Home | History | Annotate | Download | only in smooth
      1 /***************************************************************************/
      2 /*                                                                         */
      3 /*  ftgrays.c                                                              */
      4 /*                                                                         */
      5 /*    A new `perfect' anti-aliasing renderer (body).                       */
      6 /*                                                                         */
      7 /*  Copyright 2000-2003, 2005-2011 by                                      */
      8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
      9 /*                                                                         */
     10 /*  This file is part of the FreeType project, and may only be used,       */
     11 /*  modified, and distributed under the terms of the FreeType project      */
     12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
     13 /*  this file you indicate that you have read the license and              */
     14 /*  understand and accept it fully.                                        */
     15 /*                                                                         */
     16 /***************************************************************************/
     17 
     18   /*************************************************************************/
     19   /*                                                                       */
     20   /* This file can be compiled without the rest of the FreeType engine, by */
     21   /* defining the _STANDALONE_ macro when compiling it.  You also need to  */
     22   /* put the files `ftgrays.h' and `ftimage.h' into the current            */
     23   /* compilation directory.  Typically, you could do something like        */
     24   /*                                                                       */
     25   /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
     26   /*                                                                       */
     27   /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
     28   /*   same directory                                                      */
     29   /*                                                                       */
     30   /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in        */
     31   /*                                                                       */
     32   /*     cc -c -D_STANDALONE_ ftgrays.c                                    */
     33   /*                                                                       */
     34   /* The renderer can be initialized with a call to                        */
     35   /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
     36   /* with a call to `ft_gray_raster.raster_render'.                        */
     37   /*                                                                       */
     38   /* See the comments and documentation in the file `ftimage.h' for more   */
     39   /* details on how the raster works.                                      */
     40   /*                                                                       */
     41   /*************************************************************************/
     42 
     43   /*************************************************************************/
     44   /*                                                                       */
     45   /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
     46   /* algorithm used here is _very_ different from the one in the standard  */
     47   /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
     48   /* coverage of the outline on each pixel cell.                           */
     49   /*                                                                       */
     50   /* It is based on ideas that I initially found in Raph Levien's          */
     51   /* excellent LibArt graphics library (see http://www.levien.com/libart   */
     52   /* for more information, though the web pages do not tell anything       */
     53   /* about the renderer; you'll have to dive into the source code to       */
     54   /* understand how it works).                                             */
     55   /*                                                                       */
     56   /* Note, however, that this is a _very_ different implementation         */
     57   /* compared to Raph's.  Coverage information is stored in a very         */
     58   /* different way, and I don't use sorted vector paths.  Also, it doesn't */
     59   /* use floating point values.                                            */
     60   /*                                                                       */
     61   /* This renderer has the following advantages:                           */
     62   /*                                                                       */
     63   /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
     64   /*   callback function that will be called by the renderer to draw gray  */
     65   /*   spans on any target surface.  You can thus do direct composition on */
     66   /*   any kind of bitmap, provided that you give the renderer the right   */
     67   /*   callback.                                                           */
     68   /*                                                                       */
     69   /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
     70   /*   each pixel cell.                                                    */
     71   /*                                                                       */
     72   /* - It performs a single pass on the outline (the `standard' FT2        */
     73   /*   renderer makes two passes).                                         */
     74   /*                                                                       */
     75   /* - It can easily be modified to render to _any_ number of gray levels  */
     76   /*   cheaply.                                                            */
     77   /*                                                                       */
     78   /* - For small (< 20) pixel sizes, it is faster than the standard        */
     79   /*   renderer.                                                           */
     80   /*                                                                       */
     81   /*************************************************************************/
     82 
     83 
     84   /*************************************************************************/
     85   /*                                                                       */
     86   /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
     87   /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
     88   /* messages during execution.                                            */
     89   /*                                                                       */
     90 #undef  FT_COMPONENT
     91 #define FT_COMPONENT  trace_smooth
     92 
     93 
     94 #ifdef _STANDALONE_
     95 
     96 
     97   /* define this to dump debugging information */
     98 /* #define FT_DEBUG_LEVEL_TRACE */
     99 
    100 
    101 #ifdef FT_DEBUG_LEVEL_TRACE
    102 #include <stdio.h>
    103 #include <stdarg.h>
    104 #endif
    105 
    106 #include <stddef.h>
    107 #include <string.h>
    108 #include <setjmp.h>
    109 #include <limits.h>
    110 #define FT_UINT_MAX  UINT_MAX
    111 #define FT_INT_MAX   INT_MAX
    112 
    113 #define ft_memset   memset
    114 
    115 #define ft_setjmp   setjmp
    116 #define ft_longjmp  longjmp
    117 #define ft_jmp_buf  jmp_buf
    118 
    119 typedef ptrdiff_t  FT_PtrDist;
    120 
    121 
    122 #define ErrRaster_Invalid_Mode      -2
    123 #define ErrRaster_Invalid_Outline   -1
    124 #define ErrRaster_Invalid_Argument  -3
    125 #define ErrRaster_Memory_Overflow   -4
    126 
    127 #define FT_BEGIN_HEADER
    128 #define FT_END_HEADER
    129 
    130 #include "ftimage.h"
    131 #include "ftgrays.h"
    132 
    133 
    134   /* This macro is used to indicate that a function parameter is unused. */
    135   /* Its purpose is simply to reduce compiler warnings.  Note also that  */
    136   /* simply defining it as `(void)x' doesn't avoid warnings with certain */
    137   /* ANSI compilers (e.g. LCC).                                          */
    138 #define FT_UNUSED( x )  (x) = (x)
    139 
    140 
    141   /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
    142 
    143 #ifdef FT_DEBUG_LEVEL_TRACE
    144 
    145   void
    146   FT_Message( const char*  fmt,
    147               ... )
    148   {
    149     va_list  ap;
    150 
    151 
    152     va_start( ap, fmt );
    153     vfprintf( stderr, fmt, ap );
    154     va_end( ap );
    155   }
    156 
    157   /* we don't handle tracing levels in stand-alone mode; */
    158 #ifndef FT_TRACE5
    159 #define FT_TRACE5( varformat )  FT_Message varformat
    160 #endif
    161 #ifndef FT_TRACE7
    162 #define FT_TRACE7( varformat )  FT_Message varformat
    163 #endif
    164 #ifndef FT_ERROR
    165 #define FT_ERROR( varformat )   FT_Message varformat
    166 #endif
    167 
    168 #else /* !FT_DEBUG_LEVEL_TRACE */
    169 
