4193 def : InstAlias<"sev", (HINTi 4)>;
   4194 def : InstAlias<"sevl", (HINTi 5)>;
   4195 
   4196 // Quite a few instructions then follow a similar pattern of fixing common
   4197 // fields in the bitpattern, we'll define a helper-class for them.
   4198 class simple_sys<bits<2> op0, bits<3> op1, bits<4> crn, bits<3> op2,
   4199                  Operand operand, string asmop>
   4200   : A64I_system<0b0, (outs), (ins operand:$CRm), !strconcat(asmop, "\t$CRm"),
   4201                 [], NoItinerary> {
   4202   let Op0 = op0;
   4203   let Op1 = op1;
   4204   let CRn = crn;
   4205   let Op2 = op2;
   4206   let Rt = 0b11111;
   4207 }
   4208 
   4209 
   4210 def CLREXi : simple_sys<0b00, 0b011, 0b0011, 0b010, uimm4, "clrex">;
   4211 def DSBi : simple_sys<0b00, 0b011, 0b0011, 0b100, dbarrier_op, "dsb">;
   4212 def DMBi : simple_sys<0b00, 0b011, 0b0011, 0b101, dbarrier_op, "dmb">;
   4213 def ISBi : simple_sys<0b00, 0b011, 0b0011, 0b110, isb_op, "isb">;
   4214 
   4215 def : InstAlias<"clrex", (CLREXi 0b1111)>;
   4216 def : InstAlias<"isb", (ISBi 0b1111)>;
   4217 
   4218 // (DMBi 0xb) is a "DMB ISH" instruciton, appropriate for Linux SMP
   4219 // configurations at least.
   4220 def : Pat<(atomic_fence imm, imm), (DMBi 0xb)>;
   4221 
   4222 // Any SYS bitpattern can be represented with a complex and opaque "SYS"
   4223 // instruction.
   4224 def SYSiccix : A64I_system<0b0, (outs),
   4225                            (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm,
   4226                                 uimm3:$Op2, GPR64:$Rt),
   4227                            "sys\t$Op1, $CRn, $CRm, $Op2, $Rt",
   4228                            [], NoItinerary> {
   4229   let Op0 = 0b01;
   4230 }
   4231 
   4232 // You can skip the Xt argument whether it makes sense or not for the generic
   4233 // SYS instruction.
   4234 def : InstAlias<"sys $Op1, $CRn, $CRm, $Op2",
   4235                 (SYSiccix uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2, XZR)>;
   4236 
   4237 
   4238 // But many have aliases, which obviously don't fit into
   4239 class SYSalias<dag ins, string asmstring>
   4240   : A64I_system<0b0, (outs), ins, asmstring, [], NoItinerary> {
   4241   let isAsmParserOnly = 1;
   4242 
   4243   bits<14> SysOp;
   4244   let Op0 = 0b01;
   4245   let Op1 = SysOp{13-11};
   4246   let CRn = SysOp{10-7};
   4247   let CRm = SysOp{6-3};
   4248   let Op2 = SysOp{2-0};
   4249 }
   4250 
   4251 def ICix : SYSalias<(ins ic_op:$SysOp, GPR64:$Rt), "ic\t$SysOp, $Rt">;
   4252 
   4253 def ICi : SYSalias<(ins ic_op:$SysOp), "ic\t$SysOp"> {
   4254   let Rt = 0b11111;
   4255 }
   4256 
   4257 def DCix : SYSalias<(ins dc_op:$SysOp, GPR64:$Rt), "dc\t$SysOp, $Rt">;
   4258 def ATix : SYSalias<(ins at_op:$SysOp, GPR64:$Rt), "at\t$SysOp, $Rt">;
   4259 
   4260 def TLBIix : SYSalias<(ins tlbi_op:$SysOp, GPR64:$Rt), "tlbi\t$SysOp, $Rt">;
   4261 
   4262 def TLBIi : SYSalias<(ins tlbi_op:$SysOp), "tlbi\t$SysOp"> {
   4263   let Rt = 0b11111;
   4264 }
   4265 
   4266 
   4267 def SYSLxicci : A64I_system<0b1, (outs GPR64:$Rt),
   4268                             (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2),
   4269                             "sysl\t$Rt, $Op1, $CRn, $CRm, $Op2",
   4270                             [], NoItinerary> {
   4271   let Op0 = 0b01;
   4272 }
   4273 
   4274 // The instructions themselves are rather simple for MSR and MRS.
   4275 def MSRix : A64I_system<0b0, (outs), (ins msr_op:$SysReg, GPR64:$Rt),
   4276                         "msr\t$SysReg, $Rt", [], NoItinerary> {
   4277   bits<16> SysReg;
   4278   let Op0 = SysReg{15-14};
   4279   let Op1 = SysReg{13-11};
   4280   let CRn = SysReg{10-7};
   4281   let CRm = SysReg{6-3};
   4282   let Op2 = SysReg{2-0};
   4283 }
   4284 
   4285 def MRSxi : A64I_system<0b1, (outs GPR64:$Rt), (ins mrs_op:$SysReg),
   4286                         "mrs\t$Rt, $SysReg", [], NoItinerary> {
   4287   bits<16> SysReg;
   4288   let Op0 = SysReg{15-14};
   4289   let Op1 = SysReg{13-11};
   4290   let CRn = SysReg{10-7};
   4291   let CRm = SysReg{6-3};
   4292   let Op2 = SysReg{2-0};
   4293 }
   4294 
   4295 def MSRii : A64I_system<0b0, (outs), (ins pstate_op:$PState, uimm4:$CRm),
   4296                         "msr\t$PState, $CRm", [], NoItinerary> {
   4297   bits<6> PState;
   4298 
   4299   let Op0 = 0b00;
   4300   let Op1 = PState{5-3};
   4301   let CRn = 0b0100;
   4302   let Op2 = PState{2-0};
   4303   let Rt = 0b11111;
   4304 }
   4305 
   4306 //===----------------------------------------------------------------------===//
   4307 // Test & branch (immediate) instructions
   4308 //===----------------------------------------------------------------------===//
   4309 // Contains: TBZ, TBNZ
   4310 
   4311 // The bit to test is a simple unsigned 6-bit immediate in the X-register
   4312 // versions.
