Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs loop invariant code motion on machine instructions. We
     11 // attempt to remove as much code from the body of a loop as possible.
     12 //
     13 // This pass does not attempt to throttle itself to limit register pressure.
     14 // The register allocation phases are expected to perform rematerialization
     15 // to recover when register pressure is high.
     16 //
     17 // This pass is not intended to be a replacement or a complete alternative
     18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
     19 // constructs that are not exposed before lowering and instruction selection.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #define DEBUG_TYPE "machine-licm"
     24 #include "llvm/CodeGen/Passes.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/SmallSet.h"
     27 #include "llvm/ADT/Statistic.h"
     28 #include "llvm/Analysis/AliasAnalysis.h"
     29 #include "llvm/CodeGen/MachineDominators.h"
     30 #include "llvm/CodeGen/MachineFrameInfo.h"
     31 #include "llvm/CodeGen/MachineLoopInfo.h"
     32 #include "llvm/CodeGen/MachineMemOperand.h"
     33 #include "llvm/CodeGen/MachineRegisterInfo.h"
     34 #include "llvm/CodeGen/PseudoSourceValue.h"
     35 #include "llvm/MC/MCInstrItineraries.h"
     36 #include "llvm/Support/CommandLine.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include "llvm/Target/TargetInstrInfo.h"
     40 #include "llvm/Target/TargetLowering.h"
     41 #include "llvm/Target/TargetMachine.h"
     42 #include "llvm/Target/TargetRegisterInfo.h"
     43 using namespace llvm;
     44 
     45 static cl::opt<bool>
     46 AvoidSpeculation("avoid-speculation",
     47                  cl::desc("MachineLICM should avoid speculation"),
     48                  cl::init(true), cl::Hidden);
     49 
     50 STATISTIC(NumHoisted,
     51           "Number of machine instructions hoisted out of loops");
     52 STATISTIC(NumLowRP,
     53           "Number of instructions hoisted in low reg pressure situation");
     54 STATISTIC(NumHighLatency,
     55           "Number of high latency instructions hoisted");
     56 STATISTIC(NumCSEed,
     57           "Number of hoisted machine instructions CSEed");
     58 STATISTIC(NumPostRAHoisted,
     59           "Number of machine instructions hoisted out of loops post regalloc");
     60 
     61 namespace {
     62   class MachineLICM : public MachineFunctionPass {
     63     const TargetMachine   *TM;
     64     const TargetInstrInfo *TII;
     65     const TargetLoweringBase *TLI;
     66     const TargetRegisterInfo *TRI;
     67     const MachineFrameInfo *MFI;
     68     MachineRegisterInfo *MRI;
     69     const InstrItineraryData *InstrItins;
     70     bool PreRegAlloc;
     71 
     72     // Various analyses that we use...
     73     AliasAnalysis        *AA;      // Alias analysis info.
     74     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
     75     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
     76 
     77     // State that is updated as we process loops
     78     bool         Changed;          // True if a loop is changed.
     79     bool         FirstInLoop;      // True if it's the first LICM in the loop.
     80     MachineLoop *CurLoop;          // The current loop we are working on.
     81     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
     82 
     83     // Exit blocks for CurLoop.
     84     SmallVector<MachineBasicBlock*, 8> ExitBlocks;
     85 
     86     bool isExitBlock(const MachineBasicBlock *MBB) const {
     87       return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
     88         ExitBlocks.end();
     89     }
     90 
     91     // Track 'estimated' register pressure.
     92     SmallSet<unsigned, 32> RegSeen;
     93     SmallVector<unsigned, 8> RegPressure;
     94 
     95     // Register pressure "limit" per register class. If the pressure
     96     // is higher than the limit, then it's considered high.
     97     SmallVector<unsigned, 8> RegLimit;
     98 
     99     // Register pressure on path leading from loop preheader to current BB.
    100     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
    101 
    102     // For each opcode, keep a list of potential CSE instructions.
    103     DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
    104 
    105     enum {
    106       SpeculateFalse   = 0,
    107       SpeculateTrue    = 1,
    108       SpeculateUnknown = 2
    109     };
    110 
    111     // If a MBB does not dominate loop exiting blocks then it may not safe
    112     // to hoist loads from this block.
    113     // Tri-state: 0 - false, 1 - true, 2 - unknown
    114     unsigned SpeculationState;
    115 
    116   public:
    117     static char ID; // Pass identification, replacement for typeid
    118     MachineLICM() :
    119       MachineFunctionPass(ID), PreRegAlloc(true) {
    120         initializeMachineLICMPass(*PassRegistry::getPassRegistry());
    121       }
    122 
    123     explicit MachineLICM(bool PreRA) :
    124       MachineFunctionPass(ID), PreRegAlloc(PreRA) {
    125         initializeMachineLICMPass(*PassRegistry::getPassRegistry());
    126       }
    127 
    128     virtual bool runOnMachineFunction(MachineFunction &MF);
    129 
    130     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    131       AU.addRequired<MachineLoopInfo>();
    132       AU.addRequired<MachineDominatorTree>();
    133       AU.addRequired<AliasAnalysis>();
    134       AU.addPreserved<MachineLoopInfo>();
    135       AU.addPreserved<MachineDominatorTree>();
    136       MachineFunctionPass::getAnalysisUsage(AU);
    137     }
    138 
    139     virtual void releaseMemory() {
    140       RegSeen.clear();
    141       RegPressure.clear();
    142       RegLimit.clear();
    143       BackTrace.clear();
    144       for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
    145              CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
    146         CI->second.clear();
    147       CSEMap.clear();
    148     }
    149 
    150   private:
    151     /// CandidateInfo - Keep track of information about hoisting candidates.
    152     struct CandidateInfo {
    153       MachineInstr *MI;
    154       unsigned      Def;
    155       int           FI;
    156       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
    157         : MI(mi), Def(def), FI(fi) {}
    158     };
    159 
    160     /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
    161     /// invariants out to the preheader.
    162     void HoistRegionPostRA();
    163 
    164     /// HoistPostRA - When an instruction is found to only use loop invariant
    165     /// operands that is safe to hoist, this instruction is called to do the
    166     /// dirty work.
    167     void HoistPostRA(MachineInstr *MI, unsigned Def);
    168 
    169     /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
    170     /// gather register def and frame object update information.
    171     void ProcessMI(MachineInstr *MI,
    172                    BitVector &PhysRegDefs,
    173                    BitVector &PhysRegClobbers,
    174                    SmallSet<int, 32> &StoredFIs,
    175                    SmallVectorImpl<CandidateInfo> &Candidates);
    176 
    177     /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
    178     /// current loop.