    170 #define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
    171 #define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
    172 #define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
    173 
    174 #endif /* !FT_DEBUG_LEVEL_TRACE */
    175 
    176 
    177 #define FT_DEFINE_OUTLINE_FUNCS( class_,               \
    178                                  move_to_, line_to_,   \
    179                                  conic_to_, cubic_to_, \
    180                                  shift_, delta_ )      \
    181           static const FT_Outline_Funcs class_ =       \
    182           {                                            \
    183             move_to_,                                  \
    184             line_to_,                                  \
    185             conic_to_,                                 \
    186             cubic_to_,                                 \
    187             shift_,                                    \
    188             delta_                                     \
    189          };
    190 
    191 #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
    192                                 raster_new_, raster_reset_,       \
    193                                 raster_set_mode_, raster_render_, \
    194                                 raster_done_ )                    \
    195           const FT_Raster_Funcs class_ =                          \
    196           {                                                       \
    197             glyph_format_,                                        \
    198             raster_new_,                                          \
    199             raster_reset_,                                        \
    200             raster_set_mode_,                                     \
    201             raster_render_,                                       \
    202             raster_done_                                          \
    203          };
    204 
    205 #else /* !_STANDALONE_ */
    206 
    207 
    208 #include <ft2build.h>
    209 #include "ftgrays.h"
    210 #include FT_INTERNAL_OBJECTS_H
    211 #include FT_INTERNAL_DEBUG_H
    212 #include FT_OUTLINE_H
    213 
    214 #include "ftsmerrs.h"
    215 
    216 #include "ftspic.h"
    217 
    218 #define ErrRaster_Invalid_Mode      Smooth_Err_Cannot_Render_Glyph
    219 #define ErrRaster_Invalid_Outline   Smooth_Err_Invalid_Outline
    220 #define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
    221 #define ErrRaster_Invalid_Argument  Smooth_Err_Invalid_Argument
    222 
    223 #endif /* !_STANDALONE_ */
    224 
    225 #ifndef FT_MEM_SET
    226 #define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
    227 #endif
    228 
    229 #ifndef FT_MEM_ZERO
    230 #define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
    231 #endif
    232 
    233   /* as usual, for the speed hungry :-) */
    234 
    235 #ifndef FT_STATIC_RASTER
    236 
    237 #define RAS_ARG   PWorker  worker
    238 #define RAS_ARG_  PWorker  worker,
    239 
    240 #define RAS_VAR   worker
    241 #define RAS_VAR_  worker,
    242 
    243 #else /* FT_STATIC_RASTER */
    244 
    245 #define RAS_ARG   /* empty */
    246 #define RAS_ARG_  /* empty */
    247 #define RAS_VAR   /* empty */
    248 #define RAS_VAR_  /* empty */
    249 
    250 #endif /* FT_STATIC_RASTER */
    251 
    252 
    253   /* must be at least 6 bits! */
    254 #define PIXEL_BITS  8
    255 
    256 #define ONE_PIXEL       ( 1L << PIXEL_BITS )
    257 #define PIXEL_MASK      ( -1L << PIXEL_BITS )
    258 #define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
    259 #define SUBPIXELS( x )  ( (TPos)(x) << PIXEL_BITS )
    260 #define FLOOR( x )      ( (x) & -ONE_PIXEL )
    261 #define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
    262 #define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
    263 
    264 #if PIXEL_BITS >= 6
    265 #define UPSCALE( x )    ( (x) << ( PIXEL_BITS - 6 ) )
    266 #define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
    267 #else
    268 #define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
    269 #define DOWNSCALE( x )  ( (x) << ( 6 - PIXEL_BITS ) )
    270 #endif
    271 
    272 
    273   /*************************************************************************/
    274   /*                                                                       */
    275   /*   TYPE DEFINITIONS                                                    */
    276   /*                                                                       */
    277 
    278   /* don't change the following types to FT_Int or FT_Pos, since we might */
    279   /* need to define them to "float" or "double" when experimenting with   */
    280   /* new algorithms                                                       */
    281 
    282   typedef long  TCoord;   /* integer scanline/pixel coordinate */
    283   typedef long  TPos;     /* sub-pixel coordinate              */
    284 
    285   /* determine the type used to store cell areas.  This normally takes at */
    286   /* least PIXEL_BITS*2 + 1 bits.  On 16-bit systems, we need to use      */
    287   /* `long' instead of `int', otherwise bad things happen                 */
    288 
    289 #if PIXEL_BITS <= 7
    290 
    291   typedef int  TArea;
    292 
    293 #else /* PIXEL_BITS >= 8 */
    294 
    295   /* approximately determine the size of integers using an ANSI-C header */
    296 #if FT_UINT_MAX == 0xFFFFU
    297   typedef long  TArea;
    298 #else
    299   typedef int   TArea;
    300 #endif
    301 
    302 #endif /* PIXEL_BITS >= 8 */
    303 
    304 
    305   /* maximal number of gray spans in a call to the span callback */
    306 #define FT_MAX_GRAY_SPANS  32
    307 
    308 
    309   typedef struct TCell_*  PCell;
    310 
    311   typedef struct  TCell_
    312   {
    313     TPos   x;     /* same with TWorker.ex */
    314     TCoord cover; /* same with TWorker.cover */
    315     TArea  area;
    316     PCell  next;
    317 
    318   } TCell;
    319 
    320 
    321   typedef struct  TWorker_
    322   {
    323     TCoord  ex, ey;
    324     TPos    min_ex, max_ex;
    325     TPos    min_ey, max_ey;
    326     TPos    count_ex, count_ey;
    327 
    328     TArea   area;
    329     TCoord  cover;
    330     int     invalid;
    331 
    332     PCell   cells;
    333     FT_PtrDist  max_cells;
    334     FT_PtrDist  num_cells;
    335 
    336     TCoord  cx, cy;
    337     TPos    x,  y;
    338 
    339     TPos    last_ey;
    340 
    341     FT_Vector   bez_stack[32 * 3 + 1];
    342     int         lev_stack[32];
    343 
    344     FT_Outline  outline;
    345     FT_Bitmap   target;
    346     FT_BBox     clip_box;
    347 
    348     FT_Span     gray_spans[FT_MAX_GRAY_SPANS];
    349     int         num_gray_spans;
    350 
    351     FT_Raster_Span_Func  render_span;
    352     void*                render_span_data;
    353     int                  span_y;
    354 
    355     int  band_size;
    356     int  band_shoot;
    357 
    358     ft_jmp_buf  jump_buffer;
    359 
    360     void*       buffer;
    361     long        buffer_size;
    362 
    363     PCell*     ycells;
    364     TPos       ycount;
    365 
    366   } TWorker, *PWorker;
    367 
    368 
    369 #ifndef FT_STATIC_RASTER
    370 #define ras  (*worker)
    371 #else
    372   static TWorker  ras;
    373 #endif
    374 
    375 
    376   typedef struct TRaster_
    377   {
    378     void*    buffer;
    379     long     buffer_size;
    380     int      band_size;
    381     void*    memory;
    382     PWorker  worker;
    383 
    384   } TRaster, *PRaster;
    385 
    386 
    387 
    388   /*************************************************************************/
    389   /*                                                                       */
    390   /* Initialize the cells table.                                           */
    391   /*                                                                       */
    392   static void
    393   gray_init_cells( RAS_ARG_ void*  buffer,
    394                    long            byte_size )
    395   {
    396     ras.buffer      = buffer;
    397     ras.buffer_size = byte_size;
    398 
    399     ras.ycells      = (PCell*) buffer;
    400     ras.cells       = NULL;
    401     ras.max_cells   = 0;
    402     ras.num_cells   = 0;
    403     ras.area        = 0;
    404     ras.cover       = 0;
    405     ras.invalid     = 1;
    406   }
    407 
    408 
    409   /*************************************************************************/
    410   /*                                                                       */
    411   /* Compute the outline bounding box.                                     */
    412   /*                                                                       */
    413   static void
    414   gray_compute_cbox( RAS_ARG )
    415   {
    416     FT_Outline*  outline = &ras.outline;
    417     FT_Vector*   vec     = outline->points;
    418     FT_Vector*   limit   = vec + outline->n_points;
    419 
    420 
    421     if ( outline->n_points <= 0 )
    422     {
    423       ras.min_ex = ras.max_ex = 0;
    424       ras.min_ey = ras.max_ey = 0;
    425       return;
    426     }
    427 
    428     ras.min_ex = ras.max_ex = vec->x;
    429     ras.min_ey = ras.max_ey = vec->y;