   4313 def uimm6 : Operand<i64> {
   4314   let ParserMatchClass = uimm6_asmoperand;
   4315 }
   4316 
   4317 def label_wid14_scal4_asmoperand : label_asmoperand<14, 4>;
   4318 
   4319 def tbimm_target : Operand<OtherVT> {
   4320   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_tstbr>";
   4321 
   4322   // This label is a 14-bit offset from PC, scaled by the instruction-width: 4.
   4323   let PrintMethod = "printLabelOperand<14, 4>";
   4324   let ParserMatchClass = label_wid14_scal4_asmoperand;
   4325 
   4326   let OperandType = "OPERAND_PCREL";
   4327 }
   4328 
   4329 def A64eq : ImmLeaf<i32, [{ return Imm == A64CC::EQ; }]>;
   4330 def A64ne : ImmLeaf<i32, [{ return Imm == A64CC::NE; }]>;
   4331 
   4332 // These instructions correspond to patterns involving "and" with a power of
   4333 // two, which we need to be able to select.
   4334 def tstb64_pat : ComplexPattern<i64, 1, "SelectTSTBOperand<64>">;
   4335 def tstb32_pat : ComplexPattern<i32, 1, "SelectTSTBOperand<32>">;
   4336 
   4337 let isBranch = 1, isTerminator = 1 in {
   4338   def TBZxii : A64I_TBimm<0b0, (outs),
   4339                         (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
   4340                         "tbz\t$Rt, $Imm, $Label",
   4341                         [(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0),
   4342                                    A64eq, bb:$Label)],
   4343                         NoItinerary>;
   4344 
   4345   def TBNZxii : A64I_TBimm<0b1, (outs),
   4346                         (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
   4347                         "tbnz\t$Rt, $Imm, $Label",
   4348                         [(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0),
   4349                                    A64ne, bb:$Label)],
   4350                         NoItinerary>;
   4351 
   4352 
   4353   // Note, these instructions overlap with the above 64-bit patterns. This is
   4354   // intentional, "tbz x3, #1, somewhere" and "tbz w3, #1, somewhere" would both
   4355   // do the same thing and are both permitted assembly. They also both have
   4356   // sensible DAG patterns.
   4357   def TBZwii : A64I_TBimm<0b0, (outs),
   4358                         (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
   4359                         "tbz\t$Rt, $Imm, $Label",
   4360                         [(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0),
   4361                                    A64eq, bb:$Label)],
   4362                         NoItinerary> {
   4363     let Imm{5} = 0b0;
   4364   }
   4365 
   4366   def TBNZwii : A64I_TBimm<0b1, (outs),
   4367                         (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
   4368                         "tbnz\t$Rt, $Imm, $Label",
   4369                         [(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0),
   4370                                    A64ne, bb:$Label)],
   4371                         NoItinerary> {
   4372     let Imm{5} = 0b0;
   4373   }
   4374 }
   4375 
   4376 //===----------------------------------------------------------------------===//
   4377 // Unconditional branch (immediate) instructions
   4378 //===----------------------------------------------------------------------===//
   4379 // Contains: B, BL
   4380 
   4381 def label_wid26_scal4_asmoperand : label_asmoperand<26, 4>;
   4382 
   4383 def bimm_target : Operand<OtherVT> {
   4384   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_uncondbr>";
   4385 
   4386   // This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
   4387   let PrintMethod = "printLabelOperand<26, 4>";
   4388   let ParserMatchClass = label_wid26_scal4_asmoperand;
   4389 
   4390   let OperandType = "OPERAND_PCREL";
   4391 }
   4392 
   4393 def blimm_target : Operand<i64> {
   4394   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_call>";
   4395 
   4396   // This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
   4397   let PrintMethod = "printLabelOperand<26, 4>";
   4398   let ParserMatchClass = label_wid26_scal4_asmoperand;
   4399 
   4400   let OperandType = "OPERAND_PCREL";
   4401 }
   4402 
   4403 class A64I_BimmImpl<bit op, string asmop, list<dag> patterns, Operand lbl_type>
   4404   : A64I_Bimm<op, (outs), (ins lbl_type:$Label),
   4405               !strconcat(asmop, "\t$Label"), patterns,
   4406               NoItinerary>;
   4407 
   4408 let isBranch = 1 in {
   4409   def Bimm : A64I_BimmImpl<0b0, "b", [(br bb:$Label)], bimm_target> {
   4410     let isTerminator = 1;
   4411     let isBarrier = 1;
   4412   }
   4413 
   4414   def BLimm : A64I_BimmImpl<0b1, "bl",
   4415                             [(AArch64Call tglobaladdr:$Label)], blimm_target> {
   4416     let isCall = 1;
   4417     let Defs = [X30];
   4418   }
   4419 }
   4420 
   4421 def : Pat<(AArch64Call texternalsym:$Label), (BLimm texternalsym:$Label)>;
   4422 
   4423 //===----------------------------------------------------------------------===//
   4424 // Unconditional branch (register) instructions
   4425 //===----------------------------------------------------------------------===//
   4426 // Contains: BR, BLR, RET, ERET, DRP.
   4427 
   4428 // Most of the notional opcode fields in the A64I_Breg format are fixed in A64
   4429 // at the moment.
   4430 class A64I_BregImpl<bits<4> opc,
   4431                     dag outs, dag ins, string asmstr, list<dag> patterns,
   4432                     InstrItinClass itin = NoItinerary>
   4433   : A64I_Breg<opc, 0b11111, 0b000000, 0b00000,
   4434               outs, ins, asmstr, patterns, itin> {
   4435   let isBranch         = 1;
   4436   let isIndirectBranch = 1;
   4437 }
   4438 
   4439 // Note that these are not marked isCall or isReturn because as far as LLVM is
   4440 // concerned they're not. "ret" is just another jump unless it has been selected
   4441 // by LLVM as the function's return.
