Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/MC/MCAsmInfo.h"
     26 #include "llvm/MC/MCExpr.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Target/TargetLoweringObjectFile.h"
     31 #include "llvm/Target/TargetMachine.h"
     32 #include "llvm/Target/TargetRegisterInfo.h"
     33 #include <cctype>
     34 using namespace llvm;
     35 
     36 /// NOTE: The constructor takes ownership of TLOF.
     37 TargetLowering::TargetLowering(const TargetMachine &tm,
     38                                const TargetLoweringObjectFile *tlof)
     39   : TargetLoweringBase(tm, tlof) {}
     40 
     41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
     42   return NULL;
     43 }
     44 
     45 /// Check whether a given call node is in tail position within its function. If
     46 /// so, it sets Chain to the input chain of the tail call.
     47 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
     48                                           SDValue &Chain) const {
     49   const Function *F = DAG.getMachineFunction().getFunction();
     50 
     51   // Conservatively require the attributes of the call to match those of
     52   // the return. Ignore noalias because it doesn't affect the call sequence.
     53   AttributeSet CallerAttrs = F->getAttributes();
     54   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
     55       .removeAttribute(Attribute::NoAlias).hasAttributes())
     56     return false;
     57 
     58   // It's not safe to eliminate the sign / zero extension of the return value.
     59   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
     60       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
     61     return false;
     62 
     63   // Check if the only use is a function return node.
     64   return isUsedByReturnOnly(Node, Chain);
     65 }
     66 
     67 
     68 /// Generate a libcall taking the given operands as arguments and returning a
     69 /// result of type RetVT.
     70 SDValue TargetLowering::makeLibCall(SelectionDAG &DAG,
     71                                     RTLIB::Libcall LC, EVT RetVT,
     72                                     const SDValue *Ops, unsigned NumOps,
     73                                     bool isSigned, SDLoc dl) const {
     74   TargetLowering::ArgListTy Args;
     75   Args.reserve(NumOps);
     76 
     77   TargetLowering::ArgListEntry Entry;
     78   for (unsigned i = 0; i != NumOps; ++i) {
     79     Entry.Node = Ops[i];
     80     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
     81     Entry.isSExt = isSigned;
     82     Entry.isZExt = !isSigned;
     83     Args.push_back(Entry);
     84   }
     85   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
     86 
     87   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
     88   TargetLowering::
     89   CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
     90                     false, 0, getLibcallCallingConv(LC),
     91                     /*isTailCall=*/false,
     92                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
     93                     Callee, Args, DAG, dl);
     94   std::pair<SDValue,SDValue> CallInfo = LowerCallTo(CLI);
     95 
     96   return CallInfo.first;
     97 }
     98 
     99 
    100 /// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
    101 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
    102 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
    103                                          SDValue &NewLHS, SDValue &NewRHS,
    104                                          ISD::CondCode &CCCode,
    105                                          SDLoc dl) const {
    106   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
    107          && "Unsupported setcc type!");
    108 
    109   // Expand into one or more soft-fp libcall(s).
    110   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
    111   switch (CCCode) {
    112   case ISD::SETEQ:
    113   case ISD::SETOEQ:
    114     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    115           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    116     break;
    117   case ISD::SETNE:
    118   case ISD::SETUNE:
    119     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
    120           (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
    121     break;
    122   case ISD::SETGE:
    123   case ISD::SETOGE:
    124     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    125           (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    126     break;
    127   case ISD::SETLT:
    128   case ISD::SETOLT:
    129     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    130           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    131     break;
    132   case ISD::SETLE:
    133   case ISD::SETOLE:
    134     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    135           (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    136     break;
    137   case ISD::SETGT:
    138   case ISD::SETOGT:
    139     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    140           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    141     break;
    142   case ISD::SETUO:
    143     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    144           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    145     break;
    146   case ISD::SETO:
    147     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
    148           (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
    149     break;
    150   default:
    151     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    152           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    153     switch (CCCode) {
    154     case ISD::SETONE:
    155       // SETONE = SETOLT | SETOGT
    156       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    157             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    158       // Fallthrough
    159     case ISD::SETUGT:
    160       LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    161             (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    162       break;
    163     case ISD::SETUGE:
    164       LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    165             (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    166       break;
    167     case ISD::SETULT:
    168       LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    169             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    170       break;
    171     case ISD::SETULE:
    172       LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    173             (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    174       break;
    175     case ISD::SETUEQ:
    176       LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    177             (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    178       break;
    179     default: llvm_unreachable("Do not know how to soften this setcc!");
    180     }
    181   }
    182 
    183   // Use the target specific return value for comparions lib calls.
    184   EVT RetVT = getCmpLibcallReturnType();
    185   SDValue Ops[2] = { NewLHS, NewRHS };
    186   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
    187   NewRHS = DAG.getConstant(0, RetVT);
    188   CCCode = getCmpLibcallCC(LC1);
    189   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
    190     SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
    191                               getSetCCResultType(*DAG.getContext(), RetVT),
    192                               NewLHS, NewRHS, DAG.getCondCode(CCCode));
    193     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
    194     NewLHS = DAG.getNode(ISD::SETCC, dl,
    195                          getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
    196                          NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
    197     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
    198     NewRHS = SDValue();
    199   }
    200 }
    201 
    202 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    203 /// current function.  The returned value is a member of the
    204 /// MachineJumpTableInfo::JTEntryKind enum.
    205 unsigned TargetLowering::getJumpTableEncoding() const {
    206   // In non-pic modes, just use the address of a block.
    207   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
    208     return MachineJumpTableInfo::EK_BlockAddress;
    209 
    210   // In PIC mode, if the target supports a GPRel32 directive, use it.
    211   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
    212     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
    213 
    214   // Otherwise, use a label difference.
    215   return MachineJumpTableInfo::EK_LabelDifference32;
    216 }
    217 
    218 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
    219                                                  SelectionDAG &DAG) const {
    220   // If our PIC model is GP relative, use the global offset table as the base.
    221   unsigned JTEncoding = getJumpTableEncoding();
    222 
    223   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
    224       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
    225     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
    226 
    227   return Table;
    228 }
    229 
    230 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    231 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    232 /// MCExpr.
    233 const MCExpr *
    234 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    235                                              unsigned JTI,MCContext &Ctx) const{
    236   // The normal PIC reloc base is the label at the start of the jump table.
    237   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
    238 }
    239 
    240 bool
    241 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
    242   // Assume that everything is safe in static mode.
    243   if (getTargetMachine().getRelocationModel() == Reloc::Static)
    244     return true;
    245 
    246   // In dynamic-no-pic mode, assume that known defined values are safe.
    247   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
    248       GA &&
    249       !GA->getGlobal()->isDeclaration() &&
    250       !GA->getGlobal()->isWeakForLinker())
    251     return true;
    252 
    253   // Otherwise assume nothing is safe.
    254   return false;
    255 }
    256 
    257 //===----------------------------------------------------------------------===//
    258 //  Optimization Methods
    259 //===----------------------------------------------------------------------===//
    260 
    261 /// ShrinkDemandedConstant - Check to see if the specified operand of the
    262 /// specified instruction is a constant integer.  If so, check to see if there
    263 /// are any bits set in the constant that are not demanded.  If so, shrink the
    264 /// constant and return true.
    265 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
    266                                                         const APInt &Demanded) {
    267   SDLoc dl(Op);
    268 
    269   // FIXME: ISD::SELECT, ISD::SELECT_CC
    270   switch (Op.getOpcode()) {
    271   default: break;
    272   case ISD::XOR:
    273   case ISD::AND:
    274   case ISD::OR: {
    275     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    276     if (!C) return false;
    277 
    278     if (Op.getOpcode() == ISD::XOR &&
    279         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
    280       return false;
    281 
    282     // if we can expand it to have all bits set, do it
    283     if (C->getAPIntValue().intersects(~Demanded)) {
    284       EVT VT = Op.getValueType();
    285       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
    286                                 DAG.getConstant(Demanded &
    287                                                 C->getAPIntValue(),
    288                                                 VT));
    289       return CombineTo(Op, New);
    290     }
    291 
    292     break;
    293   }
    294   }
    295 
    296   return false;
    297 }
    298 
    299 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    300 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    301 /// cast, but it could be generalized for targets with other types of
    302 /// implicit widening casts.
    303 bool
    304 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
    305                                                     unsigned BitWidth,
    306                                                     const APInt &Demanded,
    307                                                     SDLoc dl) {
    308   assert(Op.getNumOperands() == 2 &&
    309          "ShrinkDemandedOp only supports binary operators!");
    310   assert(Op.getNode()->getNumValues() == 1 &&
    311          "ShrinkDemandedOp only supports nodes with one result!");
    312 
    313   // Don't do this if the node has another user, which may require the
    314   // full value.
    315   if (!Op.getNode()->hasOneUse())
    316     return false;
    317 
    318   // Search for the smallest integer type with free casts to and from
    319   // Op's type. For expedience, just check power-of-2 integer types.
    320   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    321   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
    322   unsigned SmallVTBits = DemandedSize;
    323   if (!isPowerOf2_32(SmallVTBits))
    324     SmallVTBits = NextPowerOf2(SmallVTBits);
    325   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
    326     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
    327     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
    328         TLI.isZExtFree(SmallVT, Op.getValueType())) {
    329       // We found a type with free casts.
    330       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
    331                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    332                                           Op.getNode()->getOperand(0)),
    333                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    334                                           Op.getNode()->getOperand(1)));
    335       bool NeedZext = DemandedSize > SmallVTBits;
    336       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
    337                               dl, Op.getValueType(), X);
    338       return CombineTo(Op, Z);
    339     }
    340   }
    341   return false;
    342 }
    343 
    344 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    345 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    346 /// use this information to simplify Op, create a new simplified DAG node and
    347 /// return true, returning the original and new nodes in Old and New. Otherwise,
    348 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
    349 /// the expression (used to simplify the caller).  The KnownZero/One bits may
    350 /// only be accurate for those bits in the DemandedMask.
    351 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
    352                                           const APInt &DemandedMask,
    353                                           APInt &KnownZero,
    354                                           APInt &KnownOne,
    355                                           TargetLoweringOpt &TLO,
    356                                           unsigned Depth) const {
    357   unsigned BitWidth = DemandedMask.getBitWidth();
    358   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
    359          "Mask size mismatches value type size!");
    360   APInt NewMask = DemandedMask;
    361   SDLoc dl(Op);
    362 
    363   // Don't know anything.
    364   KnownZero = KnownOne = APInt(BitWidth, 0);
    365 
    366   // Other users may use these bits.
    367   if (!Op.getNode()->hasOneUse()) {
    368     if (Depth != 0) {
    369       // If not at the root, Just compute the KnownZero/KnownOne bits to
    370       // simplify things downstream.
    371       TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
    372       return false;
    373     }
    374     // If this is the root being simplified, allow it to have multiple uses,
    375     // just set the NewMask to all bits.
