Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::Legalize method.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/SelectionDAG.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/DebugInfo.h"
     22 #include "llvm/IR/CallingConv.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Function.h"
     27 #include "llvm/IR/LLVMContext.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/MathExtras.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetFrameLowering.h"
     33 #include "llvm/Target/TargetLowering.h"
     34 #include "llvm/Target/TargetMachine.h"
     35 using namespace llvm;
     36 
     37 //===----------------------------------------------------------------------===//
     38 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
     39 /// hacks on it until the target machine can handle it.  This involves
     40 /// eliminating value sizes the machine cannot handle (promoting small sizes to
     41 /// large sizes or splitting up large values into small values) as well as
     42 /// eliminating operations the machine cannot handle.
     43 ///
     44 /// This code also does a small amount of optimization and recognition of idioms
     45 /// as part of its processing.  For example, if a target does not support a
     46 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
     47 /// will attempt merge setcc and brc instructions into brcc's.
     48 ///
     49 namespace {
     50 class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
     51   const TargetMachine &TM;
     52   const TargetLowering &TLI;
     53   SelectionDAG &DAG;
     54 
     55   /// LegalizePosition - The iterator for walking through the node list.
     56   SelectionDAG::allnodes_iterator LegalizePosition;
     57 
     58   /// LegalizedNodes - The set of nodes which have already been legalized.
     59   SmallPtrSet<SDNode *, 16> LegalizedNodes;
     60 
     61   EVT getSetCCResultType(EVT VT) const {
     62     return TLI.getSetCCResultType(*DAG.getContext(), VT);
     63   }
     64 
     65   // Libcall insertion helpers.
     66 
     67 public:
     68   explicit SelectionDAGLegalize(SelectionDAG &DAG);
     69 
     70   void LegalizeDAG();
     71 
     72 private:
     73   /// LegalizeOp - Legalizes the given operation.
     74   void LegalizeOp(SDNode *Node);
     75 
     76   SDValue OptimizeFloatStore(StoreSDNode *ST);
     77 
     78   void LegalizeLoadOps(SDNode *Node);
     79   void LegalizeStoreOps(SDNode *Node);
     80 
     81   /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
     82   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
     83   /// is necessary to spill the vector being inserted into to memory, perform
     84   /// the insert there, and then read the result back.
     85   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
     86                                          SDValue Idx, SDLoc dl);
     87   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
     88                                   SDValue Idx, SDLoc dl);
     89 
     90   /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
     91   /// performs the same shuffe in terms of order or result bytes, but on a type
     92   /// whose vector element type is narrower than the original shuffle type.
     93   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
     94   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
     95                                      SDValue N1, SDValue N2,
     96                                      ArrayRef<int> Mask) const;
     97 
     98   void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
     99                              SDLoc dl);
    100 
    101   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
    102   SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
    103                         unsigned NumOps, bool isSigned, SDLoc dl);
    104 
    105   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
    106                                                  SDNode *Node, bool isSigned);
    107   SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
    108                           RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
    109                           RTLIB::Libcall Call_F128,
    110                           RTLIB::Libcall Call_PPCF128);
    111   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
    112                            RTLIB::Libcall Call_I8,
    113                            RTLIB::Libcall Call_I16,
    114                            RTLIB::Libcall Call_I32,
    115                            RTLIB::Libcall Call_I64,
    116                            RTLIB::Libcall Call_I128);
    117   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
    118   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
    119 
    120   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
    121   SDValue ExpandBUILD_VECTOR(SDNode *Node);
    122   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
    123   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
    124                                 SmallVectorImpl<SDValue> &Results);
    125   SDValue ExpandFCOPYSIGN(SDNode *Node);
    126   SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
    127                                SDLoc dl);
    128   SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
    129                                 SDLoc dl);
    130   SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
    131                                 SDLoc dl);
    132 
    133   SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
    134   SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
    135 
    136   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
    137   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
    138   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
    139 
    140   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
    141 
    142   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
    143 
    144   void ExpandNode(SDNode *Node);
    145   void PromoteNode(SDNode *Node);
    146 
    147   void ForgetNode(SDNode *N) {
    148     LegalizedNodes.erase(N);
    149     if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
    150       ++LegalizePosition;
    151   }
    152 
    153 public:
    154   // DAGUpdateListener implementation.
    155   virtual void NodeDeleted(SDNode *N, SDNode *E) {
    156     ForgetNode(N);
    157   }
    158   virtual void NodeUpdated(SDNode *N) {}
    159 
    160   // Node replacement helpers
    161   void ReplacedNode(SDNode *N) {
    162     if (N->use_empty()) {
    163       DAG.RemoveDeadNode(N);
    164     } else {
    165       ForgetNode(N);
    166     }
    167   }
    168   void ReplaceNode(SDNode *Old, SDNode *New) {
    169     DAG.ReplaceAllUsesWith(Old, New);
    170     ReplacedNode(Old);
    171   }
    172   void ReplaceNode(SDValue Old, SDValue New) {
    173     DAG.ReplaceAllUsesWith(Old, New);
    174     ReplacedNode(Old.getNode());
    175   }
    176   void ReplaceNode(SDNode *Old, const SDValue *New) {
    177     DAG.ReplaceAllUsesWith(Old, New);
    178     ReplacedNode(Old);
    179   }
    180 };
    181 }
    182 
    183 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
    184 /// performs the same shuffe in terms of order or result bytes, but on a type
    185 /// whose vector element type is narrower than the original shuffle type.
    186 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
    187 SDValue
    188 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  SDLoc dl,
    189                                                  SDValue N1, SDValue N2,
    190                                                  ArrayRef<int> Mask) const {
    191   unsigned NumMaskElts = VT.getVectorNumElements();
    192   unsigned NumDestElts = NVT.getVectorNumElements();
    193   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
    194 
    195   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
    196 
    197   if (NumEltsGrowth == 1)
    198     return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
    199 
    200   SmallVector<int, 8> NewMask;
    201   for (unsigned i = 0; i != NumMaskElts; ++i) {
    202     int Idx = Mask[i];
    203     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
    204       if (Idx < 0)
    205         NewMask.push_back(-1);
    206       else
    207         NewMask.push_back(Idx * NumEltsGrowth + j);
    208     }
    209   }
    210   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
    211   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
    212   return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
    213 }
    214 
    215 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
    216   : SelectionDAG::DAGUpdateListener(dag),
    217     TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
    218     DAG(dag) {
    219 }
    220 
    221 void SelectionDAGLegalize::LegalizeDAG() {
    222   DAG.AssignTopologicalOrder();
    223 
    224   // Visit all the nodes. We start in topological order, so that we see
    225   // nodes with their original operands intact. Legalization can produce
    226   // new nodes which may themselves need to be legalized. Iterate until all
    227   // nodes have been legalized.
    228   for (;;) {
    229     bool AnyLegalized = false;
    230     for (LegalizePosition = DAG.allnodes_end();
    231          LegalizePosition != DAG.allnodes_begin(); ) {
    232       --LegalizePosition;
    233 
    234       SDNode *N = LegalizePosition;
    235       if (LegalizedNodes.insert(N)) {
    236         AnyLegalized = true;
    237         LegalizeOp(N);
    238       }
    239     }
    240     if (!AnyLegalized)
    241       break;
    242 
    243   }
    244 
    245   // Remove dead nodes now.
    246   DAG.RemoveDeadNodes();
    247 }
    248 
    249 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
    250 /// a load from the constant pool.
    251 SDValue
    252 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
    253   bool Extend = false;
    254   SDLoc dl(CFP);
    255 
    256   // If a FP immediate is precise when represented as a float and if the
    257   // target can do an extending load from float to double, we put it into
    258   // the constant pool as a float, even if it's is statically typed as a
    259   // double.  This shrinks FP constants and canonicalizes them for targets where
    260   // an FP extending load is the same cost as a normal load (such as on the x87
    261   // fp stack or PPC FP unit).
    262   EVT VT = CFP->getValueType(0);
    263   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
    264   if (!UseCP) {
    265     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
    266     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
    267                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
    268   }
    269 
    270   EVT OrigVT = VT;
    271   EVT SVT = VT;
    272   while (SVT != MVT::f32) {
    273     SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
    274     if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
    275         // Only do this if the target has a native EXTLOAD instruction from
    276         // smaller type.
    277         TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
    278         TLI.ShouldShrinkFPConstant(OrigVT)) {
    279       Type *SType = SVT.getTypeForEVT(*DAG.getContext());
    280       LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
    281       VT = SVT;
    282       Extend = true;
    283     }
    284   }
    285 
    286   SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
    287   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
    288   if (Extend) {
    289     SDValue Result =
    290       DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
    291                      DAG.getEntryNode(),
    292                      CPIdx, MachinePointerInfo::getConstantPool(),
    293                      VT, false, false, Alignment);
    294     return Result;
    295   }
    296   SDValue Result =
    297     DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
    298                 MachinePointerInfo::getConstantPool(), false, false, false,
    299                 Alignment);
    300   return Result;
    301 }
    302 
    303 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
    304 static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
    305                                  const TargetLowering &TLI,
    306                                  SelectionDAGLegalize *DAGLegalize) {
    307   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
    308          "unaligned indexed stores not implemented!");
    309   SDValue Chain = ST->getChain();
    310   SDValue Ptr = ST->getBasePtr();
    311   SDValue Val = ST->getValue();
    312   EVT VT = Val.getValueType();
    313   int Alignment = ST->getAlignment();
    314   SDLoc dl(ST);
    315   if (ST->getMemoryVT().isFloatingPoint() ||
    316       ST->getMemoryVT().isVector()) {
    317     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
    318     if (TLI.isTypeLegal(intVT)) {
    319       // Expand to a bitconvert of the value to the integer type of the
    320       // same size, then a (misaligned) int store.
    321       // FIXME: Does not handle truncating floating point stores!
    322       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
    323       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
    324                            ST->isVolatile(), ST->isNonTemporal(), Alignment);
    325       DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
    326       return;
    327     }
    328     // Do a (aligned) store to a stack slot, then copy from the stack slot
    329     // to the final destination using (unaligned) integer loads and stores.
    330     EVT StoredVT = ST->getMemoryVT();
    331     MVT RegVT =
    332       TLI.getRegisterType(*DAG.getContext(),
    333                           EVT::getIntegerVT(*DAG.getContext(),
    334                                             StoredVT.getSizeInBits()));
    335     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
    336     unsigned RegBytes = RegVT.getSizeInBits() / 8;
    337     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
    338 
    339     // Make sure the stack slot is also aligned for the register type.
    340     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
    341 
    342     // Perform the original store, only redirected to the stack slot.
    343     SDValue Store = DAG.getTruncStore(Chain, dl,
    344                                       Val, StackPtr, MachinePointerInfo(),
    345                                       StoredVT, false, false, 0);
    346     SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
    347     SmallVector<SDValue, 8> Stores;
    348     unsigned Offset = 0;
    349 
    350     // Do all but one copies using the full register width.
    351     for (unsigned i = 1; i < NumRegs; i++) {
    352       // Load one integer register's worth from the stack slot.
    353       SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
    354                                  MachinePointerInfo(),
    355                                  false, false, false, 0);
    356       // Store it to the final location.  Remember the store.
    357       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
    358                                   ST->getPointerInfo().getWithOffset(Offset),
    359                                     ST->isVolatile(), ST->isNonTemporal(),
    360                                     MinAlign(ST->getAlignment(), Offset)));
    361       // Increment the pointers.
    362       Offset += RegBytes;
    363       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
    364                              Increment);
    365       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
    366     }
    367 
    368     // The last store may be partial.  Do a truncating store.  On big-endian
    369     // machines this requires an extending load from the stack slot to ensure
    370     // that the bits are in the right place.
    371     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
    372                                   8 * (StoredBytes - Offset));
    373 
    374     // Load from the stack slot.
    375     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
    376                                   MachinePointerInfo(),
    377                                   MemVT, false, false, 0);
    378 
    379     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
    380                                        ST->getPointerInfo()
    381                                          .getWithOffset(Offset),
    382                                        MemVT, ST->isVolatile(),
    383                                        ST->isNonTemporal(),
    384                                        MinAlign(ST->getAlignment(), Offset)));
    385     // The order of the stores doesn't matter - say it with a TokenFactor.
    386     SDValue Result =
    387       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
    388                   Stores.size());
    389     DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
    390     return;
    391   }
    392   assert(ST->getMemoryVT().isInteger() &&
    393          !ST->getMemoryVT().isVector() &&
    394          "Unaligned store of unknown type.");
    395   // Get the half-size VT
    396   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
    397   int NumBits = NewStoredVT.getSizeInBits();
    398   int IncrementSize = NumBits / 8;
    399 
    400   // Divide the stored value in two parts.
    401   SDValue ShiftAmount = DAG.getConstant(NumBits,
    402                                       TLI.getShiftAmountTy(Val.getValueType()));
    403   SDValue Lo = Val;
    404   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
    405 
    406   // Store the two parts
    407   SDValue Store1, Store2;
    408   Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
    409                              ST->getPointerInfo(), NewStoredVT,
    410                              ST->isVolatile(), ST->isNonTemporal(), Alignment);
    411   Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    412                     DAG.getConstant(IncrementSize, TLI.getPointerTy()));
    413   Alignment = MinAlign(Alignment, IncrementSize);
    414   Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
    415                              ST->getPointerInfo().getWithOffset(IncrementSize),
    416                              NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
    417                              Alignment);
    418 
    419   SDValue Result =
    420     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
    421   DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
    422 }
    423 
    424 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
    425 static void
    426 ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
    427                     const TargetLowering &TLI,
    428                     SDValue &ValResult, SDValue &ChainResult) {
    429   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
    430          "unaligned indexed loads not implemented!");
    431   SDValue Chain = LD->getChain();
    432   SDValue Ptr = LD->getBasePtr();
    433   EVT VT = LD->getValueType(0);
    434   EVT LoadedVT = LD->getMemoryVT();
    435   SDLoc dl(LD);
    436   if (VT.isFloatingPoint() || VT.isVector()) {
    437     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
    438     if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
    439       // Expand to a (misaligned) integer load of the same size,
    440       // then bitconvert to floating point or vector.
    441       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
    442                                     LD->isVolatile(),
    443                                     LD->isNonTemporal(),
    444                                     LD->isInvariant(), LD->getAlignment());
    445       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
    446       if (LoadedVT != VT)
    447         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
    448                              ISD::ANY_EXTEND, dl, VT, Result);
    449 
    450       ValResult = Result;
    451       ChainResult = Chain;
    452       return;
    453     }
    454 
    455     // Copy the value to a (aligned) stack slot using (unaligned) integer
    456     // loads and stores, then do a (aligned) load from the stack slot.
    457     MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
    458     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
    459     unsigned RegBytes = RegVT.getSizeInBits() / 8;
    460     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
    461 
    462     // Make sure the stack slot is also aligned for the register type.
    463     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
    464 
    465     SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
    466     SmallVector<SDValue, 8> Stores;
    467     SDValue StackPtr = StackBase;
    468     unsigned Offset = 0;
    469 
    470     // Do all but one copies using the full register width.
    471     for (unsigned i = 1; i < NumRegs; i++) {
    472       // Load one integer register's worth from the original location.
    473       SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
    474                                  LD->getPointerInfo().getWithOffset(Offset),
    475                                  LD->isVolatile(), LD->isNonTemporal(),
    476                                  LD->isInvariant(),
    477                                  MinAlign(LD->getAlignment(), Offset));
    478       // Follow the load with a store to the stack slot.  Remember the store.
    479       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
    480                                     MachinePointerInfo(), false, false, 0));
    481       // Increment the pointers.
    482       Offset += RegBytes;
    483       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
    484       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
    485                              Increment);
    486     }
    487 
    488     // The last copy may be partial.  Do an extending load.
    489     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
    490                                   8 * (LoadedBytes - Offset));
    491     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
    492                                   LD->getPointerInfo().getWithOffset(Offset),
    493                                   MemVT, LD->isVolatile(),
    494                                   LD->isNonTemporal(),
    495                                   MinAlign(LD->getAlignment(), Offset));
    496     // Follow the load with a store to the stack slot.  Remember the store.
    497     // On big-endian machines this requires a truncating store to ensure
    498     // that the bits end up in the right place.
    499     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
    500                                        MachinePointerInfo(), MemVT,
    501                                        false, false, 0));
    502 
    503     // The order of the stores doesn't matter - say it with a TokenFactor.
    504     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
    505                              Stores.size());
    506 
    507     // Finally, perform the original load only redirected to the stack slot.
    508     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
    509                           MachinePointerInfo(), LoadedVT, false, false, 0);
    510 
    511     // Callers expect a MERGE_VALUES node.
    512     ValResult = Load;
    513     ChainResult = TF;
    514     return;
    515   }
    516   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
    517          "Unaligned load of unsupported type.");
    518 
    519   // Compute the new VT that is half the size of the old one.  This is an
    520   // integer MVT.
