Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements instcombine for ExtractElement, InsertElement and
     11 // ShuffleVector.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstCombine.h"
     16 #include "llvm/Support/PatternMatch.h"
     17 using namespace llvm;
     18 using namespace PatternMatch;
     19 
     20 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
     21 /// is to leave as a vector operation.  isConstant indicates whether we're
     22 /// extracting one known element.  If false we're extracting a variable index.
     23 static bool CheapToScalarize(Value *V, bool isConstant) {
     24   if (Constant *C = dyn_cast<Constant>(V)) {
     25     if (isConstant) return true;
     26 
     27     // If all elts are the same, we can extract it and use any of the values.
     28     Constant *Op0 = C->getAggregateElement(0U);
     29     for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
     30       if (C->getAggregateElement(i) != Op0)
     31         return false;
     32     return true;
     33   }
     34   Instruction *I = dyn_cast<Instruction>(V);
     35   if (!I) return false;
     36 
     37   // Insert element gets simplified to the inserted element or is deleted if
     38   // this is constant idx extract element and its a constant idx insertelt.
     39   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
     40       isa<ConstantInt>(I->getOperand(2)))
     41     return true;
     42   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
     43     return true;
     44   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
     45     if (BO->hasOneUse() &&
     46         (CheapToScalarize(BO->getOperand(0), isConstant) ||
     47          CheapToScalarize(BO->getOperand(1), isConstant)))
     48       return true;
     49   if (CmpInst *CI = dyn_cast<CmpInst>(I))
     50     if (CI->hasOneUse() &&
     51         (CheapToScalarize(CI->getOperand(0), isConstant) ||
     52          CheapToScalarize(CI->getOperand(1), isConstant)))
     53       return true;
     54 
     55   return false;
     56 }
     57 
     58 /// FindScalarElement - Given a vector and an element number, see if the scalar
     59 /// value is already around as a register, for example if it were inserted then
     60 /// extracted from the vector.
     61 static Value *FindScalarElement(Value *V, unsigned EltNo) {
     62   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
     63   VectorType *VTy = cast<VectorType>(V->getType());
     64   unsigned Width = VTy->getNumElements();
     65   if (EltNo >= Width)  // Out of range access.
     66     return UndefValue::get(VTy->getElementType());
     67 
     68   if (Constant *C = dyn_cast<Constant>(V))
     69     return C->getAggregateElement(EltNo);
     70 
     71   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
     72     // If this is an insert to a variable element, we don't know what it is.
     73     if (!isa<ConstantInt>(III->getOperand(2)))
     74       return 0;
     75     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
     76 
     77     // If this is an insert to the element we are looking for, return the
     78     // inserted value.
     79     if (EltNo == IIElt)
     80       return III->getOperand(1);
     81 
     82     // Otherwise, the insertelement doesn't modify the value, recurse on its
     83     // vector input.
     84     return FindScalarElement(III->getOperand(0), EltNo);
     85   }
     86 
     87   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
     88     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
     89     int InEl = SVI->getMaskValue(EltNo);
     90     if (InEl < 0)
     91       return UndefValue::get(VTy->getElementType());
     92     if (InEl < (int)LHSWidth)
     93       return FindScalarElement(SVI->getOperand(0), InEl);
     94     return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
     95   }
     96 
     97   // Extract a value from a vector add operation with a constant zero.
     98   Value *Val = 0; Constant *Con = 0;
     99   if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
    100     if (Con->getAggregateElement(EltNo)->isNullValue())
    101       return FindScalarElement(Val, EltNo);
    102   }
    103 
    104   // Otherwise, we don't know.
    105   return 0;
    106 }
    107 
    108 // If we have a PHI node with a vector type that has only 2 uses: feed
    109 // itself and be an operand of extractelemnt at a constant location,
    110 // try to replace the PHI of the vector type with a PHI of a scalar type
    111 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
    112   // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
    113   if (!PN->hasNUses(2))
    114     return NULL;
    115 
    116   // If so, it's known at this point that one operand is PHI and the other is
    117   // an extractelement node. Find the PHI user that is not the extractelement
    118   // node.