    430 
    431     vec++;
    432 
    433     for ( ; vec < limit; vec++ )
    434     {
    435       TPos  x = vec->x;
    436       TPos  y = vec->y;
    437 
    438 
    439       if ( x < ras.min_ex ) ras.min_ex = x;
    440       if ( x > ras.max_ex ) ras.max_ex = x;
    441       if ( y < ras.min_ey ) ras.min_ey = y;
    442       if ( y > ras.max_ey ) ras.max_ey = y;
    443     }
    444 
    445     /* truncate the bounding box to integer pixels */
    446     ras.min_ex = ras.min_ex >> 6;
    447     ras.min_ey = ras.min_ey >> 6;
    448     ras.max_ex = ( ras.max_ex + 63 ) >> 6;
    449     ras.max_ey = ( ras.max_ey + 63 ) >> 6;
    450   }
    451 
    452 
    453   /*************************************************************************/
    454   /*                                                                       */
    455   /* Record the current cell in the table.                                 */
    456   /*                                                                       */
    457   static PCell
    458   gray_find_cell( RAS_ARG )
    459   {
    460     PCell  *pcell, cell;
    461     TPos    x = ras.ex;
    462 
    463 
    464     if ( x > ras.count_ex )
    465       x = ras.count_ex;
    466 
    467     pcell = &ras.ycells[ras.ey];
    468     for (;;)
    469     {
    470       cell = *pcell;
    471       if ( cell == NULL || cell->x > x )
    472         break;
    473 
    474       if ( cell->x == x )
    475         goto Exit;
    476 
    477       pcell = &cell->next;
    478     }
    479 
    480     if ( ras.num_cells >= ras.max_cells )
    481       ft_longjmp( ras.jump_buffer, 1 );
    482 
    483     cell        = ras.cells + ras.num_cells++;
    484     cell->x     = x;
    485     cell->area  = 0;
    486     cell->cover = 0;
    487 
    488     cell->next  = *pcell;
    489     *pcell      = cell;
    490 
    491   Exit:
    492     return cell;
    493   }
    494 
    495 
    496   static void
    497   gray_record_cell( RAS_ARG )
    498   {
    499     if ( !ras.invalid && ( ras.area | ras.cover ) )
    500     {
    501       PCell  cell = gray_find_cell( RAS_VAR );
    502 
    503 
    504       cell->area  += ras.area;
    505       cell->cover += ras.cover;
    506     }
    507   }
    508 
    509 
    510   /*************************************************************************/
    511   /*                                                                       */
    512   /* Set the current cell to a new position.                               */
    513   /*                                                                       */
    514   static void
    515   gray_set_cell( RAS_ARG_ TCoord  ex,
    516                           TCoord  ey )
    517   {
    518     /* Move the cell pointer to a new position.  We set the `invalid'      */
    519     /* flag to indicate that the cell isn't part of those we're interested */
    520     /* in during the render phase.  This means that:                       */
    521     /*                                                                     */
    522     /* . the new vertical position must be within min_ey..max_ey-1.        */
    523     /* . the new horizontal position must be strictly less than max_ex     */
    524     /*                                                                     */
    525     /* Note that if a cell is to the left of the clipping region, it is    */
    526     /* actually set to the (min_ex-1) horizontal position.                 */
    527 
    528     /* All cells that are on the left of the clipping region go to the */
    529     /* min_ex - 1 horizontal position.                                 */
    530     ey -= ras.min_ey;
    531 
    532     if ( ex > ras.max_ex )
    533       ex = ras.max_ex;
    534 
    535     ex -= ras.min_ex;
    536     if ( ex < 0 )
    537       ex = -1;
    538 
    539     /* are we moving to a different cell ? */
    540     if ( ex != ras.ex || ey != ras.ey )
    541     {
    542       /* record the current one if it is valid */
    543       if ( !ras.invalid )
    544         gray_record_cell( RAS_VAR );
    545 
    546       ras.area  = 0;
    547       ras.cover = 0;
    548     }
    549 
    550     ras.ex      = ex;
    551     ras.ey      = ey;
    552     ras.invalid = ( (unsigned)ey >= (unsigned)ras.count_ey ||
    553                               ex >= ras.count_ex           );
    554   }
    555 
    556 
    557   /*************************************************************************/
    558   /*                                                                       */
    559   /* Start a new contour at a given cell.                                  */
    560   /*                                                                       */
    561   static void
    562   gray_start_cell( RAS_ARG_ TCoord  ex,
    563                             TCoord  ey )
    564   {
    565     if ( ex > ras.max_ex )
    566       ex = (TCoord)( ras.max_ex );
    567 
    568     if ( ex < ras.min_ex )
    569       ex = (TCoord)( ras.min_ex - 1 );
    570 
    571     ras.area    = 0;
    572     ras.cover   = 0;
    573     ras.ex      = ex - ras.min_ex;
    574     ras.ey      = ey - ras.min_ey;
    575     ras.last_ey = SUBPIXELS( ey );
    576     ras.invalid = 0;
    577 
    578     gray_set_cell( RAS_VAR_ ex, ey );
    579   }
    580 
    581 
    582   /*************************************************************************/
    583   /*                                                                       */
    584   /* Render a scanline as one or more cells.                               */
    585   /*                                                                       */
    586   static void
    587   gray_render_scanline( RAS_ARG_ TCoord  ey,
    588                                  TPos    x1,
    589                                  TCoord  y1,
    590                                  TPos    x2,
    591                                  TCoord  y2 )
    592   {
    593     TCoord  ex1, ex2, fx1, fx2, delta, mod, lift, rem;
    594     long    p, first, dx;
    595     int     incr;
    596 
    597 
    598     dx = x2 - x1;
    599 
    600     ex1 = TRUNC( x1 );
    601     ex2 = TRUNC( x2 );
    602     fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
    603     fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
    604 
    605     /* trivial case.  Happens often */
    606     if ( y1 == y2 )
    607     {
    608       gray_set_cell( RAS_VAR_ ex2, ey );
    609       return;
    610     }
    611 
    612     /* everything is located in a single cell.  That is easy! */
    613     /*                                                        */
    614     if ( ex1 == ex2 )
    615     {
    616       delta      = y2 - y1;
    617       ras.area  += (TArea)(( fx1 + fx2 ) * delta);
    618       ras.cover += delta;
    619       return;
    620     }
    621 
    622     /* ok, we'll have to render a run of adjacent cells on the same */
    623     /* scanline...                                                  */
    624     /*                                                              */
    625     p     = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
    626     first = ONE_PIXEL;
    627     incr  = 1;
    628 
    629     if ( dx < 0 )
    630     {
    631       p     = fx1 * ( y2 - y1 );
    632       first = 0;
    633       incr  = -1;
    634       dx    = -dx;
    635     }
    636 
    637     delta = (TCoord)( p / dx );
    638     mod   = (TCoord)( p % dx );
    639     if ( mod < 0 )
    640     {
    641       delta--;
    642       mod += (TCoord)dx;
    643     }
    644 
    645     ras.area  += (TArea)(( fx1 + first ) * delta);
    646     ras.cover += delta;
    647 
    648     ex1 += incr;
    649     gray_set_cell( RAS_VAR_ ex1, ey );
    650     y1  += delta;
    651 
    652     if ( ex1 != ex2 )
    653     {
    654       p    = ONE_PIXEL * ( y2 - y1 + delta );
    655       lift = (TCoord)( p / dx );
    656       rem  = (TCoord)( p % dx );
    657       if ( rem < 0 )
    658       {
    659         lift--;
    660         rem += (TCoord)dx;
    661       }
    662 
    663       mod -= (int)dx;
    664 
    665       while ( ex1 != ex2 )
    666       {
    667         delta = lift;
    668         mod  += rem;
    669         if ( mod >= 0 )
    670         {
    671           mod -= (TCoord)dx;
    672           delta++;
    673         }
    674 
    675         ras.area  += (TArea)(ONE_PIXEL * delta);
    676         ras.cover += delta;
    677         y1        += delta;
    678         ex1       += incr;
    679         gray_set_cell( RAS_VAR_ ex1, ey );
    680       }
    681     }
    682 
    683     delta      = y2 - y1;
    684     ras.area  += (TArea)(( fx2 + ONE_PIXEL - first ) * delta);
    685     ras.cover += delta;
    686   }
    687 
    688 
    689   /*************************************************************************/
    690   /*                                                                       */
    691   /* Render a given line as a series of scanlines.                         */
    692   /*                                                                       */
    693   static void
    694   gray_render_line( RAS_ARG_ TPos  to_x,
    695                              TPos  to_y )
    696   {
