Home | History | Annotate | Download | only in Hexagon
      1 //==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Hexagon instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 include "HexagonInstrFormats.td"
     15 include "HexagonOperands.td"
     16 
     17 //===----------------------------------------------------------------------===//
     18 
     19 // Multi-class for logical operators.
     20 multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> {
     21   def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
     22                  !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
     23                  [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b),
     24                                                    (i32 IntRegs:$c)))]>;
     25   def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c),
     26                  !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")),
     27                  [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b,
     28                                                    (i32 IntRegs:$c)))]>;
     29 }
     30 
     31 // Multi-class for compare ops.
     32 let isCompare = 1 in {
     33 multiclass CMP64_rr<string OpcStr, PatFrag OpNode> {
     34   def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c),
     35                  !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
     36                  [(set (i1 PredRegs:$dst),
     37                        (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>;
     38 }
     39 
     40 multiclass CMP32_rr_ri_s10<string OpcStr, string CextOp, PatFrag OpNode> {
     41   let CextOpcode = CextOp in {
     42     let InputType = "reg" in
     43     def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
     44                    !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
     45                    [(set (i1 PredRegs:$dst),
     46                          (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
     47 
     48     let isExtendable = 1, opExtendable = 2, isExtentSigned = 1,
     49     opExtentBits = 10, InputType = "imm" in
     50     def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Ext:$c),
     51                    !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
     52                    [(set (i1 PredRegs:$dst),
     53                          (OpNode (i32 IntRegs:$b), s10ExtPred:$c))]>;
     54   }
     55 }
     56 
     57 multiclass CMP32_rr_ri_u9<string OpcStr, string CextOp, PatFrag OpNode> {
     58   let CextOpcode = CextOp in {
     59     let InputType = "reg" in
     60     def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
     61                    !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
     62                    [(set (i1 PredRegs:$dst),
     63                          (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
     64 
     65     let isExtendable = 1, opExtendable = 2, isExtentSigned = 0,
     66     opExtentBits = 9, InputType = "imm" in
     67     def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Ext:$c),
     68                    !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
     69                    [(set (i1 PredRegs:$dst),
     70                          (OpNode (i32 IntRegs:$b), u9ExtPred:$c))]>;
     71   }
     72 }
     73 
     74 multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> {
     75 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
     76   def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Ext:$c),
     77                  !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
     78                  [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b),
     79                                                    s8ExtPred:$c))]>;
     80 }
     81 }
     82 
     83 //===----------------------------------------------------------------------===//
     84 // ALU32/ALU (Instructions with register-register form)
     85 //===----------------------------------------------------------------------===//
     86 def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
     87   [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
     88 
     89 def HexagonWrapperCombineII :
     90   SDNode<"HexagonISD::WrapperCombineII", SDTHexagonI64I32I32>;
     91 
     92 def HexagonWrapperCombineRR :
     93   SDNode<"HexagonISD::WrapperCombineRR", SDTHexagonI64I32I32>;
     94 
     95 multiclass ALU32_Pbase<string mnemonic, RegisterClass RC, bit isNot,
     96                        bit isPredNew> {
     97   let isPredicatedNew = isPredNew in
     98   def NAME : ALU32_rr<(outs RC:$dst),
     99             (ins PredRegs:$src1, IntRegs:$src2, IntRegs: $src3),
    100             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
    101             ") $dst = ")#mnemonic#"($src2, $src3)",
    102             []>;
    103 }
    104 
    105 multiclass ALU32_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
    106   let isPredicatedFalse = PredNot in {
    107     defm _c#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 0>;
    108     // Predicate new
    109     defm _cdn#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 1>;
    110   }
    111 }
    112 
    113 let InputType = "reg" in
    114 multiclass ALU32_base<string mnemonic, string CextOp, SDNode OpNode> {
    115   let CextOpcode = CextOp, BaseOpcode = CextOp#_rr in {
    116     let isPredicable = 1 in
    117     def NAME : ALU32_rr<(outs IntRegs:$dst),
    118             (ins IntRegs:$src1, IntRegs:$src2),
    119             "$dst = "#mnemonic#"($src1, $src2)",
    120             [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
    121                                               (i32 IntRegs:$src2)))]>;
    122 
    123     let neverHasSideEffects = 1, isPredicated = 1 in {
    124       defm Pt : ALU32_Pred<mnemonic, IntRegs, 0>;
    125       defm NotPt : ALU32_Pred<mnemonic, IntRegs, 1>;
    126     }
    127   }
    128 }
    129 
    130 let isCommutable = 1 in {
    131   defm ADD_rr : ALU32_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
    132   defm AND_rr : ALU32_base<"and", "AND", and>, ImmRegRel, PredNewRel;
    133   defm XOR_rr : ALU32_base<"xor", "XOR", xor>, ImmRegRel, PredNewRel;
    134   defm OR_rr  : ALU32_base<"or", "OR", or>, ImmRegRel, PredNewRel;
    135 }
    136 
    137 defm SUB_rr : ALU32_base<"sub", "SUB", sub>, ImmRegRel, PredNewRel;
    138 
    139 // Combines the two integer registers SRC1 and SRC2 into a double register.
    140 let isPredicable = 1 in
    141 class T_Combine : ALU32_rr<(outs DoubleRegs:$dst),
    142                            (ins IntRegs:$src1, IntRegs:$src2),
    143             "$dst = combine($src1, $src2)",
    144             [(set (i64 DoubleRegs:$dst),
    145               (i64 (HexagonWrapperCombineRR (i32 IntRegs:$src1),
    146                                             (i32 IntRegs:$src2))))]>;
    147 
    148 multiclass Combine_base {
    149   let BaseOpcode = "combine" in {
    150     def NAME : T_Combine;
    151     let neverHasSideEffects = 1, isPredicated = 1 in {
    152       defm Pt : ALU32_Pred<"combine", DoubleRegs, 0>;
    153       defm NotPt : ALU32_Pred<"combine", DoubleRegs, 1>;
    154     }
    155   }
    156 }
    157 
    158 defm COMBINE_rr : Combine_base, PredNewRel;
    159 
    160 // Combines the two immediates SRC1 and SRC2 into a double register.
    161 class COMBINE_imm<Operand imm1, Operand imm2, PatLeaf pat1, PatLeaf pat2> :
    162   ALU32_ii<(outs DoubleRegs:$dst), (ins imm1:$src1, imm2:$src2),
    163   "$dst = combine(#$src1, #$src2)",
    164   [(set (i64 DoubleRegs:$dst),
    165         (i64 (HexagonWrapperCombineII (i32 pat1:$src1), (i32 pat2:$src2))))]>;
    166 
    167 let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8 in
    168 def COMBINE_Ii : COMBINE_imm<s8Ext, s8Imm, s8ExtPred, s8ImmPred>;
    169 
    170 //===----------------------------------------------------------------------===//
    171 // ALU32/ALU (ADD with register-immediate form)
    172 //===----------------------------------------------------------------------===//
    173 multiclass ALU32ri_Pbase<string mnemonic, bit isNot, bit isPredNew> {
    174   let isPredicatedNew = isPredNew in
    175   def NAME : ALU32_ri<(outs IntRegs:$dst),
    176             (ins PredRegs:$src1, IntRegs:$src2, s8Ext: $src3),
    177             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
    178             ") $dst = ")#mnemonic#"($src2, #$src3)",
    179             []>;
    180 }
    181 
    182 multiclass ALU32ri_Pred<string mnemonic, bit PredNot> {
    183   let isPredicatedFalse = PredNot in {
    184     defm _c#NAME : ALU32ri_Pbase<mnemonic, PredNot, 0>;
    185     // Predicate new
    186     defm _cdn#NAME : ALU32ri_Pbase<mnemonic, PredNot, 1>;
    187   }
    188 }
    189 
    190 let isExtendable = 1, InputType = "imm" in
    191 multiclass ALU32ri_base<string mnemonic, string CextOp, SDNode OpNode> {
    192   let CextOpcode = CextOp, BaseOpcode = CextOp#_ri in {
    193     let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16,
    194     isPredicable = 1 in
    195     def NAME : ALU32_ri<(outs IntRegs:$dst),
    196             (ins IntRegs:$src1, s16Ext:$src2),
    197             "$dst = "#mnemonic#"($src1, #$src2)",
    198             [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
    199                                               (s16ExtPred:$src2)))]>;
    200 
    201     let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
    202     neverHasSideEffects = 1, isPredicated = 1 in {
    203       defm Pt : ALU32ri_Pred<mnemonic, 0>;
    204       defm NotPt : ALU32ri_Pred<mnemonic, 1>;
    205     }
    206   }
    207 }
    208 
    209 defm ADD_ri : ALU32ri_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
    210 
    211 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
    212 CextOpcode = "OR", InputType = "imm" in
    213 def OR_ri : ALU32_ri<(outs IntRegs:$dst),
    214             (ins IntRegs:$src1, s10Ext:$src2),
    215             "$dst = or($src1, #$src2)",
    216             [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
    217                                           s10ExtPred:$src2))]>, ImmRegRel;
    218 
    219 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
    220 InputType = "imm", CextOpcode = "AND" in
    221 def AND_ri : ALU32_ri<(outs IntRegs:$dst),
    222             (ins IntRegs:$src1, s10Ext:$src2),
    223             "$dst = and($src1, #$src2)",
    224             [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
    225                                            s10ExtPred:$src2))]>, ImmRegRel;
    226 
    227 // Nop.
    228 let neverHasSideEffects = 1 in
    229 def NOP : ALU32_rr<(outs), (ins),
    230           "nop",
    231           []>;
    232 
    233 // Rd32=sub(#s10,Rs32)
    234 let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10,
    235 CextOpcode = "SUB", InputType = "imm" in
    236 def SUB_ri : ALU32_ri<(outs IntRegs:$dst),
    237             (ins s10Ext:$src1, IntRegs:$src2),
    238             "$dst = sub(#$src1, $src2)",
    239             [(set IntRegs:$dst, (sub s10ExtPred:$src1, IntRegs:$src2))]>,
    240             ImmRegRel;
    241 
    242 // Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
    243 def : Pat<(not (i32 IntRegs:$src1)),
    244           (SUB_ri -1, (i32 IntRegs:$src1))>;
    245 
    246 // Rd = neg(Rs) gets mapped to Rd=sub(#0, Rs).
    247 // Pattern definition for 'neg' was not necessary.
    248 
    249 multiclass TFR_Pred<bit PredNot> {
    250   let isPredicatedFalse = PredNot in {
    251     def _c#NAME : ALU32_rr<(outs IntRegs:$dst),
    252                            (ins PredRegs:$src1, IntRegs:$src2),
    253             !if(PredNot, "if (!$src1", "if ($src1")#") $dst = $src2",
    254             []>;
    255     // Predicate new
    256     let isPredicatedNew = 1 in
    257     def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
    258                              (ins PredRegs:$src1, IntRegs:$src2),
    259             !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = $src2",
    260             []>;
    261   }
    262 }
    263 
    264 let InputType = "reg", neverHasSideEffects = 1 in
    265 multiclass TFR_base<string CextOp> {
    266   let CextOpcode = CextOp, BaseOpcode = CextOp in {
    267     let isPredicable = 1 in
    268     def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
    269             "$dst = $src1",
    270             []>;
    271 
    272     let  isPredicated = 1 in {
    273       defm Pt : TFR_Pred<0>;
    274       defm NotPt : TFR_Pred<1>;
    275     }
    276   }
    277 }
    278 
    279 class T_TFR64_Pred<bit PredNot, bit isPredNew>
    280             : ALU32_rr<(outs DoubleRegs:$dst),
    281                        (ins PredRegs:$src1, DoubleRegs:$src2),
    282             !if(PredNot, "if (!$src1", "if ($src1")#
    283             !if(isPredNew, ".new) ", ") ")#"$dst = $src2", []>
    284 {
    285     bits<5> dst;
    286     bits<2> src1;
    287     bits<5> src2;
    288 
    289     let IClass = 0b1111;
    290     let Inst{27-24} = 0b1101;
    291     let Inst{13} = isPredNew;
    292     let Inst{7} = PredNot;
    293     let Inst{4-0} = dst;
    294     let Inst{6-5} = src1;
    295     let Inst{20-17} = src2{4-1};
    296     let Inst{16} = 0b1;
    297     let Inst{12-9} = src2{4-1};
    298     let Inst{8} = 0b0;
    299 }
    300 
    301 multiclass TFR64_Pred<bit PredNot> {
    302   let isPredicatedFalse = PredNot in {
    303     def _c#NAME : T_TFR64_Pred<PredNot, 0>;
    304 
    305     let isPredicatedNew = 1 in
    306     def _cdn#NAME : T_TFR64_Pred<PredNot, 1>; // Predicate new
    307   }
    308 }
    309 
    310 let neverHasSideEffects = 1 in
    311 multiclass TFR64_base<string BaseName> {
    312   let BaseOpcode = BaseName in {
    313     let isPredicable = 1 in
    314     def NAME : ALU32Inst <(outs DoubleRegs:$dst),
    315                           (ins DoubleRegs:$src1),
    316                           "$dst = $src1" > {
    317         bits<5> dst;
    318         bits<5> src1;
    319 
    320         let IClass = 0b1111;
    321         let Inst{27-23} = 0b01010;
    322         let Inst{4-0} = dst;
    323         let Inst{20-17} = src1{4-1};
    324         let Inst{16} = 0b1;
    325         let Inst{12-9} = src1{4-1};
    326         let Inst{8} = 0b0;
    327     }
    328 
    329     let  isPredicated = 1 in {
    330       defm Pt : TFR64_Pred<0>;
    331       defm NotPt : TFR64_Pred<1>;
    332     }
    333   }
    334 }
    335 
    336 multiclass TFRI_Pred<bit PredNot> {
    337   let isMoveImm = 1, isPredicatedFalse = PredNot in {
    338     def _c#NAME : ALU32_ri<(outs IntRegs:$dst),
    339                            (ins PredRegs:$src1, s12Ext:$src2),
    340             !if(PredNot, "if (!$src1", "if ($src1")#") $dst = #$src2",
    341             []>;
    342 
    343     // Predicate new
    344     let isPredicatedNew = 1 in
    345     def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
    346                              (ins PredRegs:$src1, s12Ext:$src2),
    347             !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = #$src2",
    348             []>;
    349   }
    350 }
    351 
    352 let InputType = "imm", isExtendable = 1, isExtentSigned = 1 in
    353 multiclass TFRI_base<string CextOp> {
    354   let CextOpcode = CextOp, BaseOpcode = CextOp#I in {
    355     let isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16,
    356     isMoveImm = 1, isPredicable = 1, isReMaterializable = 1 in
    357     def NAME : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
    358             "$dst = #$src1",
    359             [(set (i32 IntRegs:$dst), s16ExtPred:$src1)]>;
    360 
    361     let opExtendable = 2,  opExtentBits = 12, neverHasSideEffects = 1,
    362     isPredicated = 1 in {
    363       defm Pt    : TFRI_Pred<0>;
    364       defm NotPt : TFRI_Pred<1>;
    365     }
    366   }
    367 }
    368 
    369 defm TFRI : TFRI_base<"TFR">, ImmRegRel, PredNewRel;
    370 defm TFR : TFR_base<"TFR">, ImmRegRel, PredNewRel;
    371 defm TFR64 : TFR64_base<"TFR64">, PredNewRel;
    372 
    373 // Transfer control register.