    179     void AddToLiveIns(unsigned Reg);
    180 
    181     /// IsLICMCandidate - Returns true if the instruction may be a suitable
    182     /// candidate for LICM. e.g. If the instruction is a call, then it's
    183     /// obviously not safe to hoist it.
    184     bool IsLICMCandidate(MachineInstr &I);
    185 
    186     /// IsLoopInvariantInst - Returns true if the instruction is loop
    187     /// invariant. I.e., all virtual register operands are defined outside of
    188     /// the loop, physical registers aren't accessed (explicitly or implicitly),
    189     /// and the instruction is hoistable.
    190     ///
    191     bool IsLoopInvariantInst(MachineInstr &I);
    192 
    193     /// HasLoopPHIUse - Return true if the specified instruction is used by any
    194     /// phi node in the current loop.
    195     bool HasLoopPHIUse(const MachineInstr *MI) const;
    196 
    197     /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
    198     /// and an use in the current loop, return true if the target considered
    199     /// it 'high'.
    200     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
    201                                unsigned Reg) const;
    202 
    203     bool IsCheapInstruction(MachineInstr &MI) const;
    204 
    205     /// CanCauseHighRegPressure - Visit BBs from header to current BB,
    206     /// check if hoisting an instruction of the given cost matrix can cause high
    207     /// register pressure.
    208     bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap);
    209 
    210     /// UpdateBackTraceRegPressure - Traverse the back trace from header to
    211     /// the current block and update their register pressures to reflect the
    212     /// effect of hoisting MI from the current block to the preheader.
    213     void UpdateBackTraceRegPressure(const MachineInstr *MI);
    214 
    215     /// IsProfitableToHoist - Return true if it is potentially profitable to
    216     /// hoist the given loop invariant.
    217     bool IsProfitableToHoist(MachineInstr &MI);
    218 
    219     /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
    220     /// If not then a load from this mbb may not be safe to hoist.
    221     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
    222 
    223     void EnterScope(MachineBasicBlock *MBB);
    224 
    225     void ExitScope(MachineBasicBlock *MBB);
    226 
    227     /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
    228     /// dominator tree node if its a leaf or all of its children are done. Walk
    229     /// up the dominator tree to destroy ancestors which are now done.
    230     void ExitScopeIfDone(MachineDomTreeNode *Node,
    231                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
    232                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
    233 
    234     /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
    235     /// blocks dominated by the specified header block, and that are in the
    236     /// current loop) in depth first order w.r.t the DominatorTree. This allows
    237     /// us to visit definitions before uses, allowing us to hoist a loop body in
    238     /// one pass without iteration.
    239     ///
    240     void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
    241     void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
    242 
    243     /// getRegisterClassIDAndCost - For a given MI, register, and the operand
    244     /// index, return the ID and cost of its representative register class by
    245     /// reference.
    246     void getRegisterClassIDAndCost(const MachineInstr *MI,
    247                                    unsigned Reg, unsigned OpIdx,
    248                                    unsigned &RCId, unsigned &RCCost) const;
    249 
    250     /// InitRegPressure - Find all virtual register references that are liveout
    251     /// of the preheader to initialize the starting "register pressure". Note
    252     /// this does not count live through (livein but not used) registers.
    253     void InitRegPressure(MachineBasicBlock *BB);
    254 
    255     /// UpdateRegPressure - Update estimate of register pressure after the
    256     /// specified instruction.
    257     void UpdateRegPressure(const MachineInstr *MI);
    258 
    259     /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
    260     /// the load itself could be hoisted. Return the unfolded and hoistable
    261     /// load, or null if the load couldn't be unfolded or if it wouldn't
    262     /// be hoistable.
    263     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
    264 
    265     /// LookForDuplicate - Find an instruction amount PrevMIs that is a
    266     /// duplicate of MI. Return this instruction if it's found.
    267     const MachineInstr *LookForDuplicate(const MachineInstr *MI,
    268                                      std::vector<const MachineInstr*> &PrevMIs);
    269 
    270     /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
    271     /// the preheader that compute the same value. If it's found, do a RAU on
    272     /// with the definition of the existing instruction rather than hoisting
    273     /// the instruction to the preheader.
    274     bool EliminateCSE(MachineInstr *MI,
    275            DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
    276 
    277     /// MayCSE - Return true if the given instruction will be CSE'd if it's
    278     /// hoisted out of the loop.
    279     bool MayCSE(MachineInstr *MI);
    280 
    281     /// Hoist - When an instruction is found to only use loop invariant operands
    282     /// that is safe to hoist, this instruction is called to do the dirty work.
    283     /// It returns true if the instruction is hoisted.
    284     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
    285 
    286     /// InitCSEMap - Initialize the CSE map with instructions that are in the
    287     /// current loop preheader that may become duplicates of instructions that
    288     /// are hoisted out of the loop.
    289     void InitCSEMap(MachineBasicBlock *BB);
    290 
    291     /// getCurPreheader - Get the preheader for the current loop, splitting
    292     /// a critical edge if needed.
    293     MachineBasicBlock *getCurPreheader();
    294   };
    295 } // end anonymous namespace
    296 
    297 char MachineLICM::ID = 0;
    298 char &llvm::MachineLICMID = MachineLICM::ID;
    299 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
    300                 "Machine Loop Invariant Code Motion", false, false)
    301 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    302 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    303 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    304 INITIALIZE_PASS_END(MachineLICM, "machinelicm",
    305                 "Machine Loop Invariant Code Motion", false, false)
    306 
    307 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
    308 /// loop that has a unique predecessor.
    309 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
    310   // Check whether this loop even has a unique predecessor.
    311   if (!CurLoop->getLoopPredecessor())
    312     return false;
    313   // Ok, now check to see if any of its outer loops do.
    314   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
    315     if (L->getLoopPredecessor())
    316       return false;
    317   // None of them did, so this is the outermost with a unique predecessor.
    318   return true;
    319 }
    320 
    321 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
    322   Changed = FirstInLoop = false;
    323   TM = &MF.getTarget();
    324   TII = TM->getInstrInfo();
    325   TLI = TM->getTargetLowering();
    326   TRI = TM->getRegisterInfo();
    327   MFI = MF.getFrameInfo();
    328   MRI = &MF.getRegInfo();
    329   InstrItins = TM->getInstrItineraryData();
    330 
    331   PreRegAlloc = MRI->isSSA();
    332 
    333   if (PreRegAlloc)
    334     DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
    335   else
    336     DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
    337   DEBUG(dbgs() << MF.getName() << " ********\n");
    338 
    339   if (PreRegAlloc) {
    340     // Estimate register pressure during pre-regalloc pass.