    521   unsigned NumBits = LoadedVT.getSizeInBits();
    522   EVT NewLoadedVT;
    523   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
    524   NumBits >>= 1;
    525 
    526   unsigned Alignment = LD->getAlignment();
    527   unsigned IncrementSize = NumBits / 8;
    528   ISD::LoadExtType HiExtType = LD->getExtensionType();
    529 
    530   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
    531   if (HiExtType == ISD::NON_EXTLOAD)
    532     HiExtType = ISD::ZEXTLOAD;
    533 
    534   // Load the value in two parts
    535   SDValue Lo, Hi;
    536   if (TLI.isLittleEndian()) {
    537     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
    538                         NewLoadedVT, LD->isVolatile(),
    539                         LD->isNonTemporal(), Alignment);
    540     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    541                       DAG.getConstant(IncrementSize, TLI.getPointerTy()));
    542     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
    543                         LD->getPointerInfo().getWithOffset(IncrementSize),
    544                         NewLoadedVT, LD->isVolatile(),
    545                         LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
    546   } else {
    547     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
    548                         NewLoadedVT, LD->isVolatile(),
    549                         LD->isNonTemporal(), Alignment);
    550     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    551                       DAG.getConstant(IncrementSize, TLI.getPointerTy()));
    552     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
    553                         LD->getPointerInfo().getWithOffset(IncrementSize),
    554                         NewLoadedVT, LD->isVolatile(),
    555                         LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
    556   }
    557 
    558   // aggregate the two parts
    559   SDValue ShiftAmount = DAG.getConstant(NumBits,
    560                                        TLI.getShiftAmountTy(Hi.getValueType()));
    561   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
    562   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
    563 
    564   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
    565                              Hi.getValue(1));
    566 
    567   ValResult = Result;
    568   ChainResult = TF;
    569 }
    570 
    571 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
    572 /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
    573 /// is necessary to spill the vector being inserted into to memory, perform
    574 /// the insert there, and then read the result back.
    575 SDValue SelectionDAGLegalize::
    576 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
    577                                SDLoc dl) {
    578   SDValue Tmp1 = Vec;
    579   SDValue Tmp2 = Val;
    580   SDValue Tmp3 = Idx;
    581 
    582   // If the target doesn't support this, we have to spill the input vector
    583   // to a temporary stack slot, update the element, then reload it.  This is
    584   // badness.  We could also load the value into a vector register (either
    585   // with a "move to register" or "extload into register" instruction, then
    586   // permute it into place, if the idx is a constant and if the idx is
    587   // supported by the target.
    588   EVT VT    = Tmp1.getValueType();
    589   EVT EltVT = VT.getVectorElementType();
    590   EVT IdxVT = Tmp3.getValueType();
    591   EVT PtrVT = TLI.getPointerTy();
    592   SDValue StackPtr = DAG.CreateStackTemporary(VT);
    593 
    594   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
    595 
    596   // Store the vector.
    597   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
    598                             MachinePointerInfo::getFixedStack(SPFI),
    599                             false, false, 0);
    600 
    601   // Truncate or zero extend offset to target pointer type.
    602   unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
    603   Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
    604   // Add the offset to the index.
    605   unsigned EltSize = EltVT.getSizeInBits()/8;
    606   Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
    607   SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
    608   // Store the scalar value.
    609   Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
    610                          false, false, 0);
    611   // Load the updated vector.
    612   return DAG.getLoad(VT, dl, Ch, StackPtr,
    613                      MachinePointerInfo::getFixedStack(SPFI), false, false,
    614                      false, 0);
    615 }
    616 
    617 
    618 SDValue SelectionDAGLegalize::
    619 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
    620   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
    621     // SCALAR_TO_VECTOR requires that the type of the value being inserted
    622     // match the element type of the vector being created, except for
    623     // integers in which case the inserted value can be over width.
    624     EVT EltVT = Vec.getValueType().getVectorElementType();
    625     if (Val.getValueType() == EltVT ||
    626         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
    627       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
    628                                   Vec.getValueType(), Val);
    629 
    630       unsigned NumElts = Vec.getValueType().getVectorNumElements();
    631       // We generate a shuffle of InVec and ScVec, so the shuffle mask
    632       // should be 0,1,2,3,4,5... with the appropriate element replaced with
    633       // elt 0 of the RHS.
    634       SmallVector<int, 8> ShufOps;
    635       for (unsigned i = 0; i != NumElts; ++i)
    636         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
    637 
    638       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
    639                                   &ShufOps[0]);
    640     }
    641   }
    642   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
    643 }
    644 
    645 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
    646   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
    647   // FIXME: We shouldn't do this for TargetConstantFP's.
    648   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
    649   // to phase ordering between legalized code and the dag combiner.  This
    650   // probably means that we need to integrate dag combiner and legalizer
    651   // together.
    652   // We generally can't do this one for long doubles.
    653   SDValue Chain = ST->getChain();
    654   SDValue Ptr = ST->getBasePtr();
    655   unsigned Alignment = ST->getAlignment();
    656   bool isVolatile = ST->isVolatile();
    657   bool isNonTemporal = ST->isNonTemporal();
    658   SDLoc dl(ST);
    659   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
    660     if (CFP->getValueType(0) == MVT::f32 &&
    661         TLI.isTypeLegal(MVT::i32)) {
    662       SDValue Con = DAG.getConstant(CFP->getValueAPF().
    663                                       bitcastToAPInt().zextOrTrunc(32),
    664                               MVT::i32);
    665       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
    666                           isVolatile, isNonTemporal, Alignment);
    667     }
    668 
    669     if (CFP->getValueType(0) == MVT::f64) {
    670       // If this target supports 64-bit registers, do a single 64-bit store.
    671       if (TLI.isTypeLegal(MVT::i64)) {
    672         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
    673                                   zextOrTrunc(64), MVT::i64);
    674         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
    675                             isVolatile, isNonTemporal, Alignment);
    676       }
    677 
    678       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
    679         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
    680         // stores.  If the target supports neither 32- nor 64-bits, this
    681         // xform is certainly not worth it.
    682         const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
    683         SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
    684         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
    685         if (TLI.isBigEndian()) std::swap(Lo, Hi);
    686 
    687         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
    688                           isNonTemporal, Alignment);
    689         Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    690                             DAG.getIntPtrConstant(4));
    691         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
    692                           ST->getPointerInfo().getWithOffset(4),
    693                           isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
    694 
    695         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
    696       }
    697     }
    698   }
    699   return SDValue(0, 0);
    700 }
    701 
    702 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
    703     StoreSDNode *ST = cast<StoreSDNode>(Node);
    704     SDValue Chain = ST->getChain();
    705     SDValue Ptr = ST->getBasePtr();
    706     SDLoc dl(Node);
    707 
    708     unsigned Alignment = ST->getAlignment();
    709     bool isVolatile = ST->isVolatile();
    710     bool isNonTemporal = ST->isNonTemporal();
    711 
    712     if (!ST->isTruncatingStore()) {
    713       if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
    714         ReplaceNode(ST, OptStore);
    715         return;
    716       }
    717 
    718       {
    719         SDValue Value = ST->getValue();
    720         MVT VT = Value.getSimpleValueType();
    721         switch (TLI.getOperationAction(ISD::STORE, VT)) {
    722         default: llvm_unreachable("This action is not supported yet!");
    723         case TargetLowering::Legal:
    724           // If this is an unaligned store and the target doesn't support it,
    725           // expand it.
    726           if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
    727             Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
    728             unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
    729             if (ST->getAlignment() < ABIAlignment)
    730               ExpandUnalignedStore(cast<StoreSDNode>(Node),
    731                                    DAG, TLI, this);
    732           }
    733           break;
    734         case TargetLowering::Custom: {
    735           SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
    736           if (Res.getNode())
    737             ReplaceNode(SDValue(Node, 0), Res);
    738           return;
    739         }
    740         case TargetLowering::Promote: {
    741           MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
    742           assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
    743                  "Can only promote stores to same size type");
    744           Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
    745           SDValue Result =
    746             DAG.getStore(Chain, dl, Value, Ptr,
    747                          ST->getPointerInfo(), isVolatile,
    748                          isNonTemporal, Alignment);
    749           ReplaceNode(SDValue(Node, 0), Result);
    750           break;
    751         }
    752         }
    753         return;
    754       }
    755     } else {
    756       SDValue Value = ST->getValue();
    757 
    758       EVT StVT = ST->getMemoryVT();
    759       unsigned StWidth = StVT.getSizeInBits();
    760 
    761       if (StWidth != StVT.getStoreSizeInBits()) {
    762         // Promote to a byte-sized store with upper bits zero if not
    763         // storing an integral number of bytes.  For example, promote
    764         // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
    765         EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
    766                                     StVT.getStoreSizeInBits());
    767         Value = DAG.getZeroExtendInReg(Value, dl, StVT);
    768         SDValue Result =
    769           DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
    770                             NVT, isVolatile, isNonTemporal, Alignment);
    771         ReplaceNode(SDValue(Node, 0), Result);
    772       } else if (StWidth & (StWidth - 1)) {
    773         // If not storing a power-of-2 number of bits, expand as two stores.
    774         assert(!StVT.isVector() && "Unsupported truncstore!");
    775         unsigned RoundWidth = 1 << Log2_32(StWidth);
    776         assert(RoundWidth < StWidth);
    777         unsigned ExtraWidth = StWidth - RoundWidth;
    778         assert(ExtraWidth < RoundWidth);
    779         assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
    780                "Store size not an integral number of bytes!");
    781         EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
    782         EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
    783         SDValue Lo, Hi;
    784         unsigned IncrementSize;
    785 
    786         if (TLI.isLittleEndian()) {
    787           // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
    788           // Store the bottom RoundWidth bits.
    789           Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
    790                                  RoundVT,
    791                                  isVolatile, isNonTemporal, Alignment);
    792 
    793           // Store the remaining ExtraWidth bits.
    794           IncrementSize = RoundWidth / 8;
    795           Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    796                              DAG.getIntPtrConstant(IncrementSize));
    797           Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
    798                            DAG.getConstant(RoundWidth,
    799                                     TLI.getShiftAmountTy(Value.getValueType())));
    800           Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
    801                              ST->getPointerInfo().getWithOffset(IncrementSize),
    802                                  ExtraVT, isVolatile, isNonTemporal,
    803                                  MinAlign(Alignment, IncrementSize));
    804         } else {
    805           // Big endian - avoid unaligned stores.
    806           // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
    807           // Store the top RoundWidth bits.
    808           Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
    809                            DAG.getConstant(ExtraWidth,
    810                                     TLI.getShiftAmountTy(Value.getValueType())));
    811           Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
    812                                  RoundVT, isVolatile, isNonTemporal, Alignment);
    813 
    814           // Store the remaining ExtraWidth bits.
    815           IncrementSize = RoundWidth / 8;
    816           Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    817                              DAG.getIntPtrConstant(IncrementSize));
    818           Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
    819                               ST->getPointerInfo().getWithOffset(IncrementSize),
    820                                  ExtraVT, isVolatile, isNonTemporal,
    821                                  MinAlign(Alignment, IncrementSize));
    822         }
    823 
    824         // The order of the stores doesn't matter.
    825         SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
    826         ReplaceNode(SDValue(Node, 0), Result);
    827       } else {
    828         switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
    829                                         StVT.getSimpleVT())) {
    830         default: llvm_unreachable("This action is not supported yet!");
    831         case TargetLowering::Legal:
    832           // If this is an unaligned store and the target doesn't support it,
    833           // expand it.
    834           if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
    835             Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
    836             unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
    837             if (ST->getAlignment() < ABIAlignment)
    838               ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
    839           }
    840           break;
    841         case TargetLowering::Custom: {
    842           SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
    843           if (Res.getNode())
    844             ReplaceNode(SDValue(Node, 0), Res);
    845           return;
    846         }
    847         case TargetLowering::Expand:
    848           assert(!StVT.isVector() &&
    849                  "Vector Stores are handled in LegalizeVectorOps");
    850 
    851           // TRUNCSTORE:i16 i32 -> STORE i16
    852           assert(TLI.isTypeLegal(StVT) &&
    853                  "Do not know how to expand this store!");
    854           Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
    855           SDValue Result =
    856             DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
    857                          isVolatile, isNonTemporal, Alignment);
    858           ReplaceNode(SDValue(Node, 0), Result);
    859           break;
    860         }
    861       }
    862     }
    863 }
    864 
    865 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
    866   LoadSDNode *LD = cast<LoadSDNode>(Node);
    867   SDValue Chain = LD->getChain();  // The chain.
    868   SDValue Ptr = LD->getBasePtr();  // The base pointer.
    869   SDValue Value;                   // The value returned by the load op.
    870   SDLoc dl(Node);
    871 
    872   ISD::LoadExtType ExtType = LD->getExtensionType();
    873   if (ExtType == ISD::NON_EXTLOAD) {
    874     MVT VT = Node->getSimpleValueType(0);
    875     SDValue RVal = SDValue(Node, 0);
    876     SDValue RChain = SDValue(Node, 1);
    877 
    878     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    879     default: llvm_unreachable("This action is not supported yet!");
    880     case TargetLowering::Legal:
    881       // If this is an unaligned load and the target doesn't support it,
    882       // expand it.
    883       if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
    884         Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
    885         unsigned ABIAlignment =
    886           TLI.getDataLayout()->getABITypeAlignment(Ty);
    887         if (LD->getAlignment() < ABIAlignment){
    888           ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
    889         }
    890       }
    891       break;
    892     case TargetLowering::Custom: {
    893       SDValue Res = TLI.LowerOperation(RVal, DAG);
    894       if (Res.getNode()) {
    895         RVal = Res;
    896         RChain = Res.getValue(1);
    897       }
    898       break;
    899     }
    900     case TargetLowering::Promote: {
    901       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
    902       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
    903              "Can only promote loads to same size type");
    904 
    905       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
    906                          LD->isVolatile(), LD->isNonTemporal(),
    907                          LD->isInvariant(), LD->getAlignment());
    908       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
    909       RChain = Res.getValue(1);
    910       break;
    911     }
    912     }
    913     if (RChain.getNode() != Node) {
    914       assert(RVal.getNode() != Node && "Load must be completely replaced");
    915       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
    916       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
    917       ReplacedNode(Node);
    918     }
    919     return;
    920   }
    921 
    922   EVT SrcVT = LD->getMemoryVT();
    923   unsigned SrcWidth = SrcVT.getSizeInBits();
    924   unsigned Alignment = LD->getAlignment();
    925   bool isVolatile = LD->isVolatile();
    926   bool isNonTemporal = LD->isNonTemporal();
    927 
    928   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
    929       // Some targets pretend to have an i1 loading operation, and actually
    930       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
    931       // bits are guaranteed to be zero; it helps the optimizers understand
    932       // that these bits are zero.  It is also useful for EXTLOAD, since it
    933       // tells the optimizers that those bits are undefined.  It would be
    934       // nice to have an effective generic way of getting these benefits...
    935       // Until such a way is found, don't insist on promoting i1 here.
    936       (SrcVT != MVT::i1 ||
    937        TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
    938     // Promote to a byte-sized load if not loading an integral number of
    939     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
    940     unsigned NewWidth = SrcVT.getStoreSizeInBits();
    941     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
    942     SDValue Ch;
    943 
    944     // The extra bits are guaranteed to be zero, since we stored them that
    945     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
    946 
    947     ISD::LoadExtType NewExtType =
    948       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
    949 
    950     SDValue Result =
    951       DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
    952                      Chain, Ptr, LD->getPointerInfo(),
    953                      NVT, isVolatile, isNonTemporal, Alignment);
    954 
    955     Ch = Result.getValue(1); // The chain.
    956 
    957     if (ExtType == ISD::SEXTLOAD)
    958       // Having the top bits zero doesn't help when sign extending.
    959       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
    960                            Result.getValueType(),
    961                            Result, DAG.getValueType(SrcVT));
    962     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
    963       // All the top bits are guaranteed to be zero - inform the optimizers.
    964       Result = DAG.getNode(ISD::AssertZext, dl,
    965                            Result.getValueType(), Result,
    966                            DAG.getValueType(SrcVT));
    967 
    968     Value = Result;
    969     Chain = Ch;
    970   } else if (SrcWidth & (SrcWidth - 1)) {
    971     // If not loading a power-of-2 number of bits, expand as two loads.
    972     assert(!SrcVT.isVector() && "Unsupported extload!");
    973     unsigned RoundWidth = 1 << Log2_32(SrcWidth);
    974     assert(RoundWidth < SrcWidth);
    975     unsigned ExtraWidth = SrcWidth - RoundWidth;
    976     assert(ExtraWidth < RoundWidth);
    977     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
    978            "Load size not an integral number of bytes!");
    979     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
    980     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
    981     SDValue Lo, Hi, Ch;
    982     unsigned IncrementSize;
    983 
    984     if (TLI.isLittleEndian()) {
    985       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
    986       // Load the bottom RoundWidth bits.
    987       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
    988                           Chain, Ptr,
    989                           LD->getPointerInfo(), RoundVT, isVolatile,
    990                           isNonTemporal, Alignment);
    991 
    992       // Load the remaining ExtraWidth bits.
    993       IncrementSize = RoundWidth / 8;
    994       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
    995                          DAG.getIntPtrConstant(IncrementSize));
    996       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
    997                           LD->getPointerInfo().getWithOffset(IncrementSize),
    998                           ExtraVT, isVolatile, isNonTemporal,
    999                           MinAlign(Alignment, IncrementSize));
   1000 
   1001       // Build a factor node to remember that this load is independent of
   1002       // the other one.
   1003       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   1004                        Hi.getValue(1));
   1005 
   1006       // Move the top bits to the right place.
   1007       Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
   1008                        DAG.getConstant(RoundWidth,
   1009                                        TLI.getShiftAmountTy(Hi.getValueType())));
   1010 
   1011       // Join the hi and lo parts.
   1012       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
   1013     } else {
   1014       // Big endian - avoid unaligned loads.