    374 let neverHasSideEffects = 1 in
    375 def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1),
    376            "$dst = $src1",
    377            []>;
    378 //===----------------------------------------------------------------------===//
    379 // ALU32/ALU -
    380 //===----------------------------------------------------------------------===//
    381 
    382 
    383 //===----------------------------------------------------------------------===//
    384 // ALU32/PERM +
    385 //===----------------------------------------------------------------------===//
    386 
    387 let neverHasSideEffects = 1 in
    388 def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst),
    389             (ins s8Imm:$src1, s8Imm:$src2),
    390             "$dst = combine(#$src1, #$src2)",
    391             []>;
    392 
    393 // Mux.
    394 def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
    395                                                    DoubleRegs:$src2,
    396                                                    DoubleRegs:$src3),
    397             "$dst = vmux($src1, $src2, $src3)",
    398             []>;
    399 
    400 let CextOpcode = "MUX", InputType = "reg" in
    401 def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
    402                                             IntRegs:$src2, IntRegs:$src3),
    403              "$dst = mux($src1, $src2, $src3)",
    404              [(set (i32 IntRegs:$dst),
    405                    (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
    406                                 (i32 IntRegs:$src3))))]>, ImmRegRel;
    407 
    408 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
    409 CextOpcode = "MUX", InputType = "imm" in
    410 def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
    411                                                 IntRegs:$src3),
    412              "$dst = mux($src1, #$src2, $src3)",
    413              [(set (i32 IntRegs:$dst),
    414                    (i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2,
    415                                 (i32 IntRegs:$src3))))]>, ImmRegRel;
    416 
    417 let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
    418 CextOpcode = "MUX", InputType = "imm" in
    419 def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2,
    420                                                 s8Ext:$src3),
    421              "$dst = mux($src1, $src2, #$src3)",
    422              [(set (i32 IntRegs:$dst),
    423                    (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
    424                                  s8ExtPred:$src3)))]>, ImmRegRel;
    425 
    426 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
    427 def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
    428                                                 s8Imm:$src3),
    429              "$dst = mux($src1, #$src2, #$src3)",
    430              [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
    431                                                     s8ExtPred:$src2,
    432                                                     s8ImmPred:$src3)))]>;
    433 
    434 // ALU32 - aslh, asrh, sxtb, sxth, zxtb, zxth
    435 multiclass ALU32_2op_Pbase<string mnemonic, bit isNot, bit isPredNew> {
    436   let isPredicatedNew = isPredNew in
    437   def NAME : ALU32Inst<(outs IntRegs:$dst),
    438                        (ins PredRegs:$src1, IntRegs:$src2),
    439             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
    440             ") $dst = ")#mnemonic#"($src2)">,
    441             Requires<[HasV4T]>;
    442 }
    443 
    444 multiclass ALU32_2op_Pred<string mnemonic, bit PredNot> {
    445   let isPredicatedFalse = PredNot in {
    446     defm _c#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 0>;
    447     // Predicate new
    448     defm _cdn#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 1>;
    449   }
    450 }
    451 
    452 multiclass ALU32_2op_base<string mnemonic> {
    453   let BaseOpcode = mnemonic in {
    454     let isPredicable = 1, neverHasSideEffects = 1 in
    455     def NAME : ALU32Inst<(outs IntRegs:$dst),
    456                          (ins IntRegs:$src1),
    457             "$dst = "#mnemonic#"($src1)">;
    458 
    459     let Predicates = [HasV4T], validSubTargets = HasV4SubT, isPredicated = 1,
    460     neverHasSideEffects = 1 in {
    461       defm Pt_V4    : ALU32_2op_Pred<mnemonic, 0>;
    462       defm NotPt_V4 : ALU32_2op_Pred<mnemonic, 1>;
    463     }
    464   }
    465 }
    466 
    467 defm ASLH : ALU32_2op_base<"aslh">, PredNewRel;
    468 defm ASRH : ALU32_2op_base<"asrh">, PredNewRel;
    469 defm SXTB : ALU32_2op_base<"sxtb">, PredNewRel;
    470 defm SXTH : ALU32_2op_base<"sxth">,  PredNewRel;
    471 defm ZXTB : ALU32_2op_base<"zxtb">, PredNewRel;
    472 defm ZXTH : ALU32_2op_base<"zxth">,  PredNewRel;
    473 
    474 def : Pat <(shl (i32 IntRegs:$src1), (i32 16)),
    475            (ASLH IntRegs:$src1)>;
    476 
    477 def : Pat <(sra (i32 IntRegs:$src1), (i32 16)),
    478            (ASRH IntRegs:$src1)>;
    479 
    480 def : Pat <(sext_inreg (i32 IntRegs:$src1), i8),
    481            (SXTB IntRegs:$src1)>;
    482 
    483 def : Pat <(sext_inreg (i32 IntRegs:$src1), i16),
    484            (SXTH IntRegs:$src1)>;
    485 
    486 //===----------------------------------------------------------------------===//
    487 // ALU32/PERM -
    488 //===----------------------------------------------------------------------===//
    489 
    490 
    491 //===----------------------------------------------------------------------===//
    492 // ALU32/PRED +
    493 //===----------------------------------------------------------------------===//
    494 
    495 // Compare.
    496 defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", "CMPGTU", setugt>, ImmRegRel;
    497 defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", "CMPGT", setgt>, ImmRegRel;
    498 defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", "CMPEQ", seteq>, ImmRegRel;
    499 
    500 // SDNode for converting immediate C to C-1.
    501 def DEC_CONST_SIGNED : SDNodeXForm<imm, [{
    502    // Return the byte immediate const-1 as an SDNode.
    503    int32_t imm = N->getSExtValue();
    504    return XformSToSM1Imm(imm);
    505 }]>;
    506 
    507 // SDNode for converting immediate C to C-1.
    508 def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{
    509    // Return the byte immediate const-1 as an SDNode.
    510    uint32_t imm = N->getZExtValue();
    511    return XformUToUM1Imm(imm);
    512 }]>;
    513 
    514 def CTLZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
    515     "$dst = cl0($src1)",
    516     [(set (i32 IntRegs:$dst), (ctlz (i32 IntRegs:$src1)))]>;
    517 
    518 def CTTZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
    519     "$dst = ct0($src1)",
    520     [(set (i32 IntRegs:$dst), (cttz (i32 IntRegs:$src1)))]>;
    521 
    522 def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
    523     "$dst = cl0($src1)",
    524     [(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>;
    525 
    526 def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
    527     "$dst = ct0($src1)",
    528     [(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>;
    529 
    530 def TSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
    531     "$dst = tstbit($src1, $src2)",
    532     [(set (i1 PredRegs:$dst),
    533           (setne (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>;
    534 
    535 def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
    536     "$dst = tstbit($src1, $src2)",
    537     [(set (i1 PredRegs:$dst),
    538           (setne (and (shl 1, (u5ImmPred:$src2)), (i32 IntRegs:$src1)), 0))]>;
    539 
    540 //===----------------------------------------------------------------------===//
    541 // ALU32/PRED -
    542 //===----------------------------------------------------------------------===//
    543 
    544 
    545 //===----------------------------------------------------------------------===//
    546 // ALU64/ALU +
    547 //===----------------------------------------------------------------------===//
    548 // Add.
    549 def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    550                                                      DoubleRegs:$src2),
    551                "$dst = add($src1, $src2)",
    552                [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1),
    553                                                  (i64 DoubleRegs:$src2)))]>;
    554 
    555 // Add halfword.
    556 
    557 // Compare.
    558 defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>;
    559 defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>;
    560 defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>;
    561 
    562 // Logical operations.
    563 def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    564                                                      DoubleRegs:$src2),
    565                "$dst = and($src1, $src2)",
    566                [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
    567                                                  (i64 DoubleRegs:$src2)))]>;
    568 
    569 def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    570                                                     DoubleRegs:$src2),
    571               "$dst = or($src1, $src2)",
    572               [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1),
    573                                                (i64 DoubleRegs:$src2)))]>;
    574 
    575 def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    576                                                      DoubleRegs:$src2),
    577                "$dst = xor($src1, $src2)",
    578                [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
    579                                                  (i64 DoubleRegs:$src2)))]>;
    580 
    581 // Maximum.
    582 def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
    583               "$dst = max($src2, $src1)",
    584               [(set (i32 IntRegs:$dst),
    585                     (i32 (select (i1 (setlt (i32 IntRegs:$src2),
    586                                             (i32 IntRegs:$src1))),
    587                                  (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
    588 
    589 def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
    590               "$dst = maxu($src2, $src1)",
    591               [(set (i32 IntRegs:$dst),
    592                     (i32 (select (i1 (setult (i32 IntRegs:$src2),
    593                                              (i32 IntRegs:$src1))),
    594                                  (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
    595 
    596 def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    597                                                     DoubleRegs:$src2),
    598               "$dst = max($src2, $src1)",
    599               [(set (i64 DoubleRegs:$dst),
    600                     (i64 (select (i1 (setlt (i64 DoubleRegs:$src2),
    601                                             (i64 DoubleRegs:$src1))),
    602                                  (i64 DoubleRegs:$src1),
    603                                  (i64 DoubleRegs:$src2))))]>;
    604 
    605 def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    606                                                      DoubleRegs:$src2),
    607               "$dst = maxu($src2, $src1)",
    608               [(set (i64 DoubleRegs:$dst),
    609                     (i64 (select (i1 (setult (i64 DoubleRegs:$src2),
    610                                              (i64 DoubleRegs:$src1))),
    611                                  (i64 DoubleRegs:$src1),
    612                                  (i64 DoubleRegs:$src2))))]>;
    613 
    614 // Minimum.
    615 def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
    616               "$dst = min($src2, $src1)",
    617               [(set (i32 IntRegs:$dst),
    618                     (i32 (select (i1 (setgt (i32 IntRegs:$src2),
    619                                             (i32 IntRegs:$src1))),
    620                                  (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
    621 
    622 def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
    623               "$dst = minu($src2, $src1)",
    624               [(set (i32 IntRegs:$dst),
    625                     (i32 (select (i1 (setugt (i32 IntRegs:$src2),
    626                                              (i32 IntRegs:$src1))),
    627                                  (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
    628 
    629 def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    630                                                     DoubleRegs:$src2),
    631               "$dst = min($src2, $src1)",
    632               [(set (i64 DoubleRegs:$dst),
    633                     (i64 (select (i1 (setgt (i64 DoubleRegs:$src2),
    634                                             (i64 DoubleRegs:$src1))),
    635                                  (i64 DoubleRegs:$src1),
    636                                  (i64 DoubleRegs:$src2))))]>;
    637 
    638 def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    639                                                      DoubleRegs:$src2),
    640               "$dst = minu($src2, $src1)",
    641               [(set (i64 DoubleRegs:$dst),
    642                     (i64 (select (i1 (setugt (i64 DoubleRegs:$src2),
    643                                              (i64 DoubleRegs:$src1))),
    644                                  (i64 DoubleRegs:$src1),
    645                                  (i64 DoubleRegs:$src2))))]>;
    646 
    647 // Subtract.
    648 def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    649                                                      DoubleRegs:$src2),
    650                "$dst = sub($src1, $src2)",
    651                [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1),
    652                                                  (i64 DoubleRegs:$src2)))]>;
    653 
    654 // Subtract halfword.