    341     unsigned NumRC = TRI->getNumRegClasses();
    342     RegPressure.resize(NumRC);
    343     std::fill(RegPressure.begin(), RegPressure.end(), 0);
    344     RegLimit.resize(NumRC);
    345     for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
    346            E = TRI->regclass_end(); I != E; ++I)
    347       RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
    348   }
    349 
    350   // Get our Loop information...
    351   MLI = &getAnalysis<MachineLoopInfo>();
    352   DT  = &getAnalysis<MachineDominatorTree>();
    353   AA  = &getAnalysis<AliasAnalysis>();
    354 
    355   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
    356   while (!Worklist.empty()) {
    357     CurLoop = Worklist.pop_back_val();
    358     CurPreheader = 0;
    359     ExitBlocks.clear();
    360 
    361     // If this is done before regalloc, only visit outer-most preheader-sporting
    362     // loops.
    363     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
    364       Worklist.append(CurLoop->begin(), CurLoop->end());
    365       continue;
    366     }
    367 
    368     CurLoop->getExitBlocks(ExitBlocks);
    369 
    370     if (!PreRegAlloc)
    371       HoistRegionPostRA();
    372     else {
    373       // CSEMap is initialized for loop header when the first instruction is
    374       // being hoisted.
    375       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
    376       FirstInLoop = true;
    377       HoistOutOfLoop(N);
    378       CSEMap.clear();
    379     }
    380   }
    381 
    382   return Changed;
    383 }
    384 
    385 /// InstructionStoresToFI - Return true if instruction stores to the
    386 /// specified frame.
    387 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
    388   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
    389          oe = MI->memoperands_end(); o != oe; ++o) {
    390     if (!(*o)->isStore() || !(*o)->getValue())
    391       continue;
    392     if (const FixedStackPseudoSourceValue *Value =
    393         dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
    394       if (Value->getFrameIndex() == FI)
    395         return true;
    396     }
    397   }
    398   return false;
    399 }
    400 
    401 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
    402 /// gather register def and frame object update information.
    403 void MachineLICM::ProcessMI(MachineInstr *MI,
    404                             BitVector &PhysRegDefs,
    405                             BitVector &PhysRegClobbers,
    406                             SmallSet<int, 32> &StoredFIs,
    407                             SmallVectorImpl<CandidateInfo> &Candidates) {
    408   bool RuledOut = false;
    409   bool HasNonInvariantUse = false;
    410   unsigned Def = 0;
    411   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    412     const MachineOperand &MO = MI->getOperand(i);
    413     if (MO.isFI()) {
    414       // Remember if the instruction stores to the frame index.
    415       int FI = MO.getIndex();
    416       if (!StoredFIs.count(FI) &&
    417           MFI->isSpillSlotObjectIndex(FI) &&
    418           InstructionStoresToFI(MI, FI))
    419         StoredFIs.insert(FI);
    420       HasNonInvariantUse = true;
    421       continue;
    422     }
    423 
    424     // We can't hoist an instruction defining a physreg that is clobbered in
    425     // the loop.
    426     if (MO.isRegMask()) {
    427       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
    428       continue;
    429     }
    430 
    431     if (!MO.isReg())
    432       continue;
    433     unsigned Reg = MO.getReg();
    434     if (!Reg)
    435       continue;
    436     assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
    437            "Not expecting virtual register!");
    438 
    439     if (!MO.isDef()) {
    440       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
    441         // If it's using a non-loop-invariant register, then it's obviously not
    442         // safe to hoist.
    443         HasNonInvariantUse = true;
    444       continue;
    445     }
    446 
    447     if (MO.isImplicit()) {
    448       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    449         PhysRegClobbers.set(*AI);
    450       if (!MO.isDead())
    451         // Non-dead implicit def? This cannot be hoisted.
    452         RuledOut = true;
    453       // No need to check if a dead implicit def is also defined by
    454       // another instruction.
    455       continue;
    456     }
    457 
    458     // FIXME: For now, avoid instructions with multiple defs, unless
    459     // it's a dead implicit def.
    460     if (Def)
    461       RuledOut = true;
    462     else
    463       Def = Reg;
    464 
    465     // If we have already seen another instruction that defines the same
    466     // register, then this is not safe.  Two defs is indicated by setting a
    467     // PhysRegClobbers bit.
    468     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
    469       if (PhysRegDefs.test(*AS))
    470         PhysRegClobbers.set(*AS);
    471       if (PhysRegClobbers.test(*AS))
    472         // MI defined register is seen defined by another instruction in
    473         // the loop, it cannot be a LICM candidate.
    474         RuledOut = true;
    475       PhysRegDefs.set(*AS);
    476     }
    477   }
    478 
    479   // Only consider reloads for now and remats which do not have register
    480   // operands. FIXME: Consider unfold load folding instructions.
    481   if (Def && !RuledOut) {
    482     int FI = INT_MIN;
    483     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
    484         (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
    485       Candidates.push_back(CandidateInfo(MI, Def, FI));
    486   }
    487 }
    488 
    489 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
    490 /// invariants out to the preheader.
    491 void MachineLICM::HoistRegionPostRA() {
    492   MachineBasicBlock *Preheader = getCurPreheader();
    493   if (!Preheader)
    494     return;
    495 
    496   unsigned NumRegs = TRI->getNumRegs();
    497   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
    498   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
    499 
    500   SmallVector<CandidateInfo, 32> Candidates;
    501   SmallSet<int, 32> StoredFIs;
    502 
    503   // Walk the entire region, count number of defs for each register, and
    504   // collect potential LICM candidates.
    505   const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
    506   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    507     MachineBasicBlock *BB = Blocks[i];
    508 
    509     // If the header of the loop containing this basic block is a landing pad,
    510     // then don't try to hoist instructions out of this loop.
    511     const MachineLoop *ML = MLI->getLoopFor(BB);
    512     if (ML && ML->getHeader()->isLandingPad()) continue;
    513 
    514     // Conservatively treat live-in's as an external def.
    515     // FIXME: That means a reload that're reused in successor block(s) will not
    516     // be LICM'ed.
    517     for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
    518            E = BB->livein_end(); I != E; ++I) {
    519       unsigned Reg = *I;
    520       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    521         PhysRegDefs.set(*AI);
    522     }
    523 
    524     SpeculationState = SpeculateUnknown;
    525     for (MachineBasicBlock::iterator
    526            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
    527       MachineInstr *MI = &*MII;
    528       ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
    529     }
    530   }
    531 
    532   // Gather the registers read / clobbered by the terminator.
    533   BitVector TermRegs(NumRegs);
    534   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
    535   if (TI != Preheader->end()) {
    536     for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) {
    537       const MachineOperand &MO = TI->getOperand(i);
    538       if (!MO.isReg())
    539         continue;
    540       unsigned Reg = MO.getReg();
    541       if (!Reg)
    542         continue;
    543       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    544         TermRegs.set(*AI);
    545     }
    546   }
    547 
    548   // Now evaluate whether the potential candidates qualify.
