Home | History | Annotate | Download | only in X86
      1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass which converts floating point instructions from
     11 // pseudo registers into register stack instructions.  This pass uses live
     12 // variable information to indicate where the FPn registers are used and their
     13 // lifetimes.
     14 //
     15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
     16 // to implement exact liveness tracking between basic blocks. The CFG edges are
     17 // partitioned into bundles where the same FP registers must be live in
     18 // identical stack positions. Instructions are inserted at the end of each basic
     19 // block to rearrange the live registers to match the outgoing bundle.
     20 //
     21 // This approach avoids splitting critical edges at the potential cost of more
     22 // live register shuffling instructions when critical edges are present.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #define DEBUG_TYPE "x86-codegen"
     27 #include "X86.h"
     28 #include "X86InstrInfo.h"
     29 #include "llvm/ADT/DepthFirstIterator.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/CodeGen/EdgeBundles.h"
     35 #include "llvm/CodeGen/MachineFunctionPass.h"
     36 #include "llvm/CodeGen/MachineInstrBuilder.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/Passes.h"
     39 #include "llvm/IR/InlineAsm.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetMachine.h"
     45 #include <algorithm>
     46 using namespace llvm;
     47 
     48 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
     49 STATISTIC(NumFP  , "Number of floating point instructions");
     50 
     51 namespace {
     52   struct FPS : public MachineFunctionPass {
     53     static char ID;
     54     FPS() : MachineFunctionPass(ID) {
     55       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
     56       // This is really only to keep valgrind quiet.
     57       // The logic in isLive() is too much for it.
     58       memset(Stack, 0, sizeof(Stack));
     59       memset(RegMap, 0, sizeof(RegMap));
     60     }
     61 
     62     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     63       AU.setPreservesCFG();
     64       AU.addRequired<EdgeBundles>();
     65       AU.addPreservedID(MachineLoopInfoID);
     66       AU.addPreservedID(MachineDominatorsID);
     67       MachineFunctionPass::getAnalysisUsage(AU);
     68     }
     69 
     70     virtual bool runOnMachineFunction(MachineFunction &MF);
     71 
     72     virtual const char *getPassName() const { return "X86 FP Stackifier"; }
     73 
     74   private:
     75     const TargetInstrInfo *TII; // Machine instruction info.
     76 
     77     // Two CFG edges are related if they leave the same block, or enter the same
     78     // block. The transitive closure of an edge under this relation is a
     79     // LiveBundle. It represents a set of CFG edges where the live FP stack
     80     // registers must be allocated identically in the x87 stack.
     81     //
     82     // A LiveBundle is usually all the edges leaving a block, or all the edges
     83     // entering a block, but it can contain more edges if critical edges are
     84     // present.
     85     //
     86     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
     87     // but the exact mapping of FP registers to stack slots is fixed later.
     88     struct LiveBundle {
     89       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
     90       unsigned Mask;
     91 
     92       // Number of pre-assigned live registers in FixStack. This is 0 when the
     93       // stack order has not yet been fixed.
     94       unsigned FixCount;
     95 
     96       // Assigned stack order for live-in registers.
     97       // FixStack[i] == getStackEntry(i) for all i < FixCount.
     98       unsigned char FixStack[8];
     99 
    100       LiveBundle() : Mask(0), FixCount(0) {}
    101 
    102       // Have the live registers been assigned a stack order yet?
    103       bool isFixed() const { return !Mask || FixCount; }
    104     };
    105 
    106     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
    107     // with no live FP registers.
    108     SmallVector<LiveBundle, 8> LiveBundles;
    109 
    110     // The edge bundle analysis provides indices into the LiveBundles vector.
    111     EdgeBundles *Bundles;
    112 
    113     // Return a bitmask of FP registers in block's live-in list.
    114     static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
    115       unsigned Mask = 0;
    116       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    117            E = MBB->livein_end(); I != E; ++I) {
    118         unsigned Reg = *I;
    119         if (Reg < X86::FP0 || Reg > X86::FP6)
    120           continue;
    121         Mask |= 1 << (Reg - X86::FP0);
    122       }
    123       return Mask;
    124     }
    125 
    126     // Partition all the CFG edges into LiveBundles.
    127     void bundleCFG(MachineFunction &MF);
    128 
    129     MachineBasicBlock *MBB;     // Current basic block
    130 
    131     // The hardware keeps track of how many FP registers are live, so we have
    132     // to model that exactly. Usually, each live register corresponds to an
    133     // FP<n> register, but when dealing with calls, returns, and inline
    134     // assembly, it is sometimes necessary to have live scratch registers.
    135     unsigned Stack[8];          // FP<n> Registers in each stack slot...
    136     unsigned StackTop;          // The current top of the FP stack.
    137 
    138     enum {
    139       NumFPRegs = 16            // Including scratch pseudo-registers.
    140     };
    141 
    142     // For each live FP<n> register, point to its Stack[] entry.
    143     // The first entries correspond to FP0-FP6, the rest are scratch registers
    144     // used when we need slightly different live registers than what the
    145     // register allocator thinks.
    146     unsigned RegMap[NumFPRegs];
    147 
    148     // Pending fixed registers - Inline assembly needs FP registers to appear
    149     // in fixed stack slot positions. This is handled by copying FP registers
    150     // to ST registers before the instruction, and copying back after the
    151     // instruction.
    152     //
    153     // This is modeled with pending ST registers. NumPendingSTs is the number
    154     // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
    155     // register that holds the ST value. The ST registers are not moved into
    156     // place until immediately before the instruction that needs them.
    157     //
    158     // It can happen that we need an ST register to be live when no FP register
    159     // holds the value:
    160     //
    161     //   %ST0 = COPY %FP4<kill>
    162     //
    163     // When that happens, we allocate a scratch FP register to hold the ST
    164     // value. That means every register in PendingST must be live.
    165 
    166     unsigned NumPendingSTs;
    167     unsigned char PendingST[8];
    168 
    169     // Set up our stack model to match the incoming registers to MBB.
    170     void setupBlockStack();
    171 
    172     // Shuffle live registers to match the expectations of successor blocks.
    173     void finishBlockStack();
    174 
    175 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    176     void dumpStack() const {
    177       dbgs() << "Stack contents:";
    178       for (unsigned i = 0; i != StackTop; ++i) {
    179         dbgs() << " FP" << Stack[i];
    180         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
    181       }
    182       for (unsigned i = 0; i != NumPendingSTs; ++i)
    183         dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
    184       dbgs() << "\n";
    185     }
    186 #endif
    187 
    188     /// getSlot - Return the stack slot number a particular register number is
    189     /// in.
    190     unsigned getSlot(unsigned RegNo) const {
    191       assert(RegNo < NumFPRegs && "Regno out of range!");
    192       return RegMap[RegNo];
    193     }
    194 
    195     /// isLive - Is RegNo currently live in the stack?
    196     bool isLive(unsigned RegNo) const {
    197       unsigned Slot = getSlot(RegNo);
    198       return Slot < StackTop && Stack[Slot] == RegNo;
    199     }
    200 
    201     /// getScratchReg - Return an FP register that is not currently in use.
    202     unsigned getScratchReg() const {
    203       for (int i = NumFPRegs - 1; i >= 8; --i)
    204         if (!isLive(i))
    205           return i;
    206       llvm_unreachable("Ran out of scratch FP registers");
    207     }
    208 
    209     /// isScratchReg - Returns trus if RegNo is a scratch FP register.
    210     static bool isScratchReg(unsigned RegNo) {
    211       return RegNo > 8 && RegNo < NumFPRegs;
    212     }
    213 
    214     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
    215     unsigned getStackEntry(unsigned STi) const {
    216       if (STi >= StackTop)
    217         report_fatal_error("Access past stack top!");
    218       return Stack[StackTop-1-STi];
    219     }
    220 
    221     /// getSTReg - Return the X86::ST(i) register which contains the specified
    222     /// FP<RegNo> register.
    223     unsigned getSTReg(unsigned RegNo) const {
    224       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
    225     }
    226 
    227     // pushReg - Push the specified FP<n> register onto the stack.
