Home | History | Annotate | Download | only in crypto
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "crypto/ghash.h"
      6 
      7 #include "base/logging.h"
      8 #include "base/sys_byteorder.h"
      9 
     10 namespace crypto {
     11 
     12 // GaloisHash is a polynomial authenticator that works in GF(2^128).
     13 //
     14 // Elements of the field are represented in `little-endian' order (which
     15 // matches the description in the paper[1]), thus the most significant bit is
     16 // the right-most bit. (This is backwards from the way that everybody else does
     17 // it.)
     18 //
     19 // We store field elements in a pair of such `little-endian' uint64s. So the
     20 // value one is represented by {low = 2**63, high = 0} and doubling a value
     21 // involves a *right* shift.
     22 //
     23 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
     24 
     25 namespace {
     26 
     27 // Get64 reads a 64-bit, big-endian number from |bytes|.
     28 uint64 Get64(const uint8 bytes[8]) {
     29   uint64 t;
     30   memcpy(&t, bytes, sizeof(t));
     31   return base::NetToHost64(t);
     32 }
     33 
     34 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number.
     35 void Put64(uint8 bytes[8], uint64 x) {
     36   x = base::HostToNet64(x);
     37   memcpy(bytes, &x, sizeof(x));
     38 }
     39 
     40 // Reverse reverses the order of the bits of 4-bit number in |i|.
     41 int Reverse(int i) {
     42   i = ((i << 2) & 0xc) | ((i >> 2) & 0x3);
     43   i = ((i << 1) & 0xa) | ((i >> 1) & 0x5);
     44   return i;
     45 }
     46 
     47 }  // namespace
     48 
     49 GaloisHash::GaloisHash(const uint8 key[16]) {
     50   Reset();
     51 
     52   // We precompute 16 multiples of |key|. However, when we do lookups into this
     53   // table we'll be using bits from a field element and therefore the bits will
     54   // be in the reverse order. So normally one would expect, say, 4*key to be in
     55   // index 4 of the table but due to this bit ordering it will actually be in
     56   // index 0010 (base 2) = 2.
     57   FieldElement x = {Get64(key), Get64(key+8)};
     58   product_table_[0].low = 0;
     59   product_table_[0].hi = 0;
     60   product_table_[Reverse(1)] = x;
     61 
     62   for (int i = 0; i < 16; i += 2) {
     63     product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]);
     64     product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x);
     65   }
     66 }
     67 
     68 void GaloisHash::Reset() {
     69   state_ = kHashingAdditionalData;
     70   additional_bytes_ = 0;
     71   ciphertext_bytes_ = 0;
     72   buf_used_ = 0;
     73   y_.low = 0;
     74   y_.hi = 0;
     75 }
     76 
     77 void GaloisHash::UpdateAdditional(const uint8* data, size_t length) {
     78   DCHECK_EQ(state_, kHashingAdditionalData);
     79   additional_bytes_ += length;
     80   Update(data, length);
     81 }
     82 
     83 void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) {
     84   if (state_ == kHashingAdditionalData) {
     85     // If there's any remaining additional data it's zero padded to the next
     86     // full block.
     87     if (buf_used_ > 0) {
     88       memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
     89       UpdateBlocks(buf_, 1);
     90       buf_used_ = 0;
     91     }
     92     state_ = kHashingCiphertext;
     93   }
     94 
     95   DCHECK_EQ(state_, kHashingCiphertext);
     96   ciphertext_bytes_ += length;
     97   Update(data, length);
     98 }
     99 
    100 void GaloisHash::Finish(void* output, size_t len) {
    101   DCHECK(state_ != kComplete);
    102 
    103   if (buf_used_ > 0) {
    104     // If there's any remaining data (additional data or ciphertext), it's zero
    105     // padded to the next full block.
    106     memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
    107     UpdateBlocks(buf_, 1);
    108     buf_used_ = 0;
    109   }
    110 
    111   state_ = kComplete;
    112 
    113   // The lengths of the additional data and ciphertext are included as the last
    114   // block. The lengths are the number of bits.
    115   y_.low ^= additional_bytes_*8;
    116   y_.hi ^= ciphertext_bytes_*8;
    117   MulAfterPrecomputation(product_table_, &y_);
    118 
    119   uint8 *result, result_tmp[16];
    120   if (len >= 16) {
    121     result = reinterpret_cast<uint8*>(output);
    122   } else {
    123     result = result_tmp;
    124   }
    125 
    126   Put64(result, y_.low);
    127   Put64(result + 8, y_.hi);
    128 
    129   if (len < 16)
    130     memcpy(output, result_tmp, len);
    131 }
    132 
    133 // static
    134 GaloisHash::FieldElement GaloisHash::Add(
    135     const FieldElement& x,
    136     const FieldElement& y) {
    137   // Addition in a characteristic 2 field is just XOR.