   1015       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
   1016       // Load the top RoundWidth bits.
   1017       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
   1018                           LD->getPointerInfo(), RoundVT, isVolatile,
   1019                           isNonTemporal, Alignment);
   1020 
   1021       // Load the remaining ExtraWidth bits.
   1022       IncrementSize = RoundWidth / 8;
   1023       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
   1024                          DAG.getIntPtrConstant(IncrementSize));
   1025       Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
   1026                           dl, Node->getValueType(0), Chain, Ptr,
   1027                           LD->getPointerInfo().getWithOffset(IncrementSize),
   1028                           ExtraVT, isVolatile, isNonTemporal,
   1029                           MinAlign(Alignment, IncrementSize));
   1030 
   1031       // Build a factor node to remember that this load is independent of
   1032       // the other one.
   1033       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   1034                        Hi.getValue(1));
   1035 
   1036       // Move the top bits to the right place.
   1037       Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
   1038                        DAG.getConstant(ExtraWidth,
   1039                                        TLI.getShiftAmountTy(Hi.getValueType())));
   1040 
   1041       // Join the hi and lo parts.
   1042       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
   1043     }
   1044 
   1045     Chain = Ch;
   1046   } else {
   1047     bool isCustom = false;
   1048     switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
   1049     default: llvm_unreachable("This action is not supported yet!");
   1050     case TargetLowering::Custom:
   1051              isCustom = true;
   1052              // FALLTHROUGH
   1053     case TargetLowering::Legal: {
   1054              Value = SDValue(Node, 0);
   1055              Chain = SDValue(Node, 1);
   1056 
   1057              if (isCustom) {
   1058                SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
   1059                if (Res.getNode()) {
   1060                  Value = Res;
   1061                  Chain = Res.getValue(1);
   1062                }
   1063              } else {
   1064                // If this is an unaligned load and the target doesn't support it,
   1065                // expand it.
   1066                if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
   1067                  Type *Ty =
   1068                    LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
   1069                  unsigned ABIAlignment =
   1070                    TLI.getDataLayout()->getABITypeAlignment(Ty);
   1071                  if (LD->getAlignment() < ABIAlignment){
   1072                    ExpandUnalignedLoad(cast<LoadSDNode>(Node),
   1073                                        DAG, TLI, Value, Chain);
   1074                  }
   1075                }
   1076              }
   1077              break;
   1078     }
   1079     case TargetLowering::Expand:
   1080              if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
   1081                SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
   1082                                           LD->getPointerInfo(),
   1083                                           LD->isVolatile(), LD->isNonTemporal(),
   1084                                           LD->isInvariant(), LD->getAlignment());
   1085                unsigned ExtendOp;
   1086                switch (ExtType) {
   1087                case ISD::EXTLOAD:
   1088                  ExtendOp = (SrcVT.isFloatingPoint() ?
   1089                              ISD::FP_EXTEND : ISD::ANY_EXTEND);
   1090                  break;
   1091                case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
   1092                case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
   1093                default: llvm_unreachable("Unexpected extend load type!");
   1094                }
   1095                Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
   1096                Chain = Load.getValue(1);
   1097                break;
   1098              }
   1099 
   1100              assert(!SrcVT.isVector() &&
   1101                     "Vector Loads are handled in LegalizeVectorOps");
   1102 
   1103              // FIXME: This does not work for vectors on most targets.  Sign- and
   1104              // zero-extend operations are currently folded into extending loads,
   1105              // whether they are legal or not, and then we end up here without any
   1106              // support for legalizing them.
   1107              assert(ExtType != ISD::EXTLOAD &&
   1108                     "EXTLOAD should always be supported!");
   1109              // Turn the unsupported load into an EXTLOAD followed by an explicit
   1110              // zero/sign extend inreg.
   1111              SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
   1112                                              Chain, Ptr, LD->getPointerInfo(), SrcVT,
   1113                                              LD->isVolatile(), LD->isNonTemporal(),
   1114                                              LD->getAlignment());
   1115              SDValue ValRes;
   1116              if (ExtType == ISD::SEXTLOAD)
   1117                ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
   1118                                     Result.getValueType(),
   1119                                     Result, DAG.getValueType(SrcVT));
   1120              else
   1121                ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
   1122              Value = ValRes;
   1123              Chain = Result.getValue(1);
   1124              break;
   1125     }
   1126   }
   1127 
   1128   // Since loads produce two values, make sure to remember that we legalized
   1129   // both of them.
   1130   if (Chain.getNode() != Node) {
   1131     assert(Value.getNode() != Node && "Load must be completely replaced");
   1132     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
   1133     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
   1134     ReplacedNode(Node);
   1135   }
   1136 }
   1137 
   1138 /// LegalizeOp - Return a legal replacement for the given operation, with
   1139 /// all legal operands.
   1140 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
   1141   if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
   1142     return;
   1143 
   1144   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
   1145     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
   1146              TargetLowering::TypeLegal &&
   1147            "Unexpected illegal type!");
   1148 
   1149   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
   1150     assert((TLI.getTypeAction(*DAG.getContext(),
   1151                               Node->getOperand(i).getValueType()) ==
   1152               TargetLowering::TypeLegal ||
   1153             Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
   1154            "Unexpected illegal type!");
   1155 
   1156   // Figure out the correct action; the way to query this varies by opcode
   1157   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
   1158   bool SimpleFinishLegalizing = true;
   1159   switch (Node->getOpcode()) {
   1160   case ISD::INTRINSIC_W_CHAIN:
   1161   case ISD::INTRINSIC_WO_CHAIN:
   1162   case ISD::INTRINSIC_VOID:
   1163   case ISD::STACKSAVE:
   1164     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
   1165     break;
   1166   case ISD::VAARG:
   1167     Action = TLI.getOperationAction(Node->getOpcode(),
   1168                                     Node->getValueType(0));
   1169     if (Action != TargetLowering::Promote)
   1170       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
   1171     break;
   1172   case ISD::SINT_TO_FP:
   1173   case ISD::UINT_TO_FP:
   1174   case ISD::EXTRACT_VECTOR_ELT:
   1175     Action = TLI.getOperationAction(Node->getOpcode(),
   1176                                     Node->getOperand(0).getValueType());
   1177     break;
   1178   case ISD::FP_ROUND_INREG:
   1179   case ISD::SIGN_EXTEND_INREG: {
   1180     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
   1181     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
   1182     break;
   1183   }
   1184   case ISD::ATOMIC_STORE: {
   1185     Action = TLI.getOperationAction(Node->getOpcode(),
   1186                                     Node->getOperand(2).getValueType());
   1187     break;
   1188   }
   1189   case ISD::SELECT_CC:
   1190   case ISD::SETCC:
   1191   case ISD::BR_CC: {
   1192     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
   1193                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
   1194     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
   1195     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
   1196     ISD::CondCode CCCode =
   1197         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
   1198     Action = TLI.getCondCodeAction(CCCode, OpVT);
   1199     if (Action == TargetLowering::Legal) {
   1200       if (Node->getOpcode() == ISD::SELECT_CC)
   1201         Action = TLI.getOperationAction(Node->getOpcode(),
   1202                                         Node->getValueType(0));
   1203       else
   1204         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
   1205     }
   1206     break;
   1207   }
   1208   case ISD::LOAD:
   1209   case ISD::STORE:
   1210     // FIXME: Model these properly.  LOAD and STORE are complicated, and
   1211     // STORE expects the unlegalized operand in some cases.
   1212     SimpleFinishLegalizing = false;
   1213     break;
   1214   case ISD::CALLSEQ_START:
   1215   case ISD::CALLSEQ_END:
   1216     // FIXME: This shouldn't be necessary.  These nodes have special properties
   1217     // dealing with the recursive nature of legalization.  Removing this
   1218     // special case should be done as part of making LegalizeDAG non-recursive.
   1219     SimpleFinishLegalizing = false;
   1220     break;
   1221   case ISD::EXTRACT_ELEMENT:
   1222   case ISD::FLT_ROUNDS_:
   1223   case ISD::SADDO:
   1224   case ISD::SSUBO:
   1225   case ISD::UADDO:
   1226   case ISD::USUBO:
   1227   case ISD::SMULO:
   1228   case ISD::UMULO:
   1229   case ISD::FPOWI:
   1230   case ISD::MERGE_VALUES:
   1231   case ISD::EH_RETURN:
   1232   case ISD::FRAME_TO_ARGS_OFFSET:
   1233   case ISD::EH_SJLJ_SETJMP:
   1234   case ISD::EH_SJLJ_LONGJMP:
   1235     // These operations lie about being legal: when they claim to be legal,
   1236     // they should actually be expanded.
   1237     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
   1238     if (Action == TargetLowering::Legal)
   1239       Action = TargetLowering::Expand;
   1240     break;
   1241   case ISD::INIT_TRAMPOLINE:
   1242   case ISD::ADJUST_TRAMPOLINE:
   1243   case ISD::FRAMEADDR:
   1244   case ISD::RETURNADDR:
   1245     // These operations lie about being legal: when they claim to be legal,
   1246     // they should actually be custom-lowered.
   1247     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
   1248     if (Action == TargetLowering::Legal)
   1249       Action = TargetLowering::Custom;
   1250     break;
   1251   case ISD::DEBUGTRAP:
   1252     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
   1253     if (Action == TargetLowering::Expand) {
   1254       // replace ISD::DEBUGTRAP with ISD::TRAP
   1255       SDValue NewVal;
   1256       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
   1257                            Node->getOperand(0));
   1258       ReplaceNode(Node, NewVal.getNode());
   1259       LegalizeOp(NewVal.getNode());
   1260       return;
   1261     }
   1262     break;
   1263 
   1264   default:
   1265     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
   1266       Action = TargetLowering::Legal;
   1267     } else {
   1268       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
   1269     }
   1270     break;
   1271   }
   1272 
   1273   if (SimpleFinishLegalizing) {
   1274     SDNode *NewNode = Node;
   1275     switch (Node->getOpcode()) {
   1276     default: break;
   1277     case ISD::SHL:
   1278     case ISD::SRL:
   1279     case ISD::SRA:
   1280     case ISD::ROTL:
   1281     case ISD::ROTR:
   1282       // Legalizing shifts/rotates requires adjusting the shift amount
   1283       // to the appropriate width.
   1284       if (!Node->getOperand(1).getValueType().isVector()) {
   1285         SDValue SAO =
   1286           DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
   1287                                     Node->getOperand(1));
   1288         HandleSDNode Handle(SAO);
   1289         LegalizeOp(SAO.getNode());
   1290         NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
   1291                                          Handle.getValue());
   1292       }
   1293       break;
   1294     case ISD::SRL_PARTS:
   1295     case ISD::SRA_PARTS:
   1296     case ISD::SHL_PARTS:
   1297       // Legalizing shifts/rotates requires adjusting the shift amount
   1298       // to the appropriate width.
   1299       if (!Node->getOperand(2).getValueType().isVector()) {
   1300         SDValue SAO =
   1301           DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
   1302                                     Node->getOperand(2));
   1303         HandleSDNode Handle(SAO);
   1304         LegalizeOp(SAO.getNode());
   1305         NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
   1306                                          Node->getOperand(1),
   1307                                          Handle.getValue());
   1308       }
   1309       break;
   1310     }
   1311 
   1312     if (NewNode != Node) {
   1313       DAG.ReplaceAllUsesWith(Node, NewNode);
   1314       for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
   1315         DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
   1316       ReplacedNode(Node);
   1317       Node = NewNode;
   1318     }
   1319     switch (Action) {
   1320     case TargetLowering::Legal:
   1321       return;
   1322     case TargetLowering::Custom: {
   1323       // FIXME: The handling for custom lowering with multiple results is
   1324       // a complete mess.
   1325       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
   1326       if (Res.getNode()) {
   1327         SmallVector<SDValue, 8> ResultVals;
   1328         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
   1329           if (e == 1)
   1330             ResultVals.push_back(Res);
   1331           else
   1332             ResultVals.push_back(Res.getValue(i));
   1333         }
   1334         if (Res.getNode() != Node || Res.getResNo() != 0) {
   1335           DAG.ReplaceAllUsesWith(Node, ResultVals.data());
   1336           for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
   1337             DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
   1338           ReplacedNode(Node);
   1339         }
   1340         return;
   1341       }
   1342     }
   1343       // FALL THROUGH
   1344     case TargetLowering::Expand:
   1345       ExpandNode(Node);
   1346       return;
   1347     case TargetLowering::Promote:
   1348       PromoteNode(Node);
   1349       return;
   1350     }
   1351   }
   1352 
   1353   switch (Node->getOpcode()) {
   1354   default:
   1355 #ifndef NDEBUG
   1356     dbgs() << "NODE: ";
   1357     Node->dump( &DAG);
   1358     dbgs() << "\n";
   1359 #endif
   1360     llvm_unreachable("Do not know how to legalize this operator!");
   1361 
   1362   case ISD::CALLSEQ_START:
   1363   case ISD::CALLSEQ_END:
   1364     break;
   1365   case ISD::LOAD: {
   1366     return LegalizeLoadOps(Node);
   1367   }
   1368   case ISD::STORE: {
   1369     return LegalizeStoreOps(Node);
   1370   }
   1371   }
   1372 }
   1373 
   1374 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
   1375   SDValue Vec = Op.getOperand(0);
   1376   SDValue Idx = Op.getOperand(1);
   1377   SDLoc dl(Op);
   1378   // Store the value to a temporary stack slot, then LOAD the returned part.
   1379   SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
   1380   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
   1381                             MachinePointerInfo(), false, false, 0);
   1382 
   1383   // Add the offset to the index.
   1384   unsigned EltSize =
   1385       Vec.getValueType().getVectorElementType().getSizeInBits()/8;
   1386   Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
   1387                     DAG.getConstant(EltSize, Idx.getValueType()));
   1388 
   1389   if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
   1390     Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
   1391   else
   1392     Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
   1393 
   1394   StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
   1395 
   1396   if (Op.getValueType().isVector())
   1397     return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
   1398                        false, false, false, 0);
   1399   return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
   1400                         MachinePointerInfo(),
   1401                         Vec.getValueType().getVectorElementType(),
   1402                         false, false, 0);
   1403 }
   1404 
   1405 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
   1406   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
   1407 
   1408   SDValue Vec  = Op.getOperand(0);
   1409   SDValue Part = Op.getOperand(1);
   1410   SDValue Idx  = Op.getOperand(2);
   1411   SDLoc dl(Op);
   1412 
   1413   // Store the value to a temporary stack slot, then LOAD the returned part.
   1414 
   1415   SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
   1416   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
   1417   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
   1418 
   1419   // First store the whole vector.
   1420   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
   1421                             false, false, 0);
   1422 
   1423   // Then store the inserted part.
   1424 
   1425   // Add the offset to the index.
   1426   unsigned EltSize =
   1427       Vec.getValueType().getVectorElementType().getSizeInBits()/8;
   1428 
   1429   Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
   1430                     DAG.getConstant(EltSize, Idx.getValueType()));
   1431 
   1432   if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
   1433     Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
   1434   else
   1435     Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
   1436 
   1437   SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
   1438                                     StackPtr);
   1439 
   1440   // Store the subvector.
   1441   Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
   1442                     MachinePointerInfo(), false, false, 0);
   1443 
   1444   // Finally, load the updated vector.
   1445   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
   1446                      false, false, false, 0);
   1447 }
   1448 
   1449 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
   1450   // We can't handle this case efficiently.  Allocate a sufficiently
   1451   // aligned object on the stack, store each element into it, then load
   1452   // the result as a vector.
   1453   // Create the stack frame object.
   1454   EVT VT = Node->getValueType(0);
   1455   EVT EltVT = VT.getVectorElementType();
   1456   SDLoc dl(Node);
   1457   SDValue FIPtr = DAG.CreateStackTemporary(VT);
   1458   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
   1459   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
   1460 
   1461   // Emit a store of each element to the stack slot.
   1462   SmallVector<SDValue, 8> Stores;
   1463   unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
   1464   // Store (in the right endianness) the elements to memory.
   1465   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
   1466     // Ignore undef elements.
   1467     if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1468 
   1469     unsigned Offset = TypeByteSize*i;
   1470 
   1471     SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
   1472     Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
   1473 
   1474     // If the destination vector element type is narrower than the source
   1475     // element type, only store the bits necessary.
   1476     if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
   1477       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
   1478                                          Node->getOperand(i), Idx,
   1479                                          PtrInfo.getWithOffset(Offset),
   1480                                          EltVT, false, false, 0));
   1481     } else
   1482       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
   1483                                     Node->getOperand(i), Idx,
   1484                                     PtrInfo.getWithOffset(Offset),
   1485                                     false, false, 0));
   1486   }
   1487 
   1488   SDValue StoreChain;
   1489   if (!Stores.empty())    // Not all undef elements?
   1490     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1491                              &Stores[0], Stores.size());
   1492   else
   1493     StoreChain = DAG.getEntryNode();
   1494 
   1495   // Result is a load from the stack slot.
   1496   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
   1497                      false, false, false, 0);
   1498 }
   1499 
   1500 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
   1501   SDLoc dl(Node);
   1502   SDValue Tmp1 = Node->getOperand(0);
   1503   SDValue Tmp2 = Node->getOperand(1);
   1504 
   1505   // Get the sign bit of the RHS.  First obtain a value that has the same
   1506   // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
   1507   SDValue SignBit;
   1508   EVT FloatVT = Tmp2.getValueType();
   1509   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
   1510   if (TLI.isTypeLegal(IVT)) {
   1511     // Convert to an integer with the same sign bit.