    697     TCoord  ey1, ey2, fy1, fy2, mod;
    698     TPos    dx, dy, x, x2;
    699     long    p, first;
    700     int     delta, rem, lift, incr;
    701 
    702 
    703     ey1 = TRUNC( ras.last_ey );
    704     ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
    705     fy1 = (TCoord)( ras.y - ras.last_ey );
    706     fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
    707 
    708     dx = to_x - ras.x;
    709     dy = to_y - ras.y;
    710 
    711     /* XXX: we should do something about the trivial case where dx == 0, */
    712     /*      as it happens very often!                                    */
    713 
    714     /* perform vertical clipping */
    715     {
    716       TCoord  min, max;
    717 
    718 
    719       min = ey1;
    720       max = ey2;
    721       if ( ey1 > ey2 )
    722       {
    723         min = ey2;
    724         max = ey1;
    725       }
    726       if ( min >= ras.max_ey || max < ras.min_ey )
    727         goto End;
    728     }
    729 
    730     /* everything is on a single scanline */
    731     if ( ey1 == ey2 )
    732     {
    733       gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
    734       goto End;
    735     }
    736 
    737     /* vertical line - avoid calling gray_render_scanline */
    738     incr = 1;
    739 
    740     if ( dx == 0 )
    741     {
    742       TCoord  ex     = TRUNC( ras.x );
    743       TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
    744       TArea   area;
    745 
    746 
    747       first = ONE_PIXEL;
    748       if ( dy < 0 )
    749       {
    750         first = 0;
    751         incr  = -1;
    752       }
    753 
    754       delta      = (int)( first - fy1 );
    755       ras.area  += (TArea)two_fx * delta;
    756       ras.cover += delta;
    757       ey1       += incr;
    758 
    759       gray_set_cell( RAS_VAR_ ex, ey1 );
    760 
    761       delta = (int)( first + first - ONE_PIXEL );
    762       area  = (TArea)two_fx * delta;
    763       while ( ey1 != ey2 )
    764       {
    765         ras.area  += area;
    766         ras.cover += delta;
    767         ey1       += incr;
    768 
    769         gray_set_cell( RAS_VAR_ ex, ey1 );
    770       }
    771 
    772       delta      = (int)( fy2 - ONE_PIXEL + first );
    773       ras.area  += (TArea)two_fx * delta;
    774       ras.cover += delta;
    775 
    776       goto End;
    777     }
    778 
    779     /* ok, we have to render several scanlines */
    780     p     = ( ONE_PIXEL - fy1 ) * dx;
    781     first = ONE_PIXEL;
    782     incr  = 1;
    783 
    784     if ( dy < 0 )
    785     {
    786       p     = fy1 * dx;
    787       first = 0;
    788       incr  = -1;
    789       dy    = -dy;
    790     }
    791 
    792     delta = (int)( p / dy );
    793     mod   = (int)( p % dy );
    794     if ( mod < 0 )
    795     {
    796       delta--;
    797       mod += (TCoord)dy;
    798     }
    799 
    800     x = ras.x + delta;
    801     gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
    802 
    803     ey1 += incr;
    804     gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    805 
    806     if ( ey1 != ey2 )
    807     {
    808       p     = ONE_PIXEL * dx;
    809       lift  = (int)( p / dy );
    810       rem   = (int)( p % dy );
    811       if ( rem < 0 )
    812       {
    813         lift--;
    814         rem += (int)dy;
    815       }
    816       mod -= (int)dy;
    817 
    818       while ( ey1 != ey2 )
    819       {
    820         delta = lift;
    821         mod  += rem;
    822         if ( mod >= 0 )
    823         {
    824           mod -= (int)dy;
    825           delta++;
    826         }
    827 
    828         x2 = x + delta;
    829         gray_render_scanline( RAS_VAR_ ey1, x,
    830                                        (TCoord)( ONE_PIXEL - first ), x2,
    831                                        (TCoord)first );
    832         x = x2;
    833 
    834         ey1 += incr;
    835         gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    836       }
    837     }
    838 
    839     gray_render_scanline( RAS_VAR_ ey1, x,
    840                                    (TCoord)( ONE_PIXEL - first ), to_x,
    841                                    fy2 );
    842 
    843   End:
    844     ras.x       = to_x;
    845     ras.y       = to_y;
    846     ras.last_ey = SUBPIXELS( ey2 );
    847   }
    848 
    849 
    850   static void
    851   gray_split_conic( FT_Vector*  base )
    852   {
    853     TPos  a, b;
    854 
    855 
    856     base[4].x = base[2].x;
    857     b = base[1].x;
    858     a = base[3].x = ( base[2].x + b ) / 2;
    859     b = base[1].x = ( base[0].x + b ) / 2;
    860     base[2].x = ( a + b ) / 2;
    861 
    862     base[4].y = base[2].y;
    863     b = base[1].y;
    864     a = base[3].y = ( base[2].y + b ) / 2;
    865     b = base[1].y = ( base[0].y + b ) / 2;
    866     base[2].y = ( a + b ) / 2;
    867   }
    868 
    869 
    870   static void
    871   gray_render_conic( RAS_ARG_ const FT_Vector*  control,
    872                               const FT_Vector*  to )
    873   {
    874     TPos        dx, dy;
    875     int         top, level;
    876     int*        levels;
    877     FT_Vector*  arc;
    878 
    879 
    880     arc      = ras.bez_stack;
    881     arc[0].x = UPSCALE( to->x );
    882     arc[0].y = UPSCALE( to->y );
    883     arc[1].x = UPSCALE( control->x );
    884     arc[1].y = UPSCALE( control->y );
    885     arc[2].x = ras.x;
    886     arc[2].y = ras.y;
    887 
    888     dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
    889     dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
    890     if ( dx < dy )
    891       dx = dy;
    892 
    893     level = 0;
    894     while ( dx > ONE_PIXEL / 6 )
    895     {
    896       dx >>= 2;
    897       level++;
    898     }
    899 
    900     levels    = ras.lev_stack;
    901     levels[0] = level;
    902     top       = 0;
    903 
    904     do
    905     {
    906       level = levels[top];
    907       if ( level > 1 )
    908       {
    909         /* check that the arc crosses the current band */
    910         TPos  min, max, y;
    911 
    912 
    913         min = max = arc[0].y;
    914 
    915         y = arc[1].y;
    916         if ( y < min ) min = y;
    917         if ( y > max ) max = y;
    918 
    919         y = arc[2].y;
    920         if ( y < min ) min = y;
    921         if ( y > max ) max = y;
    922 
    923         if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
    924           goto Draw;
    925 
    926         gray_split_conic( arc );
    927         arc += 2;
    928         top++;
    929         levels[top] = levels[top - 1] = level - 1;
    930         continue;
    931       }
    932 
    933     Draw:
    934       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
    935       top--;
    936       arc -= 2;
    937 
    938     } while ( top >= 0 );
    939   }
    940 
    941 
    942   static void
    943   gray_split_cubic( FT_Vector*  base )
    944   {
    945     TPos  a, b, c, d;
    946 
    947 
    948     base[6].x = base[3].x;
    949     c = base[1].x;
    950     d = base[2].x;
    951     base[1].x = a = ( base[0].x + c ) / 2;
    952     base[5].x = b = ( base[3].x + d ) / 2;
    953     c = ( c + d ) / 2;
    954     base[2].x = a = ( a + c ) / 2;
    955     base[4].x = b = ( b + c ) / 2;
    956     base[3].x = ( a + b ) / 2;
    957 
    958     base[6].y = base[3].y;
    959     c = base[1].y;
    960     d = base[2].y;
    961     base[1].y = a = ( base[0].y + c ) / 2;
    962     base[5].y = b = ( base[3].y + d ) / 2;
    963     c = ( c + d ) / 2;
    964     base[2].y = a = ( a + c ) / 2;
    965     base[4].y = b = ( b + c ) / 2;
    966     base[3].y = ( a + b ) / 2;
    967   }
    968 
    969 
    970   static void
    971   gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
    972                               const FT_Vector*  control2,
    973                               const FT_Vector*  to )
    974   {
    975     FT_Vector*  arc;
    976 
    977 
    978     arc      = ras.bez_stack;
    979     arc[0].x = UPSCALE( to->x );
    980     arc[0].y = UPSCALE( to->y );
    981     arc[1].x = UPSCALE( control2->x );
    982     arc[1].y = UPSCALE( control2->y );
    983     arc[2].x = UPSCALE( control1->x );
    984     arc[2].y = UPSCALE( control1->y );
    985     arc[3].x = ras.x;
    986     arc[3].y = ras.y;
    987 
    988     for (;;)
    989     {
    990       /* Check that the arc crosses the current band. */
    991       TPos  min, max, y;
    992 
    993 
    994       min = max = arc[0].y;
    995 
    996       y = arc[1].y;
    997       if ( y < min )
    998         min = y;
    999       if ( y > max )
   1000         max = y;
   1001 
   1002       y = arc[2].y;
   1003       if ( y < min )
   1004         min = y;
   1005       if ( y > max )
   1006         max = y;
   1007 
   1008       y = arc[3].y;
   1009       if ( y < min )
   1010         min = y;
   1011       if ( y > max )
   1012         max = y;
   1013 
   1014       if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
   1015         goto Draw;
   1016 
   1017       /* Decide whether to split or draw. See `Rapid Termination          */
