Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrPathUtils.h"
      9 
     10 #include "GrPoint.h"
     11 #include "SkGeometry.h"
     12 
     13 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
     14                                           const SkMatrix& viewM,
     15                                           const SkRect& pathBounds) {
     16     // In order to tesselate the path we get a bound on how much the matrix can
     17     // stretch when mapping to screen coordinates.
     18     SkScalar stretch = viewM.getMaxStretch();
     19     SkScalar srcTol = devTol;
     20 
     21     if (stretch < 0) {
     22         // take worst case mapRadius amoung four corners.
     23         // (less than perfect)
     24         for (int i = 0; i < 4; ++i) {
     25             SkMatrix mat;
     26             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
     27                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
     28             mat.postConcat(viewM);
     29             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
     30         }
     31     }
     32     srcTol = SkScalarDiv(srcTol, stretch);
     33     return srcTol;
     34 }
     35 
     36 static const int MAX_POINTS_PER_CURVE = 1 << 10;
     37 static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f);
     38 
     39 uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
     40                                           SkScalar tol) {
     41     if (tol < gMinCurveTol) {
     42         tol = gMinCurveTol;
     43     }
     44     GrAssert(tol > 0);
     45 
     46     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
     47     if (d <= tol) {
     48         return 1;
     49     } else {
     50         // Each time we subdivide, d should be cut in 4. So we need to
     51         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
     52         // points.
     53         // 2^(log4(x)) = sqrt(x);
     54         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
     55         int pow2 = GrNextPow2(temp);
     56         // Because of NaNs & INFs we can wind up with a degenerate temp
     57         // such that pow2 comes out negative. Also, our point generator
     58         // will always output at least one pt.
     59         if (pow2 < 1) {
     60             pow2 = 1;
     61         }
     62         return GrMin(pow2, MAX_POINTS_PER_CURVE);
     63     }
     64 }
     65 
     66 uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
     67                                               const GrPoint& p1,
     68                                               const GrPoint& p2,
     69                                               SkScalar tolSqd,
     70                                               GrPoint** points,
     71                                               uint32_t pointsLeft) {
     72     if (pointsLeft < 2 ||
     73         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
     74         (*points)[0] = p2;
     75         *points += 1;
     76         return 1;
     77     }
     78 
     79     GrPoint q[] = {
     80         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
     81         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
     82     };
     83     GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
     84 
     85     pointsLeft >>= 1;
     86     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
     87     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
     88     return a + b;
     89 }
     90 
     91 uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
     92                                            SkScalar tol) {
     93     if (tol < gMinCurveTol) {
     94         tol = gMinCurveTol;
     95     }
     96     GrAssert(tol > 0);
     97 
     98     SkScalar d = GrMax(
     99         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
    100         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
    101     d = SkScalarSqrt(d);
    102     if (d <= tol) {
    103         return 1;
    104     } else {
    105         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
    106         int pow2 = GrNextPow2(temp);
    107         // Because of NaNs & INFs we can wind up with a degenerate temp
    108         // such that pow2 comes out negative. Also, our point generator
    109         // will always output at least one pt.
