Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkLineParameters.h"
      8 #include "SkPathOpsCubic.h"
      9 #include "SkPathOpsLine.h"
     10 #include "SkPathOpsQuad.h"
     11 #include "SkPathOpsRect.h"
     12 
     13 const int SkDCubic::gPrecisionUnit = 256;  // FIXME: test different values in test framework
     14 
     15 // FIXME: cache keep the bounds and/or precision with the caller?
     16 double SkDCubic::calcPrecision() const {
     17     SkDRect dRect;
     18     dRect.setBounds(*this);  // OPTIMIZATION: just use setRawBounds ?
     19     double width = dRect.fRight - dRect.fLeft;
     20     double height = dRect.fBottom - dRect.fTop;
     21     return (width > height ? width : height) / gPrecisionUnit;
     22 }
     23 
     24 bool SkDCubic::clockwise() const {
     25     double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY);
     26     for (int idx = 0; idx < 3; ++idx) {
     27         sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
     28     }
     29     return sum <= 0;
     30 }
     31 
     32 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
     33     *A = src[6];  // d
     34     *B = src[4] * 3;  // 3*c
     35     *C = src[2] * 3;  // 3*b
     36     *D = src[0];  // a
     37     *A -= *D - *C + *B;     // A =   -a + 3*b - 3*c + d
     38     *B += 3 * *D - 2 * *C;  // B =  3*a - 6*b + 3*c
     39     *C -= 3 * *D;           // C = -3*a + 3*b
     40 }
     41 
     42 bool SkDCubic::controlsContainedByEnds() const {
     43     SkDVector startTan = fPts[1] - fPts[0];
     44     if (startTan.fX == 0 && startTan.fY == 0) {
     45         startTan = fPts[2] - fPts[0];
     46     }
     47     SkDVector endTan = fPts[2] - fPts[3];
     48     if (endTan.fX == 0 && endTan.fY == 0) {
     49         endTan = fPts[1] - fPts[3];
     50     }
     51     if (startTan.dot(endTan) >= 0) {
     52         return false;
     53     }
     54     SkDLine startEdge = {{fPts[0], fPts[0]}};
     55     startEdge[1].fX -= startTan.fY;
     56     startEdge[1].fY += startTan.fX;
     57     SkDLine endEdge = {{fPts[3], fPts[3]}};
     58     endEdge[1].fX -= endTan.fY;
     59     endEdge[1].fY += endTan.fX;
     60     double leftStart1 = startEdge.isLeft(fPts[1]);
     61     if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) {
     62         return false;
     63     }
     64     double leftEnd1 = endEdge.isLeft(fPts[1]);
     65     if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) {
     66         return false;
     67     }
     68     return leftStart1 * leftEnd1 >= 0;
     69 }
     70 
     71 bool SkDCubic::endsAreExtremaInXOrY() const {
     72     return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
     73             && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
     74             || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
     75             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
     76 }
     77 
     78 bool SkDCubic::isLinear(int startIndex, int endIndex) const {
     79     SkLineParameters lineParameters;
     80     lineParameters.cubicEndPoints(*this, startIndex, endIndex);
     81     // FIXME: maybe it's possible to avoid this and compare non-normalized
     82     lineParameters.normalize();
     83     double distance = lineParameters.controlPtDistance(*this, 1);
     84     if (!approximately_zero(distance)) {
     85         return false;
     86     }
     87     distance = lineParameters.controlPtDistance(*this, 2);
     88     return approximately_zero(distance);
     89 }
     90 
     91 bool SkDCubic::monotonicInY() const {
     92     return between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
     93             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
     94 }
     95 
     96 bool SkDCubic::serpentine() const {
     97     if (!controlsContainedByEnds()) {
     98         return false;
     99     }
    100     double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY);
    101     for (int idx = 0; idx < 2; ++idx) {
    102         wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    103     }
    104     double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY);
    105     for (int idx = 1; idx < 3; ++idx) {
    106         waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    107     }
    108     return wiggle * waggle < 0;
    109 }
    110 
    111 // cubic roots
    112 
    113 static const double PI = 3.141592653589793;
    114 
    115 // from SkGeometry.cpp (and Numeric Solutions, 5.6)
    116 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
    117     double s[3];
    118     int realRoots = RootsReal(A, B, C, D, s);
    119     int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
    120     return foundRoots;
    121 }
    122 
    123 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
    124 #ifdef SK_DEBUG
    125     // create a string mathematica understands
    126     // GDB set print repe 15 # if repeated digits is a bother
    127     //     set print elements 400 # if line doesn't fit
    128     char str[1024];
    129     sk_bzero(str, sizeof(str));
    130     SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
    131             A, B, C, D);
    132     mathematica_ize(str, sizeof(str));
    133 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
    134     SkDebugf("%s\n", str);
    135 #endif
    136 #endif
    137     if (approximately_zero(A)
    138             && approximately_zero_when_compared_to(A, B)
