1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "crypto/ghash.h" 6 7 #include "base/logging.h" 8 #include "base/sys_byteorder.h" 9 10 namespace crypto { 11 12 // GaloisHash is a polynomial authenticator that works in GF(2^128). 13 // 14 // Elements of the field are represented in `little-endian' order (which 15 // matches the description in the paper[1]), thus the most significant bit is 16 // the right-most bit. (This is backwards from the way that everybody else does 17 // it.) 18 // 19 // We store field elements in a pair of such `little-endian' uint64s. So the 20 // value one is represented by {low = 2**63, high = 0} and doubling a value 21 // involves a *right* shift. 22 // 23 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf 24 25 namespace { 26 27 // Get64 reads a 64-bit, big-endian number from |bytes|. 28 uint64 Get64(const uint8 bytes[8]) { 29 uint64 t; 30 memcpy(&t, bytes, sizeof(t)); 31 return base::NetToHost64(t); 32 } 33 34 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number. 35 void Put64(uint8 bytes[8], uint64 x) { 36 x = base::HostToNet64(x); 37 memcpy(bytes, &x, sizeof(x)); 38 } 39 40 // Reverse reverses the order of the bits of 4-bit number in |i|. 41 int Reverse(int i) { 42 i = ((i << 2) & 0xc) | ((i >> 2) & 0x3); 43 i = ((i << 1) & 0xa) | ((i >> 1) & 0x5); 44 return i; 45 } 46 47 } // namespace 48 49 GaloisHash::GaloisHash(const uint8 key[16]) { 50 Reset(); 51 52 // We precompute 16 multiples of |key|. However, when we do lookups into this 53 // table we'll be using bits from a field element and therefore the bits will 54 // be in the reverse order. So normally one would expect, say, 4*key to be in 55 // index 4 of the table but due to this bit ordering it will actually be in 56 // index 0010 (base 2) = 2. 57 FieldElement x = {Get64(key), Get64(key+8)}; 58 product_table_[0].low = 0; 59 product_table_[0].hi = 0; 60 product_table_[Reverse(1)] = x; 61 62 for (int i = 0; i < 16; i += 2) { 63 product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]); 64 product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x); 65 } 66 } 67 68 void GaloisHash::Reset() { 69 state_ = kHashingAdditionalData; 70 additional_bytes_ = 0; 71 ciphertext_bytes_ = 0; 72 buf_used_ = 0; 73 y_.low = 0; 74 y_.hi = 0; 75 } 76 77 void GaloisHash::UpdateAdditional(const uint8* data, size_t length) { 78 DCHECK_EQ(state_, kHashingAdditionalData); 79 additional_bytes_ += length; 80 Update(data, length); 81 } 82 83 void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) { 84 if (state_ == kHashingAdditionalData) { 85 // If there's any remaining additional data it's zero padded to the next 86 // full block. 87 if (buf_used_ > 0) { 88 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); 89 UpdateBlocks(buf_, 1); 90 buf_used_ = 0; 91 } 92 state_ = kHashingCiphertext; 93 } 94 95 DCHECK_EQ(state_, kHashingCiphertext); 96 ciphertext_bytes_ += length; 97 Update(data, length); 98 } 99 100 void GaloisHash::Finish(void* output, size_t len) { 101 DCHECK(state_ != kComplete); 102 103 if (buf_used_ > 0) { 104 // If there's any remaining data (additional data or ciphertext), it's zero 105 // padded to the next full block. 106 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); 107 UpdateBlocks(buf_, 1); 108 buf_used_ = 0; 109 } 110 111 state_ = kComplete; 112 113 // The lengths of the additional data and ciphertext are included as the last 114 // block. The lengths are the number of bits. 115 y_.low ^= additional_bytes_*8; 116 y_.hi ^= ciphertext_bytes_*8; 117 MulAfterPrecomputation(product_table_, &y_); 118 119 uint8 *result, result_tmp[16]; 120 if (len >= 16) { 121 result = reinterpret_cast<uint8*>(output); 122 } else { 123 result = result_tmp; 124 } 125 126 Put64(result, y_.low); 127 Put64(result + 8, y_.hi); 128 129 if (len < 16) 130 memcpy(output, result_tmp, len); 131 } 132 133 // static 134 GaloisHash::FieldElement GaloisHash::Add( 135 const FieldElement& x, 136 const FieldElement& y) { 137 // Addition in a characteristic 2 field is just XOR. 138 FieldElement z = {x.low^y.low, x.hi^y.hi}; 139 return z; 140 } 141 142 // static 143 GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) { 144 const bool msb_set = x.hi & 1; 145 146 FieldElement xx; 147 // Because of the bit-ordering, doubling is actually a right shift. 