    376     NewMask = APInt::getAllOnesValue(BitWidth);
    377   } else if (DemandedMask == 0) {
    378     // Not demanding any bits from Op.
    379     if (Op.getOpcode() != ISD::UNDEF)
    380       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
    381     return false;
    382   } else if (Depth == 6) {        // Limit search depth.
    383     return false;
    384   }
    385 
    386   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
    387   switch (Op.getOpcode()) {
    388   case ISD::Constant:
    389     // We know all of the bits for a constant!
    390     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
    391     KnownZero = ~KnownOne;
    392     return false;   // Don't fall through, will infinitely loop.
    393   case ISD::AND:
    394     // If the RHS is a constant, check to see if the LHS would be zero without
    395     // using the bits from the RHS.  Below, we use knowledge about the RHS to
    396     // simplify the LHS, here we're using information from the LHS to simplify
    397     // the RHS.
    398     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    399       APInt LHSZero, LHSOne;
    400       // Do not increment Depth here; that can cause an infinite loop.
    401       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
    402       // If the LHS already has zeros where RHSC does, this and is dead.
    403       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
    404         return TLO.CombineTo(Op, Op.getOperand(0));
    405       // If any of the set bits in the RHS are known zero on the LHS, shrink
    406       // the constant.
    407       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
    408         return true;
    409     }
    410 
    411     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    412                              KnownOne, TLO, Depth+1))
    413       return true;
    414     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    415     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
    416                              KnownZero2, KnownOne2, TLO, Depth+1))
    417       return true;
    418     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    419 
    420     // If all of the demanded bits are known one on one side, return the other.
    421     // These bits cannot contribute to the result of the 'and'.
    422     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    423       return TLO.CombineTo(Op, Op.getOperand(0));
    424     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    425       return TLO.CombineTo(Op, Op.getOperand(1));
    426     // If all of the demanded bits in the inputs are known zeros, return zero.
    427     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
    428       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
    429     // If the RHS is a constant, see if we can simplify it.
    430     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
    431       return true;
    432     // If the operation can be done in a smaller type, do so.
    433     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    434       return true;
    435 
    436     // Output known-1 bits are only known if set in both the LHS & RHS.
    437     KnownOne &= KnownOne2;
    438     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    439     KnownZero |= KnownZero2;
    440     break;
    441   case ISD::OR:
    442     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    443                              KnownOne, TLO, Depth+1))
    444       return true;
    445     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    446     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
    447                              KnownZero2, KnownOne2, TLO, Depth+1))
    448       return true;
    449     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    450 
    451     // If all of the demanded bits are known zero on one side, return the other.
    452     // These bits cannot contribute to the result of the 'or'.
    453     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
    454       return TLO.CombineTo(Op, Op.getOperand(0));
    455     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
    456       return TLO.CombineTo(Op, Op.getOperand(1));
    457     // If all of the potentially set bits on one side are known to be set on
    458     // the other side, just use the 'other' side.
    459     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    460       return TLO.CombineTo(Op, Op.getOperand(0));
    461     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    462       return TLO.CombineTo(Op, Op.getOperand(1));
    463     // If the RHS is a constant, see if we can simplify it.
    464     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    465       return true;
    466     // If the operation can be done in a smaller type, do so.
    467     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    468       return true;
    469 
    470     // Output known-0 bits are only known if clear in both the LHS & RHS.
    471     KnownZero &= KnownZero2;
    472     // Output known-1 are known to be set if set in either the LHS | RHS.
    473     KnownOne |= KnownOne2;
    474     break;
    475   case ISD::XOR:
    476     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    477                              KnownOne, TLO, Depth+1))
    478       return true;
    479     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    480     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
    481                              KnownOne2, TLO, Depth+1))
    482       return true;
    483     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    484 
    485     // If all of the demanded bits are known zero on one side, return the other.
    486     // These bits cannot contribute to the result of the 'xor'.
    487     if ((KnownZero & NewMask) == NewMask)
    488       return TLO.CombineTo(Op, Op.getOperand(0));
    489     if ((KnownZero2 & NewMask) == NewMask)
    490       return TLO.CombineTo(Op, Op.getOperand(1));
    491     // If the operation can be done in a smaller type, do so.
    492     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    493       return true;
    494 
    495     // If all of the unknown bits are known to be zero on one side or the other
    496     // (but not both) turn this into an *inclusive* or.
    497     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    498     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
    499       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
    500                                                Op.getOperand(0),
    501                                                Op.getOperand(1)));
    502 
    503     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    504     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    505     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    506     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    507 
    508     // If all of the demanded bits on one side are known, and all of the set
    509     // bits on that side are also known to be set on the other side, turn this
    510     // into an AND, as we know the bits will be cleared.
    511     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    512     // NB: it is okay if more bits are known than are requested
    513     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
    514       if (KnownOne == KnownOne2) { // set bits are the same on both sides
    515         EVT VT = Op.getValueType();
    516         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
    517         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
    518                                                  Op.getOperand(0), ANDC));
    519       }
    520     }
    521 
    522     // If the RHS is a constant, see if we can simplify it.
    523     // for XOR, we prefer to force bits to 1 if they will make a -1.
    524     // if we can't force bits, try to shrink constant
    525     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    526       APInt Expanded = C->getAPIntValue() | (~NewMask);
    527       // if we can expand it to have all bits set, do it
    528       if (Expanded.isAllOnesValue()) {
    529         if (Expanded != C->getAPIntValue()) {
    530           EVT VT = Op.getValueType();
    531           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
    532                                           TLO.DAG.getConstant(Expanded, VT));
    533           return TLO.CombineTo(Op, New);
    534         }
    535         // if it already has all the bits set, nothing to change
    536         // but don't shrink either!
    537       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
    538         return true;
    539       }
    540     }
    541 
    542     KnownZero = KnownZeroOut;
    543     KnownOne  = KnownOneOut;
    544     break;
    545   case ISD::SELECT:
    546     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
    547                              KnownOne, TLO, Depth+1))
    548       return true;
    549     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
    550                              KnownOne2, TLO, Depth+1))
    551       return true;
    552     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    553     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    554 
    555     // If the operands are constants, see if we can simplify them.
    556     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    557       return true;
    558 
    559     // Only known if known in both the LHS and RHS.
    560     KnownOne &= KnownOne2;
    561     KnownZero &= KnownZero2;
    562     break;
    563   case ISD::SELECT_CC:
    564     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
    565                              KnownOne, TLO, Depth+1))
    566       return true;
    567     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
    568                              KnownOne2, TLO, Depth+1))
    569       return true;
    570     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    571     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    572 
    573     // If the operands are constants, see if we can simplify them.
    574     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    575       return true;
    576 
    577     // Only known if known in both the LHS and RHS.
    578     KnownOne &= KnownOne2;
    579     KnownZero &= KnownZero2;
    580     break;
    581   case ISD::SHL:
    582     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    583       unsigned ShAmt = SA->getZExtValue();
    584       SDValue InOp = Op.getOperand(0);
    585 
    586       // If the shift count is an invalid immediate, don't do anything.
    587       if (ShAmt >= BitWidth)
    588         break;
    589 
    590       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
    591       // single shift.  We can do this if the bottom bits (which are shifted
    592       // out) are never demanded.
    593       if (InOp.getOpcode() == ISD::SRL &&
    594           isa<ConstantSDNode>(InOp.getOperand(1))) {
    595         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
    596           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    597           unsigned Opc = ISD::SHL;
    598           int Diff = ShAmt-C1;
    599           if (Diff < 0) {
    600             Diff = -Diff;
    601             Opc = ISD::SRL;
    602           }
    603 
    604           SDValue NewSA =
    605             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
    606           EVT VT = Op.getValueType();
    607           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    608                                                    InOp.getOperand(0), NewSA));
    609         }
    610       }
    611 
    612       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
    613                                KnownZero, KnownOne, TLO, Depth+1))
    614         return true;
    615 
    616       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
    617       // are not demanded. This will likely allow the anyext to be folded away.
    618       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
    619         SDValue InnerOp = InOp.getNode()->getOperand(0);
    620         EVT InnerVT = InnerOp.getValueType();
    621         unsigned InnerBits = InnerVT.getSizeInBits();
    622         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
    623             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
    624           EVT ShTy = getShiftAmountTy(InnerVT);
    625           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
    626             ShTy = InnerVT;
    627           SDValue NarrowShl =
    628             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
    629                             TLO.DAG.getConstant(ShAmt, ShTy));
    630           return
    631             TLO.CombineTo(Op,
    632                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
    633                                           NarrowShl));
    634         }
    635       }
    636 
    637       KnownZero <<= SA->getZExtValue();
    638       KnownOne  <<= SA->getZExtValue();
    639       // low bits known zero.
    640       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
    641     }
    642     break;
    643   case ISD::SRL:
    644     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    645       EVT VT = Op.getValueType();
    646       unsigned ShAmt = SA->getZExtValue();
    647       unsigned VTSize = VT.getSizeInBits();
    648       SDValue InOp = Op.getOperand(0);
    649 
    650       // If the shift count is an invalid immediate, don't do anything.
    651       if (ShAmt >= BitWidth)
    652         break;
    653 
    654       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
    655       // single shift.  We can do this if the top bits (which are shifted out)
    656       // are never demanded.
    657       if (InOp.getOpcode() == ISD::SHL &&
    658           isa<ConstantSDNode>(InOp.getOperand(1))) {
    659         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
    660           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    661           unsigned Opc = ISD::SRL;
    662           int Diff = ShAmt-C1;
    663           if (Diff < 0) {
    664             Diff = -Diff;
    665             Opc = ISD::SHL;
    666           }
    667 
    668           SDValue NewSA =
    669             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
    670           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    671                                                    InOp.getOperand(0), NewSA));
    672         }
    673       }
    674 
    675       // Compute the new bits that are at the top now.
    676       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
    677                                KnownZero, KnownOne, TLO, Depth+1))
    678         return true;
    679       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    680       KnownZero = KnownZero.lshr(ShAmt);
    681       KnownOne  = KnownOne.lshr(ShAmt);
    682 
    683       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    684       KnownZero |= HighBits;  // High bits known zero.
    685     }
    686     break;
    687   case ISD::SRA:
    688     // If this is an arithmetic shift right and only the low-bit is set, we can
    689     // always convert this into a logical shr, even if the shift amount is
    690     // variable.  The low bit of the shift cannot be an input sign bit unless
    691     // the shift amount is >= the size of the datatype, which is undefined.
    692     if (NewMask == 1)
    693       return TLO.CombineTo(Op,
    694                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
    695                                            Op.getOperand(0), Op.getOperand(1)));
    696 
    697     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    698       EVT VT = Op.getValueType();
    699       unsigned ShAmt = SA->getZExtValue();
    700 
    701       // If the shift count is an invalid immediate, don't do anything.