    110         if (pow2 < 1) {
    111             pow2 = 1;
    112         }
    113         return GrMin(pow2, MAX_POINTS_PER_CURVE);
    114     }
    115 }
    116 
    117 uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
    118                                           const GrPoint& p1,
    119                                           const GrPoint& p2,
    120                                           const GrPoint& p3,
    121                                           SkScalar tolSqd,
    122                                           GrPoint** points,
    123                                           uint32_t pointsLeft) {
    124     if (pointsLeft < 2 ||
    125         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
    126          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
    127             (*points)[0] = p3;
    128             *points += 1;
    129             return 1;
    130         }
    131     GrPoint q[] = {
    132         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    133         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    134         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    135     };
    136     GrPoint r[] = {
    137         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    138         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    139     };
    140     GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    141     pointsLeft >>= 1;
    142     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    143     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    144     return a + b;
    145 }
    146 
    147 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
    148                                      SkScalar tol) {
    149     if (tol < gMinCurveTol) {
    150         tol = gMinCurveTol;
    151     }
    152     GrAssert(tol > 0);
    153 
    154     int pointCount = 0;
    155     *subpaths = 1;
    156 
    157     bool first = true;
    158 
    159     SkPath::Iter iter(path, false);
    160     SkPath::Verb verb;
    161 
    162     GrPoint pts[4];
    163     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
    164 
    165         switch (verb) {
    166             case SkPath::kLine_Verb:
    167                 pointCount += 1;
    168                 break;
    169             case SkPath::kQuad_Verb:
    170                 pointCount += quadraticPointCount(pts, tol);
    171                 break;
    172             case SkPath::kCubic_Verb:
    173                 pointCount += cubicPointCount(pts, tol);
    174                 break;
    175             case SkPath::kMove_Verb:
    176                 pointCount += 1;
    177                 if (!first) {
    178                     ++(*subpaths);
    179                 }
    180                 break;
    181             default:
    182                 break;
    183         }
    184         first = false;
    185     }
    186     return pointCount;
    187 }
    188 
    189 void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
    190     // can't make this static, no cons :(
    191     SkMatrix UVpts;
    192 #ifndef SK_SCALAR_IS_FLOAT
    193     GrCrash("Expected scalar is float.");
    194 #endif
    195     SkMatrix m;
    196     // We want M such that M * xy_pt = uv_pt
    197     // We know M * control_pts = [0  1/2 1]
    198     //                           [0  0   1]
    199     //                           [1  1   1]
    200     // We invert the control pt matrix and post concat to both sides to get M.
    201     UVpts.setAll(0,   SK_ScalarHalf,  SK_Scalar1,
    202                  0,               0,  SK_Scalar1,
    203                  SkScalarToPersp(SK_Scalar1),
    204                  SkScalarToPersp(SK_Scalar1),
    205                  SkScalarToPersp(SK_Scalar1));
    206     m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
    207              qPts[0].fY, qPts[1].fY, qPts[2].fY,
    208              SkScalarToPersp(SK_Scalar1),
    209              SkScalarToPersp(SK_Scalar1),
    210              SkScalarToPersp(SK_Scalar1));
    211     if (!m.invert(&m)) {
    212         // The quad is degenerate. Hopefully this is rare. Find the pts that are
    213         // farthest apart to compute a line (unless it is really a pt).
    214         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
    215         int maxEdge = 0;
    216         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
    217         if (d > maxD) {
    218             maxD = d;
    219             maxEdge = 1;
    220         }
    221         d = qPts[2].distanceToSqd(qPts[0]);
    222         if (d > maxD) {
    223             maxD = d;
    224             maxEdge = 2;
    225         }
    226         // We could have a tolerance here, not sure if it would improve anything
    227         if (maxD > 0) {
    228             // Set the matrix to give (u = 0, v = distance_to_line)
    229             GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
    230             // when looking from the point 0 down the line we want positive
    231             // distances to be to the left. This matches the non-degenerate
    232             // case.
    233             lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
    234             lineVec.dot(qPts[0]);
    235             // first row
    236             fM[0] = 0;
    237             fM[1] = 0;
    238             fM[2] = 0;
    239             // second row
    240             fM[3] = lineVec.fX;
    241             fM[4] = lineVec.fY;
    242             fM[5] = -lineVec.dot(qPts[maxEdge]);
    243         } else {
    244             // It's a point. It should cover zero area. Just set the matrix such
    245             // that (u, v) will always be far away from the quad.
    246             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
    247             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
    248         }
    249     } else {
    250         m.postConcat(UVpts);
    251 
    252         // The matrix should not have perspective.