    228     void pushReg(unsigned Reg) {
    229       assert(Reg < NumFPRegs && "Register number out of range!");
    230       if (StackTop >= 8)
    231         report_fatal_error("Stack overflow!");
    232       Stack[StackTop] = Reg;
    233       RegMap[Reg] = StackTop++;
    234     }
    235 
    236     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
    237     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
    238       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    239       if (isAtTop(RegNo)) return;
    240 
    241       unsigned STReg = getSTReg(RegNo);
    242       unsigned RegOnTop = getStackEntry(0);
    243 
    244       // Swap the slots the regs are in.
    245       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
    246 
    247       // Swap stack slot contents.
    248       if (RegMap[RegOnTop] >= StackTop)
    249         report_fatal_error("Access past stack top!");
    250       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
    251 
    252       // Emit an fxch to update the runtime processors version of the state.
    253       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
    254       ++NumFXCH;
    255     }
    256 
    257     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
    258       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    259       unsigned STReg = getSTReg(RegNo);
    260       pushReg(AsReg);   // New register on top of stack
    261 
    262       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
    263     }
    264 
    265     /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
    266     /// RegNo. If any PendingST registers still need the RegNo value, duplicate
    267     /// them to new scratch registers.
    268     void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
    269       for (unsigned i = 0; i != NumPendingSTs; ++i) {
    270         if (PendingST[i] != RegNo)
    271           continue;
    272         unsigned SR = getScratchReg();
    273         DEBUG(dbgs() << "Duplicating pending ST" << i
    274                      << " in FP" << RegNo << " to FP" << SR << '\n');
    275         duplicateToTop(RegNo, SR, I);
    276         PendingST[i] = SR;
    277       }
    278     }
    279 
    280     /// popStackAfter - Pop the current value off of the top of the FP stack
    281     /// after the specified instruction.
    282     void popStackAfter(MachineBasicBlock::iterator &I);
    283 
    284     /// freeStackSlotAfter - Free the specified register from the register
    285     /// stack, so that it is no longer in a register.  If the register is
    286     /// currently at the top of the stack, we just pop the current instruction,
    287     /// otherwise we store the current top-of-stack into the specified slot,
    288     /// then pop the top of stack.
    289     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
    290 
    291     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
    292     /// instruction.
    293     MachineBasicBlock::iterator
    294     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
    295 
    296     /// Adjust the live registers to be the set in Mask.
    297     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
    298 
    299     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
    300     /// st(0), FP reg FixStack[1] is st(1) etc.
    301     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
    302                          MachineBasicBlock::iterator I);
    303 
    304     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
    305 
    306     void handleZeroArgFP(MachineBasicBlock::iterator &I);
    307     void handleOneArgFP(MachineBasicBlock::iterator &I);
    308     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
    309     void handleTwoArgFP(MachineBasicBlock::iterator &I);
    310     void handleCompareFP(MachineBasicBlock::iterator &I);
    311     void handleCondMovFP(MachineBasicBlock::iterator &I);
    312     void handleSpecialFP(MachineBasicBlock::iterator &I);
    313 
    314     // Check if a COPY instruction is using FP registers.
    315     static bool isFPCopy(MachineInstr *MI) {
    316       unsigned DstReg = MI->getOperand(0).getReg();
    317       unsigned SrcReg = MI->getOperand(1).getReg();
    318 
    319       return X86::RFP80RegClass.contains(DstReg) ||
    320         X86::RFP80RegClass.contains(SrcReg);
    321     }
    322   };
    323   char FPS::ID = 0;
    324 }
    325 
    326 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
    327 
    328 /// getFPReg - Return the X86::FPx register number for the specified operand.
    329 /// For example, this returns 3 for X86::FP3.
    330 static unsigned getFPReg(const MachineOperand &MO) {
    331   assert(MO.isReg() && "Expected an FP register!");
    332   unsigned Reg = MO.getReg();
    333   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
    334   return Reg - X86::FP0;
    335 }
    336 
    337 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
    338 /// register references into FP stack references.
    339 ///
    340 bool FPS::runOnMachineFunction(MachineFunction &MF) {
    341   // We only need to run this pass if there are any FP registers used in this
    342   // function.  If it is all integer, there is nothing for us to do!
    343   bool FPIsUsed = false;
    344 
    345   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
    346   for (unsigned i = 0; i <= 6; ++i)
    347     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
    348       FPIsUsed = true;
    349       break;
    350     }
    351 
    352   // Early exit.
    353   if (!FPIsUsed) return false;
    354 
    355   Bundles = &getAnalysis<EdgeBundles>();
    356   TII = MF.getTarget().getInstrInfo();
    357 
    358   // Prepare cross-MBB liveness.
    359   bundleCFG(MF);
    360 
    361   StackTop = 0;
    362 
    363   // Process the function in depth first order so that we process at least one
    364   // of the predecessors for every reachable block in the function.
    365   SmallPtrSet<MachineBasicBlock*, 8> Processed;
    366   MachineBasicBlock *Entry = MF.begin();
    367 
    368   bool Changed = false;
    369   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
    370          I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
    371        I != E; ++I)
    372     Changed |= processBasicBlock(MF, **I);
    373 
    374   // Process any unreachable blocks in arbitrary order now.
    375   if (MF.size() != Processed.size())
    376     for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
    377       if (Processed.insert(BB))
    378         Changed |= processBasicBlock(MF, *BB);
    379 
    380   LiveBundles.clear();
    381 
    382   return Changed;
    383 }
    384 
    385 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
    386 /// live-out sets for the FP registers. Consistent means that the set of
    387 /// registers live-out from a block is identical to the live-in set of all
    388 /// successors. This is not enforced by the normal live-in lists since
    389 /// registers may be implicitly defined, or not used by all successors.
    390 void FPS::bundleCFG(MachineFunction &MF) {
    391   assert(LiveBundles.empty() && "Stale data in LiveBundles");
    392   LiveBundles.resize(Bundles->getNumBundles());
    393 
    394   // Gather the actual live-in masks for all MBBs.
    395   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
    396     MachineBasicBlock *MBB = I;
    397     const unsigned Mask = calcLiveInMask(MBB);
    398     if (!Mask)
    399       continue;
    400     // Update MBB ingoing bundle mask.
    401     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
    402   }
    403 }
    404 
    405 /// processBasicBlock - Loop over all of the instructions in the basic block,
    406 /// transforming FP instructions into their stack form.
    407 ///
    408 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
    409   bool Changed = false;
    410   MBB = &BB;
    411   NumPendingSTs = 0;
    412 
    413   setupBlockStack();
    414 
    415   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    416     MachineInstr *MI = I;
    417     uint64_t Flags = MI->getDesc().TSFlags;
    418 
    419     unsigned FPInstClass = Flags & X86II::FPTypeMask;
    420     if (MI->isInlineAsm())
    421       FPInstClass = X86II::SpecialFP;
    422 
    423     if (MI->isCopy() && isFPCopy(MI))
    424       FPInstClass = X86II::SpecialFP;
    425 
    426     if (MI->isImplicitDef() &&
    427         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
    428       FPInstClass = X86II::SpecialFP;
    429 
    430     if (FPInstClass == X86II::NotFP)
    431       continue;  // Efficiently ignore non-fp insts!
    432 
    433     MachineInstr *PrevMI = 0;
    434     if (I != BB.begin())
    435       PrevMI = prior(I);
    436 
    437     ++NumFP;  // Keep track of # of pseudo instrs
    438     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
    439 
    440     // Get dead variables list now because the MI pointer may be deleted as part
    441     // of processing!
    442     SmallVector<unsigned, 8> DeadRegs;
    443     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    444       const MachineOperand &MO = MI->getOperand(i);
    445       if (MO.isReg() && MO.isDead())
    446         DeadRegs.push_back(MO.getReg());
    447     }
    448 
    449     switch (FPInstClass) {
    450     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
    451     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
    452     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
    453     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
    454     case X86II::CompareFP:  handleCompareFP(I); break;
    455     case X86II::CondMovFP:  handleCondMovFP(I); break;
    456     case X86II::SpecialFP:  handleSpecialFP(I); break;
    457     default: llvm_unreachable("Unknown FP Type!");
    458     }
    459 
    460     // Check to see if any of the values defined by this instruction are dead
    461     // after definition.  If so, pop them.