   4442 
   4443 let isBranch = 1 in {
   4444   def BRx : A64I_BregImpl<0b0000,(outs), (ins GPR64:$Rn),
   4445                           "br\t$Rn", [(brind i64:$Rn)]> {
   4446     let isBarrier = 1;
   4447     let isTerminator = 1;
   4448   }
   4449 
   4450   def BLRx : A64I_BregImpl<0b0001, (outs), (ins GPR64:$Rn),
   4451                            "blr\t$Rn", [(AArch64Call i64:$Rn)]> {
   4452     let isBarrier = 0;
   4453     let isCall = 1;
   4454     let Defs = [X30];
   4455   }
   4456 
   4457   def RETx : A64I_BregImpl<0b0010, (outs), (ins GPR64:$Rn),
   4458                            "ret\t$Rn", []> {
   4459     let isBarrier = 1;
   4460     let isTerminator = 1;
   4461     let isReturn = 1;
   4462   }
   4463 
   4464   // Create a separate pseudo-instruction for codegen to use so that we don't
   4465   // flag x30 as used in every function. It'll be restored before the RET by the
   4466   // epilogue if it's legitimately used.
   4467   def RET : A64PseudoExpand<(outs), (ins), [(A64ret)], (RETx (ops X30))> {
   4468     let isTerminator = 1;
   4469     let isBarrier = 1;
   4470     let isReturn = 1;
   4471   }
   4472 
   4473   def ERET : A64I_BregImpl<0b0100, (outs), (ins), "eret", []> {
   4474     let Rn = 0b11111;
   4475     let isBarrier = 1;
   4476     let isTerminator = 1;
   4477     let isReturn = 1;
   4478   }
   4479 
   4480   def DRPS : A64I_BregImpl<0b0101, (outs), (ins), "drps", []> {
   4481     let Rn = 0b11111;
   4482     let isBarrier = 1;
   4483   }
   4484 }
   4485 
   4486 def RETAlias : InstAlias<"ret", (RETx X30)>;
   4487 
   4488 
   4489 //===----------------------------------------------------------------------===//
   4490 // Address generation patterns
   4491 //===----------------------------------------------------------------------===//
   4492 
   4493 // Primary method of address generation for the small/absolute memory model is
   4494 // an ADRP/ADR pair:
   4495 //     ADRP x0, some_variable
   4496 //     ADD x0, x0, #:lo12:some_variable
   4497 //
   4498 // The load/store elision of the ADD is accomplished when selecting
   4499 // addressing-modes. This just mops up the cases where that doesn't work and we
   4500 // really need an address in some register.
   4501 
   4502 // This wrapper applies a LO12 modifier to the address. Otherwise we could just
   4503 // use the same address.
   4504 
   4505 class ADRP_ADD<SDNode Wrapper, SDNode addrop>
   4506  : Pat<(Wrapper addrop:$Hi, addrop:$Lo12, (i32 imm)),
   4507        (ADDxxi_lsl0_s (ADRPxi addrop:$Hi), addrop:$Lo12)>;
   4508 
   4509 def : ADRP_ADD<A64WrapperSmall, tblockaddress>;
   4510 def : ADRP_ADD<A64WrapperSmall, texternalsym>;
   4511 def : ADRP_ADD<A64WrapperSmall, tglobaladdr>;
   4512 def : ADRP_ADD<A64WrapperSmall, tglobaltlsaddr>;
   4513 def : ADRP_ADD<A64WrapperSmall, tjumptable>;
   4514 
   4515 //===----------------------------------------------------------------------===//
   4516 // GOT access patterns
   4517 //===----------------------------------------------------------------------===//
   4518 
   4519 class GOTLoadSmall<SDNode addrfrag>
   4520   : Pat<(A64GOTLoad (A64WrapperSmall addrfrag:$Hi, addrfrag:$Lo12, 8)),
   4521         (LS64_LDR (ADRPxi addrfrag:$Hi), addrfrag:$Lo12)>;
   4522 
   4523 def : GOTLoadSmall<texternalsym>;
   4524 def : GOTLoadSmall<tglobaladdr>;
   4525 def : GOTLoadSmall<tglobaltlsaddr>;
   4526 
   4527 //===----------------------------------------------------------------------===//
   4528 // Tail call handling
   4529 //===----------------------------------------------------------------------===//
   4530 
   4531 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [XSP] in {
   4532   def TC_RETURNdi
   4533     : PseudoInst<(outs), (ins i64imm:$dst, i32imm:$FPDiff),
   4534                  [(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff))]>;
   4535 
   4536   def TC_RETURNxi
   4537     : PseudoInst<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff),
   4538                  [(AArch64tcret i64:$dst, (i32 timm:$FPDiff))]>;
   4539 }
   4540 
   4541 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
   4542     Uses = [XSP] in {
   4543   def TAIL_Bimm : A64PseudoExpand<(outs), (ins bimm_target:$Label), [],
   4544                                   (Bimm bimm_target:$Label)>;
   4545 
   4546   def TAIL_BRx : A64PseudoExpand<(outs), (ins tcGPR64:$Rd), [],
   4547                                  (BRx GPR64:$Rd)>;
   4548 }
   4549 
   4550 
   4551 def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
   4552           (TC_RETURNdi texternalsym:$dst, imm:$FPDiff)>;
   4553 
   4554 //===----------------------------------------------------------------------===//
   4555 // Thread local storage
   4556 //===----------------------------------------------------------------------===//
   4557 
   4558 // This is a pseudo-instruction representing the ".tlsdesccall" directive in
   4559 // assembly. Its effect is to insert an R_AARCH64_TLSDESC_CALL relocation at the
   4560 // current location. It should always be immediately followed by a BLR
   4561 // instruction, and is intended solely for relaxation by the linker.
   4562 
   4563 def : Pat<(A64threadpointer), (MRSxi 0xde82)>;
   4564 
   4565 def TLSDESCCALL : PseudoInst<(outs), (ins i64imm:$Lbl), []> {
   4566   let hasSideEffects = 1;
   4567 }
   4568 
   4569 def TLSDESC_BLRx : PseudoInst<(outs), (ins GPR64:$Rn, i64imm:$Var),
   4570                             [(A64tlsdesc_blr i64:$Rn, tglobaltlsaddr:$Var)]> {
   4571   let isCall = 1;
   4572   let Defs = [X30];
   4573 }
   4574 
   4575 def : Pat<(A64tlsdesc_blr i64:$Rn, texternalsym:$Var),
   4576           (TLSDESC_BLRx $Rn, texternalsym:$Var)>;
   4577 
   4578 //===----------------------------------------------------------------------===//
   4579 // Bitfield patterns
   4580 //===----------------------------------------------------------------------===//
   4581 
   4582 def bfi32_lsb_to_immr : SDNodeXForm<imm, [{
   4583   return CurDAG->getTargetConstant((32 - N->getZExtValue()) % 32, MVT::i64);
   4584 }]>;
   4585 
   4586 def bfi64_lsb_to_immr : SDNodeXForm<imm, [{
   4587   return CurDAG->getTargetConstant((64 - N->getZExtValue()) % 64, MVT::i64);
   4588 }]>;
   4589 
   4590 def bfi_width_to_imms : SDNodeXForm<imm, [{
   4591   return CurDAG->getTargetConstant(N->getZExtValue() - 1, MVT::i64);
   4592 }]>;
   4593 
   4594 
   4595 // The simpler patterns deal with cases where no AND mask is actually needed
   4596 // (either all bits are used or the low 32 bits are used).