    549   // 1. Check if the candidate defined register is defined by another
    550   //    instruction in the loop.
    551   // 2. If the candidate is a load from stack slot (always true for now),
    552   //    check if the slot is stored anywhere in the loop.
    553   // 3. Make sure candidate def should not clobber
    554   //    registers read by the terminator. Similarly its def should not be
    555   //    clobbered by the terminator.
    556   for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
    557     if (Candidates[i].FI != INT_MIN &&
    558         StoredFIs.count(Candidates[i].FI))
    559       continue;
    560 
    561     unsigned Def = Candidates[i].Def;
    562     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
    563       bool Safe = true;
    564       MachineInstr *MI = Candidates[i].MI;
    565       for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
    566         const MachineOperand &MO = MI->getOperand(j);
    567         if (!MO.isReg() || MO.isDef() || !MO.getReg())
    568           continue;
    569         unsigned Reg = MO.getReg();
    570         if (PhysRegDefs.test(Reg) ||
    571             PhysRegClobbers.test(Reg)) {
    572           // If it's using a non-loop-invariant register, then it's obviously
    573           // not safe to hoist.
    574           Safe = false;
    575           break;
    576         }
    577       }
    578       if (Safe)
    579         HoistPostRA(MI, Candidates[i].Def);
    580     }
    581   }
    582 }
    583 
    584 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
    585 /// loop, and make sure it is not killed by any instructions in the loop.
    586 void MachineLICM::AddToLiveIns(unsigned Reg) {
    587   const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
    588   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    589     MachineBasicBlock *BB = Blocks[i];
    590     if (!BB->isLiveIn(Reg))
    591       BB->addLiveIn(Reg);
    592     for (MachineBasicBlock::iterator
    593            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
    594       MachineInstr *MI = &*MII;
    595       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    596         MachineOperand &MO = MI->getOperand(i);
    597         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
    598         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
    599           MO.setIsKill(false);
    600       }
    601     }
    602   }
    603 }
    604 
    605 /// HoistPostRA - When an instruction is found to only use loop invariant
    606 /// operands that is safe to hoist, this instruction is called to do the
    607 /// dirty work.
    608 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
    609   MachineBasicBlock *Preheader = getCurPreheader();
    610 
    611   // Now move the instructions to the predecessor, inserting it before any
    612   // terminator instructions.
    613   DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
    614                << MI->getParent()->getNumber() << ": " << *MI);
    615 
    616   // Splice the instruction to the preheader.
    617   MachineBasicBlock *MBB = MI->getParent();
    618   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
    619 
    620   // Add register to livein list to all the BBs in the current loop since a
    621   // loop invariant must be kept live throughout the whole loop. This is
    622   // important to ensure later passes do not scavenge the def register.
    623   AddToLiveIns(Def);
    624 
    625   ++NumPostRAHoisted;
    626   Changed = true;
    627 }
    628 
    629 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
    630 // If not then a load from this mbb may not be safe to hoist.
    631 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
    632   if (SpeculationState != SpeculateUnknown)
    633     return SpeculationState == SpeculateFalse;
    634 
    635   if (BB != CurLoop->getHeader()) {
    636     // Check loop exiting blocks.
    637     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
    638     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
    639     for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
    640       if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
    641         SpeculationState = SpeculateTrue;
    642         return false;
    643       }
    644   }
    645 
    646   SpeculationState = SpeculateFalse;
    647   return true;
    648 }
    649 
    650 void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
    651   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
    652 
    653   // Remember livein register pressure.
    654   BackTrace.push_back(RegPressure);
    655 }
    656 
    657 void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
    658   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
    659   BackTrace.pop_back();
    660 }
    661 
    662 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
    663 /// dominator tree node if its a leaf or all of its children are done. Walk
    664 /// up the dominator tree to destroy ancestors which are now done.
    665 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
    666                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
    667                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
    668   if (OpenChildren[Node])
    669     return;
    670 
    671   // Pop scope.
    672   ExitScope(Node->getBlock());
    673 
    674   // Now traverse upwards to pop ancestors whose offsprings are all done.
    675   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
    676     unsigned Left = --OpenChildren[Parent];
    677     if (Left != 0)
    678       break;
    679     ExitScope(Parent->getBlock());
    680     Node = Parent;
    681   }
    682 }
    683 
    684 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
    685 /// blocks dominated by the specified header block, and that are in the
    686 /// current loop) in depth first order w.r.t the DominatorTree. This allows
    687 /// us to visit definitions before uses, allowing us to hoist a loop body in
    688 /// one pass without iteration.
    689 ///
    690 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
    691   SmallVector<MachineDomTreeNode*, 32> Scopes;
    692   SmallVector<MachineDomTreeNode*, 8> WorkList;
    693   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
    694   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
    695 
    696   // Perform a DFS walk to determine the order of visit.
    697   WorkList.push_back(HeaderN);
    698   do {
    699     MachineDomTreeNode *Node = WorkList.pop_back_val();
    700     assert(Node != 0 && "Null dominator tree node?");
    701     MachineBasicBlock *BB = Node->getBlock();
    702 
    703     // If the header of the loop containing this basic block is a landing pad,
    704     // then don't try to hoist instructions out of this loop.
    705     const MachineLoop *ML = MLI->getLoopFor(BB);
    706     if (ML && ML->getHeader()->isLandingPad())
    707       continue;
    708 
    709     // If this subregion is not in the top level loop at all, exit.
    710     if (!CurLoop->contains(BB))
    711       continue;
    712 
    713     Scopes.push_back(Node);
    714     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    715     unsigned NumChildren = Children.size();
    716 
    717     // Don't hoist things out of a large switch statement.  This often causes
    718     // code to be hoisted that wasn't going to be executed, and increases
    719     // register pressure in a situation where it's likely to matter.
    720     if (BB->succ_size() >= 25)
    721       NumChildren = 0;
    722 
    723     OpenChildren[Node] = NumChildren;
    724     // Add children in reverse order as then the next popped worklist node is
    725     // the first child of this node.  This means we ultimately traverse the
    726     // DOM tree in exactly the same order as if we'd recursed.
    727     for (int i = (int)NumChildren-1; i >= 0; --i) {
    728       MachineDomTreeNode *Child = Children[i];
    729       ParentMap[Child] = Node;
    730       WorkList.push_back(Child);
    731     }
    732   } while (!WorkList.empty());
    733 
    734   if (Scopes.size() != 0) {
    735     MachineBasicBlock *Preheader = getCurPreheader();
    736     if (!Preheader)
    737       return;
    738 
    739     // Compute registers which are livein into the loop headers.