    655 
    656 //===----------------------------------------------------------------------===//
    657 // ALU64/ALU -
    658 //===----------------------------------------------------------------------===//
    659 
    660 //===----------------------------------------------------------------------===//
    661 // ALU64/BIT +
    662 //===----------------------------------------------------------------------===//
    663 //
    664 //===----------------------------------------------------------------------===//
    665 // ALU64/BIT -
    666 //===----------------------------------------------------------------------===//
    667 
    668 //===----------------------------------------------------------------------===//
    669 // ALU64/PERM +
    670 //===----------------------------------------------------------------------===//
    671 //
    672 //===----------------------------------------------------------------------===//
    673 // ALU64/PERM -
    674 //===----------------------------------------------------------------------===//
    675 
    676 //===----------------------------------------------------------------------===//
    677 // CR +
    678 //===----------------------------------------------------------------------===//
    679 // Logical reductions on predicates.
    680 
    681 // Looping instructions.
    682 
    683 // Pipelined looping instructions.
    684 
    685 // Logical operations on predicates.
    686 def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
    687              "$dst = and($src1, $src2)",
    688              [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1),
    689                                             (i1 PredRegs:$src2)))]>;
    690 
    691 let neverHasSideEffects = 1 in
    692 def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1,
    693                                                  PredRegs:$src2),
    694                 "$dst = and($src1, !$src2)",
    695                 []>;
    696 
    697 def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
    698              "$dst = any8($src1)",
    699              []>;
    700 
    701 def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
    702              "$dst = all8($src1)",
    703              []>;
    704 
    705 def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1,
    706                                                  PredRegs:$src2),
    707              "$dst = vitpack($src1, $src2)",
    708              []>;
    709 
    710 def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    711                                                     DoubleRegs:$src2,
    712                                                     PredRegs:$src3),
    713              "$dst = valignb($src1, $src2, $src3)",
    714              []>;
    715 
    716 def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
    717                                                      DoubleRegs:$src2,
    718                                                      PredRegs:$src3),
    719              "$dst = vspliceb($src1, $src2, $src3)",
    720              []>;
    721 
    722 def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1),
    723              "$dst = mask($src1)",
    724              []>;
    725 
    726 def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
    727              "$dst = not($src1)",
    728              [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>;
    729 
    730 def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
    731             "$dst = or($src1, $src2)",
    732             [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1),
    733                                           (i1 PredRegs:$src2)))]>;
    734 
    735 def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
    736              "$dst = xor($src1, $src2)",
    737              [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1),
    738                                             (i1 PredRegs:$src2)))]>;
    739 
    740 
    741 // User control register transfer.
    742 //===----------------------------------------------------------------------===//
    743 // CR -
    744 //===----------------------------------------------------------------------===//
    745 
    746 def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
    747                                [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    748 def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone,
    749                       [SDNPHasChain]>;
    750 
    751 def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
    752 def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>;
    753 
    754 let InputType = "imm", isBarrier = 1, isPredicable = 1,
    755 Defs = [PC], isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
    756 opExtentBits = 24 in
    757 class T_JMP <dag InsDag, list<dag> JumpList = []>
    758             : JInst<(outs), InsDag,
    759             "jump $dst" , JumpList> {
    760     bits<24> dst;
    761 
    762     let IClass = 0b0101;
    763 
    764     let Inst{27-25} = 0b100;
    765     let Inst{24-16} = dst{23-15};
    766     let Inst{13-1} = dst{14-2};
    767 }
    768 
    769 let InputType = "imm", isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
    770 Defs = [PC], isPredicated = 1, opExtentBits = 17 in
    771 class T_JMP_c <bit PredNot, bit isPredNew, bit isTaken>:
    772             JInst<(outs ), (ins PredRegs:$src, brtarget:$dst),
    773             !if(PredNot, "if (!$src", "if ($src")#
    774             !if(isPredNew, ".new) ", ") ")#"jump"#
    775             !if(isPredNew, !if(isTaken, ":t ", ":nt "), " ")#"$dst"> {
    776 
    777     let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
    778     let isPredicatedFalse = PredNot;
    779     let isPredicatedNew = isPredNew;
    780     bits<2> src;
    781     bits<17> dst;
    782 
    783     let IClass = 0b0101;
    784 
    785     let Inst{27-24} = 0b1100;
    786     let Inst{21} = PredNot;
    787     let Inst{12} = !if(isPredNew, isTaken, zero);
    788     let Inst{11} = isPredNew;
    789     let Inst{9-8} = src;
    790     let Inst{23-22} = dst{16-15};
    791     let Inst{20-16} = dst{14-10};
    792     let Inst{13} = dst{9};
    793     let Inst{7-1} = dst{8-2};
    794   }
    795 
    796 let isBarrier = 1, Defs = [PC], isPredicable = 1, InputType = "reg" in
    797 class T_JMPr<dag InsDag = (ins IntRegs:$dst)>
    798             : JRInst<(outs ), InsDag,
    799             "jumpr $dst" ,
    800             []> {
    801     bits<5> dst;
    802 
    803     let IClass = 0b0101;
    804     let Inst{27-21} = 0b0010100;
    805     let Inst{20-16} = dst;
    806 }
    807 
    808 let Defs = [PC], isPredicated = 1, InputType = "reg" in
    809 class T_JMPr_c <bit PredNot, bit isPredNew, bit isTaken>:
    810             JRInst <(outs ), (ins PredRegs:$src, IntRegs:$dst),
    811             !if(PredNot, "if (!$src", "if ($src")#
    812             !if(isPredNew, ".new) ", ") ")#"jumpr"#
    813             !if(isPredNew, !if(isTaken, ":t ", ":nt "), " ")#"$dst"> {
    814 
    815     let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
    816     let isPredicatedFalse = PredNot;
    817     let isPredicatedNew = isPredNew;
    818     bits<2> src;
    819     bits<5> dst;
    820 
    821     let IClass = 0b0101;
    822 
    823     let Inst{27-22} = 0b001101;
    824     let Inst{21} = PredNot;
    825     let Inst{20-16} = dst;
    826     let Inst{12} = !if(isPredNew, isTaken, zero);
    827     let Inst{11} = isPredNew;
    828     let Inst{9-8} = src;
    829     let Predicates = !if(isPredNew, [HasV3T], [HasV2T]);
    830     let validSubTargets = !if(isPredNew, HasV3SubT, HasV2SubT);
    831 }
    832 
    833 multiclass JMP_Pred<bit PredNot> {
    834   def _#NAME : T_JMP_c<PredNot, 0, 0>;
    835   // Predicate new
    836   def _#NAME#new_t  : T_JMP_c<PredNot, 1, 1>; // taken
    837   def _#NAME#new_nt : T_JMP_c<PredNot, 1, 0>; // not taken
    838 }
    839 
    840 multiclass JMP_base<string BaseOp> {
    841   let BaseOpcode = BaseOp in {
    842     def NAME : T_JMP<(ins brtarget:$dst), [(br bb:$dst)]>;
    843     defm t : JMP_Pred<0>;
    844     defm f : JMP_Pred<1>;
    845   }
    846 }
    847 
    848 multiclass JMPR_Pred<bit PredNot> {
    849   def NAME: T_JMPr_c<PredNot, 0, 0>;
    850   // Predicate new
    851   def NAME#new_tV3  : T_JMPr_c<PredNot, 1, 1>; // taken
    852   def NAME#new_ntV3 : T_JMPr_c<PredNot, 1, 0>; // not taken
    853 }
    854 
    855 multiclass JMPR_base<string BaseOp> {
    856   let BaseOpcode = BaseOp in {
    857     def NAME : T_JMPr;
    858     defm _t : JMPR_Pred<0>;
    859     defm _f : JMPR_Pred<1>;
    860   }
    861 }
    862 
    863 let isTerminator = 1, neverHasSideEffects = 1 in {
    864 let isBranch = 1 in
    865 defm JMP : JMP_base<"JMP">, PredNewRel;
    866 
    867 let isBranch = 1, isIndirectBranch = 1 in
    868 defm JMPR : JMPR_base<"JMPr">, PredNewRel;
    869 
    870 let isReturn = 1, isCodeGenOnly = 1 in
    871 defm JMPret : JMPR_base<"JMPret">, PredNewRel;
    872 }
    873 
    874 def : Pat<(retflag),
    875           (JMPret (i32 R31))>;
    876 
    877 def : Pat <(brcond (i1 PredRegs:$src1), bb:$offset),
    878       (JMP_t (i1 PredRegs:$src1), bb:$offset)>;
    879 
    880 // A return through builtin_eh_return.
    881 let isReturn = 1, isTerminator = 1, isBarrier = 1, neverHasSideEffects = 1,
    882 isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
    883 def EH_RETURN_JMPR : T_JMPr;
    884 
    885 def : Pat<(eh_return),
    886           (EH_RETURN_JMPR (i32 R31))>;
    887 
    888 def : Pat<(HexagonBR_JT (i32 IntRegs:$dst)),
    889           (JMPR (i32 IntRegs:$dst))>;
    890 
    891 def : Pat<(brind (i32 IntRegs:$dst)),
    892           (JMPR (i32 IntRegs:$dst))>;
    893 
    894 //===----------------------------------------------------------------------===//
    895 // JR -
    896 //===----------------------------------------------------------------------===//
    897 
    898 //===----------------------------------------------------------------------===//
    899 // LD +
    900 //===----------------------------------------------------------------------===//
    901 ///
    902 // Load -- MEMri operand
    903 multiclass LD_MEMri_Pbase<string mnemonic, RegisterClass RC,
    904                           bit isNot, bit isPredNew> {
    905   let isPredicatedNew = isPredNew in
    906   def NAME : LDInst2<(outs RC:$dst),
    907                        (ins PredRegs:$src1, MEMri:$addr),
    908             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
    909             ") ")#"$dst = "#mnemonic#"($addr)",
    910             []>;
    911 }
    912 
    913 multiclass LD_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
    914   let isPredicatedFalse = PredNot in {
    915     defm _c#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
    916     // Predicate new
    917     defm _cdn#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
    918   }
    919 }
    920 
    921 let isExtendable = 1, neverHasSideEffects = 1 in
    922 multiclass LD_MEMri<string mnemonic, string CextOp, RegisterClass RC,
    923                     bits<5> ImmBits, bits<5> PredImmBits> {
    924 
    925   let CextOpcode = CextOp, BaseOpcode = CextOp in {
    926     let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
    927         isPredicable = 1 in
    928       def NAME : LDInst2<(outs RC:$dst), (ins MEMri:$addr),
    929                    "$dst = "#mnemonic#"($addr)",
    930                    []>;
    931 
    932     let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
    933         isPredicated = 1 in {
    934       defm Pt : LD_MEMri_Pred<mnemonic, RC, 0 >;
    935       defm NotPt : LD_MEMri_Pred<mnemonic, RC, 1 >;
    936     }
    937   }
    938 }
    939 
    940 let addrMode = BaseImmOffset, isMEMri = "true" in {
    941   let accessSize = ByteAccess in {
    942     defm LDrib: LD_MEMri < "memb", "LDrib", IntRegs, 11, 6>, AddrModeRel;
    943     defm LDriub: LD_MEMri < "memub" , "LDriub", IntRegs, 11, 6>, AddrModeRel;
    944  }
    945 
    946   let accessSize = HalfWordAccess in {
    947     defm LDrih: LD_MEMri < "memh", "LDrih", IntRegs, 12, 7>, AddrModeRel;
    948     defm LDriuh: LD_MEMri < "memuh", "LDriuh", IntRegs, 12, 7>, AddrModeRel;
    949  }
    950 
    951   let accessSize = WordAccess in
    952     defm LDriw: LD_MEMri < "memw", "LDriw", IntRegs, 13, 8>, AddrModeRel;
    953 
    954   let accessSize = DoubleWordAccess in
    955     defm LDrid: LD_MEMri < "memd", "LDrid", DoubleRegs, 14, 9>, AddrModeRel;
    956 }
    957 
    958 def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)),
    959             (LDrib ADDRriS11_0:$addr) >;
    960 
    961 def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)),
    962             (LDriub ADDRriS11_0:$addr) >;
    963 
    964 def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)),
    965             (LDrih ADDRriS11_1:$addr) >;
    966 
    967 def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)),
    968             (LDriuh ADDRriS11_1:$addr) >;
    969 
    970 def : Pat < (i32 (load ADDRriS11_2:$addr)),
    971             (LDriw ADDRriS11_2:$addr) >;
    972 
    973 def : Pat < (i64 (load ADDRriS11_3:$addr)),
    974             (LDrid ADDRriS11_3:$addr) >;
    975 
    976 
    977 // Load - Base with Immediate offset addressing mode
    978 multiclass LD_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
    979                         bit isNot, bit isPredNew> {
    980   let isPredicatedNew = isPredNew in
    981   def NAME : LDInst2<(outs RC:$dst),
    982                      (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3),
    983             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
    984             ") ")#"$dst = "#mnemonic#"($src2+#$src3)",
    985             []>;
    986 }
    987 
    988 multiclass LD_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
    989                         bit PredNot> {
    990   let isPredicatedFalse = PredNot in {
    991     defm _c#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
    992     // Predicate new
    993     defm _cdn#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
    994   }
    995 }
    996 
    997 let isExtendable = 1, neverHasSideEffects = 1 in
    998 multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
    999                    Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
   1000                    bits<5> PredImmBits> {
   1001 
   1002   let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
   1003     let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
   1004         isPredicable = 1, AddedComplexity = 20 in
   1005       def NAME : LDInst2<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
   1006                    "$dst = "#mnemonic#"($src1+#$offset)",
   1007                    []>;
   1008 
   1009     let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
   1010         isPredicated = 1 in {
   1011       defm Pt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 0 >;
   1012       defm NotPt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 1 >;
   1013     }
   1014   }
   1015 }
   1016 
   1017 let addrMode = BaseImmOffset in {
   1018   let accessSize = ByteAccess in {
   1019     defm LDrib_indexed: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext,
   1020                                   11, 6>, AddrModeRel;
   1021     defm LDriub_indexed: LD_Idxd <"memub" , "LDriub", IntRegs, s11_0Ext, u6_0Ext,
   1022                                    11, 6>, AddrModeRel;
   1023   }
   1024   let accessSize = HalfWordAccess in {
   1025     defm LDrih_indexed: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext,
   1026                                  12, 7>, AddrModeRel;
   1027     defm LDriuh_indexed: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext,
   1028                                   12, 7>, AddrModeRel;
   1029   }
   1030   let accessSize = WordAccess in
   1031     defm LDriw_indexed: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext,
   1032                                  13, 8>, AddrModeRel;
   1033 
   1034   let accessSize = DoubleWordAccess in
   1035     defm LDrid_indexed: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext,
   1036                                  14, 9>, AddrModeRel;
   1037 }
   1038 
   1039 let AddedComplexity = 20 in {
   1040 def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
   1041             (LDrib_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
   1042 
   1043 def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
   1044             (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
   1045 
   1046 def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
   1047             (LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
   1048 