   4597 let AddedComplexity = 10 in {
   4598 
   4599 def : Pat<(A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS),
   4600            (BFIxxii $src, $Rn,
   4601                     (bfi64_lsb_to_immr (i64 imm:$ImmR)),
   4602                     (bfi_width_to_imms (i64 imm:$ImmS)))>;
   4603 
   4604 def : Pat<(A64Bfi i32:$src, i32:$Rn, imm:$ImmR, imm:$ImmS),
   4605           (BFIwwii $src, $Rn,
   4606                    (bfi32_lsb_to_immr (i64 imm:$ImmR)),
   4607                    (bfi_width_to_imms (i64 imm:$ImmS)))>;
   4608 
   4609 
   4610 def : Pat<(and (A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS),
   4611                (i64 4294967295)),
   4612           (SUBREG_TO_REG (i64 0),
   4613                          (BFIwwii (EXTRACT_SUBREG $src, sub_32),
   4614                                   (EXTRACT_SUBREG $Rn, sub_32),
   4615                                   (bfi32_lsb_to_immr (i64 imm:$ImmR)),
   4616                                   (bfi_width_to_imms (i64 imm:$ImmS))),
   4617                          sub_32)>;
   4618 
   4619 }
   4620 
   4621 //===----------------------------------------------------------------------===//
   4622 // Miscellaneous patterns
   4623 //===----------------------------------------------------------------------===//
   4624 
   4625 // Truncation from 64 to 32-bits just involves renaming your register.
   4626 def : Pat<(i32 (trunc i64:$val)), (EXTRACT_SUBREG $val, sub_32)>;
   4627 
   4628 // Similarly, extension where we don't care about the high bits is
   4629 // just a rename.
   4630 def : Pat<(i64 (anyext i32:$val)),
   4631           (INSERT_SUBREG (IMPLICIT_DEF), $val, sub_32)>;
   4632 
   4633 // SELECT instructions providing f128 types need to be handled by a
   4634 // pseudo-instruction since the eventual code will need to introduce basic
   4635 // blocks and control flow.
   4636 def F128CSEL : PseudoInst<(outs FPR128:$Rd),
   4637                          (ins FPR128:$Rn, FPR128:$Rm, cond_code_op:$Cond),
   4638                          [(set f128:$Rd, (simple_select f128:$Rn, f128:$Rm))]> {
   4639   let Uses = [NZCV];
   4640   let usesCustomInserter = 1;
   4641 }
   4642 
   4643 //===----------------------------------------------------------------------===//
   4644 // Load/store patterns
   4645 //===----------------------------------------------------------------------===//
   4646 
   4647 // There are lots of patterns here, because we need to allow at least three
   4648 // parameters to vary independently.
   4649 //   1. Instruction: "ldrb w9, [sp]", "ldrh w9, [sp]", ...
   4650 //   2. LLVM source: zextloadi8, anyextloadi8, ...
   4651 //   3. Address-generation: A64Wrapper, (add BASE, OFFSET), ...
   4652 //
   4653 // The biggest problem turns out to be the address-generation variable. At the
   4654 // point of instantiation we need to produce two DAGs, one for the pattern and
   4655 // one for the instruction. Doing this at the lowest level of classes doesn't
   4656 // work.
   4657 //
   4658 // Consider the simple uimm12 addressing mode, and the desire to match both (add
   4659 // GPR64xsp:$Rn, uimm12:$Offset) and GPR64xsp:$Rn, particularly on the
   4660 // instruction side. We'd need to insert either "GPR64xsp" and "uimm12" or
   4661 // "GPR64xsp" and "0" into an unknown dag. !subst is not capable of this
   4662 // operation, and PatFrags are for selection not output.
   4663 //
   4664 // As a result, the address-generation patterns are the final
   4665 // instantiations. However, we do still need to vary the operand for the address
   4666 // further down (At the point we're deciding A64WrapperSmall, we don't know
   4667 // the memory width of the operation).
   4668 
   4669 //===------------------------------
   4670 // 1. Basic infrastructural defs
   4671 //===------------------------------
   4672 
   4673 // First, some simple classes for !foreach and !subst to use:
   4674 class Decls {
   4675   dag pattern;
   4676 }
   4677 
   4678 def decls : Decls;
   4679 def ALIGN;
   4680 def INST;
   4681 def OFFSET;
   4682 def SHIFT;
   4683 
   4684 // You can't use !subst on an actual immediate, but you *can* use it on an
   4685 // operand record that happens to match a single immediate. So we do.
   4686 def imm_eq0 : ImmLeaf<i64, [{ return Imm == 0; }]>;
   4687 def imm_eq1 : ImmLeaf<i64, [{ return Imm == 1; }]>;
   4688 def imm_eq2 : ImmLeaf<i64, [{ return Imm == 2; }]>;
   4689 def imm_eq3 : ImmLeaf<i64, [{ return Imm == 3; }]>;
   4690 def imm_eq4 : ImmLeaf<i64, [{ return Imm == 4; }]>;
   4691 
   4692 // If the low bits of a pointer are known to be 0 then an "or" is just as good
   4693 // as addition for computing an offset. This fragment forwards that check for
   4694 // TableGen's use.
   4695 def add_like_or : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),
   4696 [{
   4697   return CurDAG->isBaseWithConstantOffset(SDValue(N, 0));
   4698 }]>;
   4699 
   4700 // Load/store (unsigned immediate) operations with relocations against global
   4701 // symbols (for lo12) are only valid if those symbols have correct alignment
   4702 // (since the immediate offset is divided by the access scale, it can't have a
   4703 // remainder).