    119   Value::use_iterator iu = PN->use_begin();
    120   Instruction *PHIUser = dyn_cast<Instruction>(*iu);
    121   if (PHIUser == cast<Instruction>(&EI))
    122     PHIUser = cast<Instruction>(*(++iu));
    123 
    124   // Verify that this PHI user has one use, which is the PHI itself,
    125   // and that it is a binary operation which is cheap to scalarize.
    126   // otherwise return NULL.
    127   if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) ||
    128       !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
    129     return NULL;
    130 
    131   // Create a scalar PHI node that will replace the vector PHI node
    132   // just before the current PHI node.
    133   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
    134       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
    135   // Scalarize each PHI operand.
    136   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
    137     Value *PHIInVal = PN->getIncomingValue(i);
    138     BasicBlock *inBB = PN->getIncomingBlock(i);
    139     Value *Elt = EI.getIndexOperand();
    140     // If the operand is the PHI induction variable:
    141     if (PHIInVal == PHIUser) {
    142       // Scalarize the binary operation. Its first operand is the
    143       // scalar PHI and the second operand is extracted from the other
    144       // vector operand.
    145       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
    146       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
    147       Value *Op = InsertNewInstWith(
    148           ExtractElementInst::Create(B0->getOperand(opId), Elt,
    149                                      B0->getOperand(opId)->getName() + ".Elt"),
    150           *B0);
    151       Value *newPHIUser = InsertNewInstWith(
    152           BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
    153       scalarPHI->addIncoming(newPHIUser, inBB);
    154     } else {
    155       // Scalarize PHI input:
    156       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
    157       // Insert the new instruction into the predecessor basic block.
    158       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
    159       BasicBlock::iterator InsertPos;
    160       if (pos && !isa<PHINode>(pos)) {
    161         InsertPos = pos;
    162         ++InsertPos;
    163       } else {
    164         InsertPos = inBB->getFirstInsertionPt();
    165       }
    166 
    167       InsertNewInstWith(newEI, *InsertPos);
    168 
    169       scalarPHI->addIncoming(newEI, inBB);
    170     }
    171   }
    172   return ReplaceInstUsesWith(EI, scalarPHI);
    173 }
    174 
    175 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
    176   // If vector val is constant with all elements the same, replace EI with
    177   // that element.  We handle a known element # below.
    178   if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
    179     if (CheapToScalarize(C, false))
    180       return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
    181 
    182   // If extracting a specified index from the vector, see if we can recursively
    183   // find a previously computed scalar that was inserted into the vector.
    184   if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
    185     unsigned IndexVal = IdxC->getZExtValue();
    186     unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
    187 
    188     // If this is extracting an invalid index, turn this into undef, to avoid
    189     // crashing the code below.
    190     if (IndexVal >= VectorWidth)
    191       return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
    192 
    193     // This instruction only demands the single element from the input vector.
    194     // If the input vector has a single use, simplify it based on this use
    195     // property.
    196     if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
    197       APInt UndefElts(VectorWidth, 0);
    198       APInt DemandedMask(VectorWidth, 0);
    199       DemandedMask.setBit(IndexVal);
    200       if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
    201                                                 DemandedMask, UndefElts)) {
    202         EI.setOperand(0, V);
    203         return &EI;
    204       }
    205     }
    206 
    207     if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
    208       return ReplaceInstUsesWith(EI, Elt);
    209 
    210     // If the this extractelement is directly using a bitcast from a vector of
    211     // the same number of elements, see if we can find the source element from
    212     // it.  In this case, we will end up needing to bitcast the scalars.
    213     if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
    214       if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
    215         if (VT->getNumElements() == VectorWidth)
    216           if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
    217             return new BitCastInst(Elt, EI.getType());
    218     }
    219 
    220     // If there's a vector PHI feeding a scalar use through this extractelement
    221     // instruction, try to scalarize the PHI.