   1049 def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
   1050             (LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
   1051 
   1052 def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))),
   1053             (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset) >;
   1054 
   1055 def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))),
   1056             (LDrid_indexed IntRegs:$src1, s11_3ExtPred:$offset) >;
   1057 }
   1058 
   1059 //===----------------------------------------------------------------------===//
   1060 // Post increment load
   1061 //===----------------------------------------------------------------------===//
   1062 
   1063 multiclass LD_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
   1064                             bit isNot, bit isPredNew> {
   1065   let isPredicatedNew = isPredNew in
   1066   def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
   1067                        (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
   1068             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
   1069             ") ")#"$dst = "#mnemonic#"($src2++#$offset)",
   1070             [],
   1071             "$src2 = $dst2">;
   1072 }
   1073 
   1074 multiclass LD_PostInc_Pred<string mnemonic, RegisterClass RC,
   1075                            Operand ImmOp, bit PredNot> {
   1076   let isPredicatedFalse = PredNot in {
   1077     defm _c#NAME : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
   1078     // Predicate new
   1079     let Predicates = [HasV4T], validSubTargets = HasV4SubT in
   1080     defm _cdn#NAME#_V4 : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
   1081   }
   1082 }
   1083 
   1084 multiclass LD_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
   1085                       Operand ImmOp> {
   1086 
   1087   let BaseOpcode = "POST_"#BaseOp in {
   1088     let isPredicable = 1 in
   1089     def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
   1090                          (ins IntRegs:$src1, ImmOp:$offset),
   1091                  "$dst = "#mnemonic#"($src1++#$offset)",
   1092                  [],
   1093                  "$src1 = $dst2">;
   1094 
   1095     let isPredicated = 1 in {
   1096       defm Pt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
   1097       defm NotPt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
   1098     }
   1099   }
   1100 }
   1101 
   1102 let hasCtrlDep = 1, neverHasSideEffects = 1, addrMode = PostInc in {
   1103   defm POST_LDrib : LD_PostInc<"memb", "LDrib", IntRegs, s4_0Imm>,
   1104                     PredNewRel;
   1105   defm POST_LDriub : LD_PostInc<"memub", "LDriub", IntRegs, s4_0Imm>,
   1106                     PredNewRel;
   1107   defm POST_LDrih : LD_PostInc<"memh", "LDrih", IntRegs, s4_1Imm>,
   1108                     PredNewRel;
   1109   defm POST_LDriuh : LD_PostInc<"memuh", "LDriuh", IntRegs, s4_1Imm>,
   1110                     PredNewRel;
   1111   defm POST_LDriw : LD_PostInc<"memw", "LDriw", IntRegs, s4_2Imm>,
   1112                     PredNewRel;
   1113   defm POST_LDrid : LD_PostInc<"memd", "LDrid", DoubleRegs, s4_3Imm>,
   1114                     PredNewRel;
   1115 }
   1116 
   1117 def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)),
   1118            (i32 (LDrib ADDRriS11_0:$addr)) >;
   1119 
   1120 // Load byte any-extend.
   1121 def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)),
   1122             (i32 (LDrib ADDRriS11_0:$addr)) >;
   1123 
   1124 // Indexed load byte any-extend.
   1125 let AddedComplexity = 20 in
   1126 def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))),
   1127             (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >;
   1128 
   1129 def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)),
   1130             (i32 (LDrih ADDRriS11_1:$addr))>;
   1131 
   1132 let AddedComplexity = 20 in
   1133 def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))),
   1134             (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >;
   1135 
   1136 let AddedComplexity = 10 in
   1137 def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)),
   1138             (i32 (LDriub ADDRriS11_0:$addr))>;
   1139 
   1140 let AddedComplexity = 20 in
   1141 def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))),
   1142             (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>;
   1143 
   1144 // Load predicate.
   1145 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
   1146 isPseudo = 1, Defs = [R10,R11,D5], neverHasSideEffects = 1 in
   1147 def LDriw_pred : LDInst2<(outs PredRegs:$dst),
   1148             (ins MEMri:$addr),
   1149             "Error; should not emit",
   1150             []>;
   1151 
   1152 // Deallocate stack frame.
   1153 let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in {
   1154   def DEALLOCFRAME : LDInst2<(outs), (ins),
   1155                      "deallocframe",
   1156                      []>;
   1157 }
   1158 
   1159 // Load and unpack bytes to halfwords.
   1160 //===----------------------------------------------------------------------===//
   1161 // LD -
   1162 //===----------------------------------------------------------------------===//
   1163 
   1164 //===----------------------------------------------------------------------===//
   1165 // MTYPE/ALU +
   1166 //===----------------------------------------------------------------------===//
   1167 //===----------------------------------------------------------------------===//
   1168 // MTYPE/ALU -
   1169 //===----------------------------------------------------------------------===//
   1170 
   1171 //===----------------------------------------------------------------------===//
   1172 // MTYPE/COMPLEX +
   1173 //===----------------------------------------------------------------------===//
   1174 //===----------------------------------------------------------------------===//
   1175 // MTYPE/COMPLEX -
   1176 //===----------------------------------------------------------------------===//
   1177 
   1178 //===----------------------------------------------------------------------===//
   1179 // MTYPE/MPYH +
   1180 //===----------------------------------------------------------------------===//
   1181 // Multiply and use lower result.
   1182 // Rd=+mpyi(Rs,#u8)
   1183 let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 8 in
   1184 def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Ext:$src2),
   1185               "$dst =+ mpyi($src1, #$src2)",
   1186               [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
   1187                                              u8ExtPred:$src2))]>;
   1188 
   1189 // Rd=-mpyi(Rs,#u8)
   1190 def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2),
   1191               "$dst =- mpyi($src1, #$src2)",
   1192               [(set (i32 IntRegs:$dst), (ineg (mul (i32 IntRegs:$src1),
   1193                                                    u8ImmPred:$src2)))]>;
   1194 
   1195 // Rd=mpyi(Rs,#m9)
   1196 // s9 is NOT the same as m9 - but it works.. so far.
   1197 // Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8)
   1198 // depending on the value of m9. See Arch Spec.
   1199 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9,
   1200 CextOpcode = "MPYI", InputType = "imm" in
   1201 def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
   1202               "$dst = mpyi($src1, #$src2)",
   1203               [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
   1204                                              s9ExtPred:$src2))]>, ImmRegRel;
   1205 
   1206 // Rd=mpyi(Rs,Rt)
   1207 let CextOpcode = "MPYI", InputType = "reg" in
   1208 def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1209            "$dst = mpyi($src1, $src2)",
   1210            [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
   1211                                           (i32 IntRegs:$src2)))]>, ImmRegRel;
   1212 
   1213 // Rx+=mpyi(Rs,#u8)
   1214 let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8,
   1215 CextOpcode = "MPYI_acc", InputType = "imm" in
   1216 def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst),
   1217             (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
   1218             "$dst += mpyi($src2, #$src3)",
   1219             [(set (i32 IntRegs:$dst),
   1220                   (add (mul (i32 IntRegs:$src2), u8ExtPred:$src3),
   1221                        (i32 IntRegs:$src1)))],
   1222             "$src1 = $dst">, ImmRegRel;
   1223 
   1224 // Rx+=mpyi(Rs,Rt)
   1225 let CextOpcode = "MPYI_acc", InputType = "reg" in
   1226 def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst),
   1227             (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
   1228             "$dst += mpyi($src2, $src3)",
   1229             [(set (i32 IntRegs:$dst),
   1230                   (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
   1231                        (i32 IntRegs:$src1)))],
   1232             "$src1 = $dst">, ImmRegRel;
   1233 
   1234 // Rx-=mpyi(Rs,#u8)
   1235 let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8 in
   1236 def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst),
   1237             (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
   1238             "$dst -= mpyi($src2, #$src3)",
   1239             [(set (i32 IntRegs:$dst),
   1240                   (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
   1241                                                  u8ExtPred:$src3)))],
   1242             "$src1 = $dst">;
   1243 
   1244 // Multiply and use upper result.
   1245 // Rd=mpy(Rs,Rt.H):<<1:rnd:sat
   1246 // Rd=mpy(Rs,Rt.L):<<1:rnd:sat
   1247 // Rd=mpy(Rs,Rt)
   1248 def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1249           "$dst = mpy($src1, $src2)",
   1250           [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1),
   1251                                            (i32 IntRegs:$src2)))]>;
   1252 
   1253 // Rd=mpy(Rs,Rt):rnd
   1254 // Rd=mpyu(Rs,Rt)
   1255 def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1256            "$dst = mpyu($src1, $src2)",
   1257            [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1),
   1258                                             (i32 IntRegs:$src2)))]>;
   1259 
   1260 // Multiply and use full result.
   1261 // Rdd=mpyu(Rs,Rt)
   1262 def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1263              "$dst = mpyu($src1, $src2)",
   1264              [(set (i64 DoubleRegs:$dst),
   1265                    (mul (i64 (anyext (i32 IntRegs:$src1))),
   1266                         (i64 (anyext (i32 IntRegs:$src2)))))]>;
   1267 
   1268 // Rdd=mpy(Rs,Rt)
   1269 def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1270              "$dst = mpy($src1, $src2)",
   1271              [(set (i64 DoubleRegs:$dst),
   1272                    (mul (i64 (sext (i32 IntRegs:$src1))),
   1273                         (i64 (sext (i32 IntRegs:$src2)))))]>;
   1274 
   1275 // Multiply and accumulate, use full result.
   1276 // Rxx[+-]=mpy(Rs,Rt)
   1277 // Rxx+=mpy(Rs,Rt)
   1278 def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst),
   1279             (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
   1280             "$dst += mpy($src2, $src3)",
   1281             [(set (i64 DoubleRegs:$dst),
   1282             (add (mul (i64 (sext (i32 IntRegs:$src2))),
   1283                       (i64 (sext (i32 IntRegs:$src3)))),
   1284                  (i64 DoubleRegs:$src1)))],
   1285             "$src1 = $dst">;
   1286 
   1287 // Rxx-=mpy(Rs,Rt)
   1288 def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst),
   1289             (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
   1290             "$dst -= mpy($src2, $src3)",
   1291             [(set (i64 DoubleRegs:$dst),
   1292                   (sub (i64 DoubleRegs:$src1),
   1293                        (mul (i64 (sext (i32 IntRegs:$src2))),
   1294                             (i64 (sext (i32 IntRegs:$src3))))))],
   1295             "$src1 = $dst">;
   1296 
   1297 // Rxx[+-]=mpyu(Rs,Rt)
   1298 // Rxx+=mpyu(Rs,Rt)
   1299 def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
   1300                             IntRegs:$src2, IntRegs:$src3),
   1301              "$dst += mpyu($src2, $src3)",
   1302              [(set (i64 DoubleRegs:$dst),
   1303                    (add (mul (i64 (anyext (i32 IntRegs:$src2))),
   1304                              (i64 (anyext (i32 IntRegs:$src3)))),
   1305                         (i64 DoubleRegs:$src1)))], "$src1 = $dst">;
   1306 
   1307 // Rxx-=mpyu(Rs,Rt)
   1308 def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst),
   1309             (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
   1310             "$dst -= mpyu($src2, $src3)",
   1311             [(set (i64 DoubleRegs:$dst),
   1312                   (sub (i64 DoubleRegs:$src1),
   1313                        (mul (i64 (anyext (i32 IntRegs:$src2))),
   1314                             (i64 (anyext (i32 IntRegs:$src3))))))],
   1315             "$src1 = $dst">;
   1316 
   1317 
   1318 let InputType = "reg", CextOpcode = "ADD_acc" in
   1319 def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
   1320                             IntRegs:$src2, IntRegs:$src3),
   1321              "$dst += add($src2, $src3)",
   1322              [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
   1323                                                  (i32 IntRegs:$src3)),
   1324                                             (i32 IntRegs:$src1)))],
   1325              "$src1 = $dst">, ImmRegRel;
   1326 
   1327 let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
   1328 InputType = "imm", CextOpcode = "ADD_acc" in
   1329 def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
   1330                             IntRegs:$src2, s8Ext:$src3),
   1331              "$dst += add($src2, #$src3)",
   1332              [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
   1333                                                  s8_16ExtPred:$src3),
   1334                                             (i32 IntRegs:$src1)))],
   1335              "$src1 = $dst">, ImmRegRel;
   1336 
   1337 let CextOpcode = "SUB_acc", InputType = "reg" in
   1338 def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
   1339                             IntRegs:$src2, IntRegs:$src3),
   1340              "$dst -= add($src2, $src3)",
   1341              [(set (i32 IntRegs:$dst),
   1342                    (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
   1343                                                   (i32 IntRegs:$src3))))],
   1344              "$src1 = $dst">, ImmRegRel;
   1345 
   1346 let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
   1347 CextOpcode = "SUB_acc", InputType = "imm" in
   1348 def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
   1349                             IntRegs:$src2, s8Ext:$src3),
   1350              "$dst -= add($src2, #$src3)",
   1351              [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1),
   1352                                             (add (i32 IntRegs:$src2),
   1353                                                  s8_16ExtPred:$src3)))],
   1354              "$src1 = $dst">, ImmRegRel;
   1355 
   1356 //===----------------------------------------------------------------------===//
   1357 // MTYPE/MPYH -
   1358 //===----------------------------------------------------------------------===//
   1359 
   1360 //===----------------------------------------------------------------------===//
   1361 // MTYPE/MPYS +
   1362 //===----------------------------------------------------------------------===//
   1363 //===----------------------------------------------------------------------===//
   1364 // MTYPE/MPYS -
   1365 //===----------------------------------------------------------------------===//
   1366 
   1367 //===----------------------------------------------------------------------===//
   1368 // MTYPE/VB +
   1369 //===----------------------------------------------------------------------===//
   1370 //===----------------------------------------------------------------------===//
   1371 // MTYPE/VB -
   1372 //===----------------------------------------------------------------------===//
   1373 
   1374 //===----------------------------------------------------------------------===//
   1375 // MTYPE/VH  +
   1376 //===----------------------------------------------------------------------===//
   1377 //===----------------------------------------------------------------------===//
   1378 // MTYPE/VH  -
   1379 //===----------------------------------------------------------------------===//
   1380 
   1381 //===----------------------------------------------------------------------===//
   1382 // ST +
   1383 //===----------------------------------------------------------------------===//
   1384 ///
   1385 // Store doubleword.