   1512     SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
   1513   } else {
   1514     // Store the float to memory, then load the sign part out as an integer.
   1515     MVT LoadTy = TLI.getPointerTy();
   1516     // First create a temporary that is aligned for both the load and store.
   1517     SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
   1518     // Then store the float to it.
   1519     SDValue Ch =
   1520       DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
   1521                    false, false, 0);
   1522     if (TLI.isBigEndian()) {
   1523       assert(FloatVT.isByteSized() && "Unsupported floating point type!");
   1524       // Load out a legal integer with the same sign bit as the float.
   1525       SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
   1526                             false, false, false, 0);
   1527     } else { // Little endian
   1528       SDValue LoadPtr = StackPtr;
   1529       // The float may be wider than the integer we are going to load.  Advance
   1530       // the pointer so that the loaded integer will contain the sign bit.
   1531       unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
   1532       unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
   1533       LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
   1534                             LoadPtr, DAG.getIntPtrConstant(ByteOffset));
   1535       // Load a legal integer containing the sign bit.
   1536       SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
   1537                             false, false, false, 0);
   1538       // Move the sign bit to the top bit of the loaded integer.
   1539       unsigned BitShift = LoadTy.getSizeInBits() -
   1540         (FloatVT.getSizeInBits() - 8 * ByteOffset);
   1541       assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
   1542       if (BitShift)
   1543         SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
   1544                               DAG.getConstant(BitShift,
   1545                                  TLI.getShiftAmountTy(SignBit.getValueType())));
   1546     }
   1547   }
   1548   // Now get the sign bit proper, by seeing whether the value is negative.
   1549   SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()),
   1550                          SignBit, DAG.getConstant(0, SignBit.getValueType()),
   1551                          ISD::SETLT);
   1552   // Get the absolute value of the result.
   1553   SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
   1554   // Select between the nabs and abs value based on the sign bit of
   1555   // the input.
   1556   return DAG.getSelect(dl, AbsVal.getValueType(), SignBit,
   1557                        DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
   1558                        AbsVal);
   1559 }
   1560 
   1561 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
   1562                                            SmallVectorImpl<SDValue> &Results) {
   1563   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
   1564   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
   1565           " not tell us which reg is the stack pointer!");
   1566   SDLoc dl(Node);
   1567   EVT VT = Node->getValueType(0);
   1568   SDValue Tmp1 = SDValue(Node, 0);
   1569   SDValue Tmp2 = SDValue(Node, 1);
   1570   SDValue Tmp3 = Node->getOperand(2);
   1571   SDValue Chain = Tmp1.getOperand(0);
   1572 
   1573   // Chain the dynamic stack allocation so that it doesn't modify the stack
   1574   // pointer when other instructions are using the stack.
   1575   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
   1576                                SDLoc(Node));
   1577 
   1578   SDValue Size  = Tmp2.getOperand(1);
   1579   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
   1580   Chain = SP.getValue(1);
   1581   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
   1582   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
   1583   if (Align > StackAlign)
   1584     SP = DAG.getNode(ISD::AND, dl, VT, SP,
   1585                       DAG.getConstant(-(uint64_t)Align, VT));
   1586   Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
   1587   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
   1588 
   1589   Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
   1590                             DAG.getIntPtrConstant(0, true), SDValue(),
   1591                             SDLoc(Node));
   1592 
   1593   Results.push_back(Tmp1);
   1594   Results.push_back(Tmp2);
   1595 }
   1596 
   1597 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
   1598 /// condition code CC on the current target. This routine expands SETCC with
   1599 /// illegal condition code into AND / OR of multiple SETCC values.
   1600 void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
   1601                                                  SDValue &LHS, SDValue &RHS,
   1602                                                  SDValue &CC,
   1603                                                  SDLoc dl) {
   1604   MVT OpVT = LHS.getSimpleValueType();
   1605   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
   1606   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
   1607   default: llvm_unreachable("Unknown condition code action!");
   1608   case TargetLowering::Legal:
   1609     // Nothing to do.
   1610     break;
   1611   case TargetLowering::Expand: {
   1612     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
   1613     ISD::CondCode InvCC = ISD::SETCC_INVALID;
   1614     unsigned Opc = 0;
   1615     switch (CCCode) {
   1616     default: llvm_unreachable("Don't know how to expand this condition!");
   1617     case ISD::SETO:
   1618         assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
   1619             == TargetLowering::Legal
   1620             && "If SETO is expanded, SETOEQ must be legal!");
   1621         CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
   1622     case ISD::SETUO:
   1623         assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
   1624             == TargetLowering::Legal
   1625             && "If SETUO is expanded, SETUNE must be legal!");
   1626         CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
   1627     case ISD::SETOEQ:
   1628     case ISD::SETOGT:
   1629     case ISD::SETOGE:
   1630     case ISD::SETOLT:
   1631     case ISD::SETOLE:
   1632     case ISD::SETONE:
   1633     case ISD::SETUEQ:
   1634     case ISD::SETUNE:
   1635     case ISD::SETUGT:
   1636     case ISD::SETUGE:
   1637     case ISD::SETULT:
   1638     case ISD::SETULE:
   1639         // If we are floating point, assign and break, otherwise fall through.
   1640         if (!OpVT.isInteger()) {
   1641           // We can use the 4th bit to tell if we are the unordered
   1642           // or ordered version of the opcode.
   1643           CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
   1644           Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
   1645           CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
   1646           break;
   1647         }
   1648         // Fallthrough if we are unsigned integer.
   1649     case ISD::SETLE:
   1650     case ISD::SETGT:
   1651     case ISD::SETGE:
   1652     case ISD::SETLT:
   1653     case ISD::SETNE:
   1654     case ISD::SETEQ:
   1655       InvCC = ISD::getSetCCSwappedOperands(CCCode);
   1656       if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) {
   1657         // We only support using the inverted operation and not a
   1658         // different manner of supporting expanding these cases.
   1659         llvm_unreachable("Don't know how to expand this condition!");
   1660       }
   1661       LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC);
   1662       RHS = SDValue();
   1663       CC = SDValue();
   1664       return;
   1665     }
   1666 
   1667     SDValue SetCC1, SetCC2;
   1668     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
   1669       // If we aren't the ordered or unorder operation,
   1670       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
   1671       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
   1672       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
   1673     } else {
   1674       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
   1675       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
   1676       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
   1677     }
   1678     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
   1679     RHS = SDValue();
   1680     CC  = SDValue();
   1681     break;
   1682   }
   1683   }
   1684 }
   1685 
   1686 /// EmitStackConvert - Emit a store/load combination to the stack.  This stores
   1687 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
   1688 /// a load from the stack slot to DestVT, extending it if needed.
   1689 /// The resultant code need not be legal.
   1690 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
   1691                                                EVT SlotVT,
   1692                                                EVT DestVT,
   1693                                                SDLoc dl) {
   1694   // Create the stack frame object.
   1695   unsigned SrcAlign =
   1696     TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
   1697                                               getTypeForEVT(*DAG.getContext()));
   1698   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
   1699 
   1700   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
   1701   int SPFI = StackPtrFI->getIndex();
   1702   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
   1703 
   1704   unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
   1705   unsigned SlotSize = SlotVT.getSizeInBits();
   1706   unsigned DestSize = DestVT.getSizeInBits();
   1707   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
   1708   unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
   1709 
   1710   // Emit a store to the stack slot.  Use a truncstore if the input value is
   1711   // later than DestVT.
   1712   SDValue Store;
   1713 
   1714   if (SrcSize > SlotSize)
   1715     Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
   1716                               PtrInfo, SlotVT, false, false, SrcAlign);
   1717   else {
   1718     assert(SrcSize == SlotSize && "Invalid store");
   1719     Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
   1720                          PtrInfo, false, false, SrcAlign);
   1721   }
   1722 
   1723   // Result is a load from the stack slot.
   1724   if (SlotSize == DestSize)
   1725     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
   1726                        false, false, false, DestAlign);
   1727 
   1728   assert(SlotSize < DestSize && "Unknown extension!");
   1729   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
   1730                         PtrInfo, SlotVT, false, false, DestAlign);
   1731 }
   1732 
   1733 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
   1734   SDLoc dl(Node);
   1735   // Create a vector sized/aligned stack slot, store the value to element #0,
   1736   // then load the whole vector back out.
   1737   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
   1738 
   1739   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
   1740   int SPFI = StackPtrFI->getIndex();
   1741 
   1742   SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
   1743                                  StackPtr,
   1744                                  MachinePointerInfo::getFixedStack(SPFI),
   1745                                  Node->getValueType(0).getVectorElementType(),
   1746                                  false, false, 0);
   1747   return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
   1748                      MachinePointerInfo::getFixedStack(SPFI),
   1749                      false, false, false, 0);
   1750 }
   1751 
   1752 
   1753 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
   1754 /// support the operation, but do support the resultant vector type.
   1755 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
   1756   unsigned NumElems = Node->getNumOperands();
   1757   SDValue Value1, Value2;
   1758   SDLoc dl(Node);
   1759   EVT VT = Node->getValueType(0);
   1760   EVT OpVT = Node->getOperand(0).getValueType();
   1761   EVT EltVT = VT.getVectorElementType();
   1762 
   1763   // If the only non-undef value is the low element, turn this into a
   1764   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
   1765   bool isOnlyLowElement = true;
   1766   bool MoreThanTwoValues = false;
   1767   bool isConstant = true;
   1768   for (unsigned i = 0; i < NumElems; ++i) {
   1769     SDValue V = Node->getOperand(i);
   1770     if (V.getOpcode() == ISD::UNDEF)
   1771       continue;
   1772     if (i > 0)
   1773       isOnlyLowElement = false;
   1774     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   1775       isConstant = false;
   1776 
   1777     if (!Value1.getNode()) {
   1778       Value1 = V;
   1779     } else if (!Value2.getNode()) {
   1780       if (V != Value1)
   1781         Value2 = V;
   1782     } else if (V != Value1 && V != Value2) {
   1783       MoreThanTwoValues = true;
   1784     }
   1785   }
   1786 
   1787   if (!Value1.getNode())
   1788     return DAG.getUNDEF(VT);
   1789 
   1790   if (isOnlyLowElement)
   1791     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
   1792 
   1793   // If all elements are constants, create a load from the constant pool.
   1794   if (isConstant) {
   1795     SmallVector<Constant*, 16> CV;
   1796     for (unsigned i = 0, e = NumElems; i != e; ++i) {
   1797       if (ConstantFPSDNode *V =
   1798           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
   1799         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
   1800       } else if (ConstantSDNode *V =
   1801                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
   1802         if (OpVT==EltVT)
   1803           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
   1804         else {
   1805           // If OpVT and EltVT don't match, EltVT is not legal and the
   1806           // element values have been promoted/truncated earlier.  Undo this;
   1807           // we don't want a v16i8 to become a v16i32 for example.
   1808           const ConstantInt *CI = V->getConstantIntValue();
   1809           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
   1810                                         CI->getZExtValue()));
   1811         }
   1812       } else {
   1813         assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
   1814         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
   1815         CV.push_back(UndefValue::get(OpNTy));
   1816       }
   1817     }
   1818     Constant *CP = ConstantVector::get(CV);
   1819     SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
   1820     unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
   1821     return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   1822                        MachinePointerInfo::getConstantPool(),
   1823                        false, false, false, Alignment);
   1824   }
   1825 
   1826   if (!MoreThanTwoValues) {
   1827     SmallVector<int, 8> ShuffleVec(NumElems, -1);
   1828     for (unsigned i = 0; i < NumElems; ++i) {
   1829       SDValue V = Node->getOperand(i);
   1830       if (V.getOpcode() == ISD::UNDEF)
   1831         continue;
   1832       ShuffleVec[i] = V == Value1 ? 0 : NumElems;
   1833     }
   1834     if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
   1835       // Get the splatted value into the low element of a vector register.
   1836       SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
   1837       SDValue Vec2;
   1838       if (Value2.getNode())
   1839         Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
   1840       else
   1841         Vec2 = DAG.getUNDEF(VT);
   1842 
   1843       // Return shuffle(LowValVec, undef, <0,0,0,0>)
   1844       return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
   1845     }
   1846   }
   1847 
   1848   // Otherwise, we can't handle this case efficiently.
   1849   return ExpandVectorBuildThroughStack(Node);
   1850 }
   1851 
   1852 // ExpandLibCall - Expand a node into a call to a libcall.  If the result value
   1853 // does not fit into a register, return the lo part and set the hi part to the
   1854 // by-reg argument.  If it does fit into a single register, return the result
   1855 // and leave the Hi part unset.
   1856 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
   1857                                             bool isSigned) {
   1858   TargetLowering::ArgListTy Args;
   1859   TargetLowering::ArgListEntry Entry;
   1860   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
   1861     EVT ArgVT = Node->getOperand(i).getValueType();
   1862     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1863     Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
   1864     Entry.isSExt = isSigned;
   1865     Entry.isZExt = !isSigned;
   1866     Args.push_back(Entry);
   1867   }
   1868   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1869                                          TLI.getPointerTy());
   1870 
   1871   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1872 
   1873   // By default, the input chain to this libcall is the entry node of the
   1874   // function. If the libcall is going to be emitted as a tail call then
   1875   // TLI.isUsedByReturnOnly will change it to the right chain if the return
   1876   // node which is being folded has a non-entry input chain.
   1877   SDValue InChain = DAG.getEntryNode();
   1878 
   1879   // isTailCall may be true since the callee does not reference caller stack
   1880   // frame. Check if it's in the right position.
   1881   SDValue TCChain = InChain;
   1882   bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
   1883   if (isTailCall)
   1884     InChain = TCChain;
   1885 
   1886   TargetLowering::
   1887   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
   1888                     0, TLI.getLibcallCallingConv(LC), isTailCall,
   1889                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   1890                     Callee, Args, DAG, SDLoc(Node));
   1891   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1892 
   1893 
   1894   if (!CallInfo.second.getNode())
   1895     // It's a tailcall, return the chain (which is the DAG root).
   1896     return DAG.getRoot();
   1897 
   1898   return CallInfo.first;
   1899 }
   1900 
   1901 /// ExpandLibCall - Generate a libcall taking the given operands as arguments
   1902 /// and returning a result of type RetVT.
   1903 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
   1904                                             const SDValue *Ops, unsigned NumOps,
   1905                                             bool isSigned, SDLoc dl) {
   1906   TargetLowering::ArgListTy Args;
   1907   Args.reserve(NumOps);
   1908 
   1909   TargetLowering::ArgListEntry Entry;
   1910   for (unsigned i = 0; i != NumOps; ++i) {
   1911     Entry.Node = Ops[i];
   1912     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
   1913     Entry.isSExt = isSigned;
   1914     Entry.isZExt = !isSigned;
   1915     Args.push_back(Entry);
   1916   }
   1917   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1918                                          TLI.getPointerTy());
   1919 
   1920   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
   1921   TargetLowering::
   1922   CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
   1923                        false, 0, TLI.getLibcallCallingConv(LC),
   1924                        /*isTailCall=*/false,
   1925                   /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   1926                   Callee, Args, DAG, dl);
   1927   std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1928 
   1929   return CallInfo.first;
   1930 }
   1931 
   1932 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
   1933 // ExpandLibCall except that the first operand is the in-chain.
   1934 std::pair<SDValue, SDValue>
   1935 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
   1936                                          SDNode *Node,
   1937                                          bool isSigned) {
   1938   SDValue InChain = Node->getOperand(0);
   1939 
   1940   TargetLowering::ArgListTy Args;
   1941   TargetLowering::ArgListEntry Entry;
   1942   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
   1943     EVT ArgVT = Node->getOperand(i).getValueType();
   1944     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1945     Entry.Node = Node->getOperand(i);
   1946     Entry.Ty = ArgTy;
   1947     Entry.isSExt = isSigned;
   1948     Entry.isZExt = !isSigned;
   1949     Args.push_back(Entry);
   1950   }
   1951   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1952                                          TLI.getPointerTy());
   1953 
   1954   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1955   TargetLowering::
   1956   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
   1957                     0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
   1958                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   1959                     Callee, Args, DAG, SDLoc(Node));
   1960   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1961 
   1962   return CallInfo;
   1963 }
   1964 
   1965 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
   1966                                               RTLIB::Libcall Call_F32,
   1967                                               RTLIB::Libcall Call_F64,
   1968                                               RTLIB::Libcall Call_F80,
   1969                                               RTLIB::Libcall Call_F128,
   1970                                               RTLIB::Libcall Call_PPCF128) {
   1971   RTLIB::Libcall LC;
   1972   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   1973   default: llvm_unreachable("Unexpected request for libcall!");
   1974   case MVT::f32: LC = Call_F32; break;
   1975   case MVT::f64: LC = Call_F64; break;
   1976   case MVT::f80: LC = Call_F80; break;
   1977   case MVT::f128: LC = Call_F128; break;
   1978   case MVT::ppcf128: LC = Call_PPCF128; break;
   1979   }
   1980   return ExpandLibCall(LC, Node, false);
   1981 }
   1982 
   1983 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
   1984                                                RTLIB::Libcall Call_I8,
   1985                                                RTLIB::Libcall Call_I16,
   1986                                                RTLIB::Libcall Call_I32,
   1987                                                RTLIB::Libcall Call_I64,
   1988                                                RTLIB::Libcall Call_I128) {
   1989   RTLIB::Libcall LC;
   1990   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   1991   default: llvm_unreachable("Unexpected request for libcall!");
   1992   case MVT::i8:   LC = Call_I8; break;
   1993   case MVT::i16:  LC = Call_I16; break;
   1994   case MVT::i32:  LC = Call_I32; break;
   1995   case MVT::i64:  LC = Call_I64; break;
   1996   case MVT::i128: LC = Call_I128; break;
   1997   }
   1998   return ExpandLibCall(LC, Node, isSigned);
   1999 }
   2000 
   2001 /// isDivRemLibcallAvailable - Return true if divmod libcall is available.
