Home | History | Annotate | Download | only in Analysis
      1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions performs analyses on basic blocks, and instructions
     11 // contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/CFG.h"
     16 
     17 #include "llvm/ADT/SmallSet.h"
     18 #include "llvm/Analysis/Dominators.h"
     19 #include "llvm/Analysis/LoopInfo.h"
     20 
     21 using namespace llvm;
     22 
     23 /// FindFunctionBackedges - Analyze the specified function to find all of the
     24 /// loop backedges in the function and return them.  This is a relatively cheap
     25 /// (compared to computing dominators and loop info) analysis.
     26 ///
     27 /// The output is added to Result, as pairs of <from,to> edge info.
     28 void llvm::FindFunctionBackedges(const Function &F,
     29      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
     30   const BasicBlock *BB = &F.getEntryBlock();
     31   if (succ_begin(BB) == succ_end(BB))
     32     return;
     33 
     34   SmallPtrSet<const BasicBlock*, 8> Visited;
     35   SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
     36   SmallPtrSet<const BasicBlock*, 8> InStack;
     37 
     38   Visited.insert(BB);
     39   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
     40   InStack.insert(BB);
     41   do {
     42     std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
     43     const BasicBlock *ParentBB = Top.first;
     44     succ_const_iterator &I = Top.second;
     45 
     46     bool FoundNew = false;
     47     while (I != succ_end(ParentBB)) {
     48       BB = *I++;
     49       if (Visited.insert(BB)) {
     50         FoundNew = true;
     51         break;
     52       }
     53       // Successor is in VisitStack, it's a back edge.
     54       if (InStack.count(BB))
     55         Result.push_back(std::make_pair(ParentBB, BB));
     56     }
     57 
     58     if (FoundNew) {
     59       // Go down one level if there is a unvisited successor.
     60       InStack.insert(BB);
     61       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
     62     } else {
     63       // Go up one level.
     64       InStack.erase(VisitStack.pop_back_val().first);
     65     }
     66   } while (!VisitStack.empty());
     67 }
     68 
     69 /// GetSuccessorNumber - Search for the specified successor of basic block BB
     70 /// and return its position in the terminator instruction's list of
     71 /// successors.  It is an error to call this with a block that is not a
     72 /// successor.
     73 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
     74   TerminatorInst *Term = BB->getTerminator();
     75 #ifndef NDEBUG
     76   unsigned e = Term->getNumSuccessors();
     77 #endif
     78   for (unsigned i = 0; ; ++i) {
     79     assert(i != e && "Didn't find edge?");
     80     if (Term->getSuccessor(i) == Succ)
     81       return i;
     82   }
     83 }
     84 
     85 /// isCriticalEdge - Return true if the specified edge is a critical edge.
     86 /// Critical edges are edges from a block with multiple successors to a block
     87 /// with multiple predecessors.
     88 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
     89                           bool AllowIdenticalEdges) {
     90   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
     91   if (TI->getNumSuccessors() == 1) return false;
     92 
     93   const BasicBlock *Dest = TI->getSuccessor(SuccNum);
     94   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
     95 
     96   // If there is more than one predecessor, this is a critical edge...
     97   assert(I != E && "No preds, but we have an edge to the block?");
     98   const BasicBlock *FirstPred = *I;
     99   ++I;        // Skip one edge due to the incoming arc from TI.
    100   if (!AllowIdenticalEdges)
    101     return I != E;
    102 
    103   // If AllowIdenticalEdges is true, then we allow this edge to be considered
    104   // non-critical iff all preds come from TI's block.
    105   while (I != E) {
    106     const BasicBlock *P = *I;
    107     if (P != FirstPred)
    108       return true;
    109     // Note: leave this as is until no one ever compiles with either gcc 4.0.1
    110     // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
    111     E = pred_end(P);
    112     ++I;
    113   }
    114   return false;
    115 }
    116 
    117 // LoopInfo contains a mapping from basic block to the innermost loop. Find
    118 // the outermost loop in the loop nest that contains BB.