    702       if (ShAmt >= BitWidth)
    703         break;
    704 
    705       APInt InDemandedMask = (NewMask << ShAmt);
    706 
    707       // If any of the demanded bits are produced by the sign extension, we also
    708       // demand the input sign bit.
    709       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    710       if (HighBits.intersects(NewMask))
    711         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
    712 
    713       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
    714                                KnownZero, KnownOne, TLO, Depth+1))
    715         return true;
    716       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    717       KnownZero = KnownZero.lshr(ShAmt);
    718       KnownOne  = KnownOne.lshr(ShAmt);
    719 
    720       // Handle the sign bit, adjusted to where it is now in the mask.
    721       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
    722 
    723       // If the input sign bit is known to be zero, or if none of the top bits
    724       // are demanded, turn this into an unsigned shift right.
    725       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
    726         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    727                                                  Op.getOperand(0),
    728                                                  Op.getOperand(1)));
    729       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
    730         KnownOne |= HighBits;
    731       }
    732     }
    733     break;
    734   case ISD::SIGN_EXTEND_INREG: {
    735     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    736 
    737     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
    738     // If we only care about the highest bit, don't bother shifting right.
    739     if (MsbMask == DemandedMask) {
    740       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
    741       SDValue InOp = Op.getOperand(0);
    742 
    743       // Compute the correct shift amount type, which must be getShiftAmountTy
    744       // for scalar types after legalization.
    745       EVT ShiftAmtTy = Op.getValueType();
    746       if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
    747         ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
    748 
    749       SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
    750       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
    751                                             Op.getValueType(), InOp, ShiftAmt));
    752     }
    753 
    754     // Sign extension.  Compute the demanded bits in the result that are not
    755     // present in the input.
    756     APInt NewBits =
    757       APInt::getHighBitsSet(BitWidth,
    758                             BitWidth - ExVT.getScalarType().getSizeInBits());
    759 
    760     // If none of the extended bits are demanded, eliminate the sextinreg.
    761     if ((NewBits & NewMask) == 0)
    762       return TLO.CombineTo(Op, Op.getOperand(0));
    763 
    764     APInt InSignBit =
    765       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
    766     APInt InputDemandedBits =
    767       APInt::getLowBitsSet(BitWidth,
    768                            ExVT.getScalarType().getSizeInBits()) &
    769       NewMask;
    770 
    771     // Since the sign extended bits are demanded, we know that the sign
    772     // bit is demanded.
    773     InputDemandedBits |= InSignBit;
    774 
    775     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
    776                              KnownZero, KnownOne, TLO, Depth+1))
    777       return true;
    778     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    779 
    780     // If the sign bit of the input is known set or clear, then we know the
    781     // top bits of the result.
    782 
    783     // If the input sign bit is known zero, convert this into a zero extension.
    784     if (KnownZero.intersects(InSignBit))
    785       return TLO.CombineTo(Op,
    786                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
    787 
    788     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
    789       KnownOne |= NewBits;
    790       KnownZero &= ~NewBits;
    791     } else {                       // Input sign bit unknown
    792       KnownZero &= ~NewBits;
    793       KnownOne &= ~NewBits;
    794     }
    795     break;
    796   }
    797   case ISD::ZERO_EXTEND: {
    798     unsigned OperandBitWidth =
    799       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    800     APInt InMask = NewMask.trunc(OperandBitWidth);
    801 
    802     // If none of the top bits are demanded, convert this into an any_extend.
    803     APInt NewBits =
    804       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
    805     if (!NewBits.intersects(NewMask))
    806       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    807                                                Op.getValueType(),
    808                                                Op.getOperand(0)));
    809 
    810     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    811                              KnownZero, KnownOne, TLO, Depth+1))
    812       return true;
    813     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    814     KnownZero = KnownZero.zext(BitWidth);
    815     KnownOne = KnownOne.zext(BitWidth);
    816     KnownZero |= NewBits;
    817     break;
    818   }
    819   case ISD::SIGN_EXTEND: {
    820     EVT InVT = Op.getOperand(0).getValueType();
    821     unsigned InBits = InVT.getScalarType().getSizeInBits();
    822     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
    823     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
    824     APInt NewBits   = ~InMask & NewMask;
    825 
    826     // If none of the top bits are demanded, convert this into an any_extend.
    827     if (NewBits == 0)
    828       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    829                                               Op.getValueType(),
    830                                               Op.getOperand(0)));
    831 
    832     // Since some of the sign extended bits are demanded, we know that the sign
    833     // bit is demanded.
    834     APInt InDemandedBits = InMask & NewMask;
    835     InDemandedBits |= InSignBit;
    836     InDemandedBits = InDemandedBits.trunc(InBits);
    837 
    838     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
    839                              KnownOne, TLO, Depth+1))
    840       return true;
    841     KnownZero = KnownZero.zext(BitWidth);
    842     KnownOne = KnownOne.zext(BitWidth);
    843 
    844     // If the sign bit is known zero, convert this to a zero extend.
    845     if (KnownZero.intersects(InSignBit))
    846       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
    847                                                Op.getValueType(),
    848                                                Op.getOperand(0)));
    849 
    850     // If the sign bit is known one, the top bits match.
    851     if (KnownOne.intersects(InSignBit)) {
    852       KnownOne |= NewBits;
    853       assert((KnownZero & NewBits) == 0);
    854     } else {   // Otherwise, top bits aren't known.
    855       assert((KnownOne & NewBits) == 0);
    856       assert((KnownZero & NewBits) == 0);
    857     }
    858     break;
    859   }
    860   case ISD::ANY_EXTEND: {
    861     unsigned OperandBitWidth =
    862       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    863     APInt InMask = NewMask.trunc(OperandBitWidth);
    864     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    865                              KnownZero, KnownOne, TLO, Depth+1))
    866       return true;
    867     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    868     KnownZero = KnownZero.zext(BitWidth);
    869     KnownOne = KnownOne.zext(BitWidth);
    870     break;
    871   }
    872   case ISD::TRUNCATE: {
    873     // Simplify the input, using demanded bit information, and compute the known
    874     // zero/one bits live out.
    875     unsigned OperandBitWidth =
    876       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    877     APInt TruncMask = NewMask.zext(OperandBitWidth);
    878     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
    879                              KnownZero, KnownOne, TLO, Depth+1))
    880       return true;
    881     KnownZero = KnownZero.trunc(BitWidth);
    882     KnownOne = KnownOne.trunc(BitWidth);
    883 
    884     // If the input is only used by this truncate, see if we can shrink it based
    885     // on the known demanded bits.
    886     if (Op.getOperand(0).getNode()->hasOneUse()) {
    887       SDValue In = Op.getOperand(0);
    888       switch (In.getOpcode()) {
    889       default: break;
    890       case ISD::SRL:
    891         // Shrink SRL by a constant if none of the high bits shifted in are
    892         // demanded.
    893         if (TLO.LegalTypes() &&
    894             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
    895           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
    896           // undesirable.
    897           break;
    898         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
    899         if (!ShAmt)
    900           break;
    901         SDValue Shift = In.getOperand(1);
    902         if (TLO.LegalTypes()) {
    903           uint64_t ShVal = ShAmt->getZExtValue();
    904           Shift =
    905             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
    906         }
    907 
    908         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
    909                                                OperandBitWidth - BitWidth);
    910         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
    911 
    912         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
    913           // None of the shifted in bits are needed.  Add a truncate of the
    914           // shift input, then shift it.
    915           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
    916                                              Op.getValueType(),
    917                                              In.getOperand(0));
    918           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
    919                                                    Op.getValueType(),
    920                                                    NewTrunc,
    921                                                    Shift));
    922         }
    923         break;
    924       }
    925     }
    926 
    927     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    928     break;
    929   }
    930   case ISD::AssertZext: {
    931     // AssertZext demands all of the high bits, plus any of the low bits
    932     // demanded by its users.
    933     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    934     APInt InMask = APInt::getLowBitsSet(BitWidth,
    935                                         VT.getSizeInBits());
    936     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
    937                              KnownZero, KnownOne, TLO, Depth+1))
    938       return true;
    939     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    940 
    941     KnownZero |= ~InMask & NewMask;
    942     break;
    943   }
    944   case ISD::BITCAST:
    945     // If this is an FP->Int bitcast and if the sign bit is the only
    946     // thing demanded, turn this into a FGETSIGN.
    947     if (!TLO.LegalOperations() &&
    948         !Op.getValueType().isVector() &&
    949         !Op.getOperand(0).getValueType().isVector() &&
    950         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
    951         Op.getOperand(0).getValueType().isFloatingPoint()) {
    952       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
    953       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
    954       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
    955         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
    956         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
    957         // place.  We expect the SHL to be eliminated by other optimizations.
    958         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
    959         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
    960         if (!OpVTLegal && OpVTSizeInBits > 32)
    961           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
    962         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
    963         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
    964         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
    965                                                  Op.getValueType(),
    966                                                  Sign, ShAmt));
    967       }
    968     }
    969     break;
    970   case ISD::ADD:
    971   case ISD::MUL:
    972   case ISD::SUB: {
    973     // Add, Sub, and Mul don't demand any bits in positions beyond that
    974     // of the highest bit demanded of them.
    975     APInt LoMask = APInt::getLowBitsSet(BitWidth,
    976                                         BitWidth - NewMask.countLeadingZeros());
    977     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
    978                              KnownOne2, TLO, Depth+1))
    979       return true;
    980     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
    981                              KnownOne2, TLO, Depth+1))
    982       return true;
    983     // See if the operation should be performed at a smaller bit width.
    984     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    985       return true;
    986   }
    987   // FALL THROUGH
    988   default:
    989     // Just use ComputeMaskedBits to compute output bits.
    990     TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
    991     break;
    992   }
    993 
    994   // If we know the value of all of the demanded bits, return this as a
    995   // constant.
    996   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
    997     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
    998 
    999   return false;
   1000 }
   1001 
   1002 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
   1003 /// in Mask are known to be either zero or one and return them in the
   1004 /// KnownZero/KnownOne bitsets.
   1005 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   1006                                                     APInt &KnownZero,
   1007                                                     APInt &KnownOne,
   1008                                                     const SelectionDAG &DAG,
   1009                                                     unsigned Depth) const {
   1010   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1011           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1012           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1013           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1014          "Should use MaskedValueIsZero if you don't know whether Op"
   1015          " is a target node!");
   1016   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   1017 }
   1018 
   1019 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
   1020 /// targets that want to expose additional information about sign bits to the
   1021 /// DAG Combiner.
   1022 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1023                                                          unsigned Depth) const {
   1024   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1025           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1026           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1027           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1028          "Should use ComputeNumSignBits if you don't know whether Op"
   1029          " is a target node!");
   1030   return 1;
   1031 }
   1032 
   1033 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
   1034 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
   1035 /// determine which bit is set.
   1036 ///
   1037 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   1038   // A left-shift of a constant one will have exactly one bit set, because
   1039   // shifting the bit off the end is undefined.