    462     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
    463       unsigned Reg = DeadRegs[i];
    464       if (Reg >= X86::FP0 && Reg <= X86::FP6) {
    465         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
    466         freeStackSlotAfter(I, Reg-X86::FP0);
    467       }
    468     }
    469 
    470     // Print out all of the instructions expanded to if -debug
    471     DEBUG(
    472       MachineBasicBlock::iterator PrevI(PrevMI);
    473       if (I == PrevI) {
    474         dbgs() << "Just deleted pseudo instruction\n";
    475       } else {
    476         MachineBasicBlock::iterator Start = I;
    477         // Rewind to first instruction newly inserted.
    478         while (Start != BB.begin() && prior(Start) != PrevI) --Start;
    479         dbgs() << "Inserted instructions:\n\t";
    480         Start->print(dbgs(), &MF.getTarget());
    481         while (++Start != llvm::next(I)) {}
    482       }
    483       dumpStack();
    484     );
    485     (void)PrevMI;
    486 
    487     Changed = true;
    488   }
    489 
    490   finishBlockStack();
    491 
    492   return Changed;
    493 }
    494 
    495 /// setupBlockStack - Use the live bundles to set up our model of the stack
    496 /// to match predecessors' live out stack.
    497 void FPS::setupBlockStack() {
    498   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
    499                << " derived from " << MBB->getName() << ".\n");
    500   StackTop = 0;
    501   // Get the live-in bundle for MBB.
    502   const LiveBundle &Bundle =
    503     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
    504 
    505   if (!Bundle.Mask) {
    506     DEBUG(dbgs() << "Block has no FP live-ins.\n");
    507     return;
    508   }
    509 
    510   // Depth-first iteration should ensure that we always have an assigned stack.
    511   assert(Bundle.isFixed() && "Reached block before any predecessors");
    512 
    513   // Push the fixed live-in registers.
    514   for (unsigned i = Bundle.FixCount; i > 0; --i) {
    515     MBB->addLiveIn(X86::ST0+i-1);
    516     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
    517                  << unsigned(Bundle.FixStack[i-1]) << '\n');
    518     pushReg(Bundle.FixStack[i-1]);
    519   }
    520 
    521   // Kill off unwanted live-ins. This can happen with a critical edge.
    522   // FIXME: We could keep these live registers around as zombies. They may need
    523   // to be revived at the end of a short block. It might save a few instrs.
    524   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
    525   DEBUG(MBB->dump());
    526 }
    527 
    528 /// finishBlockStack - Revive live-outs that are implicitly defined out of
    529 /// MBB. Shuffle live registers to match the expected fixed stack of any
    530 /// predecessors, and ensure that all predecessors are expecting the same
    531 /// stack.
    532 void FPS::finishBlockStack() {
    533   // The RET handling below takes care of return blocks for us.
    534   if (MBB->succ_empty())
    535     return;
    536 
    537   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
    538                << " derived from " << MBB->getName() << ".\n");
    539 
    540   // Get MBB's live-out bundle.
    541   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
    542   LiveBundle &Bundle = LiveBundles[BundleIdx];
    543 
    544   // We may need to kill and define some registers to match successors.
    545   // FIXME: This can probably be combined with the shuffle below.
    546   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
    547   adjustLiveRegs(Bundle.Mask, Term);
    548 
    549   if (!Bundle.Mask) {
    550     DEBUG(dbgs() << "No live-outs.\n");
    551     return;
    552   }
    553 
    554   // Has the stack order been fixed yet?
    555   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
    556   if (Bundle.isFixed()) {
    557     DEBUG(dbgs() << "Shuffling stack to match.\n");
    558     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
    559   } else {
    560     // Not fixed yet, we get to choose.
    561     DEBUG(dbgs() << "Fixing stack order now.\n");
    562     Bundle.FixCount = StackTop;
    563     for (unsigned i = 0; i < StackTop; ++i)
    564       Bundle.FixStack[i] = getStackEntry(i);
    565   }
    566 }
    567 
    568 
    569 //===----------------------------------------------------------------------===//
    570 // Efficient Lookup Table Support
    571 //===----------------------------------------------------------------------===//
    572 
    573 namespace {
    574   struct TableEntry {
    575     uint16_t from;
    576     uint16_t to;
    577     bool operator<(const TableEntry &TE) const { return from < TE.from; }
    578     friend bool operator<(const TableEntry &TE, unsigned V) {
    579       return TE.from < V;
    580     }
    581     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
    582                                                 const TableEntry &TE) {
    583       return V < TE.from;
    584     }
    585   };
    586 }
    587 
    588 #ifndef NDEBUG
    589 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
    590   for (unsigned i = 0; i != NumEntries-1; ++i)
    591     if (!(Table[i] < Table[i+1])) return false;
    592   return true;
    593 }
    594 #endif
    595 
    596 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
    597   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
    598   if (I != Table+N && I->from == Opcode)
    599     return I->to;
    600   return -1;
    601 }
    602 
    603 #ifdef NDEBUG
    604 #define ASSERT_SORTED(TABLE)
    605 #else
    606 #define ASSERT_SORTED(TABLE)                                              \
    607   { static bool TABLE##Checked = false;                                   \
    608     if (!TABLE##Checked) {                                                \
    609        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
    610               "All lookup tables must be sorted for efficient access!");  \
    611        TABLE##Checked = true;                                             \
    612     }                                                                     \
    613   }
    614 #endif
    615 
    616 //===----------------------------------------------------------------------===//
    617 // Register File -> Register Stack Mapping Methods
    618 //===----------------------------------------------------------------------===//
    619 
    620 // OpcodeTable - Sorted map of register instructions to their stack version.
    621 // The first element is an register file pseudo instruction, the second is the
    622 // concrete X86 instruction which uses the register stack.
    623 //
    624 static const TableEntry OpcodeTable[] = {
    625   { X86::ABS_Fp32     , X86::ABS_F     },
    626   { X86::ABS_Fp64     , X86::ABS_F     },
    627   { X86::ABS_Fp80     , X86::ABS_F     },
    628   { X86::ADD_Fp32m    , X86::ADD_F32m  },
    629   { X86::ADD_Fp64m    , X86::ADD_F64m  },
    630   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
    631   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
    632   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
    633   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
    634   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
    635   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
    636   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
    637   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
    638   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
    639   { X86::CHS_Fp32     , X86::CHS_F     },
    640   { X86::CHS_Fp64     , X86::CHS_F     },
    641   { X86::CHS_Fp80     , X86::CHS_F     },
    642   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
    643   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
    644   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
    645   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
    646   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
    647   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
    648   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
    649   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
    650   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
    651   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
    652   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
    653   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
    654   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
    655   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
    656   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
    657   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
    658   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
    659   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
    660   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
    661   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
    662   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
    663   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
    664   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
    665   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
    666   { X86::COS_Fp32     , X86::COS_F     },
    667   { X86::COS_Fp64     , X86::COS_F     },
    668   { X86::COS_Fp80     , X86::COS_F     },
    669   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
    670   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
    671   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
    672   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
    673   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
    674   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
    675   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
    676   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
    677   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
    678   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
    679   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
    680   { X86::DIV_Fp32m    , X86::DIV_F32m  },
    681   { X86::DIV_Fp64m    , X86::DIV_F64m  },
    682   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
    683   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
    684   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
    685   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
    686   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
    687   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
    688   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
    689   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
    690   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
    691   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
    692   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
    693   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
    694   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
    695   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
    696   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
    697   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
    698   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
    699   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
    700   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
    701   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