   1018       /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
   1019       /* F. Hain, at                                                      */
   1020       /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
   1021 
   1022       {
   1023         TPos  dx, dy, dx_, dy_;
   1024         TPos  dx1, dy1, dx2, dy2;
   1025         TPos  L, s, s_limit;
   1026 
   1027 
   1028         /* dx and dy are x and y components of the P0-P3 chord vector. */
   1029         dx = arc[3].x - arc[0].x;
   1030         dy = arc[3].y - arc[0].y;
   1031 
   1032         /* L is an (under)estimate of the Euclidean distance P0-P3.       */
   1033         /*                                                                */
   1034         /* If dx >= dy, then r = sqrt(dx^2 + dy^2) can be overestimated   */
   1035         /* with least maximum error by                                    */
   1036         /*                                                                */
   1037         /*   r_upperbound = dx + (sqrt(2) - 1) * dy  ,                    */
   1038         /*                                                                */
   1039         /* where sqrt(2) - 1 can be (over)estimated by 107/256, giving an */
   1040         /* error of no more than 8.4%.                                    */
   1041         /*                                                                */
   1042         /* Similarly, some elementary calculus shows that r can be        */
   1043         /* underestimated with least maximum error by                     */
   1044         /*                                                                */
   1045         /*   r_lowerbound = sqrt(2 + sqrt(2)) / 2 * dx                    */
   1046         /*                  + sqrt(2 - sqrt(2)) / 2 * dy  .               */
   1047         /*                                                                */
   1048         /* 236/256 and 97/256 are (under)estimates of the two algebraic   */
   1049         /* numbers, giving an error of no more than 8.1%.                 */
   1050 
   1051         dx_ = FT_ABS( dx );
   1052         dy_ = FT_ABS( dy );
   1053 
   1054         /* This is the same as                     */
   1055         /*                                         */
   1056         /*   L = ( 236 * FT_MAX( dx_, dy_ )        */
   1057         /*       + 97 * FT_MIN( dx_, dy_ ) ) >> 8; */
   1058         L = ( dx_ > dy_ ? 236 * dx_ +  97 * dy_
   1059                         :  97 * dx_ + 236 * dy_ ) >> 8;
   1060 
   1061         /* Avoid possible arithmetic overflow below by splitting. */
   1062         if ( L > 32767 )
   1063           goto Split;
   1064 
   1065         /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
   1066         s_limit = L * (TPos)( ONE_PIXEL / 6 );
   1067 
   1068         /* s is L * the perpendicular distance from P1 to the line P0-P3. */
   1069         dx1 = arc[1].x - arc[0].x;
   1070         dy1 = arc[1].y - arc[0].y;
   1071         s = FT_ABS( dy * dx1 - dx * dy1 );
   1072 
   1073         if ( s > s_limit )
   1074           goto Split;
   1075 
   1076         /* s is L * the perpendicular distance from P2 to the line P0-P3. */
   1077         dx2 = arc[2].x - arc[0].x;
   1078         dy2 = arc[2].y - arc[0].y;
   1079         s = FT_ABS( dy * dx2 - dx * dy2 );
   1080 
   1081         if ( s > s_limit )
   1082           goto Split;
   1083 
   1084         /* If P1 or P2 is outside P0-P3, split the curve. */
   1085         if ( dy * dy1 + dx * dx1 < 0                                     ||
   1086              dy * dy2 + dx * dx2 < 0                                     ||
   1087              dy * (arc[3].y - arc[1].y) + dx * (arc[3].x - arc[1].x) < 0 ||
   1088              dy * (arc[3].y - arc[2].y) + dx * (arc[3].x - arc[2].x) < 0 )
   1089           goto Split;
   1090 
   1091         /* No reason to split. */
   1092         goto Draw;
   1093       }
   1094 
   1095     Split:
   1096       gray_split_cubic( arc );
   1097       arc += 3;
   1098       continue;
   1099 
   1100     Draw:
   1101       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
   1102 
   1103       if ( arc == ras.bez_stack )
   1104         return;
   1105 
   1106       arc -= 3;
   1107     }
   1108   }
   1109 
   1110 
   1111   static int
   1112   gray_move_to( const FT_Vector*  to,
   1113                 PWorker           worker )
   1114   {
   1115     TPos  x, y;
   1116 
   1117 
   1118     /* record current cell, if any */
   1119     gray_record_cell( RAS_VAR );
   1120 
   1121     /* start to a new position */
   1122     x = UPSCALE( to->x );
   1123     y = UPSCALE( to->y );
   1124 
   1125     gray_start_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
   1126 
   1127     worker->x = x;
   1128     worker->y = y;
   1129     return 0;
   1130   }
   1131 
   1132 
   1133   static int
   1134   gray_line_to( const FT_Vector*  to,
   1135                 PWorker           worker )
   1136   {
   1137     gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
   1138     return 0;
   1139   }
   1140 
   1141 
   1142   static int
   1143   gray_conic_to( const FT_Vector*  control,
   1144                  const FT_Vector*  to,
   1145                  PWorker           worker )
   1146   {
   1147     gray_render_conic( RAS_VAR_ control, to );
   1148     return 0;
   1149   }
   1150 
   1151 
   1152   static int
   1153   gray_cubic_to( const FT_Vector*  control1,
   1154                  const FT_Vector*  control2,
   1155                  const FT_Vector*  to,
   1156                  PWorker           worker )
   1157   {
   1158     gray_render_cubic( RAS_VAR_ control1, control2, to );
   1159     return 0;
   1160   }
   1161 
   1162 
   1163   static void
   1164   gray_render_span( int             y,
   1165                     int             count,
   1166                     const FT_Span*  spans,
   1167                     PWorker         worker )
   1168   {
   1169     unsigned char*  p;
   1170     FT_Bitmap*      map = &worker->target;
   1171 
   1172 
   1173     /* first of all, compute the scanline offset */
   1174     p = (unsigned char*)map->buffer - y * map->pitch;
   1175     if ( map->pitch >= 0 )
   1176       p += (unsigned)( ( map->rows - 1 ) * map->pitch );
   1177 
   1178     for ( ; count > 0; count--, spans++ )
   1179     {
   1180       unsigned char  coverage = spans->coverage;
   1181 
   1182 
   1183       if ( coverage )
   1184       {
   1185         /* For small-spans it is faster to do it by ourselves than
   1186          * calling `memset'.  This is mainly due to the cost of the
   1187          * function call.
   1188          */
   1189         if ( spans->len >= 8 )
   1190           FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
   1191         else
   1192         {
   1193           unsigned char*  q = p + spans->x;
   1194 
   1195 
   1196           switch ( spans->len )
   1197           {
   1198           case 7: *q++ = (unsigned char)coverage;
   1199           case 6: *q++ = (unsigned char)coverage;
   1200           case 5: *q++ = (unsigned char)coverage;
   1201           case 4: *q++ = (unsigned char)coverage;
   1202           case 3: *q++ = (unsigned char)coverage;
   1203           case 2: *q++ = (unsigned char)coverage;
   1204           case 1: *q   = (unsigned char)coverage;
   1205           default:
   1206             ;
   1207           }
   1208         }
   1209       }
   1210     }
   1211   }
   1212 
   1213 
   1214   static void
   1215   gray_hline( RAS_ARG_ TCoord  x,
   1216                        TCoord  y,
   1217                        TPos    area,
   1218                        TCoord  acount )
   1219   {
   1220     FT_Span*  span;
   1221     int       count;
   1222     int       coverage;
   1223 
   1224 
   1225     /* compute the coverage line's coverage, depending on the    */
   1226     /* outline fill rule                                         */
   1227     /*                                                           */
   1228     /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
   1229     /*                                                           */
   1230     coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
   1231                                                     /* use range 0..256 */
   1232     if ( coverage < 0 )
   1233       coverage = -coverage;
   1234 
   1235     if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
   1236     {
   1237       coverage &= 511;
   1238 
   1239       if ( coverage > 256 )
   1240         coverage = 512 - coverage;
   1241       else if ( coverage == 256 )
   1242         coverage = 255;
   1243     }
   1244     else
   1245     {
   1246       /* normal non-zero winding rule */
   1247       if ( coverage >= 256 )
   1248         coverage = 255;
   1249     }
   1250 
   1251     y += (TCoord)ras.min_ey;
   1252     x += (TCoord)ras.min_ex;
   1253 
   1254     /* FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
   1255     if ( x >= 32767 )
   1256       x = 32767;
   1257 
   1258     /* FT_Span.y is an integer, so limit our coordinates appropriately */
   1259     if ( y >= FT_INT_MAX )
   1260       y = FT_INT_MAX;
   1261 
   1262     if ( coverage )
   1263     {
   1264       /* see whether we can add this span to the current list */
   1265       count = ras.num_gray_spans;