   1386 
   1387 //===----------------------------------------------------------------------===//
   1388 // Post increment store
   1389 //===----------------------------------------------------------------------===//
   1390 
   1391 multiclass ST_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
   1392                             bit isNot, bit isPredNew> {
   1393   let isPredicatedNew = isPredNew in
   1394   def NAME : STInst2PI<(outs IntRegs:$dst),
   1395             (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
   1396             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
   1397             ") ")#mnemonic#"($src2++#$offset) = $src3",
   1398             [],
   1399             "$src2 = $dst">;
   1400 }
   1401 
   1402 multiclass ST_PostInc_Pred<string mnemonic, RegisterClass RC,
   1403                            Operand ImmOp, bit PredNot> {
   1404   let isPredicatedFalse = PredNot in {
   1405     defm _c#NAME : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
   1406     // Predicate new
   1407     let Predicates = [HasV4T], validSubTargets = HasV4SubT in
   1408     defm _cdn#NAME#_V4 : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
   1409   }
   1410 }
   1411 
   1412 let hasCtrlDep = 1, isNVStorable = 1, neverHasSideEffects = 1 in
   1413 multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
   1414                       Operand ImmOp> {
   1415 
   1416   let hasCtrlDep = 1, BaseOpcode = "POST_"#BaseOp in {
   1417     let isPredicable = 1 in
   1418     def NAME : STInst2PI<(outs IntRegs:$dst),
   1419                 (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
   1420                 mnemonic#"($src1++#$offset) = $src2",
   1421                 [],
   1422                 "$src1 = $dst">;
   1423 
   1424     let isPredicated = 1 in {
   1425       defm Pt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
   1426       defm NotPt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
   1427     }
   1428   }
   1429 }
   1430 
   1431 defm POST_STbri: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
   1432 defm POST_SThri: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
   1433 defm POST_STwri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
   1434 
   1435 let isNVStorable = 0 in
   1436 defm POST_STdri: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm>, AddrModeRel;
   1437 
   1438 def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2,
   1439                            s4_3ImmPred:$offset),
   1440           (POST_STbri IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>;
   1441 
   1442 def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2,
   1443                             s4_3ImmPred:$offset),
   1444           (POST_SThri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
   1445 
   1446 def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset),
   1447           (POST_STwri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
   1448 
   1449 def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2,
   1450                        s4_3ImmPred:$offset),
   1451           (POST_STdri IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>;
   1452 
   1453 //===----------------------------------------------------------------------===//
   1454 // multiclass for the store instructions with MEMri operand.
   1455 //===----------------------------------------------------------------------===//
   1456 multiclass ST_MEMri_Pbase<string mnemonic, RegisterClass RC, bit isNot,
   1457                           bit isPredNew> {
   1458   let isPredicatedNew = isPredNew in
   1459   def NAME : STInst2<(outs),
   1460             (ins PredRegs:$src1, MEMri:$addr, RC: $src2),
   1461             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
   1462             ") ")#mnemonic#"($addr) = $src2",
   1463             []>;
   1464 }
   1465 
   1466 multiclass ST_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
   1467   let isPredicatedFalse = PredNot in {
   1468     defm _c#NAME : ST_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
   1469 
   1470     // Predicate new
   1471     let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
   1472     defm _cdn#NAME#_V4 : ST_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
   1473   }
   1474 }
   1475 
   1476 let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
   1477 multiclass ST_MEMri<string mnemonic, string CextOp, RegisterClass RC,
   1478                     bits<5> ImmBits, bits<5> PredImmBits> {
   1479 
   1480   let CextOpcode = CextOp, BaseOpcode = CextOp in {
   1481     let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
   1482          isPredicable = 1 in
   1483     def NAME : STInst2<(outs),
   1484             (ins MEMri:$addr, RC:$src),
   1485             mnemonic#"($addr) = $src",
   1486             []>;
   1487 
   1488     let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
   1489         isPredicated = 1 in {
   1490       defm Pt : ST_MEMri_Pred<mnemonic, RC, 0>;
   1491       defm NotPt : ST_MEMri_Pred<mnemonic, RC, 1>;
   1492     }
   1493   }
   1494 }
   1495 
   1496 let addrMode = BaseImmOffset, isMEMri = "true" in {
   1497   let accessSize = ByteAccess in
   1498     defm STrib: ST_MEMri < "memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
   1499 
   1500   let accessSize = HalfWordAccess in
   1501     defm STrih: ST_MEMri < "memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
   1502 
   1503   let accessSize = WordAccess in
   1504     defm STriw: ST_MEMri < "memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
   1505 
   1506   let accessSize = DoubleWordAccess, isNVStorable = 0 in
   1507     defm STrid: ST_MEMri < "memd", "STrid", DoubleRegs, 14, 9>, AddrModeRel;
   1508 }
   1509 
   1510 def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr),
   1511           (STrib ADDRriS11_0:$addr, (i32 IntRegs:$src1))>;
   1512 
   1513 def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr),
   1514           (STrih ADDRriS11_1:$addr, (i32 IntRegs:$src1))>;
   1515 
   1516 def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr),
   1517           (STriw ADDRriS11_2:$addr, (i32 IntRegs:$src1))>;
   1518 
   1519 def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr),
   1520           (STrid ADDRriS11_3:$addr, (i64 DoubleRegs:$src1))>;
   1521 
   1522 
   1523 //===----------------------------------------------------------------------===//
   1524 // multiclass for the store instructions with base+immediate offset
   1525 // addressing mode
   1526 //===----------------------------------------------------------------------===//
   1527 multiclass ST_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
   1528                         bit isNot, bit isPredNew> {
   1529   let isPredicatedNew = isPredNew in
   1530   def NAME : STInst2<(outs),
   1531             (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
   1532             !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
   1533             ") ")#mnemonic#"($src2+#$src3) = $src4",
   1534             []>;
   1535 }
   1536 
   1537 multiclass ST_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
   1538                         bit PredNot> {
   1539   let isPredicatedFalse = PredNot, isPredicated = 1 in {
   1540     defm _c#NAME : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
   1541 
   1542     // Predicate new
   1543     let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
   1544     defm _cdn#NAME#_V4 : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
   1545   }
   1546 }
   1547 
   1548 let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
   1549 multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
   1550                    Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
   1551                    bits<5> PredImmBits> {
   1552 
   1553   let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
   1554     let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
   1555          isPredicable = 1 in
   1556     def NAME : STInst2<(outs),
   1557             (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
   1558             mnemonic#"($src1+#$src2) = $src3",
   1559             []>;
   1560 
   1561     let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits in {
   1562       defm Pt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 0>;
   1563       defm NotPt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 1>;
   1564     }
   1565   }
   1566 }
   1567 
   1568 let addrMode = BaseImmOffset, InputType = "reg" in {
   1569   let accessSize = ByteAccess in
   1570     defm STrib_indexed: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext,
   1571                                   u6_0Ext, 11, 6>, AddrModeRel, ImmRegRel;
   1572 
   1573   let accessSize = HalfWordAccess in
   1574     defm STrih_indexed: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext,
   1575                                   u6_1Ext, 12, 7>, AddrModeRel, ImmRegRel;
   1576 
   1577   let accessSize = WordAccess in
   1578     defm STriw_indexed: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext,
   1579                                   u6_2Ext, 13, 8>, AddrModeRel, ImmRegRel;
   1580 
   1581   let accessSize = DoubleWordAccess, isNVStorable = 0 in
   1582     defm STrid_indexed: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
   1583                                   u6_3Ext, 14, 9>, AddrModeRel;
   1584 }
   1585 
   1586 let AddedComplexity = 10 in {
   1587 def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2,
   1588                                                   s11_0ExtPred:$offset)),
   1589           (STrib_indexed IntRegs:$src2, s11_0ImmPred:$offset,
   1590                          (i32 IntRegs:$src1))>;
   1591 
   1592 def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2,
   1593                                                    s11_1ExtPred:$offset)),
   1594           (STrih_indexed IntRegs:$src2, s11_1ImmPred:$offset,
   1595                          (i32 IntRegs:$src1))>;
   1596 
   1597 def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2,
   1598                                            s11_2ExtPred:$offset)),
   1599           (STriw_indexed IntRegs:$src2, s11_2ImmPred:$offset,
   1600                          (i32 IntRegs:$src1))>;
   1601 
   1602 def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2,
   1603                                               s11_3ExtPred:$offset)),
   1604           (STrid_indexed IntRegs:$src2, s11_3ImmPred:$offset,
   1605                          (i64 DoubleRegs:$src1))>;
   1606 }
   1607 
   1608 // memh(Rx++#s4:1)=Rt.H
   1609 
   1610 // Store word.
   1611 // Store predicate.
   1612 let Defs = [R10,R11,D5], neverHasSideEffects = 1 in
   1613 def STriw_pred : STInst2<(outs),
   1614             (ins MEMri:$addr, PredRegs:$src1),
   1615             "Error; should not emit",
   1616             []>;
   1617 
   1618 // Allocate stack frame.
   1619 let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in {
   1620   def ALLOCFRAME : STInst2<(outs),
   1621              (ins i32imm:$amt),
   1622              "allocframe(#$amt)",
   1623              []>;
   1624 }
   1625 //===----------------------------------------------------------------------===//
   1626 // ST -
   1627 //===----------------------------------------------------------------------===//
   1628 
   1629 //===----------------------------------------------------------------------===//
   1630 // STYPE/ALU +
   1631 //===----------------------------------------------------------------------===//
   1632 // Logical NOT.
   1633 def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
   1634                "$dst = not($src1)",
   1635                [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>;
   1636 
   1637 
   1638 // Sign extend word to doubleword.
   1639 def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
   1640            "$dst = sxtw($src1)",
   1641            [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>;
   1642 //===----------------------------------------------------------------------===//
   1643 // STYPE/ALU -
   1644 //===----------------------------------------------------------------------===//
   1645 
   1646 //===----------------------------------------------------------------------===//
   1647 // STYPE/BIT +
   1648 //===----------------------------------------------------------------------===//
   1649 // clrbit.
   1650 def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1651             "$dst = clrbit($src1, #$src2)",
   1652             [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
   1653                                            (not
   1654                                               (shl 1, u5ImmPred:$src2))))]>;
   1655 
   1656 def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1657             "$dst = clrbit($src1, #$src2)",
   1658             []>;
   1659 
   1660 // Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31).
   1661 def : Pat <(and (i32 IntRegs:$src1), 2147483647),
   1662       (CLRBIT_31 (i32 IntRegs:$src1), 31)>;
   1663 
   1664 // setbit.
   1665 def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1666             "$dst = setbit($src1, #$src2)",
   1667             [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
   1668                                           (shl 1, u5ImmPred:$src2)))]>;
   1669 
   1670 // Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31).
   1671 def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1672             "$dst = setbit($src1, #$src2)",
   1673             []>;
   1674 
   1675 def : Pat <(or (i32 IntRegs:$src1), -2147483648),
   1676       (SETBIT_31 (i32 IntRegs:$src1), 31)>;
   1677 
   1678 // togglebit.
   1679 def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1680             "$dst = setbit($src1, #$src2)",
   1681             [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1),
   1682                                           (shl 1, u5ImmPred:$src2)))]>;
   1683 
   1684 // Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31).
   1685 def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1686             "$dst = togglebit($src1, #$src2)",
   1687             []>;
   1688 
   1689 def : Pat <(xor (i32 IntRegs:$src1), -2147483648),
   1690       (TOGBIT_31 (i32 IntRegs:$src1), 31)>;
   1691 
   1692 // Predicate transfer.