    253         SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f));
    254         GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
    255         GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
    256 
    257         // It may not be normalized to have 1.0 in the bottom right
    258         float m33 = m.get(SkMatrix::kMPersp2);
    259         if (1.f != m33) {
    260             m33 = 1.f / m33;
    261             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
    262             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
    263             fM[2] = m33 * m.get(SkMatrix::kMTransX);
    264             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
    265             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
    266             fM[5] = m33 * m.get(SkMatrix::kMTransY);
    267         } else {
    268             fM[0] = m.get(SkMatrix::kMScaleX);
    269             fM[1] = m.get(SkMatrix::kMSkewX);
    270             fM[2] = m.get(SkMatrix::kMTransX);
    271             fM[3] = m.get(SkMatrix::kMSkewY);
    272             fM[4] = m.get(SkMatrix::kMScaleY);
    273             fM[5] = m.get(SkMatrix::kMTransY);
    274         }
    275     }
    276 }
    277 
    278 namespace {
    279 
    280 // a is the first control point of the cubic.
    281 // ab is the vector from a to the second control point.
    282 // dc is the vector from the fourth to the third control point.
    283 // d is the fourth control point.
    284 // p is the candidate quadratic control point.
    285 // this assumes that the cubic doesn't inflect and is simple
    286 bool is_point_within_cubic_tangents(const SkPoint& a,
    287                                     const SkVector& ab,
    288                                     const SkVector& dc,
    289                                     const SkPoint& d,
    290                                     SkPath::Direction dir,
    291                                     const SkPoint p) {
    292     SkVector ap = p - a;
    293     SkScalar apXab = ap.cross(ab);
    294     if (SkPath::kCW_Direction == dir) {
    295         if (apXab > 0) {
    296             return false;
    297         }
    298     } else {
    299         GrAssert(SkPath::kCCW_Direction == dir);
    300         if (apXab < 0) {
    301             return false;
    302         }
    303     }
    304 
    305     SkVector dp = p - d;
    306     SkScalar dpXdc = dp.cross(dc);
    307     if (SkPath::kCW_Direction == dir) {
    308         if (dpXdc < 0) {
    309             return false;
    310         }
    311     } else {
    312         GrAssert(SkPath::kCCW_Direction == dir);
    313         if (dpXdc > 0) {
    314             return false;
    315         }
    316     }
    317     return true;
    318 }
    319 
    320 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
    321                                        SkScalar toleranceSqd,
    322                                        bool constrainWithinTangents,
    323                                        SkPath::Direction dir,
    324                                        SkTArray<SkPoint, true>* quads,
    325                                        int sublevel = 0) {
    326 
    327     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    328     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
    329 
    330     SkVector ab = p[1] - p[0];
    331     SkVector dc = p[2] - p[3];
    332 
    333     if (ab.isZero()) {
    334         if (dc.isZero()) {
    335             SkPoint* degQuad = quads->push_back_n(3);
    336             degQuad[0] = p[0];
    337             degQuad[1] = p[0];
    338             degQuad[2] = p[3];
    339             return;
    340         }
    341         ab = p[2] - p[0];
    342     }
    343     if (dc.isZero()) {
    344         dc = p[1] - p[3];
    345     }
    346 
    347     // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
    348     // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
    349     // the max subdivision count. However, in this case the cubic is approaching a line and the
    350     // accuracy of the quad point isn't so important. We check if the two middle cubic control
    351     // points are very close to the baseline vector. If so then we just pick quadratic points on the
    352     // control polygon.
    353 
    354     if (constrainWithinTangents) {
    355         SkVector da = p[0] - p[3];
    356         SkScalar invDALengthSqd = da.lengthSqd();
    357         if (invDALengthSqd > SK_ScalarNearlyZero) {
    358             invDALengthSqd = SkScalarInvert(invDALengthSqd);
    359             // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
    360             // same goed for point c using vector cd.