   1040   if (Val.getOpcode() == ISD::SHL)
   1041     if (ConstantSDNode *C =
   1042          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1043       if (C->getAPIntValue() == 1)
   1044         return true;
   1045 
   1046   // Similarly, a right-shift of a constant sign-bit will have exactly
   1047   // one bit set.
   1048   if (Val.getOpcode() == ISD::SRL)
   1049     if (ConstantSDNode *C =
   1050          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1051       if (C->getAPIntValue().isSignBit())
   1052         return true;
   1053 
   1054   // More could be done here, though the above checks are enough
   1055   // to handle some common cases.
   1056 
   1057   // Fall back to ComputeMaskedBits to catch other known cases.
   1058   EVT OpVT = Val.getValueType();
   1059   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
   1060   APInt KnownZero, KnownOne;
   1061   DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
   1062   return (KnownZero.countPopulation() == BitWidth - 1) &&
   1063          (KnownOne.countPopulation() == 1);
   1064 }
   1065 
   1066 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
   1067 /// and cc. If it is unable to simplify it, return a null SDValue.
   1068 SDValue
   1069 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1070                               ISD::CondCode Cond, bool foldBooleans,
   1071                               DAGCombinerInfo &DCI, SDLoc dl) const {
   1072   SelectionDAG &DAG = DCI.DAG;
   1073 
   1074   // These setcc operations always fold.
   1075   switch (Cond) {
   1076   default: break;
   1077   case ISD::SETFALSE:
   1078   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
   1079   case ISD::SETTRUE:
   1080   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
   1081   }
   1082 
   1083   // Ensure that the constant occurs on the RHS, and fold constant
   1084   // comparisons.
   1085   if (isa<ConstantSDNode>(N0.getNode()))
   1086     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
   1087 
   1088   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1089     const APInt &C1 = N1C->getAPIntValue();
   1090 
   1091     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1092     // equality comparison, then we're just comparing whether X itself is
   1093     // zero.
   1094     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1095         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1096         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1097       const APInt &ShAmt
   1098         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1099       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1100           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1101         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1102           // (srl (ctlz x), 5) == 0  -> X != 0
   1103           // (srl (ctlz x), 5) != 1  -> X != 0
   1104           Cond = ISD::SETNE;
   1105         } else {
   1106           // (srl (ctlz x), 5) != 0  -> X == 0
   1107           // (srl (ctlz x), 5) == 1  -> X == 0
   1108           Cond = ISD::SETEQ;
   1109         }
   1110         SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1111         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1112                             Zero, Cond);
   1113       }
   1114     }
   1115 
   1116     SDValue CTPOP = N0;
   1117     // Look through truncs that don't change the value of a ctpop.
   1118     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1119       CTPOP = N0.getOperand(0);
   1120 
   1121     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1122         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1123                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1124       EVT CTVT = CTPOP.getValueType();
   1125       SDValue CTOp = CTPOP.getOperand(0);
   1126 
   1127       // (ctpop x) u< 2 -> (x & x-1) == 0
   1128       // (ctpop x) u> 1 -> (x & x-1) != 0
   1129       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1130         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1131                                   DAG.getConstant(1, CTVT));
   1132         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1133         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1134         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
   1135       }
   1136 
   1137       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1138     }
   1139 
   1140     // (zext x) == C --> x == (trunc C)
   1141     if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
   1142         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1143       unsigned MinBits = N0.getValueSizeInBits();
   1144       SDValue PreZExt;
   1145       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   1146         // ZExt
   1147         MinBits = N0->getOperand(0).getValueSizeInBits();
   1148         PreZExt = N0->getOperand(0);
   1149       } else if (N0->getOpcode() == ISD::AND) {
   1150         // DAGCombine turns costly ZExts into ANDs
   1151         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   1152           if ((C->getAPIntValue()+1).isPowerOf2()) {
   1153             MinBits = C->getAPIntValue().countTrailingOnes();
   1154             PreZExt = N0->getOperand(0);
   1155           }
   1156       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
   1157         // ZEXTLOAD
   1158         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   1159           MinBits = LN0->getMemoryVT().getSizeInBits();
   1160           PreZExt = N0;
   1161         }
   1162       }
   1163 
   1164       // Make sure we're not losing bits from the constant.
   1165       if (MinBits > 0 &&
   1166           MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) {
   1167         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   1168         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   1169           // Will get folded away.
   1170           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
   1171           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
   1172           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   1173         }
   1174       }
   1175     }
   1176 
   1177     // If the LHS is '(and load, const)', the RHS is 0,
   1178     // the test is for equality or unsigned, and all 1 bits of the const are
   1179     // in the same partial word, see if we can shorten the load.
   1180     if (DCI.isBeforeLegalize() &&
   1181         N0.getOpcode() == ISD::AND && C1 == 0 &&
   1182         N0.getNode()->hasOneUse() &&
   1183         isa<LoadSDNode>(N0.getOperand(0)) &&
   1184         N0.getOperand(0).getNode()->hasOneUse() &&
   1185         isa<ConstantSDNode>(N0.getOperand(1))) {
   1186       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   1187       APInt bestMask;
   1188       unsigned bestWidth = 0, bestOffset = 0;
   1189       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   1190         unsigned origWidth = N0.getValueType().getSizeInBits();
   1191         unsigned maskWidth = origWidth;
   1192         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   1193         // 8 bits, but have to be careful...
   1194         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   1195           origWidth = Lod->getMemoryVT().getSizeInBits();
   1196         const APInt &Mask =
   1197           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1198         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   1199           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   1200           for (unsigned offset=0; offset<origWidth/width; offset++) {
   1201             if ((newMask & Mask) == Mask) {
   1202               if (!getDataLayout()->isLittleEndian())
   1203                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   1204               else
   1205                 bestOffset = (uint64_t)offset * (width/8);
   1206               bestMask = Mask.lshr(offset * (width/8) * 8);
   1207               bestWidth = width;
   1208               break;
   1209             }
   1210             newMask = newMask << width;
   1211           }
   1212         }
   1213       }
   1214       if (bestWidth) {
   1215         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   1216         if (newVT.isRound()) {
   1217           EVT PtrType = Lod->getOperand(1).getValueType();
   1218           SDValue Ptr = Lod->getBasePtr();
   1219           if (bestOffset != 0)
   1220             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   1221                               DAG.getConstant(bestOffset, PtrType));
   1222           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   1223           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   1224                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   1225                                         false, false, false, NewAlign);
   1226           return DAG.getSetCC(dl, VT,
   1227                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   1228                                       DAG.getConstant(bestMask.trunc(bestWidth),
   1229                                                       newVT)),
   1230                               DAG.getConstant(0LL, newVT), Cond);
   1231         }
   1232       }
   1233     }
   1234 
   1235     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   1236     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   1237       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   1238 
   1239       // If the comparison constant has bits in the upper part, the
   1240       // zero-extended value could never match.
   1241       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   1242                                               C1.getBitWidth() - InSize))) {
   1243         switch (Cond) {
   1244         case ISD::SETUGT:
   1245         case ISD::SETUGE:
   1246         case ISD::SETEQ: return DAG.getConstant(0, VT);
   1247         case ISD::SETULT:
   1248         case ISD::SETULE:
   1249         case ISD::SETNE: return DAG.getConstant(1, VT);
   1250         case ISD::SETGT:
   1251         case ISD::SETGE:
   1252           // True if the sign bit of C1 is set.
   1253           return DAG.getConstant(C1.isNegative(), VT);
   1254         case ISD::SETLT:
   1255         case ISD::SETLE:
   1256           // True if the sign bit of C1 isn't set.
   1257           return DAG.getConstant(C1.isNonNegative(), VT);
   1258         default:
   1259           break;
   1260         }
   1261       }
   1262 
   1263       // Otherwise, we can perform the comparison with the low bits.
   1264       switch (Cond) {
   1265       case ISD::SETEQ:
   1266       case ISD::SETNE:
   1267       case ISD::SETUGT:
   1268       case ISD::SETUGE:
   1269       case ISD::SETULT:
   1270       case ISD::SETULE: {
   1271         EVT newVT = N0.getOperand(0).getValueType();
   1272         if (DCI.isBeforeLegalizeOps() ||
   1273             (isOperationLegal(ISD::SETCC, newVT) &&
   1274              getCondCodeAction(Cond, newVT.getSimpleVT())==Legal))
   1275           return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1276                               DAG.getConstant(C1.trunc(InSize), newVT),
   1277                               Cond);
   1278         break;
   1279       }
   1280       default:
   1281         break;   // todo, be more careful with signed comparisons
   1282       }
   1283     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1284                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1285       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   1286       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   1287       EVT ExtDstTy = N0.getValueType();
   1288       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   1289 
   1290       // If the constant doesn't fit into the number of bits for the source of
   1291       // the sign extension, it is impossible for both sides to be equal.
   1292       if (C1.getMinSignedBits() > ExtSrcTyBits)
   1293         return DAG.getConstant(Cond == ISD::SETNE, VT);
   1294 
   1295       SDValue ZextOp;
   1296       EVT Op0Ty = N0.getOperand(0).getValueType();
   1297       if (Op0Ty == ExtSrcTy) {
   1298         ZextOp = N0.getOperand(0);
   1299       } else {
   1300         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   1301         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   1302                               DAG.getConstant(Imm, Op0Ty));
   1303       }
   1304       if (!DCI.isCalledByLegalizer())
   1305         DCI.AddToWorklist(ZextOp.getNode());
   1306       // Otherwise, make this a use of a zext.
   1307       return DAG.getSetCC(dl, VT, ZextOp,
   1308                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   1309                                                               ExtDstTyBits,
   1310                                                               ExtSrcTyBits),
   1311                                           ExtDstTy),
   1312                           Cond);
   1313     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   1314                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1315       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   1316       if (N0.getOpcode() == ISD::SETCC &&
   1317           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   1318         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   1319         if (TrueWhenTrue)
   1320           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   1321         // Invert the condition.
   1322         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   1323         CC = ISD::getSetCCInverse(CC,
   1324                                   N0.getOperand(0).getValueType().isInteger());
   1325         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   1326       }
   1327 
   1328       if ((N0.getOpcode() == ISD::XOR ||
   1329            (N0.getOpcode() == ISD::AND &&
   1330             N0.getOperand(0).getOpcode() == ISD::XOR &&
   1331             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   1332           isa<ConstantSDNode>(N0.getOperand(1)) &&
   1333           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   1334         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   1335         // can only do this if the top bits are known zero.
   1336         unsigned BitWidth = N0.getValueSizeInBits();
   1337         if (DAG.MaskedValueIsZero(N0,
   1338                                   APInt::getHighBitsSet(BitWidth,
   1339                                                         BitWidth-1))) {
   1340           // Okay, get the un-inverted input value.