    740     RegSeen.clear();
    741     BackTrace.clear();
    742     InitRegPressure(Preheader);
    743   }
    744 
    745   // Now perform LICM.
    746   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
    747     MachineDomTreeNode *Node = Scopes[i];
    748     MachineBasicBlock *MBB = Node->getBlock();
    749 
    750     MachineBasicBlock *Preheader = getCurPreheader();
    751     if (!Preheader)
    752       continue;
    753 
    754     EnterScope(MBB);
    755 
    756     // Process the block
    757     SpeculationState = SpeculateUnknown;
    758     for (MachineBasicBlock::iterator
    759          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
    760       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
    761       MachineInstr *MI = &*MII;
    762       if (!Hoist(MI, Preheader))
    763         UpdateRegPressure(MI);
    764       MII = NextMII;
    765     }
    766 
    767     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    768     ExitScopeIfDone(Node, OpenChildren, ParentMap);
    769   }
    770 }
    771 
    772 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
    773   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
    774 }
    775 
    776 /// getRegisterClassIDAndCost - For a given MI, register, and the operand
    777 /// index, return the ID and cost of its representative register class.
    778 void
    779 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
    780                                        unsigned Reg, unsigned OpIdx,
    781                                        unsigned &RCId, unsigned &RCCost) const {
    782   const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    783   MVT VT = *RC->vt_begin();
    784   if (VT == MVT::Untyped) {
    785     RCId = RC->getID();
    786     RCCost = 1;
    787   } else {
    788     RCId = TLI->getRepRegClassFor(VT)->getID();
    789     RCCost = TLI->getRepRegClassCostFor(VT);
    790   }
    791 }
    792 
    793 /// InitRegPressure - Find all virtual register references that are liveout of
    794 /// the preheader to initialize the starting "register pressure". Note this
    795 /// does not count live through (livein but not used) registers.
    796 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
    797   std::fill(RegPressure.begin(), RegPressure.end(), 0);
    798 
    799   // If the preheader has only a single predecessor and it ends with a
    800   // fallthrough or an unconditional branch, then scan its predecessor for live
    801   // defs as well. This happens whenever the preheader is created by splitting
    802   // the critical edge from the loop predecessor to the loop header.
    803   if (BB->pred_size() == 1) {
    804     MachineBasicBlock *TBB = 0, *FBB = 0;
    805     SmallVector<MachineOperand, 4> Cond;
    806     if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
    807       InitRegPressure(*BB->pred_begin());
    808   }
    809 
    810   for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
    811        MII != E; ++MII) {
    812     MachineInstr *MI = &*MII;
    813     for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    814       const MachineOperand &MO = MI->getOperand(i);
    815       if (!MO.isReg() || MO.isImplicit())
    816         continue;
    817       unsigned Reg = MO.getReg();
    818       if (!TargetRegisterInfo::isVirtualRegister(Reg))
    819         continue;
    820 
    821       bool isNew = RegSeen.insert(Reg);
    822       unsigned RCId, RCCost;
    823       getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
    824       if (MO.isDef())
    825         RegPressure[RCId] += RCCost;
    826       else {
    827         bool isKill = isOperandKill(MO, MRI);
    828         if (isNew && !isKill)
    829           // Haven't seen this, it must be a livein.
    830           RegPressure[RCId] += RCCost;
    831         else if (!isNew && isKill)
    832           RegPressure[RCId] -= RCCost;
    833       }
    834     }
    835   }
    836 }
    837 
    838 /// UpdateRegPressure - Update estimate of register pressure after the
    839 /// specified instruction.
    840 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
    841   if (MI->isImplicitDef())
    842     return;
    843 
    844   SmallVector<unsigned, 4> Defs;
    845   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    846     const MachineOperand &MO = MI->getOperand(i);
    847     if (!MO.isReg() || MO.isImplicit())
    848       continue;
    849     unsigned Reg = MO.getReg();
    850     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    851       continue;
    852 
    853     bool isNew = RegSeen.insert(Reg);
    854     if (MO.isDef())
    855       Defs.push_back(Reg);
    856     else if (!isNew && isOperandKill(MO, MRI)) {
    857       unsigned RCId, RCCost;
    858       getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
    859       if (RCCost > RegPressure[RCId])
    860         RegPressure[RCId] = 0;
    861       else
    862         RegPressure[RCId] -= RCCost;
    863     }
    864   }
    865 
    866   unsigned Idx = 0;
    867   while (!Defs.empty()) {
    868     unsigned Reg = Defs.pop_back_val();
    869     unsigned RCId, RCCost;
    870     getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
    871     RegPressure[RCId] += RCCost;
    872     ++Idx;
    873   }
    874 }
    875 
    876 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction
    877 /// loads from global offset table or constant pool.
    878 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
    879   assert (MI.mayLoad() && "Expected MI that loads!");
    880   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
    881          E = MI.memoperands_end(); I != E; ++I) {
    882     if (const Value *V = (*I)->getValue()) {
    883       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
    884         if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
    885           return true;
    886     }
    887   }
    888   return false;
    889 }
    890 
    891 /// IsLICMCandidate - Returns true if the instruction may be a suitable
    892 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
    893 /// not safe to hoist it.
    894 bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
    895   // Check if it's safe to move the instruction.
    896   bool DontMoveAcrossStore = true;
    897   if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
    898     return false;
    899 
    900   // If it is load then check if it is guaranteed to execute by making sure that
    901   // it dominates all exiting blocks. If it doesn't, then there is a path out of
    902   // the loop which does not execute this load, so we can't hoist it. Loads
    903   // from constant memory are not safe to speculate all the time, for example
    904   // indexed load from a jump table.
    905   // Stores and side effects are already checked by isSafeToMove.
    906   if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
    907       !IsGuaranteedToExecute(I.getParent()))
    908     return false;
    909 
    910   return true;
    911 }
    912 
    913 /// IsLoopInvariantInst - Returns true if the instruction is loop
    914 /// invariant. I.e., all virtual register operands are defined outside of the
    915 /// loop, physical registers aren't accessed explicitly, and there are no side
    916 /// effects that aren't captured by the operands or other flags.
    917 ///
    918 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
    919   if (!IsLICMCandidate(I))
    920     return false;
    921 
    922   // The instruction is loop invariant if all of its operands are.
    923   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    924     const MachineOperand &MO = I.getOperand(i);
    925 
    926     if (!MO.isReg())
    927       continue;
    928 
    929     unsigned Reg = MO.getReg();
    930     if (Reg == 0) continue;
    931 
    932     // Don't hoist an instruction that uses or defines a physical register.
    933     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    934       if (MO.isUse()) {
    935         // If the physreg has no defs anywhere, it's just an ambient register
    936         // and we can freely move its uses. Alternatively, if it's allocatable,
    937         // it could get allocated to something with a def during allocation.