   2002 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
   2003                                      const TargetLowering &TLI) {
   2004   RTLIB::Libcall LC;
   2005   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   2006   default: llvm_unreachable("Unexpected request for libcall!");
   2007   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   2008   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   2009   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   2010   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   2011   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
   2012   }
   2013 
   2014   return TLI.getLibcallName(LC) != 0;
   2015 }
   2016 
   2017 /// useDivRem - Only issue divrem libcall if both quotient and remainder are
   2018 /// needed.
   2019 static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
   2020   // The other use might have been replaced with a divrem already.
   2021   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
   2022   unsigned OtherOpcode = 0;
   2023   if (isSigned)
   2024     OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
   2025   else
   2026     OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
   2027 
   2028   SDValue Op0 = Node->getOperand(0);
   2029   SDValue Op1 = Node->getOperand(1);
   2030   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
   2031          UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
   2032     SDNode *User = *UI;
   2033     if (User == Node)
   2034       continue;
   2035     if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
   2036         User->getOperand(0) == Op0 &&
   2037         User->getOperand(1) == Op1)
   2038       return true;
   2039   }
   2040   return false;
   2041 }
   2042 
   2043 /// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
   2044 /// pairs.
   2045 void
   2046 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
   2047                                           SmallVectorImpl<SDValue> &Results) {
   2048   unsigned Opcode = Node->getOpcode();
   2049   bool isSigned = Opcode == ISD::SDIVREM;
   2050 
   2051   RTLIB::Libcall LC;
   2052   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   2053   default: llvm_unreachable("Unexpected request for libcall!");
   2054   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   2055   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   2056   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   2057   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   2058   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
   2059   }
   2060 
   2061   // The input chain to this libcall is the entry node of the function.
   2062   // Legalizing the call will automatically add the previous call to the
   2063   // dependence.
   2064   SDValue InChain = DAG.getEntryNode();
   2065 
   2066   EVT RetVT = Node->getValueType(0);
   2067   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
   2068 
   2069   TargetLowering::ArgListTy Args;
   2070   TargetLowering::ArgListEntry Entry;
   2071   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
   2072     EVT ArgVT = Node->getOperand(i).getValueType();
   2073     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   2074     Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
   2075     Entry.isSExt = isSigned;
   2076     Entry.isZExt = !isSigned;
   2077     Args.push_back(Entry);
   2078   }
   2079 
   2080   // Also pass the return address of the remainder.
   2081   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
   2082   Entry.Node = FIPtr;
   2083   Entry.Ty = RetTy->getPointerTo();
   2084   Entry.isSExt = isSigned;
   2085   Entry.isZExt = !isSigned;
   2086   Args.push_back(Entry);
   2087 
   2088   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   2089                                          TLI.getPointerTy());
   2090 
   2091   SDLoc dl(Node);
   2092   TargetLowering::
   2093   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
   2094                     0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
   2095                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   2096                     Callee, Args, DAG, dl);
   2097   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   2098 
   2099   // Remainder is loaded back from the stack frame.
   2100   SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
   2101                             MachinePointerInfo(), false, false, false, 0);
   2102   Results.push_back(CallInfo.first);
   2103   Results.push_back(Rem);
   2104 }
   2105 
   2106 /// isSinCosLibcallAvailable - Return true if sincos libcall is available.
   2107 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
   2108   RTLIB::Libcall LC;
   2109   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   2110   default: llvm_unreachable("Unexpected request for libcall!");
   2111   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
   2112   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
   2113   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
   2114   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
   2115   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
   2116   }
   2117   return TLI.getLibcallName(LC) != 0;
   2118 }
   2119 
   2120 /// canCombineSinCosLibcall - Return true if sincos libcall is available and
   2121 /// can be used to combine sin and cos.
   2122 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
   2123                                     const TargetMachine &TM) {
   2124   if (!isSinCosLibcallAvailable(Node, TLI))
   2125     return false;
   2126   // GNU sin/cos functions set errno while sincos does not. Therefore
   2127   // combining sin and cos is only safe if unsafe-fpmath is enabled.
   2128   bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
   2129   if (isGNU && !TM.Options.UnsafeFPMath)
   2130     return false;
   2131   return true;
   2132 }
   2133 
   2134 /// useSinCos - Only issue sincos libcall if both sin and cos are
   2135 /// needed.
   2136 static bool useSinCos(SDNode *Node) {
   2137   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
   2138     ? ISD::FCOS : ISD::FSIN;
   2139 
   2140   SDValue Op0 = Node->getOperand(0);
   2141   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
   2142        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
   2143     SDNode *User = *UI;
   2144     if (User == Node)
   2145       continue;
   2146     // The other user might have been turned into sincos already.
   2147     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
   2148       return true;
   2149   }
   2150   return false;
   2151 }
   2152 
   2153 /// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos
   2154 /// pairs.
   2155 void
   2156 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
   2157                                           SmallVectorImpl<SDValue> &Results) {
   2158   RTLIB::Libcall LC;
   2159   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
   2160   default: llvm_unreachable("Unexpected request for libcall!");
   2161   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
   2162   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
   2163   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
   2164   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
   2165   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
   2166   }
   2167 
   2168   // The input chain to this libcall is the entry node of the function.
   2169   // Legalizing the call will automatically add the previous call to the
   2170   // dependence.
   2171   SDValue InChain = DAG.getEntryNode();
   2172 
   2173   EVT RetVT = Node->getValueType(0);
   2174   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
   2175 
   2176   TargetLowering::ArgListTy Args;
   2177   TargetLowering::ArgListEntry Entry;
   2178 
   2179   // Pass the argument.
   2180   Entry.Node = Node->getOperand(0);
   2181   Entry.Ty = RetTy;
   2182   Entry.isSExt = false;
   2183   Entry.isZExt = false;
   2184   Args.push_back(Entry);
   2185 
   2186   // Pass the return address of sin.
   2187   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
   2188   Entry.Node = SinPtr;
   2189   Entry.Ty = RetTy->getPointerTo();
   2190   Entry.isSExt = false;
   2191   Entry.isZExt = false;
   2192   Args.push_back(Entry);
   2193 
   2194   // Also pass the return address of the cos.
   2195   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
   2196   Entry.Node = CosPtr;
   2197   Entry.Ty = RetTy->getPointerTo();
   2198   Entry.isSExt = false;
   2199   Entry.isZExt = false;
   2200   Args.push_back(Entry);
   2201 
   2202   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   2203                                          TLI.getPointerTy());
   2204 
   2205   SDLoc dl(Node);
   2206   TargetLowering::
   2207   CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()),
   2208                        false, false, false, false,
   2209                        0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
   2210                        /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   2211                        Callee, Args, DAG, dl);
   2212   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   2213 
   2214   Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
   2215                                 MachinePointerInfo(), false, false, false, 0));
   2216   Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
   2217                                 MachinePointerInfo(), false, false, false, 0));
   2218 }
   2219 
   2220 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
   2221 /// INT_TO_FP operation of the specified operand when the target requests that
   2222 /// we expand it.  At this point, we know that the result and operand types are
   2223 /// legal for the target.
   2224 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
   2225                                                    SDValue Op0,
   2226                                                    EVT DestVT,
   2227                                                    SDLoc dl) {
   2228   if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
   2229     // simple 32-bit [signed|unsigned] integer to float/double expansion
   2230 
   2231     // Get the stack frame index of a 8 byte buffer.
   2232     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
   2233 
   2234     // word offset constant for Hi/Lo address computation
   2235     SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
   2236     // set up Hi and Lo (into buffer) address based on endian
   2237     SDValue Hi = StackSlot;
   2238     SDValue Lo = DAG.getNode(ISD::ADD, dl,
   2239                              TLI.getPointerTy(), StackSlot, WordOff);
   2240     if (TLI.isLittleEndian())
   2241       std::swap(Hi, Lo);
   2242 
   2243     // if signed map to unsigned space
   2244     SDValue Op0Mapped;
   2245     if (isSigned) {
   2246       // constant used to invert sign bit (signed to unsigned mapping)
   2247       SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
   2248       Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
   2249     } else {
   2250       Op0Mapped = Op0;
   2251     }
   2252     // store the lo of the constructed double - based on integer input
   2253     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
   2254                                   Op0Mapped, Lo, MachinePointerInfo(),
   2255                                   false, false, 0);
   2256     // initial hi portion of constructed double
   2257     SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
   2258     // store the hi of the constructed double - biased exponent
   2259     SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
   2260                                   MachinePointerInfo(),
   2261                                   false, false, 0);
   2262     // load the constructed double
   2263     SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
   2264                                MachinePointerInfo(), false, false, false, 0);
   2265     // FP constant to bias correct the final result
   2266     SDValue Bias = DAG.getConstantFP(isSigned ?
   2267                                      BitsToDouble(0x4330000080000000ULL) :
   2268                                      BitsToDouble(0x4330000000000000ULL),
   2269                                      MVT::f64);
   2270     // subtract the bias
   2271     SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
   2272     // final result
   2273     SDValue Result;
   2274     // handle final rounding
   2275     if (DestVT == MVT::f64) {
   2276       // do nothing
   2277       Result = Sub;
   2278     } else if (DestVT.bitsLT(MVT::f64)) {
   2279       Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
   2280                            DAG.getIntPtrConstant(0));
   2281     } else if (DestVT.bitsGT(MVT::f64)) {
   2282       Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
   2283     }
   2284     return Result;
   2285   }
   2286   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
   2287   // Code below here assumes !isSigned without checking again.
   2288 
   2289   // Implementation of unsigned i64 to f64 following the algorithm in
   2290   // __floatundidf in compiler_rt. This implementation has the advantage
   2291   // of performing rounding correctly, both in the default rounding mode
   2292   // and in all alternate rounding modes.
   2293   // TODO: Generalize this for use with other types.
   2294   if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
   2295     SDValue TwoP52 =
   2296       DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
   2297     SDValue TwoP84PlusTwoP52 =
   2298       DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
   2299     SDValue TwoP84 =
   2300       DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
   2301 
   2302     SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
   2303     SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
   2304                              DAG.getConstant(32, MVT::i64));
   2305     SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
   2306     SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
   2307     SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
   2308     SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
   2309     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
   2310                                 TwoP84PlusTwoP52);
   2311     return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
   2312   }
   2313 
   2314   // Implementation of unsigned i64 to f32.
   2315   // TODO: Generalize this for use with other types.
   2316   if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
   2317     // For unsigned conversions, convert them to signed conversions using the
   2318     // algorithm from the x86_64 __floatundidf in compiler_rt.
   2319     if (!isSigned) {
   2320       SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
   2321 
   2322       SDValue ShiftConst =
   2323           DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
   2324       SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
   2325       SDValue AndConst = DAG.getConstant(1, MVT::i64);
   2326       SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
   2327       SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
   2328 
   2329       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
   2330       SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
   2331 
   2332       // TODO: This really should be implemented using a branch rather than a
   2333       // select.  We happen to get lucky and machinesink does the right
   2334       // thing most of the time.  This would be a good candidate for a
   2335       //pseudo-op, or, even better, for whole-function isel.
   2336       SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
   2337         Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
   2338       return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
   2339     }
   2340 
   2341     // Otherwise, implement the fully general conversion.
   2342 
   2343     SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
   2344          DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
   2345     SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
   2346          DAG.getConstant(UINT64_C(0x800), MVT::i64));
   2347     SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
   2348          DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
   2349     SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
   2350                    And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
   2351     SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
   2352     SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
   2353                    Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
   2354                    ISD::SETUGE);
   2355     SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
   2356     EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
   2357 
   2358     SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
   2359                              DAG.getConstant(32, SHVT));
   2360     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
   2361     SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
   2362     SDValue TwoP32 =
   2363       DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
   2364     SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
   2365     SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
   2366     SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
   2367     SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
   2368     return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
   2369                        DAG.getIntPtrConstant(0));
   2370   }
   2371 
   2372   SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
   2373 
   2374   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
   2375                                  Op0, DAG.getConstant(0, Op0.getValueType()),
   2376                                  ISD::SETLT);
   2377   SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
   2378   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
   2379                                     SignSet, Four, Zero);
   2380 
   2381   // If the sign bit of the integer is set, the large number will be treated
   2382   // as a negative number.  To counteract this, the dynamic code adds an
   2383   // offset depending on the data type.
   2384   uint64_t FF;
   2385   switch (Op0.getValueType().getSimpleVT().SimpleTy) {
   2386   default: llvm_unreachable("Unsupported integer type!");
   2387   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
   2388   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
   2389   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
   2390   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
   2391   }
   2392   if (TLI.isLittleEndian()) FF <<= 32;
   2393   Constant *FudgeFactor = ConstantInt::get(
   2394                                        Type::getInt64Ty(*DAG.getContext()), FF);
   2395 
   2396   SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
   2397   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
   2398   CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
   2399   Alignment = std::min(Alignment, 4u);
   2400   SDValue FudgeInReg;
   2401   if (DestVT == MVT::f32)
   2402     FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
   2403                              MachinePointerInfo::getConstantPool(),
   2404                              false, false, false, Alignment);
   2405   else {
   2406     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
   2407                                   DAG.getEntryNode(), CPIdx,
   2408                                   MachinePointerInfo::getConstantPool(),
   2409                                   MVT::f32, false, false, Alignment);
   2410     HandleSDNode Handle(Load);
   2411     LegalizeOp(Load.getNode());
   2412     FudgeInReg = Handle.getValue();
   2413   }
   2414 
   2415   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
   2416 }
   2417 
   2418 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
   2419 /// *INT_TO_FP operation of the specified operand when the target requests that
   2420 /// we promote it.  At this point, we know that the result and operand types are
   2421 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
   2422 /// operation that takes a larger input.
   2423 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
   2424                                                     EVT DestVT,
   2425                                                     bool isSigned,
   2426                                                     SDLoc dl) {
   2427   // First step, figure out the appropriate *INT_TO_FP operation to use.
   2428   EVT NewInTy = LegalOp.getValueType();
   2429 
   2430   unsigned OpToUse = 0;
   2431 
   2432   // Scan for the appropriate larger type to use.
   2433   while (1) {
   2434     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
   2435     assert(NewInTy.isInteger() && "Ran out of possibilities!");
   2436 
   2437     // If the target supports SINT_TO_FP of this type, use it.
   2438     if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
   2439       OpToUse = ISD::SINT_TO_FP;
   2440       break;
   2441     }
   2442     if (isSigned) continue;
   2443 
   2444     // If the target supports UINT_TO_FP of this type, use it.
   2445     if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
   2446       OpToUse = ISD::UINT_TO_FP;
   2447       break;
   2448     }
   2449 
   2450     // Otherwise, try a larger type.
   2451   }
   2452 
   2453   // Okay, we found the operation and type to use.  Zero extend our input to the
   2454   // desired type then run the operation on it.
   2455   return DAG.getNode(OpToUse, dl, DestVT,
   2456                      DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
   2457                                  dl, NewInTy, LegalOp));
   2458 }
   2459 
   2460 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
   2461 /// FP_TO_*INT operation of the specified operand when the target requests that
   2462 /// we promote it.  At this point, we know that the result and operand types are
   2463 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
   2464 /// operation that returns a larger result.
   2465 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
   2466                                                     EVT DestVT,
   2467                                                     bool isSigned,
   2468                                                     SDLoc dl) {
   2469   // First step, figure out the appropriate FP_TO*INT operation to use.
   2470   EVT NewOutTy = DestVT;
   2471 
   2472   unsigned OpToUse = 0;
   2473 
   2474   // Scan for the appropriate larger type to use.
   2475   while (1) {
   2476     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
   2477     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
   2478 
   2479     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
   2480       OpToUse = ISD::FP_TO_SINT;
   2481       break;
   2482     }
   2483 
   2484     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
   2485       OpToUse = ISD::FP_TO_UINT;
   2486       break;
   2487     }
   2488 
   2489     // Otherwise, try a larger type.
   2490   }
   2491 
   2492 
   2493   // Okay, we found the operation and type to use.
   2494   SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
   2495 
   2496   // Truncate the result of the extended FP_TO_*INT operation to the desired
   2497   // size.