   1341           SDValue Val;
   1342           if (N0.getOpcode() == ISD::XOR)
   1343             Val = N0.getOperand(0);
   1344           else {
   1345             assert(N0.getOpcode() == ISD::AND &&
   1346                     N0.getOperand(0).getOpcode() == ISD::XOR);
   1347             // ((X^1)&1)^1 -> X & 1
   1348             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   1349                               N0.getOperand(0).getOperand(0),
   1350                               N0.getOperand(1));
   1351           }
   1352 
   1353           return DAG.getSetCC(dl, VT, Val, N1,
   1354                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1355         }
   1356       } else if (N1C->getAPIntValue() == 1 &&
   1357                  (VT == MVT::i1 ||
   1358                   getBooleanContents(false) == ZeroOrOneBooleanContent)) {
   1359         SDValue Op0 = N0;
   1360         if (Op0.getOpcode() == ISD::TRUNCATE)
   1361           Op0 = Op0.getOperand(0);
   1362 
   1363         if ((Op0.getOpcode() == ISD::XOR) &&
   1364             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   1365             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   1366           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   1367           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   1368           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   1369                               Cond);
   1370         }
   1371         if (Op0.getOpcode() == ISD::AND &&
   1372             isa<ConstantSDNode>(Op0.getOperand(1)) &&
   1373             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   1374           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   1375           if (Op0.getValueType().bitsGT(VT))
   1376             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1377                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   1378                           DAG.getConstant(1, VT));
   1379           else if (Op0.getValueType().bitsLT(VT))
   1380             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1381                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   1382                         DAG.getConstant(1, VT));
   1383 
   1384           return DAG.getSetCC(dl, VT, Op0,
   1385                               DAG.getConstant(0, Op0.getValueType()),
   1386                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1387         }
   1388         if (Op0.getOpcode() == ISD::AssertZext &&
   1389             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
   1390           return DAG.getSetCC(dl, VT, Op0,
   1391                               DAG.getConstant(0, Op0.getValueType()),
   1392                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1393       }
   1394     }
   1395 
   1396     APInt MinVal, MaxVal;
   1397     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   1398     if (ISD::isSignedIntSetCC(Cond)) {
   1399       MinVal = APInt::getSignedMinValue(OperandBitSize);
   1400       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   1401     } else {
   1402       MinVal = APInt::getMinValue(OperandBitSize);
   1403       MaxVal = APInt::getMaxValue(OperandBitSize);
   1404     }
   1405 
   1406     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   1407     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   1408       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
   1409       // X >= C0 --> X > (C0-1)
   1410       return DAG.getSetCC(dl, VT, N0,
   1411                           DAG.getConstant(C1-1, N1.getValueType()),
   1412                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
   1413     }
   1414 
   1415     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   1416       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
   1417       // X <= C0 --> X < (C0+1)
   1418       return DAG.getSetCC(dl, VT, N0,
   1419                           DAG.getConstant(C1+1, N1.getValueType()),
   1420                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
   1421     }
   1422 
   1423     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   1424       return DAG.getConstant(0, VT);      // X < MIN --> false
   1425     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   1426       return DAG.getConstant(1, VT);      // X >= MIN --> true
   1427     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   1428       return DAG.getConstant(0, VT);      // X > MAX --> false
   1429     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   1430       return DAG.getConstant(1, VT);      // X <= MAX --> true
   1431 
   1432     // Canonicalize setgt X, Min --> setne X, Min
   1433     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   1434       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1435     // Canonicalize setlt X, Max --> setne X, Max
   1436     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   1437       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1438 
   1439     // If we have setult X, 1, turn it into seteq X, 0
   1440     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   1441       return DAG.getSetCC(dl, VT, N0,
   1442                           DAG.getConstant(MinVal, N0.getValueType()),
   1443                           ISD::SETEQ);
   1444     // If we have setugt X, Max-1, turn it into seteq X, Max
   1445     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   1446       return DAG.getSetCC(dl, VT, N0,
   1447                           DAG.getConstant(MaxVal, N0.getValueType()),
   1448                           ISD::SETEQ);
   1449 
   1450     // If we have "setcc X, C0", check to see if we can shrink the immediate
   1451     // by changing cc.
   1452 
   1453     // SETUGT X, SINTMAX  -> SETLT X, 0
   1454     if (Cond == ISD::SETUGT &&
   1455         C1 == APInt::getSignedMaxValue(OperandBitSize))
   1456       return DAG.getSetCC(dl, VT, N0,
   1457                           DAG.getConstant(0, N1.getValueType()),
   1458                           ISD::SETLT);
   1459 
   1460     // SETULT X, SINTMIN  -> SETGT X, -1
   1461     if (Cond == ISD::SETULT &&
   1462         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   1463       SDValue ConstMinusOne =
   1464           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
   1465                           N1.getValueType());
   1466       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   1467     }
   1468 
   1469     // Fold bit comparisons when we can.
   1470     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1471         (VT == N0.getValueType() ||
   1472          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   1473         N0.getOpcode() == ISD::AND)
   1474       if (ConstantSDNode *AndRHS =
   1475                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1476         EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   1477           getPointerTy() : getShiftAmountTy(N0.getValueType());
   1478         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   1479           // Perform the xform if the AND RHS is a single bit.
   1480           if (AndRHS->getAPIntValue().isPowerOf2()) {
   1481             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1482                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1483                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
   1484           }
   1485         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   1486           // (X & 8) == 8  -->  (X & 8) >> 3
   1487           // Perform the xform if C1 is a single bit.
   1488           if (C1.isPowerOf2()) {
   1489             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1490                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1491                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
   1492           }
   1493         }
   1494       }
   1495 
   1496     if (C1.getMinSignedBits() <= 64 &&
   1497         !isLegalICmpImmediate(C1.getSExtValue())) {
   1498       // (X & -256) == 256 -> (X >> 8) == 1
   1499       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1500           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   1501         if (ConstantSDNode *AndRHS =
   1502             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1503           const APInt &AndRHSC = AndRHS->getAPIntValue();
   1504           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
   1505             unsigned ShiftBits = AndRHSC.countTrailingZeros();
   1506             EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   1507               getPointerTy() : getShiftAmountTy(N0.getValueType());
   1508             EVT CmpTy = N0.getValueType();
   1509             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
   1510                                         DAG.getConstant(ShiftBits, ShiftTy));
   1511             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
   1512             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
   1513           }
   1514         }
   1515       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
   1516                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
   1517         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
   1518         // X <  0x100000000 -> (X >> 32) <  1
   1519         // X >= 0x100000000 -> (X >> 32) >= 1
   1520         // X <= 0x0ffffffff -> (X >> 32) <  1
   1521         // X >  0x0ffffffff -> (X >> 32) >= 1
   1522         unsigned ShiftBits;
   1523         APInt NewC = C1;
   1524         ISD::CondCode NewCond = Cond;
   1525         if (AdjOne) {
   1526           ShiftBits = C1.countTrailingOnes();
   1527           NewC = NewC + 1;
   1528           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   1529         } else {
   1530           ShiftBits = C1.countTrailingZeros();
   1531         }
   1532         NewC = NewC.lshr(ShiftBits);
   1533         if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
   1534           EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   1535             getPointerTy() : getShiftAmountTy(N0.getValueType());
   1536           EVT CmpTy = N0.getValueType();
   1537           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
   1538                                       DAG.getConstant(ShiftBits, ShiftTy));
   1539           SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
   1540           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
   1541         }
   1542       }
   1543     }
   1544   }
   1545 
   1546   if (isa<ConstantFPSDNode>(N0.getNode())) {
   1547     // Constant fold or commute setcc.
   1548     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   1549     if (O.getNode()) return O;
   1550   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   1551     // If the RHS of an FP comparison is a constant, simplify it away in
   1552     // some cases.
   1553     if (CFP->getValueAPF().isNaN()) {
   1554       // If an operand is known to be a nan, we can fold it.
   1555       switch (ISD::getUnorderedFlavor(Cond)) {
   1556       default: llvm_unreachable("Unknown flavor!");
   1557       case 0:  // Known false.
   1558         return DAG.getConstant(0, VT);
   1559       case 1:  // Known true.
   1560         return DAG.getConstant(1, VT);
   1561       case 2:  // Undefined.
   1562         return DAG.getUNDEF(VT);
   1563       }
   1564     }
   1565 
   1566     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   1567     // constant if knowing that the operand is non-nan is enough.  We prefer to
   1568     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   1569     // materialize 0.0.
   1570     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   1571       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   1572 
   1573     // If the condition is not legal, see if we can find an equivalent one
   1574     // which is legal.
   1575     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   1576       // If the comparison was an awkward floating-point == or != and one of
   1577       // the comparison operands is infinity or negative infinity, convert the
   1578       // condition to a less-awkward <= or >=.
   1579       if (CFP->getValueAPF().isInfinity()) {
   1580         if (CFP->getValueAPF().isNegative()) {
   1581           if (Cond == ISD::SETOEQ &&
   1582               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1583             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   1584           if (Cond == ISD::SETUEQ &&
   1585               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1586             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   1587           if (Cond == ISD::SETUNE &&
   1588               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1589             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   1590           if (Cond == ISD::SETONE &&
   1591               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1592             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   1593         } else {
   1594           if (Cond == ISD::SETOEQ &&
   1595               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1596             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   1597           if (Cond == ISD::SETUEQ &&
   1598               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1599             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   1600           if (Cond == ISD::SETUNE &&
   1601               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1602             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   1603           if (Cond == ISD::SETONE &&
   1604               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1605             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   1606         }
   1607       }
   1608     }
   1609   }
   1610 
   1611   if (N0 == N1) {
   1612     // The sext(setcc()) => setcc() optimization relies on the appropriate
   1613     // constant being emitted.
   1614     uint64_t EqVal = 0;
   1615     switch (getBooleanContents(N0.getValueType().isVector())) {
   1616     case UndefinedBooleanContent:
   1617     case ZeroOrOneBooleanContent:
   1618       EqVal = ISD::isTrueWhenEqual(Cond);
   1619       break;
   1620     case ZeroOrNegativeOneBooleanContent:
   1621       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
   1622       break;
   1623     }
   1624 
   1625     // We can always fold X == X for integer setcc's.
   1626     if (N0.getValueType().isInteger()) {
   1627       return DAG.getConstant(EqVal, VT);
   1628     }
   1629     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   1630     if (UOF == 2)   // FP operators that are undefined on NaNs.
   1631       return DAG.getConstant(EqVal, VT);
   1632     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   1633       return DAG.getConstant(EqVal, VT);
   1634     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   1635     // if it is not already.
   1636     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   1637     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
   1638           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
   1639       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   1640   }
   1641 
   1642   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1643       N0.getValueType().isInteger()) {
   1644     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   1645         N0.getOpcode() == ISD::XOR) {
   1646       // Simplify (X+Y) == (X+Z) -->  Y == Z
   1647       if (N0.getOpcode() == N1.getOpcode()) {
   1648         if (N0.getOperand(0) == N1.getOperand(0))
   1649           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   1650         if (N0.getOperand(1) == N1.getOperand(1))
   1651           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   1652         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   1653           // If X op Y == Y op X, try other combinations.