    938         if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
    939           return false;
    940         // Otherwise it's safe to move.
    941         continue;
    942       } else if (!MO.isDead()) {
    943         // A def that isn't dead. We can't move it.
    944         return false;
    945       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
    946         // If the reg is live into the loop, we can't hoist an instruction
    947         // which would clobber it.
    948         return false;
    949       }
    950     }
    951 
    952     if (!MO.isUse())
    953       continue;
    954 
    955     assert(MRI->getVRegDef(Reg) &&
    956            "Machine instr not mapped for this vreg?!");
    957 
    958     // If the loop contains the definition of an operand, then the instruction
    959     // isn't loop invariant.
    960     if (CurLoop->contains(MRI->getVRegDef(Reg)))
    961       return false;
    962   }
    963 
    964   // If we got this far, the instruction is loop invariant!
    965   return true;
    966 }
    967 
    968 
    969 /// HasLoopPHIUse - Return true if the specified instruction is used by a
    970 /// phi node and hoisting it could cause a copy to be inserted.
    971 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
    972   SmallVector<const MachineInstr*, 8> Work(1, MI);
    973   do {
    974     MI = Work.pop_back_val();
    975     for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
    976       if (!MO->isReg() || !MO->isDef())
    977         continue;
    978       unsigned Reg = MO->getReg();
    979       if (!TargetRegisterInfo::isVirtualRegister(Reg))
    980         continue;
    981       for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
    982            UE = MRI->use_end(); UI != UE; ++UI) {
    983         MachineInstr *UseMI = &*UI;
    984         // A PHI may cause a copy to be inserted.
    985         if (UseMI->isPHI()) {
    986           // A PHI inside the loop causes a copy because the live range of Reg is
    987           // extended across the PHI.
    988           if (CurLoop->contains(UseMI))
    989             return true;
    990           // A PHI in an exit block can cause a copy to be inserted if the PHI
    991           // has multiple predecessors in the loop with different values.
    992           // For now, approximate by rejecting all exit blocks.
    993           if (isExitBlock(UseMI->getParent()))
    994             return true;
    995           continue;
    996         }
    997         // Look past copies as well.
    998         if (UseMI->isCopy() && CurLoop->contains(UseMI))
    999           Work.push_back(UseMI);
   1000       }
   1001     }
   1002   } while (!Work.empty());
   1003   return false;
   1004 }
   1005 
   1006 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
   1007 /// and an use in the current loop, return true if the target considered
   1008 /// it 'high'.
   1009 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
   1010                                         unsigned DefIdx, unsigned Reg) const {
   1011   if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
   1012     return false;
   1013 
   1014   for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
   1015          E = MRI->use_nodbg_end(); I != E; ++I) {
   1016     MachineInstr *UseMI = &*I;
   1017     if (UseMI->isCopyLike())
   1018       continue;
   1019     if (!CurLoop->contains(UseMI->getParent()))
   1020       continue;
   1021     for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
   1022       const MachineOperand &MO = UseMI->getOperand(i);
   1023       if (!MO.isReg() || !MO.isUse())
   1024         continue;
   1025       unsigned MOReg = MO.getReg();
   1026       if (MOReg != Reg)
   1027         continue;
   1028 
   1029       if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
   1030         return true;
   1031     }
   1032 
   1033     // Only look at the first in loop use.
   1034     break;
   1035   }
   1036 
   1037   return false;
   1038 }
   1039 
   1040 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or
   1041 /// the operand latency between its def and a use is one or less.
   1042 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
   1043   if (MI.isAsCheapAsAMove() || MI.isCopyLike())
   1044     return true;
   1045   if (!InstrItins || InstrItins->isEmpty())
   1046     return false;
   1047 
   1048   bool isCheap = false;
   1049   unsigned NumDefs = MI.getDesc().getNumDefs();
   1050   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
   1051     MachineOperand &DefMO = MI.getOperand(i);
   1052     if (!DefMO.isReg() || !DefMO.isDef())
   1053       continue;
   1054     --NumDefs;
   1055     unsigned Reg = DefMO.getReg();
   1056     if (TargetRegisterInfo::isPhysicalRegister(Reg))
   1057       continue;
   1058 
   1059     if (!TII->hasLowDefLatency(InstrItins, &MI, i))
   1060       return false;
   1061     isCheap = true;
   1062   }
   1063 
   1064   return isCheap;
   1065 }
   1066 
   1067 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check
   1068 /// if hoisting an instruction of the given cost matrix can cause high
   1069 /// register pressure.
   1070 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost,
   1071                                           bool CheapInstr) {
   1072   for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
   1073        CI != CE; ++CI) {
   1074     if (CI->second <= 0)
   1075       continue;
   1076 
   1077     unsigned RCId = CI->first;
   1078     unsigned Limit = RegLimit[RCId];
   1079     int Cost = CI->second;
   1080 
   1081     // Don't hoist cheap instructions if they would increase register pressure,
   1082     // even if we're under the limit.
   1083     if (CheapInstr)
   1084       return true;
   1085 
   1086     for (unsigned i = BackTrace.size(); i != 0; --i) {
   1087       SmallVectorImpl<unsigned> &RP = BackTrace[i-1];
   1088       if (RP[RCId] + Cost >= Limit)
   1089         return true;
   1090     }
   1091   }
   1092 
   1093   return false;
   1094 }
   1095 
   1096 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the
   1097 /// current block and update their register pressures to reflect the effect
   1098 /// of hoisting MI from the current block to the preheader.
   1099 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
   1100   if (MI->isImplicitDef())
   1101     return;
   1102 
   1103   // First compute the 'cost' of the instruction, i.e. its contribution
   1104   // to register pressure.
   1105   DenseMap<unsigned, int> Cost;
   1106   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
   1107     const MachineOperand &MO = MI->getOperand(i);
   1108     if (!MO.isReg() || MO.isImplicit())
   1109       continue;
   1110     unsigned Reg = MO.getReg();
   1111     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1112       continue;
   1113 
   1114     unsigned RCId, RCCost;
   1115     getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
   1116     if (MO.isDef()) {
   1117       DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
   1118       if (CI != Cost.end())
   1119         CI->second += RCCost;
   1120       else
   1121         Cost.insert(std::make_pair(RCId, RCCost));
   1122     } else if (isOperandKill(MO, MRI)) {
   1123       DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
   1124       if (CI != Cost.end())
   1125         CI->second -= RCCost;
   1126       else
   1127         Cost.insert(std::make_pair(RCId, -RCCost));
   1128     }
   1129   }
   1130 
   1131   // Update register pressure of blocks from loop header to current block.