   2498   return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
   2499 }
   2500 
   2501 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
   2502 ///
   2503 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
   2504   EVT VT = Op.getValueType();
   2505   EVT SHVT = TLI.getShiftAmountTy(VT);
   2506   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
   2507   switch (VT.getSimpleVT().SimpleTy) {
   2508   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
   2509   case MVT::i16:
   2510     Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2511     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2512     return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   2513   case MVT::i32:
   2514     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
   2515     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2516     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2517     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
   2518     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
   2519     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
   2520     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
   2521     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
   2522     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
   2523   case MVT::i64:
   2524     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
   2525     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
   2526     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
   2527     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2528     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
   2529     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
   2530     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
   2531     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
   2532     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
   2533     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
   2534     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
   2535     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
   2536     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
   2537     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
   2538     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
   2539     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
   2540     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
   2541     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
   2542     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
   2543     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
   2544     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
   2545   }
   2546 }
   2547 
   2548 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
   2549 ///
   2550 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
   2551                                              SDLoc dl) {
   2552   switch (Opc) {
   2553   default: llvm_unreachable("Cannot expand this yet!");
   2554   case ISD::CTPOP: {
   2555     EVT VT = Op.getValueType();
   2556     EVT ShVT = TLI.getShiftAmountTy(VT);
   2557     unsigned Len = VT.getSizeInBits();
   2558 
   2559     assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
   2560            "CTPOP not implemented for this type.");
   2561 
   2562     // This is the "best" algorithm from
   2563     // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
   2564 
   2565     SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT);
   2566     SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT);
   2567     SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT);
   2568     SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT);
   2569 
   2570     // v = v - ((v >> 1) & 0x55555555...)
   2571     Op = DAG.getNode(ISD::SUB, dl, VT, Op,
   2572                      DAG.getNode(ISD::AND, dl, VT,
   2573                                  DAG.getNode(ISD::SRL, dl, VT, Op,
   2574                                              DAG.getConstant(1, ShVT)),
   2575                                  Mask55));
   2576     // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
   2577     Op = DAG.getNode(ISD::ADD, dl, VT,
   2578                      DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
   2579                      DAG.getNode(ISD::AND, dl, VT,
   2580                                  DAG.getNode(ISD::SRL, dl, VT, Op,
   2581                                              DAG.getConstant(2, ShVT)),
   2582                                  Mask33));
   2583     // v = (v + (v >> 4)) & 0x0F0F0F0F...
   2584     Op = DAG.getNode(ISD::AND, dl, VT,
   2585                      DAG.getNode(ISD::ADD, dl, VT, Op,
   2586                                  DAG.getNode(ISD::SRL, dl, VT, Op,
   2587                                              DAG.getConstant(4, ShVT))),
   2588                      Mask0F);
   2589     // v = (v * 0x01010101...) >> (Len - 8)
   2590     Op = DAG.getNode(ISD::SRL, dl, VT,
   2591                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
   2592                      DAG.getConstant(Len - 8, ShVT));
   2593 
   2594     return Op;
   2595   }
   2596   case ISD::CTLZ_ZERO_UNDEF:
   2597     // This trivially expands to CTLZ.
   2598     return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
   2599   case ISD::CTLZ: {
   2600     // for now, we do this:
   2601     // x = x | (x >> 1);
   2602     // x = x | (x >> 2);
   2603     // ...
   2604     // x = x | (x >>16);
   2605     // x = x | (x >>32); // for 64-bit input
   2606     // return popcount(~x);
   2607     //
   2608     // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
   2609     EVT VT = Op.getValueType();
   2610     EVT ShVT = TLI.getShiftAmountTy(VT);
   2611     unsigned len = VT.getSizeInBits();
   2612     for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
   2613       SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
   2614       Op = DAG.getNode(ISD::OR, dl, VT, Op,
   2615                        DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
   2616     }
   2617     Op = DAG.getNOT(dl, Op, VT);
   2618     return DAG.getNode(ISD::CTPOP, dl, VT, Op);
   2619   }
   2620   case ISD::CTTZ_ZERO_UNDEF:
   2621     // This trivially expands to CTTZ.
   2622     return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
   2623   case ISD::CTTZ: {
   2624     // for now, we use: { return popcount(~x & (x - 1)); }
   2625     // unless the target has ctlz but not ctpop, in which case we use:
   2626     // { return 32 - nlz(~x & (x-1)); }
   2627     // see also http://www.hackersdelight.org/HDcode/ntz.cc
   2628     EVT VT = Op.getValueType();
   2629     SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
   2630                                DAG.getNOT(dl, Op, VT),
   2631                                DAG.getNode(ISD::SUB, dl, VT, Op,
   2632                                            DAG.getConstant(1, VT)));
   2633     // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
   2634     if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
   2635         TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
   2636       return DAG.getNode(ISD::SUB, dl, VT,
   2637                          DAG.getConstant(VT.getSizeInBits(), VT),
   2638                          DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
   2639     return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
   2640   }
   2641   }
   2642 }
   2643 
   2644 std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
   2645   unsigned Opc = Node->getOpcode();
   2646   MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
   2647   RTLIB::Libcall LC;
   2648 
   2649   switch (Opc) {
   2650   default:
   2651     llvm_unreachable("Unhandled atomic intrinsic Expand!");
   2652   case ISD::ATOMIC_SWAP:
   2653     switch (VT.SimpleTy) {
   2654     default: llvm_unreachable("Unexpected value type for atomic!");
   2655     case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
   2656     case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
   2657     case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
   2658     case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
   2659     }
   2660     break;
   2661   case ISD::ATOMIC_CMP_SWAP:
   2662     switch (VT.SimpleTy) {
   2663     default: llvm_unreachable("Unexpected value type for atomic!");
   2664     case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
   2665     case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
   2666     case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
   2667     case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
   2668     }
   2669     break;
   2670   case ISD::ATOMIC_LOAD_ADD:
   2671     switch (VT.SimpleTy) {
   2672     default: llvm_unreachable("Unexpected value type for atomic!");
   2673     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
   2674     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
   2675     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
   2676     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
   2677     }
   2678     break;
   2679   case ISD::ATOMIC_LOAD_SUB:
   2680     switch (VT.SimpleTy) {
   2681     default: llvm_unreachable("Unexpected value type for atomic!");
   2682     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
   2683     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
   2684     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
   2685     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
   2686     }
   2687     break;
   2688   case ISD::ATOMIC_LOAD_AND:
   2689     switch (VT.SimpleTy) {
   2690     default: llvm_unreachable("Unexpected value type for atomic!");
   2691     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
   2692     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
   2693     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
   2694     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
   2695     }
   2696     break;
   2697   case ISD::ATOMIC_LOAD_OR:
   2698     switch (VT.SimpleTy) {
   2699     default: llvm_unreachable("Unexpected value type for atomic!");
   2700     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
   2701     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
   2702     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
   2703     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
   2704     }
   2705     break;
   2706   case ISD::ATOMIC_LOAD_XOR:
   2707     switch (VT.SimpleTy) {
   2708     default: llvm_unreachable("Unexpected value type for atomic!");
   2709     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
   2710     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
   2711     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
   2712     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
   2713     }
   2714     break;
   2715   case ISD::ATOMIC_LOAD_NAND:
   2716     switch (VT.SimpleTy) {
   2717     default: llvm_unreachable("Unexpected value type for atomic!");
   2718     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
   2719     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
   2720     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
   2721     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
   2722     }
   2723     break;
   2724   }
   2725 
   2726   return ExpandChainLibCall(LC, Node, false);
   2727 }
   2728 
   2729 void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
   2730   SmallVector<SDValue, 8> Results;
   2731   SDLoc dl(Node);
   2732   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
   2733   switch (Node->getOpcode()) {
   2734   case ISD::CTPOP:
   2735   case ISD::CTLZ:
   2736   case ISD::CTLZ_ZERO_UNDEF:
   2737   case ISD::CTTZ:
   2738   case ISD::CTTZ_ZERO_UNDEF:
   2739     Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
   2740     Results.push_back(Tmp1);
   2741     break;
   2742   case ISD::BSWAP:
   2743     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
   2744     break;
   2745   case ISD::FRAMEADDR:
   2746   case ISD::RETURNADDR:
   2747   case ISD::FRAME_TO_ARGS_OFFSET:
   2748     Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
   2749     break;
   2750   case ISD::FLT_ROUNDS_:
   2751     Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
   2752     break;
   2753   case ISD::EH_RETURN:
   2754   case ISD::EH_LABEL:
   2755   case ISD::PREFETCH:
   2756   case ISD::VAEND:
   2757   case ISD::EH_SJLJ_LONGJMP:
   2758     // If the target didn't expand these, there's nothing to do, so just
   2759     // preserve the chain and be done.
   2760     Results.push_back(Node->getOperand(0));
   2761     break;
   2762   case ISD::EH_SJLJ_SETJMP:
   2763     // If the target didn't expand this, just return 'zero' and preserve the
   2764     // chain.
   2765     Results.push_back(DAG.getConstant(0, MVT::i32));
   2766     Results.push_back(Node->getOperand(0));
   2767     break;
   2768   case ISD::ATOMIC_FENCE: {
   2769     // If the target didn't lower this, lower it to '__sync_synchronize()' call
   2770     // FIXME: handle "fence singlethread" more efficiently.
   2771     TargetLowering::ArgListTy Args;
   2772     TargetLowering::
   2773     CallLoweringInfo CLI(Node->getOperand(0),
   2774                          Type::getVoidTy(*DAG.getContext()),
   2775                       false, false, false, false, 0, CallingConv::C,
   2776                       /*isTailCall=*/false,
   2777                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   2778                       DAG.getExternalSymbol("__sync_synchronize",
   2779                                             TLI.getPointerTy()),
   2780                       Args, DAG, dl);
   2781     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
   2782 
   2783     Results.push_back(CallResult.second);
   2784     break;
   2785   }
   2786   case ISD::ATOMIC_LOAD: {
   2787     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
   2788     SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
   2789     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
   2790                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
   2791                                  Node->getOperand(0),
   2792                                  Node->getOperand(1), Zero, Zero,
   2793                                  cast<AtomicSDNode>(Node)->getMemOperand(),
   2794                                  cast<AtomicSDNode>(Node)->getOrdering(),
   2795                                  cast<AtomicSDNode>(Node)->getSynchScope());
   2796     Results.push_back(Swap.getValue(0));
   2797     Results.push_back(Swap.getValue(1));
   2798     break;
   2799   }
   2800   case ISD::ATOMIC_STORE: {
   2801     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
   2802     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
   2803                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
   2804                                  Node->getOperand(0),
   2805                                  Node->getOperand(1), Node->getOperand(2),
   2806                                  cast<AtomicSDNode>(Node)->getMemOperand(),
   2807                                  cast<AtomicSDNode>(Node)->getOrdering(),
   2808                                  cast<AtomicSDNode>(Node)->getSynchScope());
   2809     Results.push_back(Swap.getValue(1));
   2810     break;
   2811   }
   2812   // By default, atomic intrinsics are marked Legal and lowered. Targets
   2813   // which don't support them directly, however, may want libcalls, in which
   2814   // case they mark them Expand, and we get here.
   2815   case ISD::ATOMIC_SWAP:
   2816   case ISD::ATOMIC_LOAD_ADD:
   2817   case ISD::ATOMIC_LOAD_SUB:
   2818   case ISD::ATOMIC_LOAD_AND:
   2819   case ISD::ATOMIC_LOAD_OR:
   2820   case ISD::ATOMIC_LOAD_XOR:
   2821   case ISD::ATOMIC_LOAD_NAND:
   2822   case ISD::ATOMIC_LOAD_MIN:
   2823   case ISD::ATOMIC_LOAD_MAX:
   2824   case ISD::ATOMIC_LOAD_UMIN:
   2825   case ISD::ATOMIC_LOAD_UMAX:
   2826   case ISD::ATOMIC_CMP_SWAP: {
   2827     std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
   2828     Results.push_back(Tmp.first);
   2829     Results.push_back(Tmp.second);
   2830     break;
   2831   }
   2832   case ISD::DYNAMIC_STACKALLOC:
   2833     ExpandDYNAMIC_STACKALLOC(Node, Results);
   2834     break;
   2835   case ISD::MERGE_VALUES:
   2836     for (unsigned i = 0; i < Node->getNumValues(); i++)
   2837       Results.push_back(Node->getOperand(i));
   2838     break;
   2839   case ISD::UNDEF: {
   2840     EVT VT = Node->getValueType(0);
   2841     if (VT.isInteger())
   2842       Results.push_back(DAG.getConstant(0, VT));
   2843     else {
   2844       assert(VT.isFloatingPoint() && "Unknown value type!");
   2845       Results.push_back(DAG.getConstantFP(0, VT));
   2846     }
   2847     break;
   2848   }
   2849   case ISD::TRAP: {
   2850     // If this operation is not supported, lower it to 'abort()' call
   2851     TargetLowering::ArgListTy Args;
   2852     TargetLowering::
   2853     CallLoweringInfo CLI(Node->getOperand(0),
   2854                          Type::getVoidTy(*DAG.getContext()),
   2855                       false, false, false, false, 0, CallingConv::C,
   2856                       /*isTailCall=*/false,
   2857                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   2858                       DAG.getExternalSymbol("abort", TLI.getPointerTy()),
   2859                       Args, DAG, dl);
   2860     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
   2861 
   2862     Results.push_back(CallResult.second);
   2863     break;
   2864   }
   2865   case ISD::FP_ROUND:
   2866   case ISD::BITCAST:
   2867     Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
   2868                             Node->getValueType(0), dl);
   2869     Results.push_back(Tmp1);
   2870     break;
   2871   case ISD::FP_EXTEND:
   2872     Tmp1 = EmitStackConvert(Node->getOperand(0),
   2873                             Node->getOperand(0).getValueType(),
   2874                             Node->getValueType(0), dl);
   2875     Results.push_back(Tmp1);
   2876     break;
   2877   case ISD::SIGN_EXTEND_INREG: {
   2878     // NOTE: we could fall back on load/store here too for targets without
   2879     // SAR.  However, it is doubtful that any exist.
   2880     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
   2881     EVT VT = Node->getValueType(0);
   2882     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
   2883     if (VT.isVector())
   2884       ShiftAmountTy = VT;
   2885     unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
   2886                         ExtraVT.getScalarType().getSizeInBits();
   2887     SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
   2888     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
   2889                        Node->getOperand(0), ShiftCst);
   2890     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
   2891     Results.push_back(Tmp1);
   2892     break;
   2893   }
   2894   case ISD::FP_ROUND_INREG: {
   2895     // The only way we can lower this is to turn it into a TRUNCSTORE,
   2896     // EXTLOAD pair, targeting a temporary location (a stack slot).
   2897 
   2898     // NOTE: there is a choice here between constantly creating new stack
   2899     // slots and always reusing the same one.  We currently always create
   2900     // new ones, as reuse may inhibit scheduling.
   2901     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
   2902     Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
   2903                             Node->getValueType(0), dl);
   2904     Results.push_back(Tmp1);
   2905     break;
   2906   }
   2907   case ISD::SINT_TO_FP:
   2908   case ISD::UINT_TO_FP:
   2909     Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
   2910                                 Node->getOperand(0), Node->getValueType(0), dl);
   2911     Results.push_back(Tmp1);
   2912     break;
   2913   case ISD::FP_TO_UINT: {
   2914     SDValue True, False;
   2915     EVT VT =  Node->getOperand(0).getValueType();
   2916     EVT NVT = Node->getValueType(0);
   2917     APFloat apf(DAG.EVTToAPFloatSemantics(VT),
   2918                 APInt::getNullValue(VT.getSizeInBits()));
   2919     APInt x = APInt::getSignBit(NVT.getSizeInBits());
   2920     (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
   2921     Tmp1 = DAG.getConstantFP(apf, VT);
   2922     Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
   2923                         Node->getOperand(0),
   2924                         Tmp1, ISD::SETLT);
   2925     True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
   2926     False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
   2927                         DAG.getNode(ISD::FSUB, dl, VT,
   2928                                     Node->getOperand(0), Tmp1));
   2929     False = DAG.getNode(ISD::XOR, dl, NVT, False,
   2930                         DAG.getConstant(x, NVT));
   2931     Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
   2932     Results.push_back(Tmp1);
   2933     break;
   2934   }
   2935   case ISD::VAARG: {
   2936     const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   2937     EVT VT = Node->getValueType(0);
   2938     Tmp1 = Node->getOperand(0);
   2939     Tmp2 = Node->getOperand(1);
   2940     unsigned Align = Node->getConstantOperandVal(3);
   2941 
   2942     SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
   2943                                      MachinePointerInfo(V),
   2944                                      false, false, false, 0);
   2945     SDValue VAList = VAListLoad;
   2946 
   2947     if (Align > TLI.getMinStackArgumentAlignment()) {
   2948       assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
   2949 
   2950       VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
   2951                            DAG.getConstant(Align - 1,
   2952                                            TLI.getPointerTy()));
   2953 
   2954       VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
   2955                            DAG.getConstant(-(int64_t)Align,
   2956                                            TLI.getPointerTy()));
   2957     }
   2958 
   2959     // Increment the pointer, VAList, to the next vaarg
   2960     Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
   2961                        DAG.getConstant(TLI.getDataLayout()->
   2962                           getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
   2963                                        TLI.getPointerTy()));
   2964     // Store the incremented VAList to the legalized pointer
   2965     Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
   2966                         MachinePointerInfo(V), false, false, 0);
   2967     // Load the actual argument out of the pointer VAList
   2968     Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
   2969                                   false, false, false, 0));
   2970     Results.push_back(Results[0].getValue(1));
   2971     break;
   2972   }
   2973   case ISD::VACOPY: {
   2974     // This defaults to loading a pointer from the input and storing it to the
   2975     // output, returning the chain.
   2976     const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
   2977     const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
   2978     Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
   2979                        Node->getOperand(2), MachinePointerInfo(VS),
   2980                        false, false, false, 0);
   2981     Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
   2982                         MachinePointerInfo(VD), false, false, 0);
   2983     Results.push_back(Tmp1);
   2984     break;
   2985   }
   2986   case ISD::EXTRACT_VECTOR_ELT:
   2987     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
   2988       // This must be an access of the only element.  Return it.