   4704 //
   4705 // The guaranteed alignment is provided as part of the WrapperSmall
   4706 // operation, and checked against one of these.
   4707 def any_align   : ImmLeaf<i32, [{ (void)Imm; return true; }]>;
   4708 def min_align2  : ImmLeaf<i32, [{ return Imm >= 2; }]>;
   4709 def min_align4  : ImmLeaf<i32, [{ return Imm >= 4; }]>;
   4710 def min_align8  : ImmLeaf<i32, [{ return Imm >= 8; }]>;
   4711 def min_align16 : ImmLeaf<i32, [{ return Imm >= 16; }]>;
   4712 
   4713 // "Normal" load/store instructions can be used on atomic operations, provided
   4714 // the ordering parameter is at most "monotonic". Anything above that needs
   4715 // special handling with acquire/release instructions.
   4716 class simple_load<PatFrag base>
   4717   : PatFrag<(ops node:$ptr), (base node:$ptr), [{
   4718   return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
   4719 }]>;
   4720 
   4721 def atomic_load_simple_i8  : simple_load<atomic_load_8>;
   4722 def atomic_load_simple_i16 : simple_load<atomic_load_16>;
   4723 def atomic_load_simple_i32 : simple_load<atomic_load_32>;
   4724 def atomic_load_simple_i64 : simple_load<atomic_load_64>;
   4725 
   4726 class simple_store<PatFrag base>
   4727   : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
   4728   return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
   4729 }]>;
   4730 
   4731 def atomic_store_simple_i8  : simple_store<atomic_store_8>;
   4732 def atomic_store_simple_i16 : simple_store<atomic_store_16>;
   4733 def atomic_store_simple_i32 : simple_store<atomic_store_32>;
   4734 def atomic_store_simple_i64 : simple_store<atomic_store_64>;
   4735 
   4736 //===------------------------------
   4737 // 2. UImm12 and SImm9
   4738 //===------------------------------
   4739 
   4740 // These instructions have two operands providing the address so they can be
   4741 // treated similarly for most purposes.
   4742 
   4743 //===------------------------------
   4744 // 2.1 Base patterns covering extend/truncate semantics
   4745 //===------------------------------
   4746 
   4747 // Atomic patterns can be shared between integer operations of all sizes, a
   4748 // quick multiclass here allows reuse.
   4749 multiclass ls_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
   4750                           dag Offset, dag address, ValueType transty,
   4751                           ValueType sty> {
   4752   def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
   4753             (LOAD Base, Offset)>;
   4754 
   4755   def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, transty:$Rt),
   4756             (STORE $Rt, Base, Offset)>;
   4757 }
   4758 
   4759 // Instructions accessing a memory chunk smaller than a register (or, in a
   4760 // pinch, the same size) have a characteristic set of patterns they want to
   4761 // match: extending loads and truncating stores. This class deals with the
   4762 // sign-neutral version of those patterns.
   4763 //
   4764 // It will be instantiated across multiple addressing-modes.
   4765 multiclass ls_small_pats<Instruction LOAD, Instruction STORE,
   4766                          dag Base, dag Offset,
   4767                          dag address, ValueType sty>
   4768   : ls_atomic_pats<LOAD, STORE, Base, Offset, address, i32, sty> {
   4769   def : Pat<(!cast<SDNode>(zextload # sty) address), (LOAD Base, Offset)>;
   4770 
   4771   def : Pat<(!cast<SDNode>(extload # sty) address), (LOAD Base, Offset)>;
   4772 
   4773   // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
   4774   // register was actually set.
   4775   def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
   4776             (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
   4777 
   4778   def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
   4779             (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
   4780 
   4781   def : Pat<(!cast<SDNode>(truncstore # sty) i32:$Rt, address),
   4782             (STORE $Rt, Base, Offset)>;
   4783 
   4784   // For truncating store from 64-bits, we have to manually tell LLVM to
   4785   // ignore the high bits of the x register.
   4786   def : Pat<(!cast<SDNode>(truncstore # sty) i64:$Rt, address),
   4787             (STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>;
   4788 }
   4789 
   4790 // Next come patterns for sign-extending loads.
   4791 multiclass load_signed_pats<string T, string U, dag Base, dag Offset,
   4792                             dag address, ValueType sty> {
   4793   def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
   4794             (!cast<Instruction>("LDRS" # T # "w" # U) Base, Offset)>;
   4795 
   4796   def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
   4797             (!cast<Instruction>("LDRS" # T # "x" # U) Base, Offset)>;
   4798 
   4799 }
   4800 
   4801 // and finally "natural-width" loads and stores come next.
   4802 multiclass ls_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
   4803                            dag Offset, dag address, ValueType sty> {
   4804   def : Pat<(sty (load address)), (LOAD Base, Offset)>;
   4805   def : Pat<(store sty:$Rt, address), (STORE $Rt, Base, Offset)>;
   4806 }
   4807 
   4808 // Integer operations also get atomic instructions to select for.