   1693 let neverHasSideEffects = 1 in
   1694 def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1),
   1695                "$dst = $src1  /* Should almost never emit this. */",
   1696                []>;
   1697 
   1698 def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1),
   1699                "$dst = $src1  /* Should almost never emit this. */",
   1700                [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>;
   1701 //===----------------------------------------------------------------------===//
   1702 // STYPE/PRED -
   1703 //===----------------------------------------------------------------------===//
   1704 
   1705 //===----------------------------------------------------------------------===//
   1706 // STYPE/SHIFT +
   1707 //===----------------------------------------------------------------------===//
   1708 // Shift by immediate.
   1709 def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1710              "$dst = asr($src1, #$src2)",
   1711              [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
   1712                                             u5ImmPred:$src2))]>;
   1713 
   1714 def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
   1715               "$dst = asr($src1, #$src2)",
   1716               [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
   1717                                                 u6ImmPred:$src2))]>;
   1718 
   1719 def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1720           "$dst = asl($src1, #$src2)",
   1721           [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
   1722                                          u5ImmPred:$src2))]>;
   1723 
   1724 def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
   1725               "$dst = asl($src1, #$src2)",
   1726               [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
   1727                                                 u6ImmPred:$src2))]>;
   1728 
   1729 def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
   1730              "$dst = lsr($src1, #$src2)",
   1731              [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
   1732                                             u5ImmPred:$src2))]>;
   1733 
   1734 def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
   1735               "$dst = lsr($src1, #$src2)",
   1736               [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
   1737                                                 u6ImmPred:$src2))]>;
   1738 
   1739 // Shift by immediate and add.
   1740 let AddedComplexity = 100 in
   1741 def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
   1742                                              u3Imm:$src3),
   1743              "$dst = addasl($src1, $src2, #$src3)",
   1744              [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1),
   1745                                        (shl (i32 IntRegs:$src2),
   1746                                             u3ImmPred:$src3)))]>;
   1747 
   1748 // Shift by register.
   1749 def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1750              "$dst = asl($src1, $src2)",
   1751              [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
   1752                                             (i32 IntRegs:$src2)))]>;
   1753 
   1754 def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1755              "$dst = asr($src1, $src2)",
   1756              [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
   1757                                             (i32 IntRegs:$src2)))]>;
   1758 
   1759 def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1760              "$dst = lsl($src1, $src2)",
   1761              [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
   1762                                             (i32 IntRegs:$src2)))]>;
   1763 
   1764 def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   1765              "$dst = lsr($src1, $src2)",
   1766              [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
   1767                                             (i32 IntRegs:$src2)))]>;
   1768 
   1769 def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
   1770            "$dst = asl($src1, $src2)",
   1771            [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
   1772                                              (i32 IntRegs:$src2)))]>;
   1773 
   1774 def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
   1775            "$dst = lsl($src1, $src2)",
   1776            [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
   1777                                              (i32 IntRegs:$src2)))]>;
   1778 
   1779 def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
   1780                                                  IntRegs:$src2),
   1781               "$dst = asr($src1, $src2)",
   1782               [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
   1783                                                 (i32 IntRegs:$src2)))]>;
   1784 
   1785 def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
   1786                                                  IntRegs:$src2),
   1787               "$dst = lsr($src1, $src2)",
   1788               [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
   1789                                                 (i32 IntRegs:$src2)))]>;
   1790 
   1791 //===----------------------------------------------------------------------===//
   1792 // STYPE/SHIFT -
   1793 //===----------------------------------------------------------------------===//
   1794 
   1795 //===----------------------------------------------------------------------===//
   1796 // STYPE/VH +
   1797 //===----------------------------------------------------------------------===//
   1798 //===----------------------------------------------------------------------===//
   1799 // STYPE/VH -
   1800 //===----------------------------------------------------------------------===//
   1801 
   1802 //===----------------------------------------------------------------------===//
   1803 // STYPE/VW +
   1804 //===----------------------------------------------------------------------===//
   1805 //===----------------------------------------------------------------------===//
   1806 // STYPE/VW -
   1807 //===----------------------------------------------------------------------===//
   1808 
   1809 //===----------------------------------------------------------------------===//
   1810 // SYSTEM/SUPER +
   1811 //===----------------------------------------------------------------------===//
   1812 
   1813 //===----------------------------------------------------------------------===//
   1814 // SYSTEM/USER +
   1815 //===----------------------------------------------------------------------===//
   1816 def SDHexagonBARRIER: SDTypeProfile<0, 0, []>;
   1817 def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER,
   1818                            [SDNPHasChain]>;
   1819 
   1820 let hasSideEffects = 1, isSolo = 1 in
   1821 def BARRIER : SYSInst<(outs), (ins),
   1822                      "barrier",
   1823                      [(HexagonBARRIER)]>;
   1824 
   1825 //===----------------------------------------------------------------------===//
   1826 // SYSTEM/SUPER -
   1827 //===----------------------------------------------------------------------===//
   1828 
   1829 // TFRI64 - assembly mapped.
   1830 let isReMaterializable = 1 in
   1831 def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
   1832              "$dst = #$src1",
   1833              [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
   1834 
   1835 // Pseudo instruction to encode a set of conditional transfers.
   1836 // This instruction is used instead of a mux and trades-off codesize
   1837 // for performance. We conduct this transformation optimistically in
   1838 // the hope that these instructions get promoted to dot-new transfers.
   1839 let AddedComplexity = 100, isPredicated = 1 in
   1840 def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
   1841                                                         IntRegs:$src2,
   1842                                                         IntRegs:$src3),
   1843                      "Error; should not emit",
   1844                      [(set (i32 IntRegs:$dst),
   1845                            (i32 (select (i1 PredRegs:$src1),
   1846                                         (i32 IntRegs:$src2),
   1847                                         (i32 IntRegs:$src3))))]>;
   1848 let AddedComplexity = 100, isPredicated = 1 in
   1849 def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst),
   1850             (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3),
   1851             "Error; should not emit",
   1852             [(set (i32 IntRegs:$dst),
   1853              (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
   1854                           s12ImmPred:$src3)))]>;
   1855 
   1856 let AddedComplexity = 100, isPredicated = 1 in
   1857 def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst),
   1858             (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3),
   1859             "Error; should not emit",
   1860             [(set (i32 IntRegs:$dst),
   1861              (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
   1862                           (i32 IntRegs:$src3))))]>;
   1863 
   1864 let AddedComplexity = 100, isPredicated = 1 in
   1865 def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst),
   1866                               (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3),
   1867                      "Error; should not emit",
   1868                      [(set (i32 IntRegs:$dst),
   1869                            (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
   1870                                         s12ImmPred:$src3)))]>;
   1871 
   1872 // Generate frameindex addresses.
   1873 let isReMaterializable = 1 in
   1874 def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1),
   1875              "$dst = add($src1)",
   1876              [(set (i32 IntRegs:$dst), ADDRri:$src1)]>;
   1877 
   1878 //
   1879 // CR - Type.
   1880 //
   1881 let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
   1882 def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2),
   1883                       "loop0($offset, #$src2)",
   1884                       []>;
   1885 }
   1886 
   1887 let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
   1888 def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2),
   1889                       "loop0($offset, $src2)",
   1890                       []>;
   1891 }
   1892 
   1893 let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1,
   1894     Defs = [PC, LC0], Uses = [SA0, LC0] in {
   1895 def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
   1896                        ":endloop0",
   1897                        []>;
   1898 }
   1899 
   1900 // Support for generating global address.
   1901 // Taken from X86InstrInfo.td.
   1902 def SDTHexagonCONST32 : SDTypeProfile<1, 1, [
   1903                                             SDTCisVT<0, i32>,
   1904                                             SDTCisVT<1, i32>,
   1905                                             SDTCisPtrTy<0>]>;
   1906 def HexagonCONST32 : SDNode<"HexagonISD::CONST32",     SDTHexagonCONST32>;
   1907 def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP",     SDTHexagonCONST32>;
   1908 
   1909 // HI/LO Instructions
   1910 let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
   1911 def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
   1912                   "$dst.l = #LO($global)",
   1913                   []>;
   1914 
   1915 let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
   1916 def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
   1917                   "$dst.h = #HI($global)",
   1918                   []>;
   1919 
   1920 let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
   1921 def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
   1922                   "$dst.l = #LO($imm_value)",
   1923                   []>;
   1924 
   1925 
   1926 let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
   1927 def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
   1928                   "$dst.h = #HI($imm_value)",
   1929                   []>;
   1930 
   1931 let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
   1932 def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
   1933                   "$dst.l = #LO($jt)",
   1934                   []>;
   1935 
   1936 let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
   1937 def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
   1938                   "$dst.h = #HI($jt)",
   1939                   []>;
   1940 
   1941 
   1942 let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
   1943 def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
   1944                   "$dst.l = #LO($label)",
   1945                   []>;
   1946 
   1947 let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in
   1948 def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
   1949                   "$dst.h = #HI($label)",
   1950                   []>;
   1951 
   1952 // This pattern is incorrect. When we add small data, we should change
   1953 // this pattern to use memw(#foo).
   1954 // This is for sdata.
   1955 let isMoveImm = 1 in
   1956 def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
   1957               "$dst = CONST32(#$global)",
   1958               [(set (i32 IntRegs:$dst),
   1959                     (load (HexagonCONST32 tglobaltlsaddr:$global)))]>;
   1960 
   1961 // This is for non-sdata.
   1962 let isReMaterializable = 1, isMoveImm = 1 in
   1963 def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
   1964                   "$dst = CONST32(#$global)",
   1965                   [(set (i32 IntRegs:$dst),
   1966                         (HexagonCONST32 tglobaladdr:$global))]>;
   1967 
   1968 let isReMaterializable = 1, isMoveImm = 1 in
   1969 def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt),
   1970                      "$dst = CONST32(#$jt)",
   1971                      [(set (i32 IntRegs:$dst),
   1972                            (HexagonCONST32 tjumptable:$jt))]>;
   1973 
   1974 let isReMaterializable = 1, isMoveImm = 1 in
   1975 def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
   1976                     "$dst = CONST32(#$global)",
   1977                     [(set (i32 IntRegs:$dst),
   1978                           (HexagonCONST32_GP tglobaladdr:$global))]>;
   1979 
   1980 let isReMaterializable = 1, isMoveImm = 1 in
   1981 def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global),
   1982                        "$dst = CONST32(#$global)",
   1983                        [(set (i32 IntRegs:$dst), imm:$global) ]>;
   1984 
   1985 // Map BlockAddress lowering to CONST32_Int_Real
   1986 def : Pat<(HexagonCONST32_GP tblockaddress:$addr),
   1987           (CONST32_Int_Real tblockaddress:$addr)>;
   1988 
   1989 let isReMaterializable = 1, isMoveImm = 1 in
   1990 def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label),
   1991                     "$dst = CONST32($label)",
   1992                     [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>;
   1993 
   1994 let isReMaterializable = 1, isMoveImm = 1 in
   1995 def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global),
   1996                        "$dst = CONST64(#$global)",
   1997                        [(set (i64 DoubleRegs:$dst), imm:$global) ]>;
   1998 
   1999 def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins),
   2000                   "$dst = xor($dst, $dst)",
   2001                   [(set (i1 PredRegs:$dst), 0)]>;
   2002 
   2003 def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
   2004        "$dst = mpy($src1, $src2)",
   2005        [(set (i32 IntRegs:$dst),
   2006              (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))),
   2007                                         (i64 (sext (i32 IntRegs:$src2))))),
   2008                               (i32 32)))))]>;
   2009 
   2010 // Pseudo instructions.
   2011 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
   2012 
   2013 def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
   2014                                         SDTCisVT<1, i32> ]>;
   2015 
   2016 def callseq_end : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
   2017                   [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
   2018 
   2019 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
   2020                     [SDNPHasChain, SDNPOutGlue]>;
   2021 
   2022 def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
   2023 
   2024 def call : SDNode<"HexagonISD::CALL", SDT_SPCall,
   2025            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
   2026 
   2027 // For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain,
   2028 // Optional Flag and Variable Arguments.
   2029 // Its 1 Operand has pointer type.
   2030 def HexagonTCRet    : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
   2031                      [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
   2032 
   2033 let Defs = [R29, R30], Uses = [R31, R30, R29] in {
   2034  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
   2035                         "Should never be emitted",
   2036                         [(callseq_start timm:$amt)]>;
   2037 }
   2038 
   2039 let Defs = [R29, R30, R31], Uses = [R29] in {
   2040  def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
   2041                       "Should never be emitted",
   2042                       [(callseq_end timm:$amt1, timm:$amt2)]>;
   2043 }
   2044 // Call subroutine.
   2045 let isCall = 1, neverHasSideEffects = 1,
   2046   Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
   2047           R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
   2048   def CALL : JInst<(outs), (ins calltarget:$dst),
   2049              "call $dst", []>;
   2050 }
   2051 
   2052 // Call subroutine from register.
   2053 let isCall = 1, neverHasSideEffects = 1,
   2054   Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
   2055           R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
   2056   def CALLR : JRInst<(outs), (ins IntRegs:$dst),
   2057               "callr $dst",
   2058               []>;
   2059  }
   2060 
   2061 
   2062 // Indirect tail-call.
   2063 let isCodeGenOnly = 1, isCall = 1, isReturn = 1  in
   2064 def TCRETURNR : T_JMPr;
   2065 
   2066 // Direct tail-calls.