   1654           if (N0.getOperand(0) == N1.getOperand(1))
   1655             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   1656                                 Cond);
   1657           if (N0.getOperand(1) == N1.getOperand(0))
   1658             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   1659                                 Cond);
   1660         }
   1661       }
   1662 
   1663       // If RHS is a legal immediate value for a compare instruction, we need
   1664       // to be careful about increasing register pressure needlessly.
   1665       bool LegalRHSImm = false;
   1666 
   1667       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   1668         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1669           // Turn (X+C1) == C2 --> X == C2-C1
   1670           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   1671             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1672                                 DAG.getConstant(RHSC->getAPIntValue()-
   1673                                                 LHSR->getAPIntValue(),
   1674                                 N0.getValueType()), Cond);
   1675           }
   1676 
   1677           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   1678           if (N0.getOpcode() == ISD::XOR)
   1679             // If we know that all of the inverted bits are zero, don't bother
   1680             // performing the inversion.
   1681             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   1682               return
   1683                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   1684                              DAG.getConstant(LHSR->getAPIntValue() ^
   1685                                                RHSC->getAPIntValue(),
   1686                                              N0.getValueType()),
   1687                              Cond);
   1688         }
   1689 
   1690         // Turn (C1-X) == C2 --> X == C1-C2
   1691         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   1692           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   1693             return
   1694               DAG.getSetCC(dl, VT, N0.getOperand(1),
   1695                            DAG.getConstant(SUBC->getAPIntValue() -
   1696                                              RHSC->getAPIntValue(),
   1697                                            N0.getValueType()),
   1698                            Cond);
   1699           }
   1700         }
   1701 
   1702         // Could RHSC fold directly into a compare?
   1703         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   1704           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   1705       }
   1706 
   1707       // Simplify (X+Z) == X -->  Z == 0
   1708       // Don't do this if X is an immediate that can fold into a cmp
   1709       // instruction and X+Z has other uses. It could be an induction variable
   1710       // chain, and the transform would increase register pressure.
   1711       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   1712         if (N0.getOperand(0) == N1)
   1713           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   1714                               DAG.getConstant(0, N0.getValueType()), Cond);
   1715         if (N0.getOperand(1) == N1) {
   1716           if (DAG.isCommutativeBinOp(N0.getOpcode()))
   1717             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1718                                 DAG.getConstant(0, N0.getValueType()), Cond);
   1719           if (N0.getNode()->hasOneUse()) {
   1720             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   1721             // (Z-X) == X  --> Z == X<<1
   1722             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
   1723                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
   1724             if (!DCI.isCalledByLegalizer())
   1725               DCI.AddToWorklist(SH.getNode());
   1726             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   1727           }
   1728         }
   1729       }
   1730     }
   1731 
   1732     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   1733         N1.getOpcode() == ISD::XOR) {
   1734       // Simplify  X == (X+Z) -->  Z == 0
   1735       if (N1.getOperand(0) == N0)
   1736         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   1737                         DAG.getConstant(0, N1.getValueType()), Cond);
   1738       if (N1.getOperand(1) == N0) {
   1739         if (DAG.isCommutativeBinOp(N1.getOpcode()))
   1740           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   1741                           DAG.getConstant(0, N1.getValueType()), Cond);
   1742         if (N1.getNode()->hasOneUse()) {
   1743           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   1744           // X == (Z-X)  --> X<<1 == Z
   1745           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
   1746                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
   1747           if (!DCI.isCalledByLegalizer())
   1748             DCI.AddToWorklist(SH.getNode());
   1749           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   1750         }
   1751       }
   1752     }
   1753 
   1754     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
   1755     // Note that where y is variable and is known to have at most
   1756     // one bit set (for example, if it is z&1) we cannot do this;
   1757     // the expressions are not equivalent when y==0.
   1758     if (N0.getOpcode() == ISD::AND)
   1759       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
   1760         if (ValueHasExactlyOneBitSet(N1, DAG)) {
   1761           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1762           SDValue Zero = DAG.getConstant(0, N1.getValueType());
   1763           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
   1764         }
   1765       }
   1766     if (N1.getOpcode() == ISD::AND)
   1767       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
   1768         if (ValueHasExactlyOneBitSet(N0, DAG)) {
   1769           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1770           SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1771           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
   1772         }
   1773       }
   1774   }
   1775 
   1776   // Fold away ALL boolean setcc's.
   1777   SDValue Temp;
   1778   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   1779     switch (Cond) {
   1780     default: llvm_unreachable("Unknown integer setcc!");
   1781     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   1782       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   1783       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   1784       if (!DCI.isCalledByLegalizer())
   1785         DCI.AddToWorklist(Temp.getNode());
   1786       break;
   1787     case ISD::SETNE:  // X != Y   -->  (X^Y)
   1788       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   1789       break;
   1790     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   1791     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   1792       Temp = DAG.getNOT(dl, N0, MVT::i1);
   1793       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   1794       if (!DCI.isCalledByLegalizer())
   1795         DCI.AddToWorklist(Temp.getNode());
   1796       break;
   1797     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   1798     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   1799       Temp = DAG.getNOT(dl, N1, MVT::i1);
   1800       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   1801       if (!DCI.isCalledByLegalizer())
   1802         DCI.AddToWorklist(Temp.getNode());
   1803       break;
   1804     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   1805     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   1806       Temp = DAG.getNOT(dl, N0, MVT::i1);
   1807       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   1808       if (!DCI.isCalledByLegalizer())
   1809         DCI.AddToWorklist(Temp.getNode());
   1810       break;
   1811     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   1812     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   1813       Temp = DAG.getNOT(dl, N1, MVT::i1);
   1814       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   1815       break;
   1816     }
   1817     if (VT != MVT::i1) {
   1818       if (!DCI.isCalledByLegalizer())
   1819         DCI.AddToWorklist(N0.getNode());
   1820       // FIXME: If running after legalize, we probably can't do this.
   1821       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   1822     }
   1823     return N0;
   1824   }
   1825 
   1826   // Could not fold it.
   1827   return SDValue();
   1828 }
   1829 
   1830 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   1831 /// node is a GlobalAddress + offset.
   1832 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   1833                                     int64_t &Offset) const {
   1834   if (isa<GlobalAddressSDNode>(N)) {
   1835     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
   1836     GA = GASD->getGlobal();
   1837     Offset += GASD->getOffset();
   1838     return true;
   1839   }
   1840 
   1841   if (N->getOpcode() == ISD::ADD) {
   1842     SDValue N1 = N->getOperand(0);
   1843     SDValue N2 = N->getOperand(1);
   1844     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   1845       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
   1846       if (V) {
   1847         Offset += V->getSExtValue();
   1848         return true;
   1849       }
   1850     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   1851       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
   1852       if (V) {
   1853         Offset += V->getSExtValue();
   1854         return true;
   1855       }
   1856     }
   1857   }
   1858 
   1859   return false;
   1860 }
   1861 
   1862 
   1863 SDValue TargetLowering::
   1864 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   1865   // Default implementation: no optimization.
   1866   return SDValue();
   1867 }
   1868 
   1869 //===----------------------------------------------------------------------===//
   1870 //  Inline Assembler Implementation Methods
   1871 //===----------------------------------------------------------------------===//
   1872 
   1873 
   1874 TargetLowering::ConstraintType
   1875 TargetLowering::getConstraintType(const std::string &Constraint) const {
   1876   unsigned S = Constraint.size();
   1877 
   1878   if (S == 1) {
   1879     switch (Constraint[0]) {
   1880     default: break;
   1881     case 'r': return C_RegisterClass;
   1882     case 'm':    // memory
   1883     case 'o':    // offsetable
   1884     case 'V':    // not offsetable
   1885       return C_Memory;
   1886     case 'i':    // Simple Integer or Relocatable Constant
   1887     case 'n':    // Simple Integer
   1888     case 'E':    // Floating Point Constant
   1889     case 'F':    // Floating Point Constant
   1890     case 's':    // Relocatable Constant
   1891     case 'p':    // Address.
   1892     case 'X':    // Allow ANY value.
   1893     case 'I':    // Target registers.
   1894     case 'J':
   1895     case 'K':
   1896     case 'L':
   1897     case 'M':
   1898     case 'N':
   1899     case 'O':
   1900     case 'P':
   1901     case '<':
   1902     case '>':
   1903       return C_Other;
   1904     }
   1905   }
   1906 
   1907   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
   1908     if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
   1909       return C_Memory;
   1910     return C_Register;
   1911   }
   1912   return C_Unknown;
   1913 }
   1914 
   1915 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   1916 /// with another that has more specific requirements based on the type of the
   1917 /// corresponding operand.
   1918 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   1919   if (ConstraintVT.isInteger())
   1920     return "r";
   1921   if (ConstraintVT.isFloatingPoint())
   1922     return "f";      // works for many targets
   1923   return 0;
   1924 }
   1925 
   1926 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   1927 /// vector.  If it is invalid, don't add anything to Ops.
   1928 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   1929                                                   std::string &Constraint,
   1930                                                   std::vector<SDValue> &Ops,
   1931                                                   SelectionDAG &DAG) const {
   1932 
   1933   if (Constraint.length() > 1) return;
   1934 
   1935   char ConstraintLetter = Constraint[0];
   1936   switch (ConstraintLetter) {
   1937   default: break;
   1938   case 'X':     // Allows any operand; labels (basic block) use this.
   1939     if (Op.getOpcode() == ISD::BasicBlock) {
   1940       Ops.push_back(Op);
   1941       return;
   1942     }
   1943     // fall through
   1944   case 'i':    // Simple Integer or Relocatable Constant
   1945   case 'n':    // Simple Integer
   1946   case 's': {  // Relocatable Constant
   1947     // These operands are interested in values of the form (GV+C), where C may
   1948     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   1949     // is possible and fine if either GV or C are missing.
   1950     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   1951     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   1952 
   1953     // If we have "(add GV, C)", pull out GV/C
   1954     if (Op.getOpcode() == ISD::ADD) {
   1955       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   1956       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   1957       if (C == 0 || GA == 0) {
   1958         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   1959         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   1960       }
   1961       if (C == 0 || GA == 0)
   1962         C = 0, GA = 0;
   1963     }
   1964 
   1965     // If we find a valid operand, map to the TargetXXX version so that the
   1966     // value itself doesn't get selected.
   1967     if (GA) {   // Either &GV   or   &GV+C
   1968       if (ConstraintLetter != 'n') {
   1969         int64_t Offs = GA->getOffset();
   1970         if (C) Offs += C->getZExtValue();
   1971         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   1972                                                  C ? SDLoc(C) : SDLoc(),
   1973                                                  Op.getValueType(), Offs));
   1974         return;
   1975       }
   1976     }
   1977     if (C) {   // just C, no GV.