    119 static const Loop *getOutermostLoop(LoopInfo *LI, const BasicBlock *BB) {
    120   const Loop *L = LI->getLoopFor(BB);
    121   if (L) {
    122     while (const Loop *Parent = L->getParentLoop())
    123       L = Parent;
    124   }
    125   return L;
    126 }
    127 
    128 // True if there is a loop which contains both BB1 and BB2.
    129 static bool loopContainsBoth(LoopInfo *LI,
    130                              const BasicBlock *BB1, const BasicBlock *BB2) {
    131   const Loop *L1 = getOutermostLoop(LI, BB1);
    132   const Loop *L2 = getOutermostLoop(LI, BB2);
    133   return L1 != NULL && L1 == L2;
    134 }
    135 
    136 static bool isPotentiallyReachableSameBlock(const Instruction *A,
    137                                             const Instruction *B,
    138                                             LoopInfo *LI) {
    139   // The same block case is special because it's the only time we're looking
    140   // within a single block to see which comes first. Once we start looking at
    141   // multiple blocks, the first instruction of the block is reachable, so we
    142   // only need to determine reachability between whole blocks.
    143 
    144   const BasicBlock *BB = A->getParent();
    145   // If the block is in a loop then we can reach any instruction in the block
    146   // from any other instruction in the block by going around the backedge.
    147   // Check whether we're in a loop (or aren't sure).
    148 
    149   // Can't be in a loop if it's the entry block -- the entry block may not
    150   // have predecessors.
    151   bool HasLoop = BB != &BB->getParent()->getEntryBlock();
    152 
    153   // Can't be in a loop if LoopInfo doesn't know about it.
    154   if (LI && HasLoop) {
    155     HasLoop = LI->getLoopFor(BB) != 0;
    156   }
    157   if (HasLoop)
    158     return true;
    159 
    160   // Linear scan, start at 'A', see whether we hit 'B' or the end first.
    161   for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) {
    162     if (&*I == B)
    163       return true;
    164   }
    165   return false;
    166 }
    167 
    168 bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
    169                                   DominatorTree *DT, LoopInfo *LI) {
    170   assert(A->getParent()->getParent() == B->getParent()->getParent() &&
    171          "This analysis is function-local!");
    172 
    173   const BasicBlock *StopBB = B->getParent();
    174 
    175   if (A->getParent() == B->getParent())
    176     return isPotentiallyReachableSameBlock(A, B, LI);
    177 
    178   if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
    179     return true;
    180   if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
    181     return false;
    182 
    183   // When the stop block is unreachable, it's dominated from everywhere,
    184   // regardless of whether there's a path between the two blocks.
    185   if (DT && !DT->isReachableFromEntry(StopBB))
    186     DT = 0;
    187 
    188   // Limit the number of blocks we visit. The goal is to avoid run-away compile
    189   // times on large CFGs without hampering sensible code. Arbitrarily chosen.
    190   unsigned Limit = 32;
    191 
    192   SmallSet<const BasicBlock*, 64> Visited;
    193   SmallVector<BasicBlock*, 32> Worklist;
    194   Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
    195 
    196   do {
    197     BasicBlock *BB = Worklist.pop_back_val();
    198     if (!Visited.insert(BB))
    199       continue;
    200     if (BB == StopBB)
    201       return true;
    202     if (DT && DT->dominates(BB, StopBB))
    203       return true;
    204     if (LI && loopContainsBoth(LI, BB, StopBB))
    205       return true;
    206 
    207     if (!--Limit) {
    208       // We haven't been able to prove it one way or the other. Conservatively
    209       // answer true -- that there is potentially a path.
    210       return true;
    211     }
    212 
    213     if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : 0) {
    214       // All blocks in a single loop are reachable from all other blocks. From
    215       // any of these blocks, we can skip directly to the exits of the loop,
    216       // ignoring any other blocks inside the loop body.
    217       Outer->getExitBlocks(Worklist);
    218     } else {
    219       for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
    220         Worklist.push_back(*I);
    221     }
    222   } while (!Worklist.empty());
    223 
    224   // We have exhaustived all possible paths and are certain that 'To' can not
    225   // be reached from 'From'.
    226   return false;
    227 }
    228