   2067 let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
   2068 isTerminator = 1, isCodeGenOnly = 1 in {
   2069   def TCRETURNtg   : T_JMP<(ins calltarget:$dst)>;
   2070   def TCRETURNtext : T_JMP<(ins calltarget:$dst)>;
   2071 }
   2072 
   2073 // Map call instruction.
   2074 def : Pat<(call (i32 IntRegs:$dst)),
   2075       (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>;
   2076 def : Pat<(call tglobaladdr:$dst),
   2077       (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>;
   2078 def : Pat<(call texternalsym:$dst),
   2079       (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>;
   2080 //Tail calls.
   2081 def : Pat<(HexagonTCRet tglobaladdr:$dst),
   2082       (TCRETURNtg tglobaladdr:$dst)>;
   2083 def : Pat<(HexagonTCRet texternalsym:$dst),
   2084       (TCRETURNtext texternalsym:$dst)>;
   2085 def : Pat<(HexagonTCRet (i32 IntRegs:$dst)),
   2086       (TCRETURNR (i32 IntRegs:$dst))>;
   2087 
   2088 // Atomic load and store support
   2089 // 8 bit atomic load
   2090 def : Pat<(atomic_load_8 ADDRriS11_0:$src1),
   2091           (i32 (LDriub ADDRriS11_0:$src1))>;
   2092 
   2093 def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)),
   2094           (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>;
   2095 
   2096 // 16 bit atomic load
   2097 def : Pat<(atomic_load_16 ADDRriS11_1:$src1),
   2098           (i32 (LDriuh ADDRriS11_1:$src1))>;
   2099 
   2100 def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)),
   2101           (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>;
   2102 
   2103 def : Pat<(atomic_load_32 ADDRriS11_2:$src1),
   2104           (i32 (LDriw ADDRriS11_2:$src1))>;
   2105 
   2106 def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)),
   2107           (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>;
   2108 
   2109 // 64 bit atomic load
   2110 def : Pat<(atomic_load_64 ADDRriS11_3:$src1),
   2111           (i64 (LDrid ADDRriS11_3:$src1))>;
   2112 
   2113 def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)),
   2114           (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>;
   2115 
   2116 
   2117 def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)),
   2118           (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>;
   2119 
   2120 def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset),
   2121                           (i32 IntRegs:$src1)),
   2122           (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset,
   2123                          (i32 IntRegs:$src1))>;
   2124 
   2125 
   2126 def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)),
   2127           (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>;
   2128 
   2129 def : Pat<(atomic_store_16 (i32 IntRegs:$src1),
   2130                           (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)),
   2131           (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset,
   2132                          (i32 IntRegs:$src1))>;
   2133 
   2134 def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)),
   2135           (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>;
   2136 
   2137 def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset),
   2138                            (i32 IntRegs:$src1)),
   2139           (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset,
   2140                          (i32 IntRegs:$src1))>;
   2141 
   2142 
   2143 
   2144 
   2145 def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)),
   2146           (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>;
   2147 
   2148 def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset),
   2149                            (i64 DoubleRegs:$src1)),
   2150           (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset,
   2151                          (i64 DoubleRegs:$src1))>;
   2152 
   2153 // Map from r0 = and(r1, 65535) to r0 = zxth(r1)
   2154 def : Pat <(and (i32 IntRegs:$src1), 65535),
   2155       (ZXTH (i32 IntRegs:$src1))>;
   2156 
   2157 // Map from r0 = and(r1, 255) to r0 = zxtb(r1).
   2158 def : Pat <(and (i32 IntRegs:$src1), 255),
   2159       (ZXTB (i32 IntRegs:$src1))>;
   2160 
   2161 // Map Add(p1, true) to p1 = not(p1).
   2162 //     Add(p1, false) should never be produced,
   2163 //     if it does, it got to be mapped to NOOP.
   2164 def : Pat <(add (i1 PredRegs:$src1), -1),
   2165       (NOT_p (i1 PredRegs:$src1))>;
   2166 
   2167 // Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) =>
   2168 //   p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1).
   2169 // cmp.lt(r0, r1) -> cmp.gt(r1, r0)
   2170 def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2171                    (i32 IntRegs:$src3),
   2172                    (i32 IntRegs:$src4)),
   2173       (i32 (TFR_condset_rr (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)),
   2174                            (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>,
   2175       Requires<[HasV2TOnly]>;
   2176 
   2177 // Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
   2178 def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3),
   2179       (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3,
   2180                            s8ImmPred:$src2))>;
   2181 
   2182 // Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
   2183 // => r0 = TFR_condset_ri(p0, r1, #i)
   2184 def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2,
   2185                    (i32 IntRegs:$src3)),
   2186       (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3),
   2187                            s12ImmPred:$src2))>;
   2188 
   2189 // Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
   2190 // => r0 = TFR_condset_ir(p0, #i, r1)
   2191 def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3),
   2192       (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3,
   2193                            (i32 IntRegs:$src2)))>;
   2194 
   2195 // Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
   2196 def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset),
   2197       (JMP_f (i1 PredRegs:$src1), bb:$offset)>;
   2198 
   2199 // Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2).
   2200 def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))),
   2201       (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
   2202 
   2203 
   2204 let AddedComplexity = 100 in
   2205 def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))),
   2206       (i64 (COMBINE_rr (TFRI 0),
   2207                        (LDriub_indexed (CONST32_set tglobaladdr:$global), 0)))>,
   2208       Requires<[NoV4T]>;
   2209 
   2210 // Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned.
   2211 let AddedComplexity = 10 in
   2212 def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)),
   2213       (i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>;
   2214 
   2215 // Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo).
   2216 def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
   2217       (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>;
   2218 
   2219 // Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)).
   2220 def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
   2221       (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
   2222                                                  subreg_loreg))))))>;
   2223 
   2224 // Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)).
   2225 def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
   2226       (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
   2227                                                  subreg_loreg))))))>;
   2228 
   2229 // We want to prevent emitting pnot's as much as possible.
   2230 // Map brcond with an unsupported setcc to a JMP_f.
   2231 def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2232                         bb:$offset),
   2233       (JMP_f (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
   2234                 bb:$offset)>;
   2235 
   2236 def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
   2237                         bb:$offset),
   2238       (JMP_f (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
   2239 
   2240 def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
   2241       (JMP_f (i1 PredRegs:$src1), bb:$offset)>;
   2242 
   2243 def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
   2244       (JMP_t (i1 PredRegs:$src1), bb:$offset)>;
   2245 
   2246 // cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1)
   2247 def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)),
   2248                         bb:$offset),
   2249       (JMP_f (CMPGTri (i32 IntRegs:$src1),
   2250                 (DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>;
   2251 
   2252 // cmp.lt(r0, r1) -> cmp.gt(r1, r0)
   2253 def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2254                         bb:$offset),
   2255       (JMP_t (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>;
   2256 
   2257 def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2258                    bb:$offset),
   2259       (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)),
   2260                    bb:$offset)>;
   2261 
   2262 def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2263                         bb:$offset),
   2264       (JMP_f (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
   2265                 bb:$offset)>;
   2266 
   2267 def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2268                    bb:$offset),
   2269       (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
   2270                 bb:$offset)>;
   2271 
   2272 // Map from a 64-bit select to an emulated 64-bit mux.
   2273 // Hexagon does not support 64-bit MUXes; so emulate with combines.
   2274 def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
   2275                    (i64 DoubleRegs:$src3)),
   2276       (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1),
   2277                                     (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
   2278                                                          subreg_hireg)),
   2279                                     (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
   2280                                                          subreg_hireg)))),
   2281                        (i32 (MUX_rr (i1 PredRegs:$src1),
   2282                                     (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
   2283                                                          subreg_loreg)),
   2284                                     (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
   2285                                                          subreg_loreg))))))>;
   2286 
   2287 // Map from a 1-bit select to logical ops.
   2288 // From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
   2289 def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2),
   2290                    (i1 PredRegs:$src3)),
   2291       (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)),
   2292              (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>;
   2293 
   2294 // Map Pd = load(addr) -> Rs = load(addr); Pd = Rs.
   2295 def : Pat<(i1 (load ADDRriS11_2:$addr)),
   2296       (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>;
   2297 
   2298 // Map for truncating from 64 immediates to 32 bit immediates.
   2299 def : Pat<(i32 (trunc (i64 DoubleRegs:$src))),
   2300       (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>;
   2301 
   2302 // Map for truncating from i64 immediates to i1 bit immediates.
   2303 def :  Pat<(i1 (trunc (i64 DoubleRegs:$src))),
   2304        (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
   2305                                           subreg_loreg))))>;
   2306 
   2307 // Map memb(Rs) = Rdd -> memb(Rs) = Rt.
   2308 def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
   2309       (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
   2310                                                      subreg_loreg)))>;
   2311 
   2312 // Map memh(Rs) = Rdd -> memh(Rs) = Rt.
   2313 def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
   2314       (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
   2315                                                      subreg_loreg)))>;
   2316 // Map memw(Rs) = Rdd -> memw(Rs) = Rt
   2317 def : Pat<(truncstorei32 (i64  DoubleRegs:$src), ADDRriS11_0:$addr),
   2318       (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
   2319                                                      subreg_loreg)))>;
   2320 
   2321 // Map memw(Rs) = Rdd -> memw(Rs) = Rt.
   2322 def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
   2323       (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
   2324                                                      subreg_loreg)))>;
   2325 
   2326 // Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0.
   2327 def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
   2328       (STrib ADDRriS11_2:$addr, (TFRI 1))>;
   2329 
   2330 
   2331 // Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0.
   2332 def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
   2333       (STrib ADDRriS11_2:$addr, (TFRI 1))>;
   2334 
   2335 // Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt.
   2336 def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr),
   2337       (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>;
   2338 
   2339 // Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs).
   2340 // Hexagon_TODO: We can probably use combine but that will cost 2 instructions.
   2341 // Better way to do this?
   2342 def : Pat<(i64 (anyext (i32 IntRegs:$src1))),
   2343       (i64 (SXTW (i32 IntRegs:$src1)))>;
   2344 
   2345 // Map cmple -> cmpgt.
   2346 // rs <= rt -> !(rs > rt).
   2347 def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)),
   2348       (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ExtPred:$src2)))>;
   2349 
   2350 // rs <= rt -> !(rs > rt).
   2351 def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2352       (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
   2353 
   2354 // Rss <= Rtt -> !(Rss > Rtt).
   2355 def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2356       (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
   2357 
   2358 // Map cmpne -> cmpeq.
   2359 // Hexagon_TODO: We should improve on this.
   2360 // rs != rt -> !(rs == rt).
   2361 def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)),
   2362       (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ExtPred:$src2))))>;
   2363 
   2364 // Map cmpne(Rs) -> !cmpeqe(Rs).
   2365 // rs != rt -> !(rs == rt).
   2366 def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2367       (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>;
   2368 
   2369 // Convert setne back to xor for hexagon since we compute w/ pred registers.
   2370 def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
   2371       (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
   2372 
   2373 // Map cmpne(Rss) -> !cmpew(Rss).
   2374 // rs != rt -> !(rs == rt).
   2375 def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2376       (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1),
   2377                                      (i64 DoubleRegs:$src2)))))>;
   2378 
   2379 // Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt).
   2380 // rs >= rt -> !(rt > rs).
   2381 def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2382       (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
   2383 
   2384 // cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1)
   2385 def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)),
   2386       (i1 (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>;
   2387 
   2388 // Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
   2389 // rss >= rtt -> !(rtt > rss).
   2390 def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2391       (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2),
   2392                                 (i64 DoubleRegs:$src1)))))>;
   2393 
   2394 // Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
   2395 // !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1).
   2396 // rs < rt -> !(rs >= rt).
   2397 def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)),
   2398       (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>;
   2399 
   2400 // Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs).
   2401 // rs < rt -> rt > rs.
   2402 // We can let assembler map it, or we can do in the compiler itself.
   2403 def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2404       (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
   2405 
   2406 // Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss).
   2407 // rss < rtt -> (rtt > rss).
   2408 def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2409       (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
   2410 
   2411 // Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs)
   2412 // rs < rt -> rt > rs.
   2413 // We can let assembler map it, or we can do in the compiler itself.
   2414 def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2415       (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
   2416 
   2417 // Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss).
   2418 // rs < rt -> rt > rs.
   2419 def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2420       (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
   2421 
   2422 // Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs)
   2423 def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)),
   2424       (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>;
   2425 
   2426 // Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1)
   2427 def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)),
   2428       (i1 (CMPGTUri (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>;
   2429 
   2430 // Generate cmpgtu(Rs, #u9)
   2431 def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)),
   2432       (i1 (CMPGTUri (i32 IntRegs:$src1), u9ExtPred:$src2))>;
   2433 
   2434 // Map from Rs >= Rt -> !(Rt > Rs).
   2435 // rs >= rt -> !(rt > rs).
   2436 def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2437       (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>;
   2438 
   2439 // Map from Rs >= Rt -> !(Rt > Rs).
   2440 // rs >= rt -> !(rt > rs).
   2441 def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2442       (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>;
   2443 
   2444 // Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt).
   2445 // Map from (Rs <= Rt) -> !(Rs > Rt).
   2446 def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   2447       (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
   2448 
   2449 // Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
   2450 // Map from (Rs <= Rt) -> !(Rs > Rt).
   2451 def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   2452       (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
   2453 
   2454 // Sign extends.
   2455 // i1 -> i32
   2456 def : Pat <(i32 (sext (i1 PredRegs:$src1))),
   2457       (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>;
   2458 
   2459 // i1 -> i64
   2460 def : Pat <(i64 (sext (i1 PredRegs:$src1))),
   2461       (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>;
   2462 
   2463 // Convert sign-extended load back to load and sign extend.