   1978       // Simple constants are not allowed for 's'.
   1979       if (ConstraintLetter != 's') {
   1980         // gcc prints these as sign extended.  Sign extend value to 64 bits
   1981         // now; without this it would get ZExt'd later in
   1982         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   1983         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   1984                                             MVT::i64));
   1985         return;
   1986       }
   1987     }
   1988     break;
   1989   }
   1990   }
   1991 }
   1992 
   1993 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
   1994 getRegForInlineAsmConstraint(const std::string &Constraint,
   1995                              MVT VT) const {
   1996   if (Constraint[0] != '{')
   1997     return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
   1998   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   1999 
   2000   // Remove the braces from around the name.
   2001   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2002 
   2003   std::pair<unsigned, const TargetRegisterClass*> R =
   2004     std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
   2005 
   2006   // Figure out which register class contains this reg.
   2007   const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
   2008   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2009        E = RI->regclass_end(); RCI != E; ++RCI) {
   2010     const TargetRegisterClass *RC = *RCI;
   2011 
   2012     // If none of the value types for this register class are valid, we
   2013     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2014     if (!isLegalRC(RC))
   2015       continue;
   2016 
   2017     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2018          I != E; ++I) {
   2019       if (RegName.equals_lower(RI->getName(*I))) {
   2020         std::pair<unsigned, const TargetRegisterClass*> S =
   2021           std::make_pair(*I, RC);
   2022 
   2023         // If this register class has the requested value type, return it,
   2024         // otherwise keep searching and return the first class found
   2025         // if no other is found which explicitly has the requested type.
   2026         if (RC->hasType(VT))
   2027           return S;
   2028         else if (!R.second)
   2029           R = S;
   2030       }
   2031     }
   2032   }
   2033 
   2034   return R;
   2035 }
   2036 
   2037 //===----------------------------------------------------------------------===//
   2038 // Constraint Selection.
   2039 
   2040 /// isMatchingInputConstraint - Return true of this is an input operand that is
   2041 /// a matching constraint like "4".
   2042 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2043   assert(!ConstraintCode.empty() && "No known constraint!");
   2044   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
   2045 }
   2046 
   2047 /// getMatchedOperand - If this is an input matching constraint, this method
   2048 /// returns the output operand it matches.
   2049 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2050   assert(!ConstraintCode.empty() && "No known constraint!");
   2051   return atoi(ConstraintCode.c_str());
   2052 }
   2053 
   2054 
   2055 /// ParseConstraints - Split up the constraint string from the inline
   2056 /// assembly value into the specific constraints and their prefixes,
   2057 /// and also tie in the associated operand values.
   2058 /// If this returns an empty vector, and if the constraint string itself
   2059 /// isn't empty, there was an error parsing.
   2060 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
   2061     ImmutableCallSite CS) const {
   2062   /// ConstraintOperands - Information about all of the constraints.
   2063   AsmOperandInfoVector ConstraintOperands;
   2064   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2065   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2066 
   2067   // Do a prepass over the constraints, canonicalizing them, and building up the
   2068   // ConstraintOperands list.
   2069   InlineAsm::ConstraintInfoVector
   2070     ConstraintInfos = IA->ParseConstraints();
   2071 
   2072   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2073   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2074 
   2075   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
   2076     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
   2077     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2078 
   2079     // Update multiple alternative constraint count.
   2080     if (OpInfo.multipleAlternatives.size() > maCount)
   2081       maCount = OpInfo.multipleAlternatives.size();
   2082 
   2083     OpInfo.ConstraintVT = MVT::Other;
   2084 
   2085     // Compute the value type for each operand.
   2086     switch (OpInfo.Type) {
   2087     case InlineAsm::isOutput:
   2088       // Indirect outputs just consume an argument.
   2089       if (OpInfo.isIndirect) {
   2090         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2091         break;
   2092       }
   2093 
   2094       // The return value of the call is this value.  As such, there is no
   2095       // corresponding argument.
   2096       assert(!CS.getType()->isVoidTy() &&
   2097              "Bad inline asm!");
   2098       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2099         OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
   2100       } else {
   2101         assert(ResNo == 0 && "Asm only has one result!");
   2102         OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
   2103       }
   2104       ++ResNo;
   2105       break;
   2106     case InlineAsm::isInput:
   2107       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2108       break;
   2109     case InlineAsm::isClobber:
   2110       // Nothing to do.
   2111       break;
   2112     }
   2113 
   2114     if (OpInfo.CallOperandVal) {
   2115       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2116       if (OpInfo.isIndirect) {
   2117         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2118         if (!PtrTy)
   2119           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2120         OpTy = PtrTy->getElementType();
   2121       }
   2122 
   2123       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2124       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2125         if (STy->getNumElements() == 1)
   2126           OpTy = STy->getElementType(0);
   2127 
   2128       // If OpTy is not a single value, it may be a struct/union that we
   2129       // can tile with integers.
   2130       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2131         unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
   2132         switch (BitSize) {
   2133         default: break;
   2134         case 1:
   2135         case 8:
   2136         case 16:
   2137         case 32:
   2138         case 64:
   2139         case 128:
   2140           OpInfo.ConstraintVT =
   2141             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2142           break;
   2143         }
   2144       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
   2145         OpInfo.ConstraintVT = MVT::getIntegerVT(
   2146             8*getDataLayout()->getPointerSize(PT->getAddressSpace()));
   2147       } else {
   2148         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
   2149       }
   2150     }
   2151   }
   2152 
   2153   // If we have multiple alternative constraints, select the best alternative.
   2154   if (ConstraintInfos.size()) {
   2155     if (maCount) {
   2156       unsigned bestMAIndex = 0;
   2157       int bestWeight = -1;
   2158       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2159       int weight = -1;
   2160       unsigned maIndex;
   2161       // Compute the sums of the weights for each alternative, keeping track
   2162       // of the best (highest weight) one so far.
   2163       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2164         int weightSum = 0;
   2165         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2166             cIndex != eIndex; ++cIndex) {
   2167           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2168           if (OpInfo.Type == InlineAsm::isClobber)
   2169             continue;
   2170 
   2171           // If this is an output operand with a matching input operand,
   2172           // look up the matching input. If their types mismatch, e.g. one
   2173           // is an integer, the other is floating point, or their sizes are
   2174           // different, flag it as an maCantMatch.
   2175           if (OpInfo.hasMatchingInput()) {
   2176             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2177             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2178               if ((OpInfo.ConstraintVT.isInteger() !=
   2179                    Input.ConstraintVT.isInteger()) ||
   2180                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2181                    Input.ConstraintVT.getSizeInBits())) {
   2182                 weightSum = -1;  // Can't match.
   2183                 break;
   2184               }
   2185             }
   2186           }
   2187           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2188           if (weight == -1) {
   2189             weightSum = -1;
   2190             break;
   2191           }
   2192           weightSum += weight;
   2193         }
   2194         // Update best.
   2195         if (weightSum > bestWeight) {
   2196           bestWeight = weightSum;
   2197           bestMAIndex = maIndex;
   2198         }
   2199       }
   2200 
   2201       // Now select chosen alternative in each constraint.
   2202       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2203           cIndex != eIndex; ++cIndex) {
   2204         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   2205         if (cInfo.Type == InlineAsm::isClobber)
   2206           continue;
   2207         cInfo.selectAlternative(bestMAIndex);
   2208       }
   2209     }
   2210   }
   2211 
   2212   // Check and hook up tied operands, choose constraint code to use.
   2213   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2214       cIndex != eIndex; ++cIndex) {
   2215     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2216 
   2217     // If this is an output operand with a matching input operand, look up the
   2218     // matching input. If their types mismatch, e.g. one is an integer, the
   2219     // other is floating point, or their sizes are different, flag it as an
   2220     // error.
   2221     if (OpInfo.hasMatchingInput()) {
   2222       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2223 
   2224       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2225         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   2226           getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   2227                                        OpInfo.ConstraintVT);
   2228         std::pair<unsigned, const TargetRegisterClass*> InputRC =
   2229           getRegForInlineAsmConstraint(Input.ConstraintCode,
   2230                                        Input.ConstraintVT);
   2231         if ((OpInfo.ConstraintVT.isInteger() !=
   2232              Input.ConstraintVT.isInteger()) ||
   2233             (MatchRC.second != InputRC.second)) {
   2234           report_fatal_error("Unsupported asm: input constraint"
   2235                              " with a matching output constraint of"
   2236                              " incompatible type!");
   2237         }
   2238       }
   2239 
   2240     }
   2241   }
   2242 
   2243   return ConstraintOperands;
   2244 }
   2245 
   2246 
   2247 /// getConstraintGenerality - Return an integer indicating how general CT
   2248 /// is.
   2249 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   2250   switch (CT) {
   2251   case TargetLowering::C_Other:
   2252   case TargetLowering::C_Unknown:
   2253     return 0;
   2254   case TargetLowering::C_Register:
   2255     return 1;
   2256   case TargetLowering::C_RegisterClass:
   2257     return 2;
   2258   case TargetLowering::C_Memory:
   2259     return 3;
   2260   }
   2261   llvm_unreachable("Invalid constraint type");
   2262 }
   2263 
   2264 /// Examine constraint type and operand type and determine a weight value.
   2265 /// This object must already have been set up with the operand type
   2266 /// and the current alternative constraint selected.
   2267 TargetLowering::ConstraintWeight
   2268   TargetLowering::getMultipleConstraintMatchWeight(
   2269     AsmOperandInfo &info, int maIndex) const {
   2270   InlineAsm::ConstraintCodeVector *rCodes;
   2271   if (maIndex >= (int)info.multipleAlternatives.size())
   2272     rCodes = &info.Codes;
   2273   else
   2274     rCodes = &info.multipleAlternatives[maIndex].Codes;
   2275   ConstraintWeight BestWeight = CW_Invalid;
   2276 
   2277   // Loop over the options, keeping track of the most general one.
   2278   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   2279     ConstraintWeight weight =
   2280       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   2281     if (weight > BestWeight)
   2282       BestWeight = weight;
   2283   }
   2284 
   2285   return BestWeight;
   2286 }
   2287 
   2288 /// Examine constraint type and operand type and determine a weight value.
   2289 /// This object must already have been set up with the operand type
   2290 /// and the current alternative constraint selected.
   2291 TargetLowering::ConstraintWeight
   2292   TargetLowering::getSingleConstraintMatchWeight(
   2293     AsmOperandInfo &info, const char *constraint) const {
   2294   ConstraintWeight weight = CW_Invalid;
   2295   Value *CallOperandVal = info.CallOperandVal;
   2296     // If we don't have a value, we can't do a match,
   2297     // but allow it at the lowest weight.
   2298   if (CallOperandVal == NULL)
   2299     return CW_Default;
   2300   // Look at the constraint type.
   2301   switch (*constraint) {
   2302     case 'i': // immediate integer.
   2303     case 'n': // immediate integer with a known value.