    139             && approximately_zero_when_compared_to(A, C)
    140             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
    141         return SkDQuad::RootsReal(B, C, D, s);
    142     }
    143     if (approximately_zero_when_compared_to(D, A)
    144             && approximately_zero_when_compared_to(D, B)
    145             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
    146         int num = SkDQuad::RootsReal(A, B, C, s);
    147         for (int i = 0; i < num; ++i) {
    148             if (approximately_zero(s[i])) {
    149                 return num;
    150             }
    151         }
    152         s[num++] = 0;
    153         return num;
    154     }
    155     if (approximately_zero(A + B + C + D)) {  // 1 is one root
    156         int num = SkDQuad::RootsReal(A, A + B, -D, s);
    157         for (int i = 0; i < num; ++i) {
    158             if (AlmostEqualUlps(s[i], 1)) {
    159                 return num;
    160             }
    161         }
    162         s[num++] = 1;
    163         return num;
    164     }
    165     double a, b, c;
    166     {
    167         double invA = 1 / A;
    168         a = B * invA;
    169         b = C * invA;
    170         c = D * invA;
    171     }
    172     double a2 = a * a;
    173     double Q = (a2 - b * 3) / 9;
    174     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    175     double R2 = R * R;
    176     double Q3 = Q * Q * Q;
    177     double R2MinusQ3 = R2 - Q3;
    178     double adiv3 = a / 3;
    179     double r;
    180     double* roots = s;
    181     if (R2MinusQ3 < 0) {   // we have 3 real roots
    182         double theta = acos(R / sqrt(Q3));
    183         double neg2RootQ = -2 * sqrt(Q);
    184 
    185         r = neg2RootQ * cos(theta / 3) - adiv3;
    186         *roots++ = r;
    187 
    188         r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
    189         if (!AlmostEqualUlps(s[0], r)) {
    190             *roots++ = r;
    191         }
    192         r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
    193         if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) {
    194             *roots++ = r;
    195         }
    196     } else {  // we have 1 real root
    197         double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
    198         double A = fabs(R) + sqrtR2MinusQ3;
    199         A = SkDCubeRoot(A);
    200         if (R > 0) {
    201             A = -A;
    202         }
    203         if (A != 0) {
    204             A += Q / A;
    205         }
    206         r = A - adiv3;
    207         *roots++ = r;
    208         if (AlmostEqualUlps(R2, Q3)) {
    209             r = -A / 2 - adiv3;
    210             if (!AlmostEqualUlps(s[0], r)) {
    211                 *roots++ = r;
    212             }
    213         }
    214     }
    215     return static_cast<int>(roots - s);
    216 }
    217 
    218 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
    219 // c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
    220 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
    221 //       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
    222 static double derivative_at_t(const double* src, double t) {
    223     double one_t = 1 - t;
    224     double a = src[0];
    225     double b = src[2];
    226     double c = src[4];
    227     double d = src[6];
    228     return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
    229 }
    230 
    231 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
    232 SkDVector SkDCubic::dxdyAtT(double t) const {
    233     SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
    234     return result;
    235 }
    236 
    237 // OPTIMIZE? share code with formulate_F1DotF2
    238 int SkDCubic::findInflections(double tValues[]) const {
    239     double Ax = fPts[1].fX - fPts[0].fX;
    240     double Ay = fPts[1].fY - fPts[0].fY;
    241     double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
    242     double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
    243     double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
    244     double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
    245     return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
    246 }
    247 
    248 static void formulate_F1DotF2(const double src[], double coeff[4]) {
    249     double a = src[2] - src[0];
    250     double b = src[4] - 2 * src[2] + src[0];
    251     double c = src[6] + 3 * (src[2] - src[4]) - src[0];
    252     coeff[0] = c * c;
    253     coeff[1] = 3 * b * c;
    254     coeff[2] = 2 * b * b + c * a;
    255     coeff[3] = a * b;
    256 }
    257 
    258 /** SkDCubic'(t) = At^2 + Bt + C, where
    259     A = 3(-a + 3(b - c) + d)
    260     B = 6(a - 2b + c)
    261     C = 3(b - a)
    262     Solve for t, keeping only those that fit between 0 < t < 1
    263 */
    264 int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) {
    265     // we divide A,B,C by 3 to simplify
    266     double A = d - a + 3*(b - c);
    267     double B = 2*(a - b - b + c);
    268     double C = b - a;
    269 
    270     return SkDQuad::RootsValidT(A, B, C, tValues);
    271 }
    272 
    273 /*  from SkGeometry.cpp
    274     Looking for F' dot F'' == 0
    275 
    276     A = b - a
    277     B = c - 2b + a
    278     C = d - 3c + 3b - a
    279 
    280     F' = 3Ct^2 + 6Bt + 3A
    281     F'' = 6Ct + 6B
    282 
    283     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    284 */