    222     if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
    223       Instruction *scalarPHI = scalarizePHI(EI, PN);
    224       if (scalarPHI)
    225         return scalarPHI;
    226     }
    227   }
    228 
    229   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
    230     // Push extractelement into predecessor operation if legal and
    231     // profitable to do so
    232     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    233       if (I->hasOneUse() &&
    234           CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
    235         Value *newEI0 =
    236           Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
    237                                         EI.getName()+".lhs");
    238         Value *newEI1 =
    239           Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
    240                                         EI.getName()+".rhs");
    241         return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
    242       }
    243     } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
    244       // Extracting the inserted element?
    245       if (IE->getOperand(2) == EI.getOperand(1))
    246         return ReplaceInstUsesWith(EI, IE->getOperand(1));
    247       // If the inserted and extracted elements are constants, they must not
    248       // be the same value, extract from the pre-inserted value instead.
    249       if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
    250         Worklist.AddValue(EI.getOperand(0));
    251         EI.setOperand(0, IE->getOperand(0));
    252         return &EI;
    253       }
    254     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
    255       // If this is extracting an element from a shufflevector, figure out where
    256       // it came from and extract from the appropriate input element instead.
    257       if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
    258         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
    259         Value *Src;
    260         unsigned LHSWidth =
    261           SVI->getOperand(0)->getType()->getVectorNumElements();
    262 
    263         if (SrcIdx < 0)
    264           return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
    265         if (SrcIdx < (int)LHSWidth)
    266           Src = SVI->getOperand(0);
    267         else {
    268           SrcIdx -= LHSWidth;
    269           Src = SVI->getOperand(1);
    270         }
    271         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
    272         return ExtractElementInst::Create(Src,
    273                                           ConstantInt::get(Int32Ty,
    274                                                            SrcIdx, false));
    275       }
    276     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
    277       // Canonicalize extractelement(cast) -> cast(extractelement)
    278       // bitcasts can change the number of vector elements and they cost nothing
    279       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
    280         Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
    281                                                   EI.getIndexOperand());
    282         Worklist.AddValue(EE);
    283         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
    284       }
    285     }
    286   }
    287   return 0;
    288 }
    289 
    290 /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
    291 /// elements from either LHS or RHS, return the shuffle mask and true.
    292 /// Otherwise, return false.
    293 static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
    294                                          SmallVectorImpl<Constant*> &Mask) {
    295   assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
    296          "Invalid CollectSingleShuffleElements");
    297   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
    298 
    299   if (isa<UndefValue>(V)) {
    300     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    301     return true;
    302   }
    303 
    304   if (V == LHS) {
    305     for (unsigned i = 0; i != NumElts; ++i)
    306       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
    307     return true;
    308   }
    309 
    310   if (V == RHS) {
    311     for (unsigned i = 0; i != NumElts; ++i)
    312       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
    313                                       i+NumElts));
    314     return true;
    315   }
    316 
    317   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    318     // If this is an insert of an extract from some other vector, include it.
    319     Value *VecOp    = IEI->getOperand(0);
    320     Value *ScalarOp = IEI->getOperand(1);
    321     Value *IdxOp    = IEI->getOperand(2);
    322 
    323     if (!isa<ConstantInt>(IdxOp))
    324       return false;
    325     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
    326 
    327     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
    328       // Okay, we can handle this if the vector we are insertinting into is
    329       // transitively ok.
    330       if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
    331         // If so, update the mask to reflect the inserted undef.
    332         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
    333         return true;
    334       }
    335     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
    336       if (isa<ConstantInt>(EI->getOperand(1)) &&
    337           EI->getOperand(0)->getType() == V->getType()) {
    338         unsigned ExtractedIdx =
    339         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
    340 
    341         // This must be extracting from either LHS or RHS.