   4809 multiclass ls_int_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
   4810                            dag Offset, dag address, ValueType sty>
   4811   : ls_neutral_pats<LOAD, STORE, Base, Offset, address, sty>,
   4812     ls_atomic_pats<LOAD, STORE, Base, Offset, address, sty, sty>;
   4813 
   4814 //===------------------------------
   4815 // 2.2. Addressing-mode instantiations
   4816 //===------------------------------
   4817 
   4818 multiclass uimm12_pats<dag address, dag Base, dag Offset> {
   4819   defm : ls_small_pats<LS8_LDR, LS8_STR, Base,
   4820                        !foreach(decls.pattern, Offset,
   4821                                 !subst(OFFSET, byte_uimm12, decls.pattern)),
   4822                        !foreach(decls.pattern, address,
   4823                                 !subst(OFFSET, byte_uimm12,
   4824                                 !subst(ALIGN, any_align, decls.pattern))),
   4825                        i8>;
   4826   defm : ls_small_pats<LS16_LDR, LS16_STR, Base,
   4827                        !foreach(decls.pattern, Offset,
   4828                                 !subst(OFFSET, hword_uimm12, decls.pattern)),
   4829                        !foreach(decls.pattern, address,
   4830                                 !subst(OFFSET, hword_uimm12,
   4831                                 !subst(ALIGN, min_align2, decls.pattern))),
   4832                        i16>;
   4833   defm : ls_small_pats<LS32_LDR, LS32_STR, Base,
   4834                        !foreach(decls.pattern, Offset,
   4835                                 !subst(OFFSET, word_uimm12, decls.pattern)),
   4836                        !foreach(decls.pattern, address,
   4837                                 !subst(OFFSET, word_uimm12,
   4838                                 !subst(ALIGN, min_align4, decls.pattern))),
   4839                        i32>;
   4840 
   4841   defm : ls_int_neutral_pats<LS32_LDR, LS32_STR, Base,
   4842                           !foreach(decls.pattern, Offset,
   4843                                    !subst(OFFSET, word_uimm12, decls.pattern)),
   4844                           !foreach(decls.pattern, address,
   4845                                    !subst(OFFSET, word_uimm12,
   4846                                    !subst(ALIGN, min_align4, decls.pattern))),
   4847                           i32>;
   4848 
   4849   defm : ls_int_neutral_pats<LS64_LDR, LS64_STR, Base,
   4850                           !foreach(decls.pattern, Offset,
   4851                                    !subst(OFFSET, dword_uimm12, decls.pattern)),
   4852                           !foreach(decls.pattern, address,
   4853                                    !subst(OFFSET, dword_uimm12,
   4854                                    !subst(ALIGN, min_align8, decls.pattern))),
   4855                           i64>;
   4856 
   4857   defm : ls_neutral_pats<LSFP16_LDR, LSFP16_STR, Base,
   4858                           !foreach(decls.pattern, Offset,
   4859                                    !subst(OFFSET, hword_uimm12, decls.pattern)),
   4860                           !foreach(decls.pattern, address,
   4861                                    !subst(OFFSET, hword_uimm12,
   4862                                    !subst(ALIGN, min_align2, decls.pattern))),
   4863                           f16>;
   4864 
   4865   defm : ls_neutral_pats<LSFP32_LDR, LSFP32_STR, Base,
   4866                           !foreach(decls.pattern, Offset,
   4867                                    !subst(OFFSET, word_uimm12, decls.pattern)),
   4868                           !foreach(decls.pattern, address,
   4869                                    !subst(OFFSET, word_uimm12,
   4870                                    !subst(ALIGN, min_align4, decls.pattern))),
   4871                           f32>;
   4872 
   4873   defm : ls_neutral_pats<LSFP64_LDR, LSFP64_STR, Base,
   4874                           !foreach(decls.pattern, Offset,
   4875                                    !subst(OFFSET, dword_uimm12, decls.pattern)),
   4876                           !foreach(decls.pattern, address,
   4877                                    !subst(OFFSET, dword_uimm12,
   4878                                    !subst(ALIGN, min_align8, decls.pattern))),
   4879                           f64>;
   4880 
   4881   defm : ls_neutral_pats<LSFP128_LDR, LSFP128_STR, Base,
   4882                           !foreach(decls.pattern, Offset,
   4883                                    !subst(OFFSET, qword_uimm12, decls.pattern)),
   4884                           !foreach(decls.pattern, address,
   4885                                    !subst(OFFSET, qword_uimm12,
   4886                                    !subst(ALIGN, min_align16, decls.pattern))),
   4887                           f128>;
   4888 
   4889   defm : load_signed_pats<"B", "", Base,
   4890                           !foreach(decls.pattern, Offset,
   4891                                    !subst(OFFSET, byte_uimm12, decls.pattern)),
   4892                           !foreach(decls.pattern, address,
   4893                                    !subst(OFFSET, byte_uimm12,
   4894                                    !subst(ALIGN, any_align, decls.pattern))),
   4895                           i8>;
   4896 
   4897   defm : load_signed_pats<"H", "", Base,
   4898                           !foreach(decls.pattern, Offset,
   4899                                    !subst(OFFSET, hword_uimm12, decls.pattern)),
   4900                           !foreach(decls.pattern, address,
   4901                                    !subst(OFFSET, hword_uimm12,
   4902                                    !subst(ALIGN, min_align2, decls.pattern))),
   4903                           i16>;
   4904 
   4905   def : Pat<(sextloadi32 !foreach(decls.pattern, address,
   4906                                   !subst(OFFSET, word_uimm12,
   4907                                   !subst(ALIGN, min_align4, decls.pattern)))),
   4908             (LDRSWx Base, !foreach(decls.pattern, Offset,
   4909                                   !subst(OFFSET, word_uimm12, decls.pattern)))>;
   4910 }
   4911 
   4912 // Straightforward patterns of last resort: a pointer with or without an
   4913 // appropriate offset.
   4914 defm : uimm12_pats<(i64 i64:$Rn), (i64 i64:$Rn), (i64 0)>;
   4915 defm : uimm12_pats<(add i64:$Rn, OFFSET:$UImm12),
   4916                    (i64 i64:$Rn), (i64 OFFSET:$UImm12)>;
   4917 
   4918 // The offset could be hidden behind an "or", of course:
   4919 defm : uimm12_pats<(add_like_or i64:$Rn, OFFSET:$UImm12),
   4920                    (i64 i64:$Rn), (i64 OFFSET:$UImm12)>;
   4921 
   4922 // Global addresses under the small-absolute model should use these
   4923 // instructions. There are ELF relocations specifically for it.
   4924 defm : uimm12_pats<(A64WrapperSmall tglobaladdr:$Hi, tglobaladdr:$Lo12, ALIGN),
   4925                    (ADRPxi tglobaladdr:$Hi), (i64 tglobaladdr:$Lo12)>;
   4926 
   4927 defm : uimm12_pats<(A64WrapperSmall tglobaltlsaddr:$Hi, tglobaltlsaddr:$Lo12,
   4928                                     ALIGN),
   4929                    (ADRPxi tglobaltlsaddr:$Hi), (i64 tglobaltlsaddr:$Lo12)>;
   4930 
   4931 // External symbols that make it this far should also get standard relocations.
   4932 defm : uimm12_pats<(A64WrapperSmall texternalsym:$Hi, texternalsym:$Lo12,
   4933                                     ALIGN),
   4934                    (ADRPxi texternalsym:$Hi), (i64 texternalsym:$Lo12)>;
   4935 
   4936 defm : uimm12_pats<(A64WrapperSmall tconstpool:$Hi, tconstpool:$Lo12, ALIGN),
   4937                    (ADRPxi tconstpool:$Hi), (i64 tconstpool:$Lo12)>;
   4938 
   4939 // We also want to use uimm12 instructions for local variables at the moment.