   2989       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
   2990                          Node->getOperand(0));
   2991     else
   2992       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
   2993     Results.push_back(Tmp1);
   2994     break;
   2995   case ISD::EXTRACT_SUBVECTOR:
   2996     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
   2997     break;
   2998   case ISD::INSERT_SUBVECTOR:
   2999     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
   3000     break;
   3001   case ISD::CONCAT_VECTORS: {
   3002     Results.push_back(ExpandVectorBuildThroughStack(Node));
   3003     break;
   3004   }
   3005   case ISD::SCALAR_TO_VECTOR:
   3006     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
   3007     break;
   3008   case ISD::INSERT_VECTOR_ELT:
   3009     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
   3010                                               Node->getOperand(1),
   3011                                               Node->getOperand(2), dl));
   3012     break;
   3013   case ISD::VECTOR_SHUFFLE: {
   3014     SmallVector<int, 32> NewMask;
   3015     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
   3016 
   3017     EVT VT = Node->getValueType(0);
   3018     EVT EltVT = VT.getVectorElementType();
   3019     SDValue Op0 = Node->getOperand(0);
   3020     SDValue Op1 = Node->getOperand(1);
   3021     if (!TLI.isTypeLegal(EltVT)) {
   3022 
   3023       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
   3024 
   3025       // BUILD_VECTOR operands are allowed to be wider than the element type.
   3026       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
   3027       if (NewEltVT.bitsLT(EltVT)) {
   3028 
   3029         // Convert shuffle node.
   3030         // If original node was v4i64 and the new EltVT is i32,
   3031         // cast operands to v8i32 and re-build the mask.
   3032 
   3033         // Calculate new VT, the size of the new VT should be equal to original.
   3034         EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
   3035                                       VT.getSizeInBits()/NewEltVT.getSizeInBits());
   3036         assert(NewVT.bitsEq(VT));
   3037 
   3038         // cast operands to new VT
   3039         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
   3040         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
   3041 
   3042         // Convert the shuffle mask
   3043         unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
   3044 
   3045         // EltVT gets smaller
   3046         assert(factor > 0);
   3047 
   3048         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
   3049           if (Mask[i] < 0) {
   3050             for (unsigned fi = 0; fi < factor; ++fi)
   3051               NewMask.push_back(Mask[i]);
   3052           }
   3053           else {
   3054             for (unsigned fi = 0; fi < factor; ++fi)
   3055               NewMask.push_back(Mask[i]*factor+fi);
   3056           }
   3057         }
   3058         Mask = NewMask;
   3059         VT = NewVT;
   3060       }
   3061       EltVT = NewEltVT;
   3062     }
   3063     unsigned NumElems = VT.getVectorNumElements();
   3064     SmallVector<SDValue, 16> Ops;
   3065     for (unsigned i = 0; i != NumElems; ++i) {
   3066       if (Mask[i] < 0) {
   3067         Ops.push_back(DAG.getUNDEF(EltVT));
   3068         continue;
   3069       }
   3070       unsigned Idx = Mask[i];
   3071       if (Idx < NumElems)
   3072         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   3073                                   Op0,
   3074                                   DAG.getConstant(Idx, TLI.getVectorIdxTy())));
   3075       else
   3076         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   3077                                   Op1,
   3078                                   DAG.getConstant(Idx - NumElems,
   3079                                                   TLI.getVectorIdxTy())));
   3080     }
   3081 
   3082     Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
   3083     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
   3084     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
   3085     Results.push_back(Tmp1);
   3086     break;
   3087   }
   3088   case ISD::EXTRACT_ELEMENT: {
   3089     EVT OpTy = Node->getOperand(0).getValueType();
   3090     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
   3091       // 1 -> Hi
   3092       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
   3093                          DAG.getConstant(OpTy.getSizeInBits()/2,
   3094                     TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
   3095       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
   3096     } else {
   3097       // 0 -> Lo
   3098       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
   3099                          Node->getOperand(0));
   3100     }
   3101     Results.push_back(Tmp1);
   3102     break;
   3103   }
   3104   case ISD::STACKSAVE:
   3105     // Expand to CopyFromReg if the target set
   3106     // StackPointerRegisterToSaveRestore.
   3107     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
   3108       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
   3109                                            Node->getValueType(0)));
   3110       Results.push_back(Results[0].getValue(1));
   3111     } else {
   3112       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
   3113       Results.push_back(Node->getOperand(0));
   3114     }
   3115     break;
   3116   case ISD::STACKRESTORE:
   3117     // Expand to CopyToReg if the target set
   3118     // StackPointerRegisterToSaveRestore.
   3119     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
   3120       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
   3121                                          Node->getOperand(1)));
   3122     } else {
   3123       Results.push_back(Node->getOperand(0));
   3124     }
   3125     break;
   3126   case ISD::FCOPYSIGN:
   3127     Results.push_back(ExpandFCOPYSIGN(Node));
   3128     break;
   3129   case ISD::FNEG:
   3130     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
   3131     Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
   3132     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
   3133                        Node->getOperand(0));
   3134     Results.push_back(Tmp1);
   3135     break;
   3136   case ISD::FABS: {
   3137     // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
   3138     EVT VT = Node->getValueType(0);
   3139     Tmp1 = Node->getOperand(0);
   3140     Tmp2 = DAG.getConstantFP(0.0, VT);
   3141     Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()),
   3142                         Tmp1, Tmp2, ISD::SETUGT);
   3143     Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
   3144     Tmp1 = DAG.getSelect(dl, VT, Tmp2, Tmp1, Tmp3);
   3145     Results.push_back(Tmp1);
   3146     break;
   3147   }
   3148   case ISD::FSQRT:
   3149     Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
   3150                                       RTLIB::SQRT_F80, RTLIB::SQRT_F128,
   3151                                       RTLIB::SQRT_PPCF128));
   3152     break;
   3153   case ISD::FSIN:
   3154   case ISD::FCOS: {
   3155     EVT VT = Node->getValueType(0);
   3156     bool isSIN = Node->getOpcode() == ISD::FSIN;
   3157     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
   3158     // fcos which share the same operand and both are used.
   3159     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
   3160          canCombineSinCosLibcall(Node, TLI, TM))
   3161         && useSinCos(Node)) {
   3162       SDVTList VTs = DAG.getVTList(VT, VT);
   3163       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
   3164       if (!isSIN)
   3165         Tmp1 = Tmp1.getValue(1);
   3166       Results.push_back(Tmp1);
   3167     } else if (isSIN) {
   3168       Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
   3169                                         RTLIB::SIN_F80, RTLIB::SIN_F128,
   3170                                         RTLIB::SIN_PPCF128));
   3171     } else {
   3172       Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
   3173                                         RTLIB::COS_F80, RTLIB::COS_F128,
   3174                                         RTLIB::COS_PPCF128));
   3175     }
   3176     break;
   3177   }
   3178   case ISD::FSINCOS:
   3179     // Expand into sincos libcall.
   3180     ExpandSinCosLibCall(Node, Results);
   3181     break;
   3182   case ISD::FLOG:
   3183     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
   3184                                       RTLIB::LOG_F80, RTLIB::LOG_F128,
   3185                                       RTLIB::LOG_PPCF128));
   3186     break;
   3187   case ISD::FLOG2:
   3188     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
   3189                                       RTLIB::LOG2_F80, RTLIB::LOG2_F128,
   3190                                       RTLIB::LOG2_PPCF128));
   3191     break;
   3192   case ISD::FLOG10:
   3193     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
   3194                                       RTLIB::LOG10_F80, RTLIB::LOG10_F128,
   3195                                       RTLIB::LOG10_PPCF128));
   3196     break;
   3197   case ISD::FEXP:
   3198     Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
   3199                                       RTLIB::EXP_F80, RTLIB::EXP_F128,
   3200                                       RTLIB::EXP_PPCF128));
   3201     break;
   3202   case ISD::FEXP2:
   3203     Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
   3204                                       RTLIB::EXP2_F80, RTLIB::EXP2_F128,
   3205                                       RTLIB::EXP2_PPCF128));
   3206     break;
   3207   case ISD::FTRUNC:
   3208     Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
   3209                                       RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
   3210                                       RTLIB::TRUNC_PPCF128));
   3211     break;
   3212   case ISD::FFLOOR:
   3213     Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
   3214                                       RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
   3215                                       RTLIB::FLOOR_PPCF128));
   3216     break;
   3217   case ISD::FCEIL:
   3218     Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
   3219                                       RTLIB::CEIL_F80, RTLIB::CEIL_F128,
   3220                                       RTLIB::CEIL_PPCF128));
   3221     break;
   3222   case ISD::FRINT:
   3223     Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
   3224                                       RTLIB::RINT_F80, RTLIB::RINT_F128,
   3225                                       RTLIB::RINT_PPCF128));
   3226     break;
   3227   case ISD::FNEARBYINT:
   3228     Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
   3229                                       RTLIB::NEARBYINT_F64,
   3230                                       RTLIB::NEARBYINT_F80,
   3231                                       RTLIB::NEARBYINT_F128,
   3232                                       RTLIB::NEARBYINT_PPCF128));
   3233     break;
   3234   case ISD::FPOWI:
   3235     Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
   3236                                       RTLIB::POWI_F80, RTLIB::POWI_F128,
   3237                                       RTLIB::POWI_PPCF128));
   3238     break;
   3239   case ISD::FPOW:
   3240     Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
   3241                                       RTLIB::POW_F80, RTLIB::POW_F128,
   3242                                       RTLIB::POW_PPCF128));
   3243     break;
   3244   case ISD::FDIV:
   3245     Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
   3246                                       RTLIB::DIV_F80, RTLIB::DIV_F128,
   3247                                       RTLIB::DIV_PPCF128));
   3248     break;
   3249   case ISD::FREM:
   3250     Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
   3251                                       RTLIB::REM_F80, RTLIB::REM_F128,
   3252                                       RTLIB::REM_PPCF128));
   3253     break;
   3254   case ISD::FMA:
   3255     Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
   3256                                       RTLIB::FMA_F80, RTLIB::FMA_F128,
   3257                                       RTLIB::FMA_PPCF128));
   3258     break;
   3259   case ISD::FP16_TO_FP32:
   3260     Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
   3261     break;
   3262   case ISD::FP32_TO_FP16:
   3263     Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
   3264     break;
   3265   case ISD::ConstantFP: {
   3266     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
   3267     // Check to see if this FP immediate is already legal.
   3268     // If this is a legal constant, turn it into a TargetConstantFP node.
   3269     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
   3270       Results.push_back(ExpandConstantFP(CFP, true));
   3271     break;
   3272   }
   3273   case ISD::FSUB: {
   3274     EVT VT = Node->getValueType(0);
   3275     assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
   3276            TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
   3277            "Don't know how to expand this FP subtraction!");
   3278     Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
   3279     Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
   3280     Results.push_back(Tmp1);
   3281     break;
   3282   }
   3283   case ISD::SUB: {
   3284     EVT VT = Node->getValueType(0);
   3285     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
   3286            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
   3287            "Don't know how to expand this subtraction!");
   3288     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
   3289                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
   3290     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
   3291     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
   3292     break;
   3293   }
   3294   case ISD::UREM:
   3295   case ISD::SREM: {
   3296     EVT VT = Node->getValueType(0);
   3297     bool isSigned = Node->getOpcode() == ISD::SREM;
   3298     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
   3299     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
   3300     Tmp2 = Node->getOperand(0);
   3301     Tmp3 = Node->getOperand(1);
   3302     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
   3303         (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
   3304          // If div is legal, it's better to do the normal expansion
   3305          !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
   3306          useDivRem(Node, isSigned, false))) {
   3307       SDVTList VTs = DAG.getVTList(VT, VT);
   3308       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
   3309     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
   3310       // X % Y -> X-X/Y*Y
   3311       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
   3312       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
   3313       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
   3314     } else if (isSigned)
   3315       Tmp1 = ExpandIntLibCall(Node, true,
   3316                               RTLIB::SREM_I8,
   3317                               RTLIB::SREM_I16, RTLIB::SREM_I32,
   3318                               RTLIB::SREM_I64, RTLIB::SREM_I128);
   3319     else
   3320       Tmp1 = ExpandIntLibCall(Node, false,
   3321                               RTLIB::UREM_I8,
   3322                               RTLIB::UREM_I16, RTLIB::UREM_I32,
   3323                               RTLIB::UREM_I64, RTLIB::UREM_I128);
   3324     Results.push_back(Tmp1);
   3325     break;
   3326   }
   3327   case ISD::UDIV:
   3328   case ISD::SDIV: {
   3329     bool isSigned = Node->getOpcode() == ISD::SDIV;
   3330     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
   3331     EVT VT = Node->getValueType(0);
   3332     SDVTList VTs = DAG.getVTList(VT, VT);
   3333     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
   3334         (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
   3335          useDivRem(Node, isSigned, true)))
   3336       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
   3337                          Node->getOperand(1));
   3338     else if (isSigned)
   3339       Tmp1 = ExpandIntLibCall(Node, true,
   3340                               RTLIB::SDIV_I8,
   3341                               RTLIB::SDIV_I16, RTLIB::SDIV_I32,
   3342                               RTLIB::SDIV_I64, RTLIB::SDIV_I128);
   3343     else
   3344       Tmp1 = ExpandIntLibCall(Node, false,
   3345                               RTLIB::UDIV_I8,
   3346                               RTLIB::UDIV_I16, RTLIB::UDIV_I32,
   3347                               RTLIB::UDIV_I64, RTLIB::UDIV_I128);
   3348     Results.push_back(Tmp1);
   3349     break;
   3350   }
   3351   case ISD::MULHU:
   3352   case ISD::MULHS: {
   3353     unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
   3354                                                               ISD::SMUL_LOHI;
   3355     EVT VT = Node->getValueType(0);
   3356     SDVTList VTs = DAG.getVTList(VT, VT);
   3357     assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
   3358            "If this wasn't legal, it shouldn't have been created!");
   3359     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
   3360                        Node->getOperand(1));
   3361     Results.push_back(Tmp1.getValue(1));
   3362     break;
   3363   }
   3364   case ISD::SDIVREM:
   3365   case ISD::UDIVREM:
   3366     // Expand into divrem libcall
   3367     ExpandDivRemLibCall(Node, Results);
   3368     break;
   3369   case ISD::MUL: {
   3370     EVT VT = Node->getValueType(0);
   3371     SDVTList VTs = DAG.getVTList(VT, VT);
   3372     // See if multiply or divide can be lowered using two-result operations.
   3373     // We just need the low half of the multiply; try both the signed
   3374     // and unsigned forms. If the target supports both SMUL_LOHI and
   3375     // UMUL_LOHI, form a preference by checking which forms of plain
   3376     // MULH it supports.
   3377     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
   3378     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
   3379     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
   3380     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
   3381     unsigned OpToUse = 0;
   3382     if (HasSMUL_LOHI && !HasMULHS) {
   3383       OpToUse = ISD::SMUL_LOHI;
   3384     } else if (HasUMUL_LOHI && !HasMULHU) {
   3385       OpToUse = ISD::UMUL_LOHI;
   3386     } else if (HasSMUL_LOHI) {
   3387       OpToUse = ISD::SMUL_LOHI;
   3388     } else if (HasUMUL_LOHI) {
   3389       OpToUse = ISD::UMUL_LOHI;
   3390     }
   3391     if (OpToUse) {
   3392       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
   3393                                     Node->getOperand(1)));
   3394       break;
   3395     }
   3396     Tmp1 = ExpandIntLibCall(Node, false,
   3397                             RTLIB::MUL_I8,
   3398                             RTLIB::MUL_I16, RTLIB::MUL_I32,
   3399                             RTLIB::MUL_I64, RTLIB::MUL_I128);
   3400     Results.push_back(Tmp1);
   3401     break;
   3402   }
   3403   case ISD::SADDO:
   3404   case ISD::SSUBO: {
   3405     SDValue LHS = Node->getOperand(0);
   3406     SDValue RHS = Node->getOperand(1);
   3407     SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
   3408                               ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
   3409                               LHS, RHS);
   3410     Results.push_back(Sum);
   3411     EVT OType = Node->getValueType(1);
   3412 
   3413     SDValue Zero = DAG.getConstant(0, LHS.getValueType());
   3414 
   3415     //   LHSSign -> LHS >= 0
   3416     //   RHSSign -> RHS >= 0
   3417     //   SumSign -> Sum >= 0
   3418     //
   3419     //   Add:
   3420     //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
   3421     //   Sub:
   3422     //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
   3423     //
   3424     SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
   3425     SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
   3426     SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
   3427                                       Node->getOpcode() == ISD::SADDO ?
   3428                                       ISD::SETEQ : ISD::SETNE);
   3429 
   3430     SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
   3431     SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
   3432 
   3433     SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
   3434     Results.push_back(Cmp);
   3435     break;
   3436   }
   3437   case ISD::UADDO:
   3438   case ISD::USUBO: {
   3439     SDValue LHS = Node->getOperand(0);
   3440     SDValue RHS = Node->getOperand(1);
   3441     SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
   3442                               ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
   3443                               LHS, RHS);
   3444     Results.push_back(Sum);
   3445     Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
   3446                                    Node->getOpcode () == ISD::UADDO ?
   3447                                    ISD::SETULT : ISD::SETUGT));
   3448     break;
   3449   }
   3450   case ISD::UMULO:
   3451   case ISD::SMULO: {
   3452     EVT VT = Node->getValueType(0);
   3453     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
   3454     SDValue LHS = Node->getOperand(0);
   3455     SDValue RHS = Node->getOperand(1);
   3456     SDValue BottomHalf;
   3457     SDValue TopHalf;
   3458     static const unsigned Ops[2][3] =
   3459         { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
   3460           { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
   3461     bool isSigned = Node->getOpcode() == ISD::SMULO;
   3462     if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
   3463       BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
   3464       TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
   3465     } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
   3466       BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
   3467                                RHS);
   3468       TopHalf = BottomHalf.getValue(1);
   3469     } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
   3470                                                  VT.getSizeInBits() * 2))) {
   3471       LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
   3472       RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
   3473       Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
   3474       BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
   3475                                DAG.getIntPtrConstant(0));
   3476       TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
   3477                             DAG.getIntPtrConstant(1));
   3478     } else {
   3479       // We can fall back to a libcall with an illegal type for the MUL if we
   3480       // have a libcall big enough.