    361             SkScalar detABSqd = ab.cross(da);
    362             detABSqd = SkScalarSquare(detABSqd);
    363             SkScalar detDCSqd = dc.cross(da);
    364             detDCSqd = SkScalarSquare(detDCSqd);
    365             if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
    366                 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
    367                 SkPoint b = p[0] + ab;
    368                 SkPoint c = p[3] + dc;
    369                 SkPoint mid = b + c;
    370                 mid.scale(SK_ScalarHalf);
    371                 // Insert two quadratics to cover the case when ab points away from d and/or dc
    372                 // points away from a.
    373                 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
    374                     SkPoint* qpts = quads->push_back_n(6);
    375                     qpts[0] = p[0];
    376                     qpts[1] = b;
    377                     qpts[2] = mid;
    378                     qpts[3] = mid;
    379                     qpts[4] = c;
    380                     qpts[5] = p[3];
    381                 } else {
    382                     SkPoint* qpts = quads->push_back_n(3);
    383                     qpts[0] = p[0];
    384                     qpts[1] = mid;
    385                     qpts[2] = p[3];
    386                 }
    387                 return;
    388             }
    389         }
    390     }
    391 
    392     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    393     static const int kMaxSubdivs = 10;
    394 
    395     ab.scale(kLengthScale);
    396     dc.scale(kLengthScale);
    397 
    398     // e0 and e1 are extrapolations along vectors ab and dc.
    399     SkVector c0 = p[0];
    400     c0 += ab;
    401     SkVector c1 = p[3];
    402     c1 += dc;
    403 
    404     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
    405     if (dSqd < toleranceSqd) {
    406         SkPoint cAvg = c0;
    407         cAvg += c1;
    408         cAvg.scale(SK_ScalarHalf);
    409 
    410         bool subdivide = false;
    411 
    412         if (constrainWithinTangents &&
    413             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
    414             // choose a new cAvg that is the intersection of the two tangent lines.
    415             ab.setOrthog(ab);
    416             SkScalar z0 = -ab.dot(p[0]);
    417             dc.setOrthog(dc);
    418             SkScalar z1 = -dc.dot(p[3]);
    419             cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
    420             cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
    421             SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
    422             z = SkScalarInvert(z);
    423             cAvg.fX *= z;
    424             cAvg.fY *= z;
    425             if (sublevel <= kMaxSubdivs) {
    426                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
    427                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
    428                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
    429                 // the distances and tolerance can't be negative.
    430                 // (d0 + d1)^2 > toleranceSqd
    431                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
    432                 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
    433                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
    434             }
    435         }
    436         if (!subdivide) {
    437             SkPoint* pts = quads->push_back_n(3);
    438             pts[0] = p[0];
    439             pts[1] = cAvg;
    440             pts[2] = p[3];
    441             return;
    442         }
    443     }
    444     SkPoint choppedPts[7];
    445     SkChopCubicAtHalf(p, choppedPts);
    446     convert_noninflect_cubic_to_quads(choppedPts + 0,
    447                                       toleranceSqd,
    448                                       constrainWithinTangents,
    449                                       dir,
    450                                       quads,
    451                                       sublevel + 1);
    452     convert_noninflect_cubic_to_quads(choppedPts + 3,
    453                                       toleranceSqd,
    454                                       constrainWithinTangents,
    455                                       dir,
    456                                       quads,
    457                                       sublevel + 1);
    458 }
    459 }
    460 
    461 void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
    462                                       SkScalar tolScale,
    463                                       bool constrainWithinTangents,
    464                                       SkPath::Direction dir,
    465                                       SkTArray<SkPoint, true>* quads) {
    466     SkPoint chopped[10];
    467     int count = SkChopCubicAtInflections(p, chopped);
    468 
    469     // base tolerance is 1 pixel.
    470     static const SkScalar kTolerance = SK_Scalar1;
    471     const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
    472 
    473     for (int i = 0; i < count; ++i) {
    474         SkPoint* cubic = chopped + 3*i;
    475         convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
    476     }
    477 
    478 }
    479