   1266       span  = ras.gray_spans + count - 1;
   1267       if ( count > 0                          &&
   1268            ras.span_y == y                    &&
   1269            (int)span->x + span->len == (int)x &&
   1270            span->coverage == coverage         )
   1271       {
   1272         span->len = (unsigned short)( span->len + acount );
   1273         return;
   1274       }
   1275 
   1276       if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
   1277       {
   1278         if ( ras.render_span && count > 0 )
   1279           ras.render_span( ras.span_y, count, ras.gray_spans,
   1280                            ras.render_span_data );
   1281 
   1282 #ifdef FT_DEBUG_LEVEL_TRACE
   1283 
   1284         if ( count > 0 )
   1285         {
   1286           int  n;
   1287 
   1288 
   1289           FT_TRACE7(( "y = %3d ", ras.span_y ));
   1290           span = ras.gray_spans;
   1291           for ( n = 0; n < count; n++, span++ )
   1292             FT_TRACE7(( "[%d..%d]:%02x ",
   1293                         span->x, span->x + span->len - 1, span->coverage ));
   1294           FT_TRACE7(( "\n" ));
   1295         }
   1296 
   1297 #endif /* FT_DEBUG_LEVEL_TRACE */
   1298 
   1299         ras.num_gray_spans = 0;
   1300         ras.span_y         = (int)y;
   1301 
   1302         count = 0;
   1303         span  = ras.gray_spans;
   1304       }
   1305       else
   1306         span++;
   1307 
   1308       /* add a gray span to the current list */
   1309       span->x        = (short)x;
   1310       span->len      = (unsigned short)acount;
   1311       span->coverage = (unsigned char)coverage;
   1312 
   1313       ras.num_gray_spans++;
   1314     }
   1315   }
   1316 
   1317 
   1318 #ifdef FT_DEBUG_LEVEL_TRACE
   1319 
   1320   /* to be called while in the debugger --                                */
   1321   /* this function causes a compiler warning since it is unused otherwise */
   1322   static void
   1323   gray_dump_cells( RAS_ARG )
   1324   {
   1325     int  yindex;
   1326 
   1327 
   1328     for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1329     {
   1330       PCell  cell;
   1331 
   1332 
   1333       printf( "%3d:", yindex );
   1334 
   1335       for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
   1336         printf( " (%3ld, c:%4ld, a:%6d)", cell->x, cell->cover, cell->area );
   1337       printf( "\n" );
   1338     }
   1339   }
   1340 
   1341 #endif /* FT_DEBUG_LEVEL_TRACE */
   1342 
   1343 
   1344   static void
   1345   gray_sweep( RAS_ARG_ const FT_Bitmap*  target )
   1346   {
   1347     int  yindex;
   1348 
   1349     FT_UNUSED( target );
   1350 
   1351 
   1352     if ( ras.num_cells == 0 )
   1353       return;
   1354 
   1355     ras.num_gray_spans = 0;
   1356 
   1357     FT_TRACE7(( "gray_sweep: start\n" ));
   1358 
   1359     for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1360     {
   1361       PCell   cell  = ras.ycells[yindex];
   1362       TCoord  cover = 0;
   1363       TCoord  x     = 0;
   1364 
   1365 
   1366       for ( ; cell != NULL; cell = cell->next )
   1367       {
   1368         TPos  area;
   1369 
   1370 
   1371         if ( cell->x > x && cover != 0 )
   1372           gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
   1373                       cell->x - x );
   1374 
   1375         cover += cell->cover;
   1376         area   = cover * ( ONE_PIXEL * 2 ) - cell->area;
   1377 
   1378         if ( area != 0 && cell->x >= 0 )
   1379           gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
   1380 
   1381         x = cell->x + 1;
   1382       }
   1383 
   1384       if ( cover != 0 )
   1385         gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
   1386                     ras.count_ex - x );
   1387     }
   1388 
   1389     if ( ras.render_span && ras.num_gray_spans > 0 )
   1390       ras.render_span( ras.span_y, ras.num_gray_spans,
   1391                        ras.gray_spans, ras.render_span_data );
   1392 
   1393     FT_TRACE7(( "gray_sweep: end\n" ));
   1394   }
   1395 
   1396 
   1397 #ifdef _STANDALONE_
   1398 
   1399   /*************************************************************************/
   1400   /*                                                                       */
   1401   /*  The following function should only compile in stand-alone mode,      */
   1402   /*  i.e., when building this component without the rest of FreeType.     */
   1403   /*                                                                       */
   1404   /*************************************************************************/
   1405 
   1406   /*************************************************************************/
   1407   /*                                                                       */
   1408   /* <Function>                                                            */
   1409   /*    FT_Outline_Decompose                                               */
   1410   /*                                                                       */
   1411   /* <Description>                                                         */
   1412   /*    Walk over an outline's structure to decompose it into individual   */
   1413   /*    segments and Bzier arcs.  This function is also able to emit      */
   1414   /*    `move to' and `close to' operations to indicate the start and end  */
   1415   /*    of new contours in the outline.                                    */
   1416   /*                                                                       */
   1417   /* <Input>                                                               */
   1418   /*    outline        :: A pointer to the source target.                  */
   1419   /*                                                                       */
   1420   /*    func_interface :: A table of `emitters', i.e., function pointers   */
   1421   /*                      called during decomposition to indicate path     */
   1422   /*                      operations.                                      */
   1423   /*                                                                       */
   1424   /* <InOut>                                                               */
   1425   /*    user           :: A typeless pointer which is passed to each       */
   1426   /*                      emitter during the decomposition.  It can be     */
   1427   /*                      used to store the state during the               */
   1428   /*                      decomposition.                                   */
   1429   /*                                                                       */
   1430   /* <Return>                                                              */
   1431   /*    Error code.  0 means success.                                      */
   1432   /*                                                                       */
   1433   static int
   1434   FT_Outline_Decompose( const FT_Outline*        outline,
   1435                         const FT_Outline_Funcs*  func_interface,
   1436                         void*                    user )
   1437   {
   1438 #undef SCALED
   1439 #define SCALED( x )  ( ( (x) << shift ) - delta )
   1440 
   1441     FT_Vector   v_last;
   1442     FT_Vector   v_control;
   1443     FT_Vector   v_start;
   1444 
   1445     FT_Vector*  point;
   1446     FT_Vector*  limit;
   1447     char*       tags;
   1448 
   1449     int         error;
   1450 
   1451     int   n;         /* index of contour in outline     */
   1452     int   first;     /* index of first point in contour */
   1453     char  tag;       /* current point's state           */
   1454 
   1455     int   shift;
   1456     TPos  delta;
   1457 
   1458 
   1459     if ( !outline || !func_interface )
   1460       return ErrRaster_Invalid_Argument;
   1461 
   1462     shift = func_interface->shift;
   1463     delta = func_interface->delta;
   1464     first = 0;
   1465 
   1466     for ( n = 0; n < outline->n_contours; n++ )
   1467     {
   1468       int  last;  /* index of last point in contour */
   1469 
   1470 
   1471       FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
   1472 
   1473       last  = outline->contours[n];
   1474       if ( last < 0 )
   1475         goto Invalid_Outline;
   1476       limit = outline->points + last;
   1477 
   1478       v_start   = outline->points[first];
   1479       v_start.x = SCALED( v_start.x );
   1480       v_start.y = SCALED( v_start.y );
   1481 
   1482       v_last   = outline->points[last];
   1483       v_last.x = SCALED( v_last.x );
   1484       v_last.y = SCALED( v_last.y );
   1485 
   1486       v_control = v_start;
   1487 
   1488       point = outline->points + first;
   1489       tags  = outline->tags   + first;
   1490       tag   = FT_CURVE_TAG( tags[0] );
   1491 
   1492       /* A contour cannot start with a cubic control point! */
   1493       if ( tag == FT_CURVE_TAG_CUBIC )
   1494         goto Invalid_Outline;
   1495 
   1496       /* check first point to determine origin */
   1497       if ( tag == FT_CURVE_TAG_CONIC )
   1498       {
   1499         /* first point is conic control.  Yes, this happens. */
   1500         if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
   1501         {
   1502           /* start at last point if it is on the curve */