   1132   for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
   1133     SmallVectorImpl<unsigned> &RP = BackTrace[i];
   1134     for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
   1135          CI != CE; ++CI) {
   1136       unsigned RCId = CI->first;
   1137       RP[RCId] += CI->second;
   1138     }
   1139   }
   1140 }
   1141 
   1142 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist
   1143 /// the given loop invariant.
   1144 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
   1145   if (MI.isImplicitDef())
   1146     return true;
   1147 
   1148   // Besides removing computation from the loop, hoisting an instruction has
   1149   // these effects:
   1150   //
   1151   // - The value defined by the instruction becomes live across the entire
   1152   //   loop. This increases register pressure in the loop.
   1153   //
   1154   // - If the value is used by a PHI in the loop, a copy will be required for
   1155   //   lowering the PHI after extending the live range.
   1156   //
   1157   // - When hoisting the last use of a value in the loop, that value no longer
   1158   //   needs to be live in the loop. This lowers register pressure in the loop.
   1159 
   1160   bool CheapInstr = IsCheapInstruction(MI);
   1161   bool CreatesCopy = HasLoopPHIUse(&MI);
   1162 
   1163   // Don't hoist a cheap instruction if it would create a copy in the loop.
   1164   if (CheapInstr && CreatesCopy) {
   1165     DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
   1166     return false;
   1167   }
   1168 
   1169   // Rematerializable instructions should always be hoisted since the register
   1170   // allocator can just pull them down again when needed.
   1171   if (TII->isTriviallyReMaterializable(&MI, AA))
   1172     return true;
   1173 
   1174   // Estimate register pressure to determine whether to LICM the instruction.
   1175   // In low register pressure situation, we can be more aggressive about
   1176   // hoisting. Also, favors hoisting long latency instructions even in
   1177   // moderately high pressure situation.
   1178   // Cheap instructions will only be hoisted if they don't increase register
   1179   // pressure at all.
   1180   // FIXME: If there are long latency loop-invariant instructions inside the
   1181   // loop at this point, why didn't the optimizer's LICM hoist them?
   1182   DenseMap<unsigned, int> Cost;
   1183   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
   1184     const MachineOperand &MO = MI.getOperand(i);
   1185     if (!MO.isReg() || MO.isImplicit())
   1186       continue;
   1187     unsigned Reg = MO.getReg();
   1188     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1189       continue;
   1190 
   1191     unsigned RCId, RCCost;
   1192     getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
   1193     if (MO.isDef()) {
   1194       if (HasHighOperandLatency(MI, i, Reg)) {
   1195         DEBUG(dbgs() << "Hoist High Latency: " << MI);
   1196         ++NumHighLatency;
   1197         return true;
   1198       }
   1199       Cost[RCId] += RCCost;
   1200     } else if (isOperandKill(MO, MRI)) {
   1201       // Is a virtual register use is a kill, hoisting it out of the loop
   1202       // may actually reduce register pressure or be register pressure
   1203       // neutral.
   1204       Cost[RCId] -= RCCost;
   1205     }
   1206   }
   1207 
   1208   // Visit BBs from header to current BB, if hoisting this doesn't cause
   1209   // high register pressure, then it's safe to proceed.
   1210   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
   1211     DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
   1212     ++NumLowRP;
   1213     return true;
   1214   }
   1215 
   1216   // Don't risk increasing register pressure if it would create copies.
   1217   if (CreatesCopy) {
   1218     DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
   1219     return false;
   1220   }
   1221 
   1222   // Do not "speculate" in high register pressure situation. If an
   1223   // instruction is not guaranteed to be executed in the loop, it's best to be
   1224   // conservative.
   1225   if (AvoidSpeculation &&
   1226       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
   1227     DEBUG(dbgs() << "Won't speculate: " << MI);
   1228     return false;
   1229   }
   1230 
   1231   // High register pressure situation, only hoist if the instruction is going
   1232   // to be remat'ed.
   1233   if (!TII->isTriviallyReMaterializable(&MI, AA) &&
   1234       !MI.isInvariantLoad(AA)) {
   1235     DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
   1236     return false;
   1237   }
   1238 
   1239   return true;
   1240 }
   1241 
   1242 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
   1243   // Don't unfold simple loads.
   1244   if (MI->canFoldAsLoad())
   1245     return 0;
   1246 
   1247   // If not, we may be able to unfold a load and hoist that.
   1248   // First test whether the instruction is loading from an amenable
   1249   // memory location.
   1250   if (!MI->isInvariantLoad(AA))
   1251     return 0;
   1252 
   1253   // Next determine the register class for a temporary register.
   1254   unsigned LoadRegIndex;
   1255   unsigned NewOpc =
   1256     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
   1257                                     /*UnfoldLoad=*/true,
   1258                                     /*UnfoldStore=*/false,
   1259                                     &LoadRegIndex);
   1260   if (NewOpc == 0) return 0;
   1261   const MCInstrDesc &MID = TII->get(NewOpc);
   1262   if (MID.getNumDefs() != 1) return 0;
   1263   MachineFunction &MF = *MI->getParent()->getParent();
   1264   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
   1265   // Ok, we're unfolding. Create a temporary register and do the unfold.
   1266   unsigned Reg = MRI->createVirtualRegister(RC);
   1267 
   1268   SmallVector<MachineInstr *, 2> NewMIs;
   1269   bool Success =
   1270     TII->unfoldMemoryOperand(MF, MI, Reg,
   1271                              /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
   1272                              NewMIs);
   1273   (void)Success;
   1274   assert(Success &&
   1275          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
   1276          "succeeded!");
   1277   assert(NewMIs.size() == 2 &&
   1278          "Unfolded a load into multiple instructions!");
   1279   MachineBasicBlock *MBB = MI->getParent();
   1280   MachineBasicBlock::iterator Pos = MI;
   1281   MBB->insert(Pos, NewMIs[0]);
   1282   MBB->insert(Pos, NewMIs[1]);
   1283   // If unfolding produced a load that wasn't loop-invariant or profitable to
   1284   // hoist, discard the new instructions and bail.
   1285   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
   1286     NewMIs[0]->eraseFromParent();
   1287     NewMIs[1]->eraseFromParent();
   1288     return 0;
   1289   }
   1290 
   1291   // Update register pressure for the unfolded instruction.
   1292   UpdateRegPressure(NewMIs[1]);
   1293 
   1294   // Otherwise we successfully unfolded a load that we can hoist.