    702   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
    703   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
    704   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
    705   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
    706   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
    707   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
    708   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
    709   { X86::IST_Fp16m32  , X86::IST_F16m  },
    710   { X86::IST_Fp16m64  , X86::IST_F16m  },
    711   { X86::IST_Fp16m80  , X86::IST_F16m  },
    712   { X86::IST_Fp32m32  , X86::IST_F32m  },
    713   { X86::IST_Fp32m64  , X86::IST_F32m  },
    714   { X86::IST_Fp32m80  , X86::IST_F32m  },
    715   { X86::IST_Fp64m32  , X86::IST_FP64m },
    716   { X86::IST_Fp64m64  , X86::IST_FP64m },
    717   { X86::IST_Fp64m80  , X86::IST_FP64m },
    718   { X86::LD_Fp032     , X86::LD_F0     },
    719   { X86::LD_Fp064     , X86::LD_F0     },
    720   { X86::LD_Fp080     , X86::LD_F0     },
    721   { X86::LD_Fp132     , X86::LD_F1     },
    722   { X86::LD_Fp164     , X86::LD_F1     },
    723   { X86::LD_Fp180     , X86::LD_F1     },
    724   { X86::LD_Fp32m     , X86::LD_F32m   },
    725   { X86::LD_Fp32m64   , X86::LD_F32m   },
    726   { X86::LD_Fp32m80   , X86::LD_F32m   },
    727   { X86::LD_Fp64m     , X86::LD_F64m   },
    728   { X86::LD_Fp64m80   , X86::LD_F64m   },
    729   { X86::LD_Fp80m     , X86::LD_F80m   },
    730   { X86::MUL_Fp32m    , X86::MUL_F32m  },
    731   { X86::MUL_Fp64m    , X86::MUL_F64m  },
    732   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
    733   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
    734   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
    735   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
    736   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
    737   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
    738   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
    739   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
    740   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
    741   { X86::SIN_Fp32     , X86::SIN_F     },
    742   { X86::SIN_Fp64     , X86::SIN_F     },
    743   { X86::SIN_Fp80     , X86::SIN_F     },
    744   { X86::SQRT_Fp32    , X86::SQRT_F    },
    745   { X86::SQRT_Fp64    , X86::SQRT_F    },
    746   { X86::SQRT_Fp80    , X86::SQRT_F    },
    747   { X86::ST_Fp32m     , X86::ST_F32m   },
    748   { X86::ST_Fp64m     , X86::ST_F64m   },
    749   { X86::ST_Fp64m32   , X86::ST_F32m   },
    750   { X86::ST_Fp80m32   , X86::ST_F32m   },
    751   { X86::ST_Fp80m64   , X86::ST_F64m   },
    752   { X86::ST_FpP80m    , X86::ST_FP80m  },
    753   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
    754   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
    755   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
    756   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
    757   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
    758   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
    759   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
    760   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
    761   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
    762   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
    763   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
    764   { X86::SUB_Fp32m    , X86::SUB_F32m  },
    765   { X86::SUB_Fp64m    , X86::SUB_F64m  },
    766   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
    767   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
    768   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
    769   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
    770   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
    771   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
    772   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
    773   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
    774   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
    775   { X86::TST_Fp32     , X86::TST_F     },
    776   { X86::TST_Fp64     , X86::TST_F     },
    777   { X86::TST_Fp80     , X86::TST_F     },
    778   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
    779   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
    780   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
    781   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
    782   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
    783   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
    784 };
    785 
    786 static unsigned getConcreteOpcode(unsigned Opcode) {
    787   ASSERT_SORTED(OpcodeTable);
    788   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
    789   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
    790   return Opc;
    791 }
    792 
    793 //===----------------------------------------------------------------------===//
    794 // Helper Methods
    795 //===----------------------------------------------------------------------===//
    796 
    797 // PopTable - Sorted map of instructions to their popping version.  The first
    798 // element is an instruction, the second is the version which pops.
    799 //
    800 static const TableEntry PopTable[] = {
    801   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
    802 
    803   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
    804   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
    805 
    806   { X86::IST_F16m  , X86::IST_FP16m   },
    807   { X86::IST_F32m  , X86::IST_FP32m   },
    808 
    809   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
    810 
    811   { X86::ST_F32m   , X86::ST_FP32m    },
    812   { X86::ST_F64m   , X86::ST_FP64m    },
    813   { X86::ST_Frr    , X86::ST_FPrr     },
    814 
    815   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
    816   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
    817 
    818   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
    819 
    820   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
    821   { X86::UCOM_Fr   , X86::UCOM_FPr    },
    822 };
    823 
    824 /// popStackAfter - Pop the current value off of the top of the FP stack after
    825 /// the specified instruction.  This attempts to be sneaky and combine the pop
    826 /// into the instruction itself if possible.  The iterator is left pointing to
    827 /// the last instruction, be it a new pop instruction inserted, or the old
    828 /// instruction if it was modified in place.
    829 ///
    830 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
    831   MachineInstr* MI = I;
    832   DebugLoc dl = MI->getDebugLoc();
    833   ASSERT_SORTED(PopTable);
    834   if (StackTop == 0)
    835     report_fatal_error("Cannot pop empty stack!");
    836   RegMap[Stack[--StackTop]] = ~0;     // Update state
    837 
    838   // Check to see if there is a popping version of this instruction...
    839   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
    840   if (Opcode != -1) {
    841     I->setDesc(TII->get(Opcode));
    842     if (Opcode == X86::UCOM_FPPr)
    843       I->RemoveOperand(0);
    844   } else {    // Insert an explicit pop
    845     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
    846   }
    847 }
    848 
    849 /// freeStackSlotAfter - Free the specified register from the register stack, so
    850 /// that it is no longer in a register.  If the register is currently at the top
    851 /// of the stack, we just pop the current instruction, otherwise we store the
    852 /// current top-of-stack into the specified slot, then pop the top of stack.
    853 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
    854   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
    855     popStackAfter(I);
    856     return;
    857   }
    858 
    859   // Otherwise, store the top of stack into the dead slot, killing the operand
    860   // without having to add in an explicit xchg then pop.
    861   //
    862   I = freeStackSlotBefore(++I, FPRegNo);
    863 }
    864 
    865 /// freeStackSlotBefore - Free the specified register without trying any
    866 /// folding.
    867 MachineBasicBlock::iterator
    868 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
    869   unsigned STReg    = getSTReg(FPRegNo);
    870   unsigned OldSlot  = getSlot(FPRegNo);
    871   unsigned TopReg   = Stack[StackTop-1];
    872   Stack[OldSlot]    = TopReg;
    873   RegMap[TopReg]    = OldSlot;
    874   RegMap[FPRegNo]   = ~0;
    875   Stack[--StackTop] = ~0;
    876   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
    877 }
    878 
    879 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
    880 /// registers with a bit in Mask are live.
    881 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
    882   unsigned Defs = Mask;
    883   unsigned Kills = 0;
    884   for (unsigned i = 0; i < StackTop; ++i) {
    885     unsigned RegNo = Stack[i];
    886     if (!(Defs & (1 << RegNo)))
    887       // This register is live, but we don't want it.
    888       Kills |= (1 << RegNo);
    889     else
    890       // We don't need to imp-def this live register.
    891       Defs &= ~(1 << RegNo);
    892   }
    893   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
    894 
    895   // Produce implicit-defs for free by using killed registers.
    896   while (Kills && Defs) {
    897     unsigned KReg = countTrailingZeros(Kills);
    898     unsigned DReg = countTrailingZeros(Defs);
    899     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
    900     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
    901     std::swap(RegMap[KReg], RegMap[DReg]);
    902     Kills &= ~(1 << KReg);
    903     Defs &= ~(1 << DReg);
    904   }
    905 
    906   // Kill registers by popping.
    907   if (Kills && I != MBB->begin()) {
    908     MachineBasicBlock::iterator I2 = llvm::prior(I);
    909     while (StackTop) {
    910       unsigned KReg = getStackEntry(0);
    911       if (!(Kills & (1 << KReg)))
    912         break;
    913       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
    914       popStackAfter(I2);
    915       Kills &= ~(1 << KReg);
    916     }
    917   }
    918 
    919   // Manually kill the rest.
    920   while (Kills) {
    921     unsigned KReg = countTrailingZeros(Kills);
    922     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
    923     freeStackSlotBefore(I, KReg);
    924     Kills &= ~(1 << KReg);
    925   }
    926 
    927   // Load zeros for all the imp-defs.
    928   while(Defs) {
    929     unsigned DReg = countTrailingZeros(Defs);
    930     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
    931     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
    932     pushReg(DReg);
    933     Defs &= ~(1 << DReg);
    934   }
    935 
    936   // Now we should have the correct registers live.
    937   DEBUG(dumpStack());
    938   assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
    939 }
    940 
    941 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
    942 /// FixCount entries into the order given by FixStack.
    943 /// FIXME: Is there a better algorithm than insertion sort?
    944 void FPS::shuffleStackTop(const unsigned char *FixStack,
    945                           unsigned FixCount,
    946                           MachineBasicBlock::iterator I) {
    947   // Move items into place, starting from the desired stack bottom.