   1503           v_start = v_last;
   1504           limit--;
   1505         }
   1506         else
   1507         {
   1508           /* if both first and last points are conic,         */
   1509           /* start at their middle and record its position    */
   1510           /* for closure                                      */
   1511           v_start.x = ( v_start.x + v_last.x ) / 2;
   1512           v_start.y = ( v_start.y + v_last.y ) / 2;
   1513 
   1514           v_last = v_start;
   1515         }
   1516         point--;
   1517         tags--;
   1518       }
   1519 
   1520       FT_TRACE5(( "  move to (%.2f, %.2f)\n",
   1521                   v_start.x / 64.0, v_start.y / 64.0 ));
   1522       error = func_interface->move_to( &v_start, user );
   1523       if ( error )
   1524         goto Exit;
   1525 
   1526       while ( point < limit )
   1527       {
   1528         point++;
   1529         tags++;
   1530 
   1531         tag = FT_CURVE_TAG( tags[0] );
   1532         switch ( tag )
   1533         {
   1534         case FT_CURVE_TAG_ON:  /* emit a single line_to */
   1535           {
   1536             FT_Vector  vec;
   1537 
   1538 
   1539             vec.x = SCALED( point->x );
   1540             vec.y = SCALED( point->y );
   1541 
   1542             FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1543                         vec.x / 64.0, vec.y / 64.0 ));
   1544             error = func_interface->line_to( &vec, user );
   1545             if ( error )
   1546               goto Exit;
   1547             continue;
   1548           }
   1549 
   1550         case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
   1551           v_control.x = SCALED( point->x );
   1552           v_control.y = SCALED( point->y );
   1553 
   1554         Do_Conic:
   1555           if ( point < limit )
   1556           {
   1557             FT_Vector  vec;
   1558             FT_Vector  v_middle;
   1559 
   1560 
   1561             point++;
   1562             tags++;
   1563             tag = FT_CURVE_TAG( tags[0] );
   1564 
   1565             vec.x = SCALED( point->x );
   1566             vec.y = SCALED( point->y );
   1567 
   1568             if ( tag == FT_CURVE_TAG_ON )
   1569             {
   1570               FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1571                           " with control (%.2f, %.2f)\n",
   1572                           vec.x / 64.0, vec.y / 64.0,
   1573                           v_control.x / 64.0, v_control.y / 64.0 ));
   1574               error = func_interface->conic_to( &v_control, &vec, user );
   1575               if ( error )
   1576                 goto Exit;
   1577               continue;
   1578             }
   1579 
   1580             if ( tag != FT_CURVE_TAG_CONIC )
   1581               goto Invalid_Outline;
   1582 
   1583             v_middle.x = ( v_control.x + vec.x ) / 2;
   1584             v_middle.y = ( v_control.y + vec.y ) / 2;
   1585 
   1586             FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1587                         " with control (%.2f, %.2f)\n",
   1588                         v_middle.x / 64.0, v_middle.y / 64.0,
   1589                         v_control.x / 64.0, v_control.y / 64.0 ));
   1590             error = func_interface->conic_to( &v_control, &v_middle, user );
   1591             if ( error )
   1592               goto Exit;
   1593 
   1594             v_control = vec;
   1595             goto Do_Conic;
   1596           }
   1597 
   1598           FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1599                       " with control (%.2f, %.2f)\n",
   1600                       v_start.x / 64.0, v_start.y / 64.0,
   1601                       v_control.x / 64.0, v_control.y / 64.0 ));
   1602           error = func_interface->conic_to( &v_control, &v_start, user );
   1603           goto Close;
   1604 
   1605         default:  /* FT_CURVE_TAG_CUBIC */
   1606           {
   1607             FT_Vector  vec1, vec2;
   1608 
   1609 
   1610             if ( point + 1 > limit                             ||
   1611                  FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
   1612               goto Invalid_Outline;
   1613 
   1614             point += 2;
   1615             tags  += 2;
   1616 
   1617             vec1.x = SCALED( point[-2].x );
   1618             vec1.y = SCALED( point[-2].y );
   1619 
   1620             vec2.x = SCALED( point[-1].x );
   1621             vec2.y = SCALED( point[-1].y );
   1622 
   1623             if ( point <= limit )
   1624             {
   1625               FT_Vector  vec;
   1626 
   1627 
   1628               vec.x = SCALED( point->x );
   1629               vec.y = SCALED( point->y );
   1630 
   1631               FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1632                           " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1633                           vec.x / 64.0, vec.y / 64.0,
   1634                           vec1.x / 64.0, vec1.y / 64.0,
   1635                           vec2.x / 64.0, vec2.y / 64.0 ));
   1636               error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
   1637               if ( error )
   1638                 goto Exit;
   1639               continue;
   1640             }
   1641 
   1642             FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1643                         " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1644                         v_start.x / 64.0, v_start.y / 64.0,
   1645                         vec1.x / 64.0, vec1.y / 64.0,
   1646                         vec2.x / 64.0, vec2.y / 64.0 ));
   1647             error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
   1648             goto Close;
   1649           }
   1650         }
   1651       }
   1652 
   1653       /* close the contour with a line segment */
   1654       FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1655                   v_start.x / 64.0, v_start.y / 64.0 ));
   1656       error = func_interface->line_to( &v_start, user );
   1657 
   1658    Close:
   1659       if ( error )
   1660         goto Exit;
   1661 
   1662       first = last + 1;
   1663     }
   1664 
   1665     FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
   1666     return 0;
   1667 
   1668   Exit:
   1669     FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
   1670     return error;
   1671 
   1672   Invalid_Outline:
   1673     return ErrRaster_Invalid_Outline;
   1674   }
   1675 
   1676 #endif /* _STANDALONE_ */
   1677 
   1678 
   1679   typedef struct  TBand_
   1680   {
   1681     TPos  min, max;
   1682 
   1683   } TBand;
   1684 
   1685     FT_DEFINE_OUTLINE_FUNCS(func_interface,
   1686       (FT_Outline_MoveTo_Func) gray_move_to,
   1687       (FT_Outline_LineTo_Func) gray_line_to,
   1688       (FT_Outline_ConicTo_Func)gray_conic_to,
   1689       (FT_Outline_CubicTo_Func)gray_cubic_to,
   1690       0,
   1691       0
   1692     )
   1693 
   1694   static int
   1695   gray_convert_glyph_inner( RAS_ARG )
   1696   {
   1697 
   1698     volatile int  error = 0;
   1699 
   1700 #ifdef FT_CONFIG_OPTION_PIC
   1701       FT_Outline_Funcs func_interface;
   1702       Init_Class_func_interface(&func_interface);
   1703 #endif
   1704 
   1705     if ( ft_setjmp( ras.jump_buffer ) == 0 )
   1706     {
   1707       error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
   1708       gray_record_cell( RAS_VAR );
   1709     }
   1710     else
   1711       error = ErrRaster_Memory_Overflow;
   1712 
   1713     return error;
   1714   }
   1715 
   1716 
   1717   static int
   1718   gray_convert_glyph( RAS_ARG )
   1719   {
   1720     TBand            bands[40];
   1721     TBand* volatile  band;
   1722     int volatile     n, num_bands;
   1723     TPos volatile    min, max, max_y;
   1724     FT_BBox*         clip;
   1725 
   1726 
   1727     /* Set up state in the raster object */
   1728     gray_compute_cbox( RAS_VAR );
   1729 
   1730     /* clip to target bitmap, exit if nothing to do */
   1731     clip = &ras.clip_box;
   1732 
   1733     if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
   1734          ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
   1735       return 0;
   1736 
   1737     if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
   1738     if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
   1739 
   1740     if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
   1741     if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
   1742 
   1743     ras.count_ex = ras.max_ex - ras.min_ex;
   1744     ras.count_ey = ras.max_ey - ras.min_ey;
   1745 
   1746     /* set up vertical bands */
   1747     num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
   1748     if ( num_bands == 0 )
   1749       num_bands = 1;
   1750     if ( num_bands >= 39 )
   1751       num_bands = 39;
   1752 
   1753     ras.band_shoot = 0;
   1754 
   1755     min   = ras.min_ey;
   1756     max_y = ras.max_ey;
   1757 
   1758     for ( n = 0; n < num_bands; n++, min = max )
   1759     {
   1760       max = min + ras.band_size;
   1761       if ( n == num_bands - 1 || max > max_y )
   1762         max = max_y;
   1763 
   1764       bands[0].min = min;
   1765       bands[0].max = max;
   1766       band         = bands;
   1767 
   1768       while ( band >= bands )
   1769       {