   3481       // Also, we can fall back to a division in some cases, but that's a big
   3482       // performance hit in the general case.
   3483       RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   3484       if (WideVT == MVT::i16)
   3485         LC = RTLIB::MUL_I16;
   3486       else if (WideVT == MVT::i32)
   3487         LC = RTLIB::MUL_I32;
   3488       else if (WideVT == MVT::i64)
   3489         LC = RTLIB::MUL_I64;
   3490       else if (WideVT == MVT::i128)
   3491         LC = RTLIB::MUL_I128;
   3492       assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
   3493 
   3494       // The high part is obtained by SRA'ing all but one of the bits of low
   3495       // part.
   3496       unsigned LoSize = VT.getSizeInBits();
   3497       SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
   3498                                 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
   3499       SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
   3500                                 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
   3501 
   3502       // Here we're passing the 2 arguments explicitly as 4 arguments that are
   3503       // pre-lowered to the correct types. This all depends upon WideVT not
   3504       // being a legal type for the architecture and thus has to be split to
   3505       // two arguments.
   3506       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
   3507       SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
   3508       BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
   3509                                DAG.getIntPtrConstant(0));
   3510       TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
   3511                             DAG.getIntPtrConstant(1));
   3512       // Ret is a node with an illegal type. Because such things are not
   3513       // generally permitted during this phase of legalization, delete the
   3514       // node. The above EXTRACT_ELEMENT nodes should have been folded.
   3515       DAG.DeleteNode(Ret.getNode());
   3516     }
   3517 
   3518     if (isSigned) {
   3519       Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
   3520                              TLI.getShiftAmountTy(BottomHalf.getValueType()));
   3521       Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
   3522       TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
   3523                              ISD::SETNE);
   3524     } else {
   3525       TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
   3526                              DAG.getConstant(0, VT), ISD::SETNE);
   3527     }
   3528     Results.push_back(BottomHalf);
   3529     Results.push_back(TopHalf);
   3530     break;
   3531   }
   3532   case ISD::BUILD_PAIR: {
   3533     EVT PairTy = Node->getValueType(0);
   3534     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
   3535     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
   3536     Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
   3537                        DAG.getConstant(PairTy.getSizeInBits()/2,
   3538                                        TLI.getShiftAmountTy(PairTy)));
   3539     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
   3540     break;
   3541   }
   3542   case ISD::SELECT:
   3543     Tmp1 = Node->getOperand(0);
   3544     Tmp2 = Node->getOperand(1);
   3545     Tmp3 = Node->getOperand(2);
   3546     if (Tmp1.getOpcode() == ISD::SETCC) {
   3547       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
   3548                              Tmp2, Tmp3,
   3549                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
   3550     } else {
   3551       Tmp1 = DAG.getSelectCC(dl, Tmp1,
   3552                              DAG.getConstant(0, Tmp1.getValueType()),
   3553                              Tmp2, Tmp3, ISD::SETNE);
   3554     }
   3555     Results.push_back(Tmp1);
   3556     break;
   3557   case ISD::BR_JT: {
   3558     SDValue Chain = Node->getOperand(0);
   3559     SDValue Table = Node->getOperand(1);
   3560     SDValue Index = Node->getOperand(2);
   3561 
   3562     EVT PTy = TLI.getPointerTy();
   3563 
   3564     const DataLayout &TD = *TLI.getDataLayout();
   3565     unsigned EntrySize =
   3566       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
   3567 
   3568     Index = DAG.getNode(ISD::MUL, dl, PTy,
   3569                         Index, DAG.getConstant(EntrySize, PTy));
   3570     SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   3571 
   3572     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
   3573     SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
   3574                                 MachinePointerInfo::getJumpTable(), MemVT,
   3575                                 false, false, 0);
   3576     Addr = LD;
   3577     if (TM.getRelocationModel() == Reloc::PIC_) {
   3578       // For PIC, the sequence is:
   3579       // BRIND(load(Jumptable + index) + RelocBase)
   3580       // RelocBase can be JumpTable, GOT or some sort of global base.
   3581       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
   3582                           TLI.getPICJumpTableRelocBase(Table, DAG));
   3583     }
   3584     Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
   3585     Results.push_back(Tmp1);
   3586     break;
   3587   }
   3588   case ISD::BRCOND:
   3589     // Expand brcond's setcc into its constituent parts and create a BR_CC
   3590     // Node.
   3591     Tmp1 = Node->getOperand(0);
   3592     Tmp2 = Node->getOperand(1);
   3593     if (Tmp2.getOpcode() == ISD::SETCC) {
   3594       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
   3595                          Tmp1, Tmp2.getOperand(2),
   3596                          Tmp2.getOperand(0), Tmp2.getOperand(1),
   3597                          Node->getOperand(2));
   3598     } else {
   3599       // We test only the i1 bit.  Skip the AND if UNDEF.
   3600       Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
   3601         DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
   3602                     DAG.getConstant(1, Tmp2.getValueType()));
   3603       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
   3604                          DAG.getCondCode(ISD::SETNE), Tmp3,
   3605                          DAG.getConstant(0, Tmp3.getValueType()),
   3606                          Node->getOperand(2));
   3607     }
   3608     Results.push_back(Tmp1);
   3609     break;
   3610   case ISD::SETCC: {
   3611     Tmp1 = Node->getOperand(0);
   3612     Tmp2 = Node->getOperand(1);
   3613     Tmp3 = Node->getOperand(2);
   3614     LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
   3615 
   3616     // If we expanded the SETCC into an AND/OR, return the new node
   3617     if (Tmp2.getNode() == 0) {
   3618       Results.push_back(Tmp1);
   3619       break;
   3620     }
   3621 
   3622     // Otherwise, SETCC for the given comparison type must be completely
   3623     // illegal; expand it into a SELECT_CC.
   3624     EVT VT = Node->getValueType(0);
   3625     int TrueValue;
   3626     switch (TLI.getBooleanContents(VT.isVector())) {
   3627     case TargetLowering::ZeroOrOneBooleanContent:
   3628     case TargetLowering::UndefinedBooleanContent:
   3629       TrueValue = 1;
   3630       break;
   3631     case TargetLowering::ZeroOrNegativeOneBooleanContent:
   3632       TrueValue = -1;
   3633       break;
   3634     }
   3635     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
   3636                        DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT),
   3637                        Tmp3);
   3638     Results.push_back(Tmp1);
   3639     break;
   3640   }
   3641   case ISD::SELECT_CC: {
   3642     Tmp1 = Node->getOperand(0);   // LHS
   3643     Tmp2 = Node->getOperand(1);   // RHS
   3644     Tmp3 = Node->getOperand(2);   // True
   3645     Tmp4 = Node->getOperand(3);   // False
   3646     SDValue CC = Node->getOperand(4);
   3647 
   3648     LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
   3649                           Tmp1, Tmp2, CC, dl);
   3650 
   3651     assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
   3652     Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
   3653     CC = DAG.getCondCode(ISD::SETNE);
   3654     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
   3655                        Tmp3, Tmp4, CC);
   3656     Results.push_back(Tmp1);
   3657     break;
   3658   }
   3659   case ISD::BR_CC: {
   3660     Tmp1 = Node->getOperand(0);              // Chain
   3661     Tmp2 = Node->getOperand(2);              // LHS
   3662     Tmp3 = Node->getOperand(3);              // RHS
   3663     Tmp4 = Node->getOperand(1);              // CC
   3664 
   3665     LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()),
   3666                           Tmp2, Tmp3, Tmp4, dl);
   3667 
   3668     assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
   3669     Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
   3670     Tmp4 = DAG.getCondCode(ISD::SETNE);
   3671     Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
   3672                        Tmp3, Node->getOperand(4));
   3673     Results.push_back(Tmp1);
   3674     break;
   3675   }
   3676   case ISD::BUILD_VECTOR:
   3677     Results.push_back(ExpandBUILD_VECTOR(Node));
   3678     break;
   3679   case ISD::SRA:
   3680   case ISD::SRL:
   3681   case ISD::SHL: {
   3682     // Scalarize vector SRA/SRL/SHL.
   3683     EVT VT = Node->getValueType(0);
   3684     assert(VT.isVector() && "Unable to legalize non-vector shift");
   3685     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
   3686     unsigned NumElem = VT.getVectorNumElements();
   3687 
   3688     SmallVector<SDValue, 8> Scalars;
   3689     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
   3690       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   3691                                VT.getScalarType(),
   3692                                Node->getOperand(0), DAG.getConstant(Idx,
   3693                                                     TLI.getVectorIdxTy()));
   3694       SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   3695                                VT.getScalarType(),
   3696                                Node->getOperand(1), DAG.getConstant(Idx,
   3697                                                     TLI.getVectorIdxTy()));
   3698       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
   3699                                     VT.getScalarType(), Ex, Sh));
   3700     }
   3701     SDValue Result =
   3702       DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
   3703                   &Scalars[0], Scalars.size());
   3704     ReplaceNode(SDValue(Node, 0), Result);
   3705     break;
   3706   }
   3707   case ISD::GLOBAL_OFFSET_TABLE:
   3708   case ISD::GlobalAddress:
   3709   case ISD::GlobalTLSAddress:
   3710   case ISD::ExternalSymbol:
   3711   case ISD::ConstantPool:
   3712   case ISD::JumpTable:
   3713   case ISD::INTRINSIC_W_CHAIN:
   3714   case ISD::INTRINSIC_WO_CHAIN:
   3715   case ISD::INTRINSIC_VOID:
   3716     // FIXME: Custom lowering for these operations shouldn't return null!
   3717     break;
   3718   }
   3719 
   3720   // Replace the original node with the legalized result.
   3721   if (!Results.empty())
   3722     ReplaceNode(Node, Results.data());
   3723 }
   3724 
   3725 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
   3726   SmallVector<SDValue, 8> Results;
   3727   MVT OVT = Node->getSimpleValueType(0);
   3728   if (Node->getOpcode() == ISD::UINT_TO_FP ||
   3729       Node->getOpcode() == ISD::SINT_TO_FP ||
   3730       Node->getOpcode() == ISD::SETCC) {
   3731     OVT = Node->getOperand(0).getSimpleValueType();
   3732   }
   3733   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
   3734   SDLoc dl(Node);
   3735   SDValue Tmp1, Tmp2, Tmp3;
   3736   switch (Node->getOpcode()) {
   3737   case ISD::CTTZ:
   3738   case ISD::CTTZ_ZERO_UNDEF:
   3739   case ISD::CTLZ:
   3740   case ISD::CTLZ_ZERO_UNDEF:
   3741   case ISD::CTPOP:
   3742     // Zero extend the argument.
   3743     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
   3744     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
   3745     // already the correct result.
   3746     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
   3747     if (Node->getOpcode() == ISD::CTTZ) {
   3748       // FIXME: This should set a bit in the zero extended value instead.
   3749       Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
   3750                           Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
   3751                           ISD::SETEQ);
   3752       Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
   3753                            DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
   3754     } else if (Node->getOpcode() == ISD::CTLZ ||
   3755                Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
   3756       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
   3757       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
   3758                           DAG.getConstant(NVT.getSizeInBits() -
   3759                                           OVT.getSizeInBits(), NVT));
   3760     }
   3761     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
   3762     break;
   3763   case ISD::BSWAP: {
   3764     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
   3765     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
   3766     Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
   3767     Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
   3768                           DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
   3769     Results.push_back(Tmp1);
   3770     break;
   3771   }
   3772   case ISD::FP_TO_UINT:
   3773   case ISD::FP_TO_SINT:
   3774     Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
   3775                                  Node->getOpcode() == ISD::FP_TO_SINT, dl);
   3776     Results.push_back(Tmp1);
   3777     break;
   3778   case ISD::UINT_TO_FP:
   3779   case ISD::SINT_TO_FP:
   3780     Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
   3781                                  Node->getOpcode() == ISD::SINT_TO_FP, dl);
   3782     Results.push_back(Tmp1);
   3783     break;
   3784   case ISD::VAARG: {
   3785     SDValue Chain = Node->getOperand(0); // Get the chain.
   3786     SDValue Ptr = Node->getOperand(1); // Get the pointer.
   3787 
   3788     unsigned TruncOp;
   3789     if (OVT.isVector()) {
   3790       TruncOp = ISD::BITCAST;
   3791     } else {
   3792       assert(OVT.isInteger()
   3793         && "VAARG promotion is supported only for vectors or integer types");
   3794       TruncOp = ISD::TRUNCATE;
   3795     }
   3796 
   3797     // Perform the larger operation, then convert back
   3798     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
   3799              Node->getConstantOperandVal(3));
   3800     Chain = Tmp1.getValue(1);
   3801 
   3802     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
   3803 
   3804     // Modified the chain result - switch anything that used the old chain to
   3805     // use the new one.
   3806     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
   3807     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
   3808     ReplacedNode(Node);
   3809     break;
   3810   }
   3811   case ISD::AND:
   3812   case ISD::OR:
   3813   case ISD::XOR: {
   3814     unsigned ExtOp, TruncOp;
   3815     if (OVT.isVector()) {
   3816       ExtOp   = ISD::BITCAST;
   3817       TruncOp = ISD::BITCAST;
   3818     } else {
   3819       assert(OVT.isInteger() && "Cannot promote logic operation");
   3820       ExtOp   = ISD::ANY_EXTEND;
   3821       TruncOp = ISD::TRUNCATE;
   3822     }
   3823     // Promote each of the values to the new type.
   3824     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
   3825     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
   3826     // Perform the larger operation, then convert back
   3827     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
   3828     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
   3829     break;
   3830   }
   3831   case ISD::SELECT: {
   3832     unsigned ExtOp, TruncOp;
   3833     if (Node->getValueType(0).isVector()) {
   3834       ExtOp   = ISD::BITCAST;
   3835       TruncOp = ISD::BITCAST;
   3836     } else if (Node->getValueType(0).isInteger()) {
   3837       ExtOp   = ISD::ANY_EXTEND;
   3838       TruncOp = ISD::TRUNCATE;
   3839     } else {
   3840       ExtOp   = ISD::FP_EXTEND;
   3841       TruncOp = ISD::FP_ROUND;
   3842     }
   3843     Tmp1 = Node->getOperand(0);
   3844     // Promote each of the values to the new type.
   3845     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
   3846     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
   3847     // Perform the larger operation, then round down.
   3848     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
   3849     if (TruncOp != ISD::FP_ROUND)
   3850       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
   3851     else
   3852       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
   3853                          DAG.getIntPtrConstant(0));
   3854     Results.push_back(Tmp1);
   3855     break;
   3856   }
   3857   case ISD::VECTOR_SHUFFLE: {
   3858     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
   3859 
   3860     // Cast the two input vectors.
   3861     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
   3862     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
   3863 
   3864     // Convert the shuffle mask to the right # elements.
   3865     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
   3866     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
   3867     Results.push_back(Tmp1);
   3868     break;
   3869   }
   3870   case ISD::SETCC: {
   3871     unsigned ExtOp = ISD::FP_EXTEND;
   3872     if (NVT.isInteger()) {
   3873       ISD::CondCode CCCode =
   3874         cast<CondCodeSDNode>(Node->getOperand(2))->get();
   3875       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   3876     }
   3877     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
   3878     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
   3879     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
   3880                                   Tmp1, Tmp2, Node->getOperand(2)));
   3881     break;
   3882   }
   3883   case ISD::FDIV:
   3884   case ISD::FREM:
   3885   case ISD::FPOW: {
   3886     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
   3887     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
   3888     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
   3889     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
   3890                                   Tmp3, DAG.getIntPtrConstant(0)));
   3891     break;
   3892   }
   3893   case ISD::FLOG2:
   3894   case ISD::FEXP2:
   3895   case ISD::FLOG:
   3896   case ISD::FEXP: {
   3897     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
   3898     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
   3899     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
   3900                                   Tmp2, DAG.getIntPtrConstant(0)));
   3901     break;
   3902   }
   3903   }
   3904 
   3905   // Replace the original node with the legalized result.
   3906   if (!Results.empty())
   3907     ReplaceNode(Node, Results.data());
   3908 }
   3909 
   3910 // SelectionDAG::Legalize - This is the entry point for the file.
   3911 //
   3912 void SelectionDAG::Legalize() {
   3913   /// run - This is the main entry point to this class.
   3914   ///
   3915   SelectionDAGLegalize(*this).LegalizeDAG();
   3916 }
   3917