    138   FieldElement z = {x.low^y.low, x.hi^y.hi};
    139   return z;
    140 }
    141 
    142 // static
    143 GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) {
    144   const bool msb_set = x.hi & 1;
    145 
    146   FieldElement xx;
    147   // Because of the bit-ordering, doubling is actually a right shift.
    148   xx.hi = x.hi >> 1;
    149   xx.hi |= x.low << 63;
    150   xx.low = x.low >> 1;
    151 
    152   // If the most-significant bit was set before shifting then it, conceptually,
    153   // becomes a term of x^128. This is greater than the irreducible polynomial
    154   // so the result has to be reduced. The irreducible polynomial is
    155   // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128
    156   // which also means subtracting the other four terms. In characteristic 2
    157   // fields, subtraction == addition == XOR.
    158   if (msb_set)
    159     xx.low ^= 0xe100000000000000ULL;
    160 
    161   return xx;
    162 }
    163 
    164 void GaloisHash::MulAfterPrecomputation(const FieldElement* table,
    165                                         FieldElement* x) {
    166   FieldElement z = {0, 0};
    167 
    168   // In order to efficiently multiply, we use the precomputed table of i*key,
    169   // for i in 0..15, to handle four bits at a time. We could obviously use
    170   // larger tables for greater speedups but the next convenient table size is
    171   // 4K, which is a little large.
    172   //
    173   // In other fields one would use bit positions spread out across the field in
    174   // order to reduce the number of doublings required. However, in
    175   // characteristic 2 fields, repeated doublings are exceptionally cheap and
    176   // it's not worth spending more precomputation time to eliminate them.
    177   for (unsigned i = 0; i < 2; i++) {
    178     uint64 word;
    179     if (i == 0) {
    180       word = x->hi;
    181     } else {
    182       word = x->low;
    183     }
    184 
    185     for (unsigned j = 0; j < 64; j += 4) {
    186       Mul16(&z);
    187       // the values in |table| are ordered for little-endian bit positions. See
    188       // the comment in the constructor.
    189       const FieldElement& t = table[word & 0xf];
    190       z.low ^= t.low;
    191       z.hi ^= t.hi;
    192       word >>= 4;
    193     }
    194   }
    195 
    196   *x = z;
    197 }
    198 
    199 // kReductionTable allows for rapid multiplications by 16. A multiplication by
    200 // 16 is a right shift by four bits, which results in four bits at 2**128.
    201 // These terms have to be eliminated by dividing by the irreducible polynomial.
    202 // In GHASH, the polynomial is such that all the terms occur in the
    203 // least-significant 8 bits, save for the term at x^128. Therefore we can
    204 // precompute the value to be added to the field element for each of the 16 bit
    205 // patterns at 2**128 and the values fit within 12 bits.
    206 static const uint16 kReductionTable[16] = {
    207   0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
    208   0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
    209 };
    210 
    211 // static
    212 void GaloisHash::Mul16(FieldElement* x) {
    213   const unsigned msw = x->hi & 0xf;
    214   x->hi >>= 4;
    215   x->hi |= x->low << 60;
    216   x->low >>= 4;
    217   x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48;
    218 }
    219 
    220 void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) {
    221   for (size_t i = 0; i < num_blocks; i++) {
    222     y_.low ^= Get64(bytes);
    223     bytes += 8;
    224     y_.hi ^= Get64(bytes);
    225     bytes += 8;
    226     MulAfterPrecomputation(product_table_, &y_);
    227   }
    228 }
    229 
    230 void GaloisHash::Update(const uint8* data, size_t length) {
    231   if (buf_used_ > 0) {
    232     const size_t n = std::min(length, sizeof(buf_) - buf_used_);
    233     memcpy(&buf_[buf_used_], data, n);
    234     buf_used_ += n;
    235     length -= n;
    236     data += n;
    237 
    238     if (buf_used_ == sizeof(buf_)) {
    239       UpdateBlocks(buf_, 1);
    240       buf_used_ = 0;
    241     }
    242   }
    243 
    244   if (length >= 16) {
    245     const size_t n = length / 16;
    246     UpdateBlocks(data, n);
    247     length -= n*16;
    248     data += n*16;
    249   }
    250 
    251   if (length > 0) {
    252     memcpy(buf_, data, length);
    253     buf_used_ = length;
    254   }
    255 }
    256 
    257 }  // namespace crypto
    258