   2464 // i8 -> i64
   2465 def:  Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)),
   2466       (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
   2467 
   2468 // Convert any-extended load back to load and sign extend.
   2469 // i8 -> i64
   2470 def:  Pat <(i64 (extloadi8 ADDRriS11_0:$src1)),
   2471       (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
   2472 
   2473 // Convert sign-extended load back to load and sign extend.
   2474 // i16 -> i64
   2475 def:  Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)),
   2476       (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>;
   2477 
   2478 // Convert sign-extended load back to load and sign extend.
   2479 // i32 -> i64
   2480 def:  Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)),
   2481       (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>;
   2482 
   2483 
   2484 // Zero extends.
   2485 // i1 -> i32
   2486 def : Pat <(i32 (zext (i1 PredRegs:$src1))),
   2487       (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
   2488 
   2489 // i1 -> i64
   2490 def : Pat <(i64 (zext (i1 PredRegs:$src1))),
   2491       (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
   2492       Requires<[NoV4T]>;
   2493 
   2494 // i32 -> i64
   2495 def : Pat <(i64 (zext (i32 IntRegs:$src1))),
   2496       (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
   2497       Requires<[NoV4T]>;
   2498 
   2499 // i8 -> i64
   2500 def:  Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
   2501       (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
   2502       Requires<[NoV4T]>;
   2503 
   2504 let AddedComplexity = 20 in
   2505 def:  Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
   2506                                 s11_0ExtPred:$offset))),
   2507       (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
   2508                                   s11_0ExtPred:$offset)))>,
   2509       Requires<[NoV4T]>;
   2510 
   2511 // i1 -> i64
   2512 def:  Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
   2513       (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
   2514       Requires<[NoV4T]>;
   2515 
   2516 let AddedComplexity = 20 in
   2517 def:  Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
   2518                                 s11_0ExtPred:$offset))),
   2519       (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
   2520                                   s11_0ExtPred:$offset)))>,
   2521       Requires<[NoV4T]>;
   2522 
   2523 // i16 -> i64
   2524 def:  Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
   2525       (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>,
   2526       Requires<[NoV4T]>;
   2527 
   2528 let AddedComplexity = 20 in
   2529 def:  Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
   2530                                   s11_1ExtPred:$offset))),
   2531       (i64 (COMBINE_rr (TFRI 0), (LDriuh_indexed IntRegs:$src1,
   2532                                   s11_1ExtPred:$offset)))>,
   2533       Requires<[NoV4T]>;
   2534 
   2535 // i32 -> i64
   2536 def:  Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
   2537       (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
   2538       Requires<[NoV4T]>;
   2539 
   2540 let AddedComplexity = 100 in
   2541 def:  Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
   2542       (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
   2543                                   s11_2ExtPred:$offset)))>,
   2544       Requires<[NoV4T]>;
   2545 
   2546 let AddedComplexity = 10 in
   2547 def:  Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)),
   2548       (i32 (LDriw ADDRriS11_0:$src1))>;
   2549 
   2550 // Map from Rs = Pd to Pd = mux(Pd, #1, #0)
   2551 def : Pat <(i32 (zext (i1 PredRegs:$src1))),
   2552       (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
   2553 
   2554 // Map from Rs = Pd to Pd = mux(Pd, #1, #0)
   2555 def : Pat <(i32 (anyext (i1 PredRegs:$src1))),
   2556       (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
   2557 
   2558 // Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
   2559 def : Pat <(i64 (anyext (i1 PredRegs:$src1))),
   2560       (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>;
   2561 
   2562 
   2563 let AddedComplexity = 100 in
   2564 def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
   2565                            (i32 32))),
   2566                (i64 (zextloadi32 (i32 (add IntRegs:$src2,
   2567                                          s11_2ExtPred:$offset2)))))),
   2568         (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
   2569                         (LDriw_indexed IntRegs:$src2,
   2570                                        s11_2ExtPred:$offset2)))>;
   2571 
   2572 def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
   2573                            (i32 32))),
   2574                (i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
   2575         (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
   2576                         (LDriw ADDRriS11_2:$srcLow)))>;
   2577 
   2578 def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
   2579                            (i32 32))),
   2580                (i64 (zext (i32 IntRegs:$srcLow))))),
   2581         (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
   2582                         IntRegs:$srcLow))>;
   2583 
   2584 let AddedComplexity = 100 in
   2585 def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
   2586                            (i32 32))),
   2587                (i64 (zextloadi32 (i32 (add IntRegs:$src2,
   2588                                          s11_2ExtPred:$offset2)))))),
   2589         (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
   2590                         (LDriw_indexed IntRegs:$src2,
   2591                                        s11_2ExtPred:$offset2)))>;
   2592 
   2593 def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
   2594                            (i32 32))),
   2595                (i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
   2596         (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
   2597                         (LDriw ADDRriS11_2:$srcLow)))>;
   2598 
   2599 def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
   2600                            (i32 32))),
   2601                (i64 (zext (i32 IntRegs:$srcLow))))),
   2602         (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
   2603                         IntRegs:$srcLow))>;
   2604 
   2605 // Any extended 64-bit load.
   2606 // anyext i32 -> i64
   2607 def:  Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
   2608       (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
   2609       Requires<[NoV4T]>;
   2610 
   2611 // When there is an offset we should prefer the pattern below over the pattern above.
   2612 // The complexity of the above is 13 (gleaned from HexagonGenDAGIsel.inc)
   2613 // So this complexity below is comfortably higher to allow for choosing the below.
   2614 // If this is not done then we generate addresses such as
   2615 // ********************************************
   2616 //        r1 = add (r0, #4)
   2617 //        r1 = memw(r1 + #0)
   2618 //  instead of
   2619 //        r1 = memw(r0 + #4)
   2620 // ********************************************
   2621 let AddedComplexity = 100 in
   2622 def:  Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
   2623       (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
   2624                                   s11_2ExtPred:$offset)))>,
   2625       Requires<[NoV4T]>;
   2626 
   2627 // anyext i16 -> i64.
   2628 def:  Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
   2629       (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>,
   2630       Requires<[NoV4T]>;
   2631 
   2632 let AddedComplexity = 20 in
   2633 def:  Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
   2634                                   s11_1ExtPred:$offset))),
   2635       (i64 (COMBINE_rr (TFRI 0), (LDrih_indexed IntRegs:$src1,
   2636                                   s11_1ExtPred:$offset)))>,
   2637       Requires<[NoV4T]>;
   2638 
   2639 // Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs).
   2640 def : Pat<(i64 (zext (i32 IntRegs:$src1))),
   2641       (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
   2642       Requires<[NoV4T]>;
   2643 
   2644 // Multiply 64-bit unsigned and use upper result.
   2645 def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
   2646       (i64
   2647        (MPYU64_acc
   2648         (i64
   2649          (COMBINE_rr
   2650           (TFRI 0),
   2651            (i32
   2652             (EXTRACT_SUBREG
   2653              (i64
   2654               (LSRd_ri
   2655                (i64
   2656                 (MPYU64_acc
   2657                  (i64
   2658                   (MPYU64_acc
   2659                    (i64
   2660                     (COMBINE_rr (TFRI 0),
   2661                      (i32
   2662                       (EXTRACT_SUBREG
   2663                        (i64
   2664                         (LSRd_ri
   2665                          (i64
   2666                           (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
   2667                                                        subreg_loreg)),
   2668                                   (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
   2669                                                        subreg_loreg)))), 32)),
   2670                        subreg_loreg)))),
   2671                   (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
   2672                   (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
   2673                  (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
   2674                  (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
   2675                32)), subreg_loreg)))),
   2676         (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
   2677         (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
   2678 
   2679 // Multiply 64-bit signed and use upper result.
   2680 def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
   2681       (i64
   2682        (MPY64_acc
   2683         (i64
   2684          (COMBINE_rr (TFRI 0),
   2685           (i32
   2686            (EXTRACT_SUBREG
   2687             (i64
   2688              (LSRd_ri
   2689               (i64
   2690                (MPY64_acc
   2691                 (i64
   2692                  (MPY64_acc
   2693                   (i64
   2694                    (COMBINE_rr (TFRI 0),
   2695                     (i32
   2696                      (EXTRACT_SUBREG
   2697                       (i64
   2698                        (LSRd_ri
   2699                         (i64
   2700                          (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
   2701                                                       subreg_loreg)),
   2702                                  (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
   2703                                                       subreg_loreg)))), 32)),
   2704                       subreg_loreg)))),
   2705                   (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
   2706                   (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
   2707                 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
   2708                 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
   2709               32)), subreg_loreg)))),
   2710         (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
   2711         (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
   2712 
   2713 // Hexagon specific ISD nodes.
   2714 //def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>;
   2715 def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2,
   2716                                   [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
   2717 def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC",
   2718                                   SDTHexagonADJDYNALLOC>;
   2719 // Needed to tag these instructions for stack layout.
   2720 let usesCustomInserter = 1 in
   2721 def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1,
   2722                                                      s16Imm:$src2),
   2723                   "$dst = add($src1, #$src2)",
   2724                   [(set (i32 IntRegs:$dst),
   2725                         (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1),
   2726                                              s16ImmPred:$src2))]>;
   2727 
   2728 def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>;
   2729 def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>;
   2730 def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1),
   2731                 "$dst = $src1",
   2732                 [(set (i32 IntRegs:$dst),
   2733                       (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>;
   2734 
   2735 let AddedComplexity = 100 in
   2736 def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)),
   2737       (COPY (i32 IntRegs:$src1))>;
   2738 
   2739 def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>;
   2740 
   2741 def : Pat<(HexagonWrapperJT tjumptable:$dst),
   2742           (i32 (CONST32_set_jt tjumptable:$dst))>;
   2743 
   2744 // XTYPE/SHIFT
   2745 
   2746 // Multi-class for logical operators :
   2747 // Shift by immediate/register and accumulate/logical
   2748 multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
   2749   def _ri : SInst_acc<(outs IntRegs:$dst),
   2750             (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3),
   2751             !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
   2752             [(set (i32 IntRegs:$dst),
   2753                   (OpNode2 (i32 IntRegs:$src1),
   2754                            (OpNode1 (i32 IntRegs:$src2),
   2755                                     u5ImmPred:$src3)))],
   2756             "$src1 = $dst">;
   2757 
   2758   def d_ri : SInst_acc<(outs DoubleRegs:$dst),
   2759             (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3),
   2760             !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
   2761             [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1),
   2762                           (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))],
   2763             "$src1 = $dst">;
   2764 }
   2765 
   2766 // Multi-class for logical operators :
   2767 // Shift by register and accumulate/logical (32/64 bits)
   2768 multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
   2769   def _rr : SInst_acc<(outs IntRegs:$dst),
   2770             (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
   2771             !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
   2772             [(set (i32 IntRegs:$dst),
   2773                   (OpNode2 (i32 IntRegs:$src1),
   2774                            (OpNode1 (i32 IntRegs:$src2),
   2775                                     (i32 IntRegs:$src3))))],
   2776             "$src1 = $dst">;
   2777 
   2778   def d_rr : SInst_acc<(outs DoubleRegs:$dst),
   2779             (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
   2780             !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
   2781             [(set (i64 DoubleRegs:$dst),
   2782                   (OpNode2 (i64 DoubleRegs:$src1),
   2783                            (OpNode1 (i64 DoubleRegs:$src2),
   2784                                     (i32 IntRegs:$src3))))],
   2785             "$src1 = $dst">;
   2786 
   2787 }
   2788 
   2789 multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> {
   2790 let AddedComplexity = 100 in
   2791   defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>;
   2792   defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>;
   2793   defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>;
   2794   defm _OR  : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>;
   2795 }
   2796 
   2797 multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> {
   2798 let AddedComplexity = 100 in
   2799   defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>;
   2800   defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>;
   2801   defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>;
   2802   defm _OR  : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>;
   2803 }
   2804 
   2805 multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> {
   2806 let AddedComplexity = 100 in
   2807   defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>;
   2808 }
   2809 
   2810 defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>,
   2811            xtype_xor_imm<"asl", shl>;
   2812 
   2813 defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>,
   2814            xtype_xor_imm<"lsr", srl>;
   2815 
   2816 defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>;
   2817 defm LSL : basic_xtype_reg<"lsl", shl>;
   2818 
   2819 // Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
   2820 def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
   2821       (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>;
   2822 
   2823 //===----------------------------------------------------------------------===//
   2824 // V3 Instructions +
   2825 //===----------------------------------------------------------------------===//
   2826 
   2827 include "HexagonInstrInfoV3.td"
   2828 
   2829 //===----------------------------------------------------------------------===//
   2830 // V3 Instructions -
   2831 //===----------------------------------------------------------------------===//
   2832 
   2833 //===----------------------------------------------------------------------===//
   2834 // V4 Instructions +
   2835 //===----------------------------------------------------------------------===//
   2836 
   2837 include "HexagonInstrInfoV4.td"
   2838 
   2839 //===----------------------------------------------------------------------===//
   2840 // V4 Instructions -
   2841 //===----------------------------------------------------------------------===//
   2842 
   2843 //===----------------------------------------------------------------------===//
   2844 // V5 Instructions +
   2845 //===----------------------------------------------------------------------===//
   2846 
   2847 include "HexagonInstrInfoV5.td"
   2848 
   2849 //===----------------------------------------------------------------------===//
   2850 // V5 Instructions -
   2851 //===----------------------------------------------------------------------===//
   2852