   2304       if (isa<ConstantInt>(CallOperandVal))
   2305         weight = CW_Constant;
   2306       break;
   2307     case 's': // non-explicit intregal immediate.
   2308       if (isa<GlobalValue>(CallOperandVal))
   2309         weight = CW_Constant;
   2310       break;
   2311     case 'E': // immediate float if host format.
   2312     case 'F': // immediate float.
   2313       if (isa<ConstantFP>(CallOperandVal))
   2314         weight = CW_Constant;
   2315       break;
   2316     case '<': // memory operand with autodecrement.
   2317     case '>': // memory operand with autoincrement.
   2318     case 'm': // memory operand.
   2319     case 'o': // offsettable memory operand
   2320     case 'V': // non-offsettable memory operand
   2321       weight = CW_Memory;
   2322       break;
   2323     case 'r': // general register.
   2324     case 'g': // general register, memory operand or immediate integer.
   2325               // note: Clang converts "g" to "imr".
   2326       if (CallOperandVal->getType()->isIntegerTy())
   2327         weight = CW_Register;
   2328       break;
   2329     case 'X': // any operand.
   2330     default:
   2331       weight = CW_Default;
   2332       break;
   2333   }
   2334   return weight;
   2335 }
   2336 
   2337 /// ChooseConstraint - If there are multiple different constraints that we
   2338 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
   2339 /// This is somewhat tricky: constraints fall into four classes:
   2340 ///    Other         -> immediates and magic values
   2341 ///    Register      -> one specific register
   2342 ///    RegisterClass -> a group of regs
   2343 ///    Memory        -> memory
   2344 /// Ideally, we would pick the most specific constraint possible: if we have
   2345 /// something that fits into a register, we would pick it.  The problem here
   2346 /// is that if we have something that could either be in a register or in
   2347 /// memory that use of the register could cause selection of *other*
   2348 /// operands to fail: they might only succeed if we pick memory.  Because of
   2349 /// this the heuristic we use is:
   2350 ///
   2351 ///  1) If there is an 'other' constraint, and if the operand is valid for
   2352 ///     that constraint, use it.  This makes us take advantage of 'i'
   2353 ///     constraints when available.
   2354 ///  2) Otherwise, pick the most general constraint present.  This prefers
   2355 ///     'm' over 'r', for example.
   2356 ///
   2357 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   2358                              const TargetLowering &TLI,
   2359                              SDValue Op, SelectionDAG *DAG) {
   2360   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   2361   unsigned BestIdx = 0;
   2362   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   2363   int BestGenerality = -1;
   2364 
   2365   // Loop over the options, keeping track of the most general one.
   2366   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   2367     TargetLowering::ConstraintType CType =
   2368       TLI.getConstraintType(OpInfo.Codes[i]);
   2369 
   2370     // If this is an 'other' constraint, see if the operand is valid for it.
   2371     // For example, on X86 we might have an 'rI' constraint.  If the operand
   2372     // is an integer in the range [0..31] we want to use I (saving a load
   2373     // of a register), otherwise we must use 'r'.
   2374     if (CType == TargetLowering::C_Other && Op.getNode()) {
   2375       assert(OpInfo.Codes[i].size() == 1 &&
   2376              "Unhandled multi-letter 'other' constraint");
   2377       std::vector<SDValue> ResultOps;
   2378       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   2379                                        ResultOps, *DAG);
   2380       if (!ResultOps.empty()) {
   2381         BestType = CType;
   2382         BestIdx = i;
   2383         break;
   2384       }
   2385     }
   2386 
   2387     // Things with matching constraints can only be registers, per gcc
   2388     // documentation.  This mainly affects "g" constraints.
   2389     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   2390       continue;
   2391 
   2392     // This constraint letter is more general than the previous one, use it.
   2393     int Generality = getConstraintGenerality(CType);
   2394     if (Generality > BestGenerality) {
   2395       BestType = CType;
   2396       BestIdx = i;
   2397       BestGenerality = Generality;
   2398     }
   2399   }
   2400 
   2401   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   2402   OpInfo.ConstraintType = BestType;
   2403 }
   2404 
   2405 /// ComputeConstraintToUse - Determines the constraint code and constraint
   2406 /// type to use for the specific AsmOperandInfo, setting
   2407 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2408 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2409                                             SDValue Op,
   2410                                             SelectionDAG *DAG) const {
   2411   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   2412 
   2413   // Single-letter constraints ('r') are very common.
   2414   if (OpInfo.Codes.size() == 1) {
   2415     OpInfo.ConstraintCode = OpInfo.Codes[0];
   2416     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2417   } else {
   2418     ChooseConstraint(OpInfo, *this, Op, DAG);
   2419   }
   2420 
   2421   // 'X' matches anything.
   2422   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   2423     // Labels and constants are handled elsewhere ('X' is the only thing
   2424     // that matches labels).  For Functions, the type here is the type of
   2425     // the result, which is not what we want to look at; leave them alone.
   2426     Value *v = OpInfo.CallOperandVal;
   2427     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   2428       OpInfo.CallOperandVal = v;
   2429       return;
   2430     }
   2431 
   2432     // Otherwise, try to resolve it to something we know about by looking at
   2433     // the actual operand type.
   2434     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   2435       OpInfo.ConstraintCode = Repl;
   2436       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2437     }
   2438   }
   2439 }
   2440 
   2441 /// \brief Given an exact SDIV by a constant, create a multiplication
   2442 /// with the multiplicative inverse of the constant.
   2443 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
   2444                                        SelectionDAG &DAG) const {
   2445   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
   2446   APInt d = C->getAPIntValue();
   2447   assert(d != 0 && "Division by zero!");
   2448 
   2449   // Shift the value upfront if it is even, so the LSB is one.
   2450   unsigned ShAmt = d.countTrailingZeros();
   2451   if (ShAmt) {
   2452     // TODO: For UDIV use SRL instead of SRA.
   2453     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
   2454     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
   2455     d = d.ashr(ShAmt);
   2456   }
   2457 
   2458   // Calculate the multiplicative inverse, using Newton's method.
   2459   APInt t, xn = d;
   2460   while ((t = d*xn) != 1)
   2461     xn *= APInt(d.getBitWidth(), 2) - t;
   2462 
   2463   Op2 = DAG.getConstant(xn, Op1.getValueType());
   2464   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   2465 }
   2466 
   2467 /// \brief Given an ISD::SDIV node expressing a divide by constant,
   2468 /// return a DAG expression to select that will generate the same value by
   2469 /// multiplying by a magic number.  See:
   2470 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   2471 SDValue TargetLowering::
   2472 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   2473           std::vector<SDNode*> *Created) const {
   2474   EVT VT = N->getValueType(0);
   2475   SDLoc dl(N);
   2476 
   2477   // Check to see if we can do this.
   2478   // FIXME: We should be more aggressive here.
   2479   if (!isTypeLegal(VT))
   2480     return SDValue();
   2481 
   2482   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   2483   APInt::ms magics = d.magic();
   2484 
   2485   // Multiply the numerator (operand 0) by the magic value
   2486   // FIXME: We should support doing a MUL in a wider type
   2487   SDValue Q;
   2488   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   2489                             isOperationLegalOrCustom(ISD::MULHS, VT))
   2490     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   2491                     DAG.getConstant(magics.m, VT));
   2492   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   2493                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   2494     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   2495                               N->getOperand(0),
   2496                               DAG.getConstant(magics.m, VT)).getNode(), 1);
   2497   else
   2498     return SDValue();       // No mulhs or equvialent
   2499   // If d > 0 and m < 0, add the numerator
   2500   if (d.isStrictlyPositive() && magics.m.isNegative()) {
   2501     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   2502     if (Created)
   2503       Created->push_back(Q.getNode());
   2504   }
   2505   // If d < 0 and m > 0, subtract the numerator.
   2506   if (d.isNegative() && magics.m.isStrictlyPositive()) {
   2507     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   2508     if (Created)
   2509       Created->push_back(Q.getNode());
   2510   }
   2511   // Shift right algebraic if shift value is nonzero
   2512   if (magics.s > 0) {
   2513     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
   2514                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   2515     if (Created)
   2516       Created->push_back(Q.getNode());
   2517   }
   2518   // Extract the sign bit and add it to the quotient
   2519   SDValue T =
   2520     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
   2521                                            getShiftAmountTy(Q.getValueType())));
   2522   if (Created)
   2523     Created->push_back(T.getNode());
   2524   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   2525 }
   2526 
   2527 /// \brief Given an ISD::UDIV node expressing a divide by constant,
   2528 /// return a DAG expression to select that will generate the same value by
   2529 /// multiplying by a magic number.  See:
   2530 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   2531 SDValue TargetLowering::
   2532 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   2533           std::vector<SDNode*> *Created) const {
   2534   EVT VT = N->getValueType(0);
   2535   SDLoc dl(N);
   2536 
   2537   // Check to see if we can do this.
   2538   // FIXME: We should be more aggressive here.
   2539   if (!isTypeLegal(VT))
   2540     return SDValue();
   2541 
   2542   // FIXME: We should use a narrower constant when the upper
   2543   // bits are known to be zero.
   2544   const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   2545   APInt::mu magics = N1C.magicu();
   2546 
   2547   SDValue Q = N->getOperand(0);
   2548 
   2549   // If the divisor is even, we can avoid using the expensive fixup by shifting
   2550   // the divided value upfront.
   2551   if (magics.a != 0 && !N1C[0]) {
   2552     unsigned Shift = N1C.countTrailingZeros();
   2553     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
   2554                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
   2555     if (Created)
   2556       Created->push_back(Q.getNode());
   2557 
   2558     // Get magic number for the shifted divisor.
   2559     magics = N1C.lshr(Shift).magicu(Shift);
   2560     assert(magics.a == 0 && "Should use cheap fixup now");
   2561   }
   2562 
   2563   // Multiply the numerator (operand 0) by the magic value
   2564   // FIXME: We should support doing a MUL in a wider type
   2565   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   2566                             isOperationLegalOrCustom(ISD::MULHU, VT))
   2567     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
   2568   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   2569                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   2570     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   2571                             DAG.getConstant(magics.m, VT)).getNode(), 1);
   2572   else
   2573     return SDValue();       // No mulhu or equvialent
   2574   if (Created)
   2575     Created->push_back(Q.getNode());
   2576 
   2577   if (magics.a == 0) {
   2578     assert(magics.s < N1C.getBitWidth() &&
   2579            "We shouldn't generate an undefined shift!");
   2580     return DAG.getNode(ISD::SRL, dl, VT, Q,
   2581                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   2582   } else {
   2583     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   2584     if (Created)
   2585       Created->push_back(NPQ.getNode());
   2586     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
   2587                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
   2588     if (Created)
   2589       Created->push_back(NPQ.getNode());
   2590     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   2591     if (Created)
   2592       Created->push_back(NPQ.getNode());
   2593     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
   2594              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
   2595   }
   2596 }
   2597