148 xx.hi = x.hi >> 1; 149 xx.hi |= x.low << 63; 150 xx.low = x.low >> 1; 151 152 // If the most-significant bit was set before shifting then it, conceptually, 153 // becomes a term of x^128. This is greater than the irreducible polynomial 154 // so the result has to be reduced. The irreducible polynomial is 155 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 156 // which also means subtracting the other four terms. In characteristic 2 157 // fields, subtraction == addition == XOR. 158 if (msb_set) 159 xx.low ^= 0xe100000000000000ULL; 160 161 return xx; 162 } 163 164 void GaloisHash::MulAfterPrecomputation(const FieldElement* table, 165 FieldElement* x) { 166 FieldElement z = {0, 0}; 167 168 // In order to efficiently multiply, we use the precomputed table of i*key, 169 // for i in 0..15, to handle four bits at a time. We could obviously use 170 // larger tables for greater speedups but the next convenient table size is 171 // 4K, which is a little large. 172 // 173 // In other fields one would use bit positions spread out across the field in 174 // order to reduce the number of doublings required. However, in 175 // characteristic 2 fields, repeated doublings are exceptionally cheap and 176 // it's not worth spending more precomputation time to eliminate them. 177 for (unsigned i = 0; i < 2; i++) { 178 uint64 word; 179 if (i == 0) { 180 word = x->hi; 181 } else { 182 word = x->low; 183 } 184 185 for (unsigned j = 0; j < 64; j += 4) { 186 Mul16(&z); 187 // the values in |table| are ordered for little-endian bit positions. See 188 // the comment in the constructor. 189 const FieldElement& t = table[word & 0xf]; 190 z.low ^= t.low; 191 z.hi ^= t.hi; 192 word >>= 4; 193 } 194 } 195 196 *x = z; 197 } 198 199 // kReductionTable allows for rapid multiplications by 16. A multiplication by 200 // 16 is a right shift by four bits, which results in four bits at 2**128. 201 // These terms have to be eliminated by dividing by the irreducible polynomial. 202 // In GHASH, the polynomial is such that all the terms occur in the 203 // least-significant 8 bits, save for the term at x^128. Therefore we can 204 // precompute the value to be added to the field element for each of the 16 bit 205 // patterns at 2**128 and the values fit within 12 bits. 206 static const uint16 kReductionTable[16] = { 207 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, 208 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, 209 }; 210 211 // static 212 void GaloisHash::Mul16(FieldElement* x) { 213 const unsigned msw = x->hi & 0xf; 214 x->hi >>= 4; 215 x->hi |= x->low << 60; 216 x->low >>= 4; 217 x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; 218 } 219 220 void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { 221 for (size_t i = 0; i < num_blocks; i++) { 222 y_.low ^= Get64(bytes); 223 bytes += 8; 224 y_.hi ^= Get64(bytes); 225 bytes += 8; 226 MulAfterPrecomputation(product_table_, &y_); 227 } 228 } 229 230 void GaloisHash::Update(const uint8* data, size_t length) { 231 if (buf_used_ > 0) { 232 const size_t n = std::min(length, sizeof(buf_) - buf_used_); 233 memcpy(&buf_[buf_used_], data, n); 234 buf_used_ += n; 235 length -= n; 236 data += n; 237 238 if (buf_used_ == sizeof(buf_)) { 239 UpdateBlocks(buf_, 1); 240 buf_used_ = 0; 241 } 242 } 243 244 if (length >= 16) { 245 const size_t n = length / 16; 246 UpdateBlocks(data, n); 247 length -= n*16; 248 data += n*16; 249 } 250 251 if (length > 0) { 252 memcpy(buf_, data, length); 253 buf_used_ = length; 254 } 255 } 256 257 } // namespace crypto 258