   4940 def tframeindex_XFORM : SDNodeXForm<frameindex, [{
   4941   int FI = cast<FrameIndexSDNode>(N)->getIndex();
   4942   return CurDAG->getTargetFrameIndex(FI, MVT::i64);
   4943 }]>;
   4944 
   4945 defm : uimm12_pats<(i64 frameindex:$Rn),
   4946                    (tframeindex_XFORM tframeindex:$Rn), (i64 0)>;
   4947 
   4948 // These can be much simpler than uimm12 because we don't to change the operand
   4949 // type (e.g. LDURB and LDURH take the same operands).
   4950 multiclass simm9_pats<dag address, dag Base, dag Offset> {
   4951   defm : ls_small_pats<LS8_LDUR, LS8_STUR, Base, Offset, address, i8>;
   4952   defm : ls_small_pats<LS16_LDUR, LS16_STUR, Base, Offset, address, i16>;
   4953 
   4954   defm : ls_int_neutral_pats<LS32_LDUR, LS32_STUR, Base, Offset, address, i32>;
   4955   defm : ls_int_neutral_pats<LS64_LDUR, LS64_STUR, Base, Offset, address, i64>;
   4956 
   4957   defm : ls_neutral_pats<LSFP16_LDUR, LSFP16_STUR, Base, Offset, address, f16>;
   4958   defm : ls_neutral_pats<LSFP32_LDUR, LSFP32_STUR, Base, Offset, address, f32>;
   4959   defm : ls_neutral_pats<LSFP64_LDUR, LSFP64_STUR, Base, Offset, address, f64>;
   4960   defm : ls_neutral_pats<LSFP128_LDUR, LSFP128_STUR, Base, Offset, address,
   4961                          f128>;
   4962 
   4963   def : Pat<(i64 (zextloadi32 address)),
   4964             (SUBREG_TO_REG (i64 0), (LS32_LDUR Base, Offset), sub_32)>;
   4965 
   4966   def : Pat<(truncstorei32 i64:$Rt, address),
   4967             (LS32_STUR (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>;
   4968 
   4969   defm : load_signed_pats<"B", "_U", Base, Offset, address, i8>;
   4970   defm : load_signed_pats<"H", "_U", Base, Offset, address, i16>;
   4971   def : Pat<(sextloadi32 address), (LDURSWx Base, Offset)>;
   4972 }
   4973 
   4974 defm : simm9_pats<(add i64:$Rn, simm9:$SImm9),
   4975                   (i64 $Rn), (SDXF_simm9 simm9:$SImm9)>;
   4976 
   4977 defm : simm9_pats<(add_like_or i64:$Rn, simm9:$SImm9),
   4978                   (i64 $Rn), (SDXF_simm9 simm9:$SImm9)>;
   4979 
   4980 
   4981 //===------------------------------
   4982 // 3. Register offset patterns
   4983 //===------------------------------
   4984 
   4985 // Atomic patterns can be shared between integer operations of all sizes, a
   4986 // quick multiclass here allows reuse.
   4987 multiclass ro_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
   4988                           dag Offset, dag Extend, dag address,
   4989                           ValueType transty, ValueType sty> {
   4990   def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
   4991             (LOAD Base, Offset, Extend)>;
   4992 
   4993   def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, transty:$Rt),
   4994             (STORE $Rt, Base, Offset, Extend)>;
   4995 }
   4996 
   4997 // The register offset instructions take three operands giving the instruction,
   4998 // and have an annoying split between instructions where Rm is 32-bit and
   4999 // 64-bit. So we need a special hierarchy to describe them. Other than that the
   5000 // same operations should be supported as for simm9 and uimm12 addressing.
   5001 
   5002 multiclass ro_small_pats<Instruction LOAD, Instruction STORE,
   5003                          dag Base, dag Offset, dag Extend,
   5004                          dag address, ValueType sty>
   5005   : ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, i32, sty> {
   5006   def : Pat<(!cast<SDNode>(zextload # sty) address),
   5007             (LOAD Base, Offset, Extend)>;
   5008 
   5009   def : Pat<(!cast<SDNode>(extload # sty) address),
   5010             (LOAD Base, Offset, Extend)>;
   5011 
   5012   // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
   5013   // register was actually set.
   5014   def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
   5015             (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
   5016 
   5017   def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
   5018             (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
   5019 
   5020   def : Pat<(!cast<SDNode>(truncstore # sty) i32:$Rt, address),
   5021             (STORE $Rt, Base, Offset, Extend)>;
   5022 
   5023   // For truncating store from 64-bits, we have to manually tell LLVM to
   5024   // ignore the high bits of the x register.
   5025   def : Pat<(!cast<SDNode>(truncstore # sty) i64:$Rt, address),
   5026             (STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset, Extend)>;
   5027 
   5028 }
   5029 
   5030 // Next come patterns for sign-extending loads.
   5031 multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend,
   5032                           dag address, ValueType sty> {
   5033   def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
   5034             (!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset")
   5035               Base, Offset, Extend)>;
   5036 
   5037   def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
   5038             (!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset")
   5039               Base, Offset, Extend)>;
   5040 }
   5041 
   5042 // and finally "natural-width" loads and stores come next.