    948   while (FixCount--) {
    949     // Old register at position FixCount.
    950     unsigned OldReg = getStackEntry(FixCount);
    951     // Desired register at position FixCount.
    952     unsigned Reg = FixStack[FixCount];
    953     if (Reg == OldReg)
    954       continue;
    955     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
    956     moveToTop(Reg, I);
    957     if (FixCount > 0)
    958       moveToTop(OldReg, I);
    959   }
    960   DEBUG(dumpStack());
    961 }
    962 
    963 
    964 //===----------------------------------------------------------------------===//
    965 // Instruction transformation implementation
    966 //===----------------------------------------------------------------------===//
    967 
    968 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
    969 ///
    970 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
    971   MachineInstr *MI = I;
    972   unsigned DestReg = getFPReg(MI->getOperand(0));
    973 
    974   // Change from the pseudo instruction to the concrete instruction.
    975   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
    976   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
    977 
    978   // Result gets pushed on the stack.
    979   pushReg(DestReg);
    980 }
    981 
    982 /// handleOneArgFP - fst <mem>, ST(0)
    983 ///
    984 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
    985   MachineInstr *MI = I;
    986   unsigned NumOps = MI->getDesc().getNumOperands();
    987   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
    988          "Can only handle fst* & ftst instructions!");
    989 
    990   // Is this the last use of the source register?
    991   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
    992   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
    993 
    994   if (KillsSrc)
    995     duplicatePendingSTBeforeKill(Reg, I);
    996 
    997   // FISTP64m is strange because there isn't a non-popping versions.
    998   // If we have one _and_ we don't want to pop the operand, duplicate the value
    999   // on the stack instead of moving it.  This ensure that popping the value is
   1000   // always ok.
   1001   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
   1002   //
   1003   if (!KillsSrc &&
   1004       (MI->getOpcode() == X86::IST_Fp64m32 ||
   1005        MI->getOpcode() == X86::ISTT_Fp16m32 ||
   1006        MI->getOpcode() == X86::ISTT_Fp32m32 ||
   1007        MI->getOpcode() == X86::ISTT_Fp64m32 ||
   1008        MI->getOpcode() == X86::IST_Fp64m64 ||
   1009        MI->getOpcode() == X86::ISTT_Fp16m64 ||
   1010        MI->getOpcode() == X86::ISTT_Fp32m64 ||
   1011        MI->getOpcode() == X86::ISTT_Fp64m64 ||
   1012        MI->getOpcode() == X86::IST_Fp64m80 ||
   1013        MI->getOpcode() == X86::ISTT_Fp16m80 ||
   1014        MI->getOpcode() == X86::ISTT_Fp32m80 ||
   1015        MI->getOpcode() == X86::ISTT_Fp64m80 ||
   1016        MI->getOpcode() == X86::ST_FpP80m)) {
   1017     duplicateToTop(Reg, getScratchReg(), I);
   1018   } else {
   1019     moveToTop(Reg, I);            // Move to the top of the stack...
   1020   }
   1021 
   1022   // Convert from the pseudo instruction to the concrete instruction.
   1023   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
   1024   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1025 
   1026   if (MI->getOpcode() == X86::IST_FP64m ||
   1027       MI->getOpcode() == X86::ISTT_FP16m ||
   1028       MI->getOpcode() == X86::ISTT_FP32m ||
   1029       MI->getOpcode() == X86::ISTT_FP64m ||
   1030       MI->getOpcode() == X86::ST_FP80m) {
   1031     if (StackTop == 0)
   1032       report_fatal_error("Stack empty??");
   1033     --StackTop;
   1034   } else if (KillsSrc) { // Last use of operand?
   1035     popStackAfter(I);
   1036   }
   1037 }
   1038 
   1039 
   1040 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
   1041 /// replace the value with a newly computed value.  These instructions may have
   1042 /// non-fp operands after their FP operands.
   1043 ///
   1044 ///  Examples:
   1045 ///     R1 = fchs R2
   1046 ///     R1 = fadd R2, [mem]
   1047 ///
   1048 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
   1049   MachineInstr *MI = I;
   1050 #ifndef NDEBUG
   1051   unsigned NumOps = MI->getDesc().getNumOperands();
   1052   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
   1053 #endif
   1054 
   1055   // Is this the last use of the source register?
   1056   unsigned Reg = getFPReg(MI->getOperand(1));
   1057   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
   1058 
   1059   if (KillsSrc) {
   1060     duplicatePendingSTBeforeKill(Reg, I);
   1061     // If this is the last use of the source register, just make sure it's on
   1062     // the top of the stack.
   1063     moveToTop(Reg, I);
   1064     if (StackTop == 0)
   1065       report_fatal_error("Stack cannot be empty!");
   1066     --StackTop;
   1067     pushReg(getFPReg(MI->getOperand(0)));
   1068   } else {
   1069     // If this is not the last use of the source register, _copy_ it to the top
   1070     // of the stack.
   1071     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
   1072   }
   1073 
   1074   // Change from the pseudo instruction to the concrete instruction.
   1075   MI->RemoveOperand(1);   // Drop the source operand.
   1076   MI->RemoveOperand(0);   // Drop the destination operand.
   1077   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1078 }
   1079 
   1080 
   1081 //===----------------------------------------------------------------------===//
   1082 // Define tables of various ways to map pseudo instructions
   1083 //
   1084 
   1085 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
   1086 static const TableEntry ForwardST0Table[] = {
   1087   { X86::ADD_Fp32  , X86::ADD_FST0r },
   1088   { X86::ADD_Fp64  , X86::ADD_FST0r },
   1089   { X86::ADD_Fp80  , X86::ADD_FST0r },
   1090   { X86::DIV_Fp32  , X86::DIV_FST0r },
   1091   { X86::DIV_Fp64  , X86::DIV_FST0r },
   1092   { X86::DIV_Fp80  , X86::DIV_FST0r },
   1093   { X86::MUL_Fp32  , X86::MUL_FST0r },
   1094   { X86::MUL_Fp64  , X86::MUL_FST0r },
   1095   { X86::MUL_Fp80  , X86::MUL_FST0r },
   1096   { X86::SUB_Fp32  , X86::SUB_FST0r },
   1097   { X86::SUB_Fp64  , X86::SUB_FST0r },
   1098   { X86::SUB_Fp80  , X86::SUB_FST0r },
   1099 };
   1100 
   1101 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
   1102 static const TableEntry ReverseST0Table[] = {
   1103   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
   1104   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
   1105   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
   1106   { X86::DIV_Fp32  , X86::DIVR_FST0r },
   1107   { X86::DIV_Fp64  , X86::DIVR_FST0r },
   1108   { X86::DIV_Fp80  , X86::DIVR_FST0r },
   1109   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
   1110   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
   1111   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
   1112   { X86::SUB_Fp32  , X86::SUBR_FST0r },
   1113   { X86::SUB_Fp64  , X86::SUBR_FST0r },
   1114   { X86::SUB_Fp80  , X86::SUBR_FST0r },
   1115 };
   1116 
   1117 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
   1118 static const TableEntry ForwardSTiTable[] = {
   1119   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
   1120   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
   1121   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
   1122   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
   1123   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
   1124   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
   1125   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
   1126   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
   1127   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
   1128   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
   1129   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
   1130   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
   1131 };
   1132 
   1133 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
   1134 static const TableEntry ReverseSTiTable[] = {
   1135   { X86::ADD_Fp32  , X86::ADD_FrST0 },
   1136   { X86::ADD_Fp64  , X86::ADD_FrST0 },
   1137   { X86::ADD_Fp80  , X86::ADD_FrST0 },
   1138   { X86::DIV_Fp32  , X86::DIV_FrST0 },
   1139   { X86::DIV_Fp64  , X86::DIV_FrST0 },
   1140   { X86::DIV_Fp80  , X86::DIV_FrST0 },
   1141   { X86::MUL_Fp32  , X86::MUL_FrST0 },
   1142   { X86::MUL_Fp64  , X86::MUL_FrST0 },
   1143   { X86::MUL_Fp80  , X86::MUL_FrST0 },
   1144   { X86::SUB_Fp32  , X86::SUB_FrST0 },
   1145   { X86::SUB_Fp64  , X86::SUB_FrST0 },
   1146   { X86::SUB_Fp80  , X86::SUB_FrST0 },
   1147 };
   1148 
   1149 
   1150 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
   1151 /// instructions which need to be simplified and possibly transformed.