    285 int SkDCubic::findMaxCurvature(double tValues[]) const {
    286     double coeffX[4], coeffY[4];
    287     int i;
    288     formulate_F1DotF2(&fPts[0].fX, coeffX);
    289     formulate_F1DotF2(&fPts[0].fY, coeffY);
    290     for (i = 0; i < 4; i++) {
    291         coeffX[i] = coeffX[i] + coeffY[i];
    292     }
    293     return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
    294 }
    295 
    296 SkDPoint SkDCubic::top(double startT, double endT) const {
    297     SkDCubic sub = subDivide(startT, endT);
    298     SkDPoint topPt = sub[0];
    299     if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) {
    300         topPt = sub[3];
    301     }
    302     double extremeTs[2];
    303     if (!sub.monotonicInY()) {
    304         int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs);
    305         for (int index = 0; index < roots; ++index) {
    306             double t = startT + (endT - startT) * extremeTs[index];
    307             SkDPoint mid = ptAtT(t);
    308             if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) {
    309                 topPt = mid;
    310             }
    311         }
    312     }
    313     return topPt;
    314 }
    315 
    316 SkDPoint SkDCubic::ptAtT(double t) const {
    317     if (0 == t) {
    318         return fPts[0];
    319     }
    320     if (1 == t) {
    321         return fPts[3];
    322     }
    323     double one_t = 1 - t;
    324     double one_t2 = one_t * one_t;
    325     double a = one_t2 * one_t;
    326     double b = 3 * one_t2 * t;
    327     double t2 = t * t;
    328     double c = 3 * one_t * t2;
    329     double d = t2 * t;
    330     SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
    331             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
    332     return result;
    333 }
    334 
    335 /*
    336  Given a cubic c, t1, and t2, find a small cubic segment.
    337 
    338  The new cubic is defined as points A, B, C, and D, where
    339  s1 = 1 - t1
    340  s2 = 1 - t2
    341  A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
    342  D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2
    343 
    344  We don't have B or C. So We define two equations to isolate them.
    345  First, compute two reference T values 1/3 and 2/3 from t1 to t2:
    346 
    347  c(at (2*t1 + t2)/3) == E
    348  c(at (t1 + 2*t2)/3) == F
    349 
    350  Next, compute where those values must be if we know the values of B and C:
    351 
    352  _12   =  A*2/3 + B*1/3
    353  12_   =  A*1/3 + B*2/3
    354  _23   =  B*2/3 + C*1/3
    355  23_   =  B*1/3 + C*2/3
    356  _34   =  C*2/3 + D*1/3
    357  34_   =  C*1/3 + D*2/3
    358  _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
    359  123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
    360  _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
    361  234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
    362  _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
    363        =  A*8/27 + B*12/27 + C*6/27 + D*1/27
    364        =  E
    365  1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
    366        =  A*1/27 + B*6/27 + C*12/27 + D*8/27
    367        =  F
    368  E*27  =  A*8    + B*12   + C*6     + D
    369  F*27  =  A      + B*6    + C*12    + D*8
    370 
    371 Group the known values on one side:
    372 
    373  M       = E*27 - A*8 - D     = B*12 + C* 6
    374  N       = F*27 - A   - D*8   = B* 6 + C*12
    375  M*2 - N = B*18
    376  N*2 - M = C*18
    377  B       = (M*2 - N)/18
    378  C       = (N*2 - M)/18
    379  */
    380 
    381 static double interp_cubic_coords(const double* src, double t) {
    382     double ab = SkDInterp(src[0], src[2], t);
    383     double bc = SkDInterp(src[2], src[4], t);
    384     double cd = SkDInterp(src[4], src[6], t);
    385     double abc = SkDInterp(ab, bc, t);
    386     double bcd = SkDInterp(bc, cd, t);
    387     double abcd = SkDInterp(abc, bcd, t);
    388     return abcd;
    389 }
    390 
    391 SkDCubic SkDCubic::subDivide(double t1, double t2) const {
    392     if (t1 == 0 || t2 == 1) {
    393         if (t1 == 0 && t2 == 1) {
    394             return *this;
    395         }
    396         SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
    397         SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
    398         return dst;
    399     }
    400     SkDCubic dst;
    401     double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
    402     double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
    403     double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
    404     double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
    405     double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
    406     double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
    407     double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
    408     double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
    409     double mx = ex * 27 - ax * 8 - dx;
    410     double my = ey * 27 - ay * 8 - dy;
    411     double nx = fx * 27 - ax - dx * 8;
    412     double ny = fy * 27 - ay - dy * 8;
    413     /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
    414     /* by = */ dst[1].fY = (my * 2 - ny) / 18;
    415     /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
    416     /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
    417     // FIXME: call align() ?