   5043 multiclass ro_neutral_pats<Instruction LOAD, Instruction STORE,
   5044                            dag Base, dag Offset, dag Extend, dag address,
   5045                            ValueType sty> {
   5046   def : Pat<(sty (load address)), (LOAD Base, Offset, Extend)>;
   5047   def : Pat<(store sty:$Rt, address),
   5048             (STORE $Rt, Base, Offset, Extend)>;
   5049 }
   5050 
   5051 multiclass ro_int_neutral_pats<Instruction LOAD, Instruction STORE,
   5052                                dag Base, dag Offset, dag Extend, dag address,
   5053                                ValueType sty>
   5054   : ro_neutral_pats<LOAD, STORE, Base, Offset, Extend, address, sty>,
   5055     ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, sty, sty>;
   5056 
   5057 multiclass regoff_pats<string Rm, dag address, dag Base, dag Offset,
   5058                        dag Extend> {
   5059   defm : ro_small_pats<!cast<Instruction>("LS8_" # Rm # "_RegOffset_LDR"),
   5060                        !cast<Instruction>("LS8_" # Rm # "_RegOffset_STR"),
   5061                        Base, Offset, Extend,
   5062                        !foreach(decls.pattern, address,
   5063                                 !subst(SHIFT, imm_eq0, decls.pattern)),
   5064                        i8>;
   5065   defm : ro_small_pats<!cast<Instruction>("LS16_" # Rm # "_RegOffset_LDR"),
   5066                        !cast<Instruction>("LS16_" # Rm # "_RegOffset_STR"),
   5067                        Base, Offset, Extend,
   5068                        !foreach(decls.pattern, address,
   5069                                 !subst(SHIFT, imm_eq1, decls.pattern)),
   5070                        i16>;
   5071   defm : ro_small_pats<!cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
   5072                        !cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
   5073                        Base, Offset, Extend,
   5074                        !foreach(decls.pattern, address,
   5075                                 !subst(SHIFT, imm_eq2, decls.pattern)),
   5076                        i32>;
   5077 
   5078   defm : ro_int_neutral_pats<
   5079                             !cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
   5080                             !cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
   5081                             Base, Offset, Extend,
   5082                             !foreach(decls.pattern, address,
   5083                                      !subst(SHIFT, imm_eq2, decls.pattern)),
   5084                             i32>;
   5085 
   5086   defm : ro_int_neutral_pats<
   5087                             !cast<Instruction>("LS64_" # Rm # "_RegOffset_LDR"),
   5088                             !cast<Instruction>("LS64_" # Rm # "_RegOffset_STR"),
   5089                             Base, Offset, Extend,
   5090                             !foreach(decls.pattern, address,
   5091                                      !subst(SHIFT, imm_eq3, decls.pattern)),
   5092                             i64>;
   5093 
   5094   defm : ro_neutral_pats<!cast<Instruction>("LSFP16_" # Rm # "_RegOffset_LDR"),
   5095                          !cast<Instruction>("LSFP16_" # Rm # "_RegOffset_STR"),
   5096                          Base, Offset, Extend,
   5097                          !foreach(decls.pattern, address,
   5098                                   !subst(SHIFT, imm_eq1, decls.pattern)),
   5099                          f16>;
   5100 
   5101   defm : ro_neutral_pats<!cast<Instruction>("LSFP32_" # Rm # "_RegOffset_LDR"),
   5102                          !cast<Instruction>("LSFP32_" # Rm # "_RegOffset_STR"),
   5103                          Base, Offset, Extend,
   5104                          !foreach(decls.pattern, address,
   5105                                   !subst(SHIFT, imm_eq2, decls.pattern)),
   5106                          f32>;
   5107 
   5108   defm : ro_neutral_pats<!cast<Instruction>("LSFP64_" # Rm # "_RegOffset_LDR"),
   5109                          !cast<Instruction>("LSFP64_" # Rm # "_RegOffset_STR"),
   5110                          Base, Offset, Extend,
   5111                          !foreach(decls.pattern, address,
   5112                                   !subst(SHIFT, imm_eq3, decls.pattern)),
   5113                          f64>;
   5114 
   5115   defm : ro_neutral_pats<!cast<Instruction>("LSFP128_" # Rm # "_RegOffset_LDR"),
   5116                          !cast<Instruction>("LSFP128_" # Rm # "_RegOffset_STR"),
   5117                          Base, Offset, Extend,
   5118                          !foreach(decls.pattern, address,
   5119                                   !subst(SHIFT, imm_eq4, decls.pattern)),
   5120                          f128>;
   5121 
   5122   defm : ro_signed_pats<"B", Rm, Base, Offset, Extend,
   5123                         !foreach(decls.pattern, address,
   5124                                  !subst(SHIFT, imm_eq0, decls.pattern)),
   5125                         i8>;
   5126 
   5127   defm : ro_signed_pats<"H", Rm, Base, Offset, Extend,
   5128                         !foreach(decls.pattern, address,
   5129                                  !subst(SHIFT, imm_eq1, decls.pattern)),
   5130                         i16>;
   5131 
   5132   def : Pat<(sextloadi32 !foreach(decls.pattern, address,
   5133                                   !subst(SHIFT, imm_eq2, decls.pattern))),
   5134             (!cast<Instruction>("LDRSWx_" # Rm # "_RegOffset")
   5135               Base, Offset, Extend)>;
   5136 }
   5137 
   5138 
   5139 // Finally we're in a position to tell LLVM exactly what addresses are reachable
   5140 // using register-offset instructions. Essentially a base plus a possibly
   5141 // extended, possibly shifted (by access size) offset.
   5142 
   5143 defm : regoff_pats<"Wm", (add i64:$Rn, (sext i32:$Rm)),
   5144                    (i64 i64:$Rn), (i32 i32:$Rm), (i64 6)>;
   5145 
   5146 defm : regoff_pats<"Wm", (add i64:$Rn, (shl (sext i32:$Rm), SHIFT)),
   5147                    (i64 i64:$Rn), (i32 i32:$Rm), (i64 7)>;
   5148 
   5149 defm : regoff_pats<"Wm", (add i64:$Rn, (zext i32:$Rm)),
   5150                    (i64 i64:$Rn), (i32 i32:$Rm), (i64 2)>;
   5151 
   5152 defm : regoff_pats<"Wm", (add i64:$Rn, (shl (zext i32:$Rm), SHIFT)),
   5153                    (i64 i64:$Rn), (i32 i32:$Rm), (i64 3)>;
   5154 
   5155 defm : regoff_pats<"Xm", (add i64:$Rn, i64:$Rm),
   5156                    (i64 i64:$Rn), (i64 i64:$Rm), (i64 2)>;
   5157 
   5158 defm : regoff_pats<"Xm", (add i64:$Rn, (shl i64:$Rm, SHIFT)),
   5159                    (i64 i64:$Rn), (i64 i64:$Rm), (i64 3)>;
   5160 
   5161 //===----------------------------------------------------------------------===//
   5162 // Advanced SIMD (NEON) Support
   5163 //
   5164 
   5165 include "AArch64InstrNEON.td"