   1152 ///
   1153 /// Result: ST(0) = fsub  ST(0), ST(i)
   1154 ///         ST(i) = fsub  ST(0), ST(i)
   1155 ///         ST(0) = fsubr ST(0), ST(i)
   1156 ///         ST(i) = fsubr ST(0), ST(i)
   1157 ///
   1158 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
   1159   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1160   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1161   MachineInstr *MI = I;
   1162 
   1163   unsigned NumOperands = MI->getDesc().getNumOperands();
   1164   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
   1165   unsigned Dest = getFPReg(MI->getOperand(0));
   1166   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1167   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1168   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1169   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1170   DebugLoc dl = MI->getDebugLoc();
   1171 
   1172   unsigned TOS = getStackEntry(0);
   1173 
   1174   // One of our operands must be on the top of the stack.  If neither is yet, we
   1175   // need to move one.
   1176   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
   1177     // We can choose to move either operand to the top of the stack.  If one of
   1178     // the operands is killed by this instruction, we want that one so that we
   1179     // can update right on top of the old version.
   1180     if (KillsOp0) {
   1181       moveToTop(Op0, I);         // Move dead operand to TOS.
   1182       TOS = Op0;
   1183     } else if (KillsOp1) {
   1184       moveToTop(Op1, I);
   1185       TOS = Op1;
   1186     } else {
   1187       // All of the operands are live after this instruction executes, so we
   1188       // cannot update on top of any operand.  Because of this, we must
   1189       // duplicate one of the stack elements to the top.  It doesn't matter
   1190       // which one we pick.
   1191       //
   1192       duplicateToTop(Op0, Dest, I);
   1193       Op0 = TOS = Dest;
   1194       KillsOp0 = true;
   1195     }
   1196   } else if (!KillsOp0 && !KillsOp1) {
   1197     // If we DO have one of our operands at the top of the stack, but we don't
   1198     // have a dead operand, we must duplicate one of the operands to a new slot
   1199     // on the stack.
   1200     duplicateToTop(Op0, Dest, I);
   1201     Op0 = TOS = Dest;
   1202     KillsOp0 = true;
   1203   }
   1204 
   1205   // Now we know that one of our operands is on the top of the stack, and at
   1206   // least one of our operands is killed by this instruction.
   1207   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
   1208          "Stack conditions not set up right!");
   1209 
   1210   // We decide which form to use based on what is on the top of the stack, and
   1211   // which operand is killed by this instruction.
   1212   const TableEntry *InstTable;
   1213   bool isForward = TOS == Op0;
   1214   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
   1215   if (updateST0) {
   1216     if (isForward)
   1217       InstTable = ForwardST0Table;
   1218     else
   1219       InstTable = ReverseST0Table;
   1220   } else {
   1221     if (isForward)
   1222       InstTable = ForwardSTiTable;
   1223     else
   1224       InstTable = ReverseSTiTable;
   1225   }
   1226 
   1227   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
   1228                       MI->getOpcode());
   1229   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
   1230 
   1231   // NotTOS - The register which is not on the top of stack...
   1232   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
   1233 
   1234   // Replace the old instruction with a new instruction
   1235   MBB->remove(I++);
   1236   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
   1237 
   1238   // If both operands are killed, pop one off of the stack in addition to
   1239   // overwriting the other one.
   1240   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
   1241     assert(!updateST0 && "Should have updated other operand!");
   1242     popStackAfter(I);   // Pop the top of stack
   1243   }
   1244 
   1245   // Update stack information so that we know the destination register is now on
   1246   // the stack.
   1247   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
   1248   assert(UpdatedSlot < StackTop && Dest < 7);
   1249   Stack[UpdatedSlot]   = Dest;
   1250   RegMap[Dest]         = UpdatedSlot;
   1251   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
   1252 }
   1253 
   1254 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
   1255 /// register arguments and no explicit destinations.
   1256 ///
   1257 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
   1258   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1259   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1260   MachineInstr *MI = I;
   1261 
   1262   unsigned NumOperands = MI->getDesc().getNumOperands();
   1263   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
   1264   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1265   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1266   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1267   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1268 
   1269   // Make sure the first operand is on the top of stack, the other one can be
   1270   // anywhere.
   1271   moveToTop(Op0, I);
   1272 
   1273   // Change from the pseudo instruction to the concrete instruction.
   1274   MI->getOperand(0).setReg(getSTReg(Op1));
   1275   MI->RemoveOperand(1);
   1276   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1277 
   1278   // If any of the operands are killed by this instruction, free them.
   1279   if (KillsOp0) freeStackSlotAfter(I, Op0);
   1280   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
   1281 }
   1282 
   1283 /// handleCondMovFP - Handle two address conditional move instructions.  These
   1284 /// instructions move a st(i) register to st(0) iff a condition is true.  These
   1285 /// instructions require that the first operand is at the top of the stack, but
   1286 /// otherwise don't modify the stack at all.
   1287 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
   1288   MachineInstr *MI = I;
   1289 
   1290   unsigned Op0 = getFPReg(MI->getOperand(0));
   1291   unsigned Op1 = getFPReg(MI->getOperand(2));
   1292   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1293 
   1294   // The first operand *must* be on the top of the stack.
   1295   moveToTop(Op0, I);
   1296 
   1297   // Change the second operand to the stack register that the operand is in.
   1298   // Change from the pseudo instruction to the concrete instruction.
   1299   MI->RemoveOperand(0);
   1300   MI->RemoveOperand(1);
   1301   MI->getOperand(0).setReg(getSTReg(Op1));
   1302   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1303 
   1304   // If we kill the second operand, make sure to pop it from the stack.
   1305   if (Op0 != Op1 && KillsOp1) {
   1306     // Get this value off of the register stack.
   1307     freeStackSlotAfter(I, Op1);
   1308   }
   1309 }
   1310 
   1311 
   1312 /// handleSpecialFP - Handle special instructions which behave unlike other
   1313 /// floating point instructions.  This is primarily intended for use by pseudo
   1314 /// instructions.
   1315 ///
   1316 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
   1317   MachineInstr *MI = I;
   1318   switch (MI->getOpcode()) {
   1319   default: llvm_unreachable("Unknown SpecialFP instruction!");
   1320   case TargetOpcode::COPY: {
   1321     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
   1322     const MachineOperand &MO1 = MI->getOperand(1);
   1323     const MachineOperand &MO0 = MI->getOperand(0);
   1324     unsigned DstST = MO0.getReg() - X86::ST0;
   1325     unsigned SrcST = MO1.getReg() - X86::ST0;
   1326     bool KillsSrc = MI->killsRegister(MO1.getReg());
   1327 
   1328     // ST = COPY FP. Set up a pending ST register.
   1329     if (DstST < 8) {
   1330       unsigned SrcFP = getFPReg(MO1);
   1331       assert(isLive(SrcFP) && "Cannot copy dead register");
   1332       assert(!MO0.isDead() && "Cannot copy to dead ST register");
   1333 
   1334       // Unallocated STs are marked as the nonexistent FP255.
   1335       while (NumPendingSTs <= DstST)
   1336         PendingST[NumPendingSTs++] = NumFPRegs;
   1337 
   1338       // STi could still be live from a previous inline asm.
   1339       if (isScratchReg(PendingST[DstST])) {
   1340         DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
   1341                      << '\n');
   1342         freeStackSlotBefore(MI, PendingST[DstST]);
   1343       }
   1344 
   1345       // When the source is killed, allocate a scratch FP register.
   1346       if (KillsSrc) {
   1347         duplicatePendingSTBeforeKill(SrcFP, I);
   1348         unsigned Slot = getSlot(SrcFP);
   1349         unsigned SR = getScratchReg();
   1350         PendingST[DstST] = SR;
   1351         Stack[Slot] = SR;
   1352         RegMap[SR] = Slot;
   1353       } else
   1354         PendingST[DstST] = SrcFP;
   1355       break;
   1356     }
   1357 
   1358     // FP = COPY ST. Extract fixed stack value.
   1359     // Any instruction defining ST registers must have assigned them to a
   1360     // scratch register.