    418     return dst;
    419 }
    420 
    421 void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
    422     if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
    423         dstPt->fX = fPts[endIndex].fX;
    424     }
    425     if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
    426         dstPt->fY = fPts[endIndex].fY;
    427     }
    428 }
    429 
    430 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
    431                          double t1, double t2, SkDPoint dst[2]) const {
    432     SkASSERT(t1 != t2);
    433 #if 0
    434     double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3);
    435     double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3);
    436     double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3);
    437     double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3);
    438     double mx = ex * 27 - a.fX * 8 - d.fX;
    439     double my = ey * 27 - a.fY * 8 - d.fY;
    440     double nx = fx * 27 - a.fX - d.fX * 8;
    441     double ny = fy * 27 - a.fY - d.fY * 8;
    442     /* bx = */ dst[0].fX = (mx * 2 - nx) / 18;
    443     /* by = */ dst[0].fY = (my * 2 - ny) / 18;
    444     /* cx = */ dst[1].fX = (nx * 2 - mx) / 18;
    445     /* cy = */ dst[1].fY = (ny * 2 - my) / 18;
    446 #else
    447     // this approach assumes that the control points computed directly are accurate enough
    448     SkDCubic sub = subDivide(t1, t2);
    449     dst[0] = sub[1] + (a - sub[0]);
    450     dst[1] = sub[2] + (d - sub[3]);
    451 #endif
    452     if (t1 == 0 || t2 == 0) {
    453         align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
    454     }
    455     if (t1 == 1 || t2 == 1) {
    456         align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
    457     }
    458     if (precisely_subdivide_equal(dst[0].fX, a.fX)) {
    459         dst[0].fX = a.fX;
    460     }
    461     if (precisely_subdivide_equal(dst[0].fY, a.fY)) {
    462         dst[0].fY = a.fY;
    463     }
    464     if (precisely_subdivide_equal(dst[1].fX, d.fX)) {
    465         dst[1].fX = d.fX;
    466     }
    467     if (precisely_subdivide_equal(dst[1].fY, d.fY)) {
    468         dst[1].fY = d.fY;
    469     }
    470 }
    471 
    472 /* classic one t subdivision */
    473 static void interp_cubic_coords(const double* src, double* dst, double t) {
    474     double ab = SkDInterp(src[0], src[2], t);
    475     double bc = SkDInterp(src[2], src[4], t);
    476     double cd = SkDInterp(src[4], src[6], t);
    477     double abc = SkDInterp(ab, bc, t);
    478     double bcd = SkDInterp(bc, cd, t);
    479     double abcd = SkDInterp(abc, bcd, t);
    480 
    481     dst[0] = src[0];
    482     dst[2] = ab;
    483     dst[4] = abc;
    484     dst[6] = abcd;
    485     dst[8] = bcd;
    486     dst[10] = cd;
    487     dst[12] = src[6];
    488 }
    489 
    490 SkDCubicPair SkDCubic::chopAt(double t) const {
    491     SkDCubicPair dst;
    492     if (t == 0.5) {
    493         dst.pts[0] = fPts[0];
    494         dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
    495         dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
    496         dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
    497         dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
    498         dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
    499         dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
    500         dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
    501         dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
    502         dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
    503         dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
    504         dst.pts[6] = fPts[3];
    505         return dst;
    506     }
    507     interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
    508     interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
    509     return dst;
    510 }
    511