   1295   MI->eraseFromParent();
   1296   return NewMIs[0];
   1297 }
   1298 
   1299 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
   1300   for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
   1301     const MachineInstr *MI = &*I;
   1302     unsigned Opcode = MI->getOpcode();
   1303     DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
   1304       CI = CSEMap.find(Opcode);
   1305     if (CI != CSEMap.end())
   1306       CI->second.push_back(MI);
   1307     else {
   1308       std::vector<const MachineInstr*> CSEMIs;
   1309       CSEMIs.push_back(MI);
   1310       CSEMap.insert(std::make_pair(Opcode, CSEMIs));
   1311     }
   1312   }
   1313 }
   1314 
   1315 const MachineInstr*
   1316 MachineLICM::LookForDuplicate(const MachineInstr *MI,
   1317                               std::vector<const MachineInstr*> &PrevMIs) {
   1318   for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
   1319     const MachineInstr *PrevMI = PrevMIs[i];
   1320     if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
   1321       return PrevMI;
   1322   }
   1323   return 0;
   1324 }
   1325 
   1326 bool MachineLICM::EliminateCSE(MachineInstr *MI,
   1327           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
   1328   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
   1329   // the undef property onto uses.
   1330   if (CI == CSEMap.end() || MI->isImplicitDef())
   1331     return false;
   1332 
   1333   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
   1334     DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
   1335 
   1336     // Replace virtual registers defined by MI by their counterparts defined
   1337     // by Dup.
   1338     SmallVector<unsigned, 2> Defs;
   1339     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1340       const MachineOperand &MO = MI->getOperand(i);
   1341 
   1342       // Physical registers may not differ here.
   1343       assert((!MO.isReg() || MO.getReg() == 0 ||
   1344               !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
   1345               MO.getReg() == Dup->getOperand(i).getReg()) &&
   1346              "Instructions with different phys regs are not identical!");
   1347 
   1348       if (MO.isReg() && MO.isDef() &&
   1349           !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
   1350         Defs.push_back(i);
   1351     }
   1352 
   1353     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
   1354     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
   1355       unsigned Idx = Defs[i];
   1356       unsigned Reg = MI->getOperand(Idx).getReg();
   1357       unsigned DupReg = Dup->getOperand(Idx).getReg();
   1358       OrigRCs.push_back(MRI->getRegClass(DupReg));
   1359 
   1360       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
   1361         // Restore old RCs if more than one defs.
   1362         for (unsigned j = 0; j != i; ++j)
   1363           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
   1364         return false;
   1365       }
   1366     }
   1367 
   1368     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
   1369       unsigned Idx = Defs[i];
   1370       unsigned Reg = MI->getOperand(Idx).getReg();
   1371       unsigned DupReg = Dup->getOperand(Idx).getReg();
   1372       MRI->replaceRegWith(Reg, DupReg);
   1373       MRI->clearKillFlags(DupReg);
   1374     }
   1375 
   1376     MI->eraseFromParent();
   1377     ++NumCSEed;
   1378     return true;
   1379   }
   1380   return false;
   1381 }
   1382 
   1383 /// MayCSE - Return true if the given instruction will be CSE'd if it's
   1384 /// hoisted out of the loop.
   1385 bool MachineLICM::MayCSE(MachineInstr *MI) {
   1386   unsigned Opcode = MI->getOpcode();
   1387   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
   1388     CI = CSEMap.find(Opcode);
   1389   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
   1390   // the undef property onto uses.
   1391   if (CI == CSEMap.end() || MI->isImplicitDef())
   1392     return false;
   1393 
   1394   return LookForDuplicate(MI, CI->second) != 0;
   1395 }
   1396 
   1397 /// Hoist - When an instruction is found to use only loop invariant operands
   1398 /// that are safe to hoist, this instruction is called to do the dirty work.
   1399 ///
   1400 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
   1401   // First check whether we should hoist this instruction.
   1402   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
   1403     // If not, try unfolding a hoistable load.
   1404     MI = ExtractHoistableLoad(MI);
   1405     if (!MI) return false;
   1406   }
   1407 
   1408   // Now move the instructions to the predecessor, inserting it before any
   1409   // terminator instructions.
   1410   DEBUG({
   1411       dbgs() << "Hoisting " << *MI;
   1412       if (Preheader->getBasicBlock())
   1413         dbgs() << " to MachineBasicBlock "
   1414                << Preheader->getName();
   1415       if (MI->getParent()->getBasicBlock())
   1416         dbgs() << " from MachineBasicBlock "
   1417                << MI->getParent()->getName();
   1418       dbgs() << "\n";
   1419     });
   1420 
   1421   // If this is the first instruction being hoisted to the preheader,
   1422   // initialize the CSE map with potential common expressions.
   1423   if (FirstInLoop) {
   1424     InitCSEMap(Preheader);
   1425     FirstInLoop = false;
   1426   }
   1427 
   1428   // Look for opportunity to CSE the hoisted instruction.
   1429   unsigned Opcode = MI->getOpcode();
   1430   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
   1431     CI = CSEMap.find(Opcode);
   1432   if (!EliminateCSE(MI, CI)) {
   1433     // Otherwise, splice the instruction to the preheader.
   1434     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
   1435 
   1436     // Update register pressure for BBs from header to this block.
   1437     UpdateBackTraceRegPressure(MI);
   1438 
   1439     // Clear the kill flags of any register this instruction defines,
   1440     // since they may need to be live throughout the entire loop
   1441     // rather than just live for part of it.
   1442     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1443       MachineOperand &MO = MI->getOperand(i);
   1444       if (MO.isReg() && MO.isDef() && !MO.isDead())
   1445         MRI->clearKillFlags(MO.getReg());
   1446     }
   1447 
   1448     // Add to the CSE map.
   1449     if (CI != CSEMap.end())
   1450       CI->second.push_back(MI);
   1451     else {
   1452       std::vector<const MachineInstr*> CSEMIs;
   1453       CSEMIs.push_back(MI);
   1454       CSEMap.insert(std::make_pair(Opcode, CSEMIs));
   1455     }
   1456   }
   1457 
   1458   ++NumHoisted;
   1459   Changed = true;
   1460 
   1461   return true;
   1462 }
   1463 
   1464 MachineBasicBlock *MachineLICM::getCurPreheader() {
   1465   // Determine the block to which to hoist instructions. If we can't find a
   1466   // suitable loop predecessor, we can't do any hoisting.
   1467 
   1468   // If we've tried to get a preheader and failed, don't try again.
   1469   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
   1470     return 0;
   1471 
   1472   if (!CurPreheader) {
   1473     CurPreheader = CurLoop->getLoopPreheader();
   1474     if (!CurPreheader) {
   1475       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
   1476       if (!Pred) {
   1477         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
   1478         return 0;
   1479       }
   1480 
   1481       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
   1482       if (!CurPreheader) {
   1483         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
   1484         return 0;
   1485       }
   1486     }
   1487   }
   1488   return CurPreheader;
   1489 }
   1490