   1361     if (SrcST < 8) {
   1362       unsigned DstFP = getFPReg(MO0);
   1363       assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
   1364       assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
   1365       unsigned SrcFP = PendingST[SrcST];
   1366       assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
   1367       assert(isLive(SrcFP) && "Scratch holding ST is dead");
   1368 
   1369       // DstFP steals the stack slot from SrcFP.
   1370       unsigned Slot = getSlot(SrcFP);
   1371       Stack[Slot] = DstFP;
   1372       RegMap[DstFP] = Slot;
   1373 
   1374       // Always treat the ST as killed.
   1375       PendingST[SrcST] = NumFPRegs;
   1376       while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
   1377         --NumPendingSTs;
   1378       break;
   1379     }
   1380 
   1381     // FP <- FP copy.
   1382     unsigned DstFP = getFPReg(MO0);
   1383     unsigned SrcFP = getFPReg(MO1);
   1384     assert(isLive(SrcFP) && "Cannot copy dead register");
   1385     if (KillsSrc) {
   1386       // If the input operand is killed, we can just change the owner of the
   1387       // incoming stack slot into the result.
   1388       unsigned Slot = getSlot(SrcFP);
   1389       Stack[Slot] = DstFP;
   1390       RegMap[DstFP] = Slot;
   1391     } else {
   1392       // For COPY we just duplicate the specified value to a new stack slot.
   1393       // This could be made better, but would require substantial changes.
   1394       duplicateToTop(SrcFP, DstFP, I);
   1395     }
   1396     break;
   1397   }
   1398 
   1399   case TargetOpcode::IMPLICIT_DEF: {
   1400     // All FP registers must be explicitly defined, so load a 0 instead.
   1401     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
   1402     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
   1403     BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1404     pushReg(Reg);
   1405     break;
   1406   }
   1407 
   1408   case X86::FpPOP_RETVAL: {
   1409     // The FpPOP_RETVAL instruction is used after calls that return a value on
   1410     // the floating point stack. We cannot model this with ST defs since CALL
   1411     // instructions have fixed clobber lists. This instruction is interpreted
   1412     // to mean that there is one more live register on the stack than we
   1413     // thought.
   1414     //
   1415     // This means that StackTop does not match the hardware stack between a
   1416     // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
   1417     // between CALL and FpPOP_RETVAL as long as they don't overflow the
   1418     // hardware stack.
   1419     unsigned DstFP = getFPReg(MI->getOperand(0));
   1420 
   1421     // Move existing stack elements up to reflect reality.
   1422     assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
   1423     if (StackTop) {
   1424       std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
   1425       for (unsigned i = 0; i != NumFPRegs; ++i)
   1426         ++RegMap[i];
   1427     }
   1428     ++StackTop;
   1429 
   1430     // DstFP is the new bottom of the stack.
   1431     Stack[0] = DstFP;
   1432     RegMap[DstFP] = 0;
   1433 
   1434     // DstFP will be killed by processBasicBlock if this was a dead def.
   1435     break;
   1436   }
   1437 
   1438   case TargetOpcode::INLINEASM: {
   1439     // The inline asm MachineInstr currently only *uses* FP registers for the
   1440     // 'f' constraint.  These should be turned into the current ST(x) register
   1441     // in the machine instr.
   1442     //
   1443     // There are special rules for x87 inline assembly. The compiler must know
   1444     // exactly how many registers are popped and pushed implicitly by the asm.
   1445     // Otherwise it is not possible to restore the stack state after the inline
   1446     // asm.
   1447     //
   1448     // There are 3 kinds of input operands:
   1449     //
   1450     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
   1451     //    popped input operand must be in a fixed stack slot, and it is either
   1452     //    tied to an output operand, or in the clobber list. The MI has ST use
   1453     //    and def operands for these inputs.
   1454     //
   1455     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
   1456     //    preserved by the inline asm. The fixed stack slots must be STn-STm
   1457     //    following the popped inputs. A fixed input operand cannot be tied to
   1458     //    an output or appear in the clobber list. The MI has ST use operands
   1459     //    and no defs for these inputs.
   1460     //
   1461     // 3. Preserved inputs. These inputs use the "f" constraint which is
   1462     //    represented as an FP register. The inline asm won't change these
   1463     //    stack slots.
   1464     //
   1465     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
   1466     // registers do not count as output operands. The inline asm changes the
   1467     // stack as if it popped all the popped inputs and then pushed all the
   1468     // output operands.
   1469 
   1470     // Scan the assembly for ST registers used, defined and clobbered. We can
   1471     // only tell clobbers from defs by looking at the asm descriptor.
   1472     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
   1473     unsigned NumOps = 0;
   1474     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
   1475          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
   1476       unsigned Flags = MI->getOperand(i).getImm();
   1477       NumOps = InlineAsm::getNumOperandRegisters(Flags);
   1478       if (NumOps != 1)
   1479         continue;
   1480       const MachineOperand &MO = MI->getOperand(i + 1);
   1481       if (!MO.isReg())
   1482         continue;
   1483       unsigned STReg = MO.getReg() - X86::ST0;
   1484       if (STReg >= 8)
   1485         continue;
   1486 
   1487       switch (InlineAsm::getKind(Flags)) {
   1488       case InlineAsm::Kind_RegUse:
   1489         STUses |= (1u << STReg);
   1490         break;
   1491       case InlineAsm::Kind_RegDef:
   1492       case InlineAsm::Kind_RegDefEarlyClobber:
   1493         STDefs |= (1u << STReg);
   1494         if (MO.isDead())
   1495           STDeadDefs |= (1u << STReg);
   1496         break;
   1497       case InlineAsm::Kind_Clobber:
   1498         STClobbers |= (1u << STReg);
   1499         break;
   1500       default:
   1501         break;
   1502       }
   1503     }
   1504 
   1505     if (STUses && !isMask_32(STUses))
   1506       MI->emitError("fixed input regs must be last on the x87 stack");
   1507     unsigned NumSTUses = CountTrailingOnes_32(STUses);
   1508 
   1509     // Defs must be contiguous from the stack top. ST0-STn.
   1510     if (STDefs && !isMask_32(STDefs)) {
   1511       MI->emitError("output regs must be last on the x87 stack");
   1512       STDefs = NextPowerOf2(STDefs) - 1;
   1513     }
   1514     unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
   1515 
   1516     // So must the clobbered stack slots. ST0-STm, m >= n.
   1517     if (STClobbers && !isMask_32(STDefs | STClobbers))
   1518       MI->emitError("clobbers must be last on the x87 stack");
   1519 
   1520     // Popped inputs are the ones that are also clobbered or defined.
   1521     unsigned STPopped = STUses & (STDefs | STClobbers);
   1522     if (STPopped && !isMask_32(STPopped))
   1523       MI->emitError("implicitly popped regs must be last on the x87 stack");
   1524     unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
   1525 
   1526     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
   1527                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
   1528 
   1529     // Scan the instruction for FP uses corresponding to "f" constraints.
   1530     // Collect FP registers to kill afer the instruction.
   1531     // Always kill all the scratch regs.
   1532     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
   1533     unsigned FPUsed = 0;
   1534     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1535       MachineOperand &Op = MI->getOperand(i);
   1536       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1537         continue;
   1538       if (!Op.isUse())
   1539         MI->emitError("illegal \"f\" output constraint");
   1540       unsigned FPReg = getFPReg(Op);
   1541       FPUsed |= 1U << FPReg;
   1542 
   1543       // If we kill this operand, make sure to pop it from the stack after the
   1544       // asm.  We just remember it for now, and pop them all off at the end in
   1545       // a batch.
   1546       if (Op.isKill())
   1547         FPKills |= 1U << FPReg;
   1548     }
   1549 
   1550     // The popped inputs will be killed by the instruction, so duplicate them
   1551     // if the FP register needs to be live after the instruction, or if it is
   1552     // used in the instruction itself. We effectively treat the popped inputs
   1553     // as early clobbers.
   1554     for (unsigned i = 0; i < NumSTPopped; ++i) {
   1555       if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
   1556         continue;
   1557       unsigned SR = getScratchReg();
   1558       duplicateToTop(PendingST[i], SR, I);
   1559       DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
   1560                    << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
   1561       PendingST[i] = SR;
   1562     }
   1563 
   1564     // Make sure we have a unique live register for every fixed use. Some of
   1565     // them could be undef uses, and we need to emit LD_F0 instructions.