   1770         TPos  bottom, top, middle;
   1771         int   error;
   1772 
   1773         {
   1774           PCell  cells_max;
   1775           int    yindex;
   1776           long   cell_start, cell_end, cell_mod;
   1777 
   1778 
   1779           ras.ycells = (PCell*)ras.buffer;
   1780           ras.ycount = band->max - band->min;
   1781 
   1782           cell_start = sizeof ( PCell ) * ras.ycount;
   1783           cell_mod   = cell_start % sizeof ( TCell );
   1784           if ( cell_mod > 0 )
   1785             cell_start += sizeof ( TCell ) - cell_mod;
   1786 
   1787           cell_end  = ras.buffer_size;
   1788           cell_end -= cell_end % sizeof( TCell );
   1789 
   1790           cells_max = (PCell)( (char*)ras.buffer + cell_end );
   1791           ras.cells = (PCell)( (char*)ras.buffer + cell_start );
   1792           if ( ras.cells >= cells_max )
   1793             goto ReduceBands;
   1794 
   1795           ras.max_cells = cells_max - ras.cells;
   1796           if ( ras.max_cells < 2 )
   1797             goto ReduceBands;
   1798 
   1799           for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1800             ras.ycells[yindex] = NULL;
   1801         }
   1802 
   1803         ras.num_cells = 0;
   1804         ras.invalid   = 1;
   1805         ras.min_ey    = band->min;
   1806         ras.max_ey    = band->max;
   1807         ras.count_ey  = band->max - band->min;
   1808 
   1809         error = gray_convert_glyph_inner( RAS_VAR );
   1810 
   1811         if ( !error )
   1812         {
   1813           gray_sweep( RAS_VAR_ &ras.target );
   1814           band--;
   1815           continue;
   1816         }
   1817         else if ( error != ErrRaster_Memory_Overflow )
   1818           return 1;
   1819 
   1820       ReduceBands:
   1821         /* render pool overflow; we will reduce the render band by half */
   1822         bottom = band->min;
   1823         top    = band->max;
   1824         middle = bottom + ( ( top - bottom ) >> 1 );
   1825 
   1826         /* This is too complex for a single scanline; there must */
   1827         /* be some problems.                                     */
   1828         if ( middle == bottom )
   1829         {
   1830 #ifdef FT_DEBUG_LEVEL_TRACE
   1831           FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
   1832 #endif
   1833           return 1;
   1834         }
   1835 
   1836         if ( bottom-top >= ras.band_size )
   1837           ras.band_shoot++;
   1838 
   1839         band[1].min = bottom;
   1840         band[1].max = middle;
   1841         band[0].min = middle;
   1842         band[0].max = top;
   1843         band++;
   1844       }
   1845     }
   1846 
   1847     if ( ras.band_shoot > 8 && ras.band_size > 16 )
   1848       ras.band_size = ras.band_size / 2;
   1849 
   1850     return 0;
   1851   }
   1852 
   1853 
   1854   static int
   1855   gray_raster_render( PRaster                  raster,
   1856                       const FT_Raster_Params*  params )
   1857   {
   1858     const FT_Outline*  outline    = (const FT_Outline*)params->source;
   1859     const FT_Bitmap*   target_map = params->target;
   1860     PWorker            worker;
   1861 
   1862 
   1863     if ( !raster || !raster->buffer || !raster->buffer_size )
   1864       return ErrRaster_Invalid_Argument;
   1865 
   1866     if ( !outline )
   1867       return ErrRaster_Invalid_Outline;
   1868 
   1869     /* return immediately if the outline is empty */
   1870     if ( outline->n_points == 0 || outline->n_contours <= 0 )
   1871       return 0;
   1872 
   1873     if ( !outline->contours || !outline->points )
   1874       return ErrRaster_Invalid_Outline;
   1875 
   1876     if ( outline->n_points !=
   1877            outline->contours[outline->n_contours - 1] + 1 )
   1878       return ErrRaster_Invalid_Outline;
   1879 
   1880     worker = raster->worker;
   1881 
   1882     /* if direct mode is not set, we must have a target bitmap */
   1883     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1884     {
   1885       if ( !target_map )
   1886         return ErrRaster_Invalid_Argument;
   1887 
   1888       /* nothing to do */
   1889       if ( !target_map->width || !target_map->rows )
   1890         return 0;
   1891 
   1892       if ( !target_map->buffer )
   1893         return ErrRaster_Invalid_Argument;
   1894     }
   1895 
   1896     /* this version does not support monochrome rendering */
   1897     if ( !( params->flags & FT_RASTER_FLAG_AA ) )
   1898       return ErrRaster_Invalid_Mode;
   1899 
   1900     /* compute clipping box */
   1901     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1902     {
   1903       /* compute clip box from target pixmap */
   1904       ras.clip_box.xMin = 0;
   1905       ras.clip_box.yMin = 0;
   1906       ras.clip_box.xMax = target_map->width;
   1907       ras.clip_box.yMax = target_map->rows;
   1908     }
   1909     else if ( params->flags & FT_RASTER_FLAG_CLIP )
   1910       ras.clip_box = params->clip_box;
   1911     else
   1912     {
   1913       ras.clip_box.xMin = -32768L;
   1914       ras.clip_box.yMin = -32768L;
   1915       ras.clip_box.xMax =  32767L;
   1916       ras.clip_box.yMax =  32767L;
   1917     }
   1918 
   1919     gray_init_cells( RAS_VAR_ raster->buffer, raster->buffer_size );
   1920 
   1921     ras.outline        = *outline;
   1922     ras.num_cells      = 0;
   1923     ras.invalid        = 1;
   1924     ras.band_size      = raster->band_size;
   1925     ras.num_gray_spans = 0;
   1926 
   1927     if ( params->flags & FT_RASTER_FLAG_DIRECT )
   1928     {
   1929       ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
   1930       ras.render_span_data = params->user;
   1931     }
   1932     else
   1933     {
   1934       ras.target           = *target_map;
   1935       ras.render_span      = (FT_Raster_Span_Func)gray_render_span;
   1936       ras.render_span_data = &ras;
   1937     }
   1938 
   1939     return gray_convert_glyph( RAS_VAR );
   1940   }
   1941 
   1942 
   1943   /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
   1944   /****                         a static object.                   *****/
   1945 
   1946 #ifdef _STANDALONE_
   1947 
   1948   static int
   1949   gray_raster_new( void*       memory,
   1950                    FT_Raster*  araster )
   1951   {
   1952     static TRaster  the_raster;
   1953 
   1954     FT_UNUSED( memory );
   1955 
   1956 
   1957     *araster = (FT_Raster)&the_raster;
   1958     FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
   1959 
   1960     return 0;
   1961   }
   1962 
   1963 
   1964   static void
   1965   gray_raster_done( FT_Raster  raster )
   1966   {
   1967     /* nothing */
   1968     FT_UNUSED( raster );
   1969   }
   1970 
   1971 #else /* !_STANDALONE_ */
   1972 
   1973   static int
   1974   gray_raster_new( FT_Memory   memory,
   1975                    FT_Raster*  araster )
   1976   {
   1977     FT_Error  error;
   1978     PRaster   raster = NULL;
   1979 
   1980 
   1981     *araster = 0;
   1982     if ( !FT_ALLOC( raster, sizeof ( TRaster ) ) )
   1983     {
   1984       raster->memory = memory;
   1985       *araster = (FT_Raster)raster;
   1986     }
   1987 
   1988     return error;
   1989   }
   1990 
   1991 
   1992   static void
   1993   gray_raster_done( FT_Raster  raster )
   1994   {
   1995     FT_Memory  memory = (FT_Memory)((PRaster)raster)->memory;
   1996 
   1997 
   1998     FT_FREE( raster );
   1999   }
   2000 
   2001 #endif /* !_STANDALONE_ */
   2002 
   2003 
   2004   static void
   2005   gray_raster_reset( FT_Raster  raster,
   2006                      char*      pool_base,
   2007                      long       pool_size )
   2008   {
   2009     PRaster  rast = (PRaster)raster;
   2010 
   2011 
   2012     if ( raster )
   2013     {
   2014       if ( pool_base && pool_size >= (long)sizeof ( TWorker ) + 2048 )
   2015       {
   2016         PWorker  worker = (PWorker)pool_base;
   2017 
   2018 
   2019         rast->worker      = worker;
   2020         rast->buffer      = pool_base +
   2021                               ( ( sizeof ( TWorker ) + sizeof ( TCell ) - 1 ) &
   2022                                 ~( sizeof ( TCell ) - 1 ) );
   2023         rast->buffer_size = (long)( ( pool_base + pool_size ) -
   2024                                     (char*)rast->buffer ) &
   2025                                       ~( sizeof ( TCell ) - 1 );
   2026         rast->band_size   = (int)( rast->buffer_size /
   2027                                      ( sizeof ( TCell ) * 8 ) );
   2028       }
   2029       else
   2030       {
   2031         rast->buffer      = NULL;
   2032         rast->buffer_size = 0;
   2033         rast->worker      = NULL;
   2034       }
   2035     }
   2036   }
   2037 
   2038 
   2039   FT_DEFINE_RASTER_FUNCS(ft_grays_raster,
   2040     FT_GLYPH_FORMAT_OUTLINE,
   2041 
   2042     (FT_Raster_New_Func)     gray_raster_new,
   2043     (FT_Raster_Reset_Func)   gray_raster_reset,
   2044     (FT_Raster_Set_Mode_Func)0,
   2045     (FT_Raster_Render_Func)  gray_raster_render,
   2046     (FT_Raster_Done_Func)    gray_raster_done
   2047   )
   2048 
   2049 
   2050 /* END */
   2051 
   2052 
   2053 /* Local Variables: */
   2054 /* coding: utf-8    */
   2055 /* End:             */
   2056