   1566     for (unsigned i = 0; i < NumSTUses; ++i) {
   1567       if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
   1568         // Check for shared assignments.
   1569         for (unsigned j = 0; j < i; ++j) {
   1570           if (PendingST[j] != PendingST[i])
   1571             continue;
   1572           // STi and STj are inn the same register, create a copy.
   1573           unsigned SR = getScratchReg();
   1574           duplicateToTop(PendingST[i], SR, I);
   1575           DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
   1576                        << unsigned(PendingST[i])
   1577                        << " to avoid collision with ST" << j << '\n');
   1578           PendingST[i] = SR;
   1579         }
   1580         continue;
   1581       }
   1582       unsigned SR = getScratchReg();
   1583       DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
   1584       BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1585       pushReg(SR);
   1586       PendingST[i] = SR;
   1587       if (NumPendingSTs == i)
   1588         ++NumPendingSTs;
   1589     }
   1590     assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
   1591 
   1592     // Now we can rearrange the live registers to match what was requested.
   1593     shuffleStackTop(PendingST, NumPendingSTs, I);
   1594     DEBUG({dbgs() << "Before asm: "; dumpStack();});
   1595 
   1596     // With the stack layout fixed, rewrite the FP registers.
   1597     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1598       MachineOperand &Op = MI->getOperand(i);
   1599       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1600         continue;
   1601       unsigned FPReg = getFPReg(Op);
   1602       Op.setReg(getSTReg(FPReg));
   1603     }
   1604 
   1605     // Simulate the inline asm popping its inputs and pushing its outputs.
   1606     StackTop -= NumSTPopped;
   1607 
   1608     // Hold the fixed output registers in scratch FP registers. They will be
   1609     // transferred to real FP registers by copies.
   1610     NumPendingSTs = 0;
   1611     for (unsigned i = 0; i < NumSTDefs; ++i) {
   1612       unsigned SR = getScratchReg();
   1613       pushReg(SR);
   1614       FPKills &= ~(1u << SR);
   1615     }
   1616     for (unsigned i = 0; i < NumSTDefs; ++i)
   1617       PendingST[NumPendingSTs++] = getStackEntry(i);
   1618     DEBUG({dbgs() << "After asm: "; dumpStack();});
   1619 
   1620     // If any of the ST defs were dead, pop them immediately. Our caller only
   1621     // handles dead FP defs.
   1622     MachineBasicBlock::iterator InsertPt = MI;
   1623     for (unsigned i = 0; STDefs & (1u << i); ++i) {
   1624       if (!(STDeadDefs & (1u << i)))
   1625         continue;
   1626       freeStackSlotAfter(InsertPt, PendingST[i]);
   1627       PendingST[i] = NumFPRegs;
   1628     }
   1629     while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
   1630       --NumPendingSTs;
   1631 
   1632     // If this asm kills any FP registers (is the last use of them) we must
   1633     // explicitly emit pop instructions for them.  Do this now after the asm has
   1634     // executed so that the ST(x) numbers are not off (which would happen if we
   1635     // did this inline with operand rewriting).
   1636     //
   1637     // Note: this might be a non-optimal pop sequence.  We might be able to do
   1638     // better by trying to pop in stack order or something.
   1639     while (FPKills) {
   1640       unsigned FPReg = countTrailingZeros(FPKills);
   1641       if (isLive(FPReg))
   1642         freeStackSlotAfter(InsertPt, FPReg);
   1643       FPKills &= ~(1U << FPReg);
   1644     }
   1645     // Don't delete the inline asm!
   1646     return;
   1647   }
   1648 
   1649   case X86::WIN_FTOL_32:
   1650   case X86::WIN_FTOL_64: {
   1651     // Push the operand into ST0.
   1652     MachineOperand &Op = MI->getOperand(0);
   1653     assert(Op.isUse() && Op.isReg() &&
   1654       Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
   1655     unsigned FPReg = getFPReg(Op);
   1656     if (Op.isKill())
   1657       moveToTop(FPReg, I);
   1658     else
   1659       duplicateToTop(FPReg, FPReg, I);
   1660 
   1661     // Emit the call. This will pop the operand.
   1662     BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
   1663       .addExternalSymbol("_ftol2")
   1664       .addReg(X86::ST0, RegState::ImplicitKill)
   1665       .addReg(X86::ECX, RegState::ImplicitDefine)
   1666       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
   1667       .addReg(X86::EDX, RegState::Define | RegState::Implicit)
   1668       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   1669     --StackTop;
   1670 
   1671     break;
   1672   }
   1673 
   1674   case X86::RET:
   1675   case X86::RETI:
   1676     // If RET has an FP register use operand, pass the first one in ST(0) and
   1677     // the second one in ST(1).
   1678 
   1679     // Find the register operands.
   1680     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
   1681     unsigned LiveMask = 0;
   1682 
   1683     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1684       MachineOperand &Op = MI->getOperand(i);
   1685       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1686         continue;
   1687       // FP Register uses must be kills unless there are two uses of the same
   1688       // register, in which case only one will be a kill.
   1689       assert(Op.isUse() &&
   1690              (Op.isKill() ||                        // Marked kill.
   1691               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
   1692               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
   1693              "Ret only defs operands, and values aren't live beyond it");
   1694 
   1695       if (FirstFPRegOp == ~0U)
   1696         FirstFPRegOp = getFPReg(Op);
   1697       else {
   1698         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
   1699         SecondFPRegOp = getFPReg(Op);
   1700       }
   1701       LiveMask |= (1 << getFPReg(Op));
   1702 
   1703       // Remove the operand so that later passes don't see it.
   1704       MI->RemoveOperand(i);
   1705       --i, --e;
   1706     }
   1707 
   1708     // We may have been carrying spurious live-ins, so make sure only the returned
   1709     // registers are left live.
   1710     adjustLiveRegs(LiveMask, MI);
   1711     if (!LiveMask) return;  // Quick check to see if any are possible.
   1712 
   1713     // There are only four possibilities here:
   1714     // 1) we are returning a single FP value.  In this case, it has to be in
   1715     //    ST(0) already, so just declare success by removing the value from the
   1716     //    FP Stack.
   1717     if (SecondFPRegOp == ~0U) {
   1718       // Assert that the top of stack contains the right FP register.
   1719       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
   1720              "Top of stack not the right register for RET!");
   1721 
   1722       // Ok, everything is good, mark the value as not being on the stack
   1723       // anymore so that our assertion about the stack being empty at end of
   1724       // block doesn't fire.
   1725       StackTop = 0;
   1726       return;
   1727     }
   1728 
   1729     // Otherwise, we are returning two values:
   1730     // 2) If returning the same value for both, we only have one thing in the FP
   1731     //    stack.  Consider:  RET FP1, FP1
   1732     if (StackTop == 1) {
   1733       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
   1734              "Stack misconfiguration for RET!");
   1735 
   1736       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
   1737       // register to hold it.
   1738       unsigned NewReg = getScratchReg();
   1739       duplicateToTop(FirstFPRegOp, NewReg, MI);
   1740       FirstFPRegOp = NewReg;
   1741     }
   1742 
   1743     /// Okay we know we have two different FPx operands now:
   1744     assert(StackTop == 2 && "Must have two values live!");
   1745 
   1746     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
   1747     ///    in ST(1).  In this case, emit an fxch.
   1748     if (getStackEntry(0) == SecondFPRegOp) {
   1749       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
   1750       moveToTop(FirstFPRegOp, MI);
   1751     }
   1752 
   1753     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
   1754     /// ST(1).  Just remove both from our understanding of the stack and return.
   1755     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
   1756     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
   1757     StackTop = 0;
   1758     return;
   1759   }
   1760 
   1761   I = MBB->erase(I);  // Remove the pseudo instruction
   1762 
   1763   // We want to leave I pointing to the previous instruction, but what if we
   1764   // just erased the first instruction?
   1765   if (I == MBB->begin()) {
   1766     DEBUG(dbgs() << "Inserting dummy KILL\n");
   1767     I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
   1768   } else
   1769     --I;
   1770 }
   1771