    342         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
    343           // Okay, we can handle this if the vector we are insertinting into is
    344           // transitively ok.
    345           if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
    346             // If so, update the mask to reflect the inserted value.
    347             if (EI->getOperand(0) == LHS) {
    348               Mask[InsertedIdx % NumElts] =
    349               ConstantInt::get(Type::getInt32Ty(V->getContext()),
    350                                ExtractedIdx);
    351             } else {
    352               assert(EI->getOperand(0) == RHS);
    353               Mask[InsertedIdx % NumElts] =
    354               ConstantInt::get(Type::getInt32Ty(V->getContext()),
    355                                ExtractedIdx+NumElts);
    356             }
    357             return true;
    358           }
    359         }
    360       }
    361     }
    362   }
    363   // TODO: Handle shufflevector here!
    364 
    365   return false;
    366 }
    367 
    368 /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
    369 /// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
    370 /// that computes V and the LHS value of the shuffle.
    371 static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
    372                                      Value *&RHS) {
    373   assert(V->getType()->isVectorTy() &&
    374          (RHS == 0 || V->getType() == RHS->getType()) &&
    375          "Invalid shuffle!");
    376   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
    377 
    378   if (isa<UndefValue>(V)) {
    379     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    380     return V;
    381   }
    382 
    383   if (isa<ConstantAggregateZero>(V)) {
    384     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
    385     return V;
    386   }
    387 
    388   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    389     // If this is an insert of an extract from some other vector, include it.
    390     Value *VecOp    = IEI->getOperand(0);
    391     Value *ScalarOp = IEI->getOperand(1);
    392     Value *IdxOp    = IEI->getOperand(2);
    393 
    394     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
    395       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
    396           EI->getOperand(0)->getType() == V->getType()) {
    397         unsigned ExtractedIdx =
    398           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
    399         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
    400 
    401         // Either the extracted from or inserted into vector must be RHSVec,
    402         // otherwise we'd end up with a shuffle of three inputs.
    403         if (EI->getOperand(0) == RHS || RHS == 0) {
    404           RHS = EI->getOperand(0);
    405           Value *V = CollectShuffleElements(VecOp, Mask, RHS);
    406           Mask[InsertedIdx % NumElts] =
    407             ConstantInt::get(Type::getInt32Ty(V->getContext()),
    408                              NumElts+ExtractedIdx);
    409           return V;
    410         }
    411 
    412         if (VecOp == RHS) {
    413           Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
    414           // Update Mask to reflect that `ScalarOp' has been inserted at
    415           // position `InsertedIdx' within the vector returned by IEI.
    416           Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx];
    417 
    418           // Everything but the extracted element is replaced with the RHS.
    419           for (unsigned i = 0; i != NumElts; ++i) {
    420             if (i != InsertedIdx)
    421               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
    422                                          NumElts+i);
    423           }
    424           return V;
    425         }
    426 
    427         // If this insertelement is a chain that comes from exactly these two
    428         // vectors, return the vector and the effective shuffle.
    429         if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
    430           return EI->getOperand(0);
    431       }
    432     }
    433   }
    434   // TODO: Handle shufflevector here!
    435 
    436   // Otherwise, can't do anything fancy.  Return an identity vector.
    437   for (unsigned i = 0; i != NumElts; ++i)
    438     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
    439   return V;
    440 }
    441 
    442 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
    443   Value *VecOp    = IE.getOperand(0);
    444   Value *ScalarOp = IE.getOperand(1);
    445   Value *IdxOp    = IE.getOperand(2);
    446 
    447   // Inserting an undef or into an undefined place, remove this.
    448   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
    449     ReplaceInstUsesWith(IE, VecOp);
    450 
    451   // If the inserted element was extracted from some other vector, and if the
    452   // indexes are constant, try to turn this into a shufflevector operation.
    453   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
    454     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
    455         EI->getOperand(0)->getType() == IE.getType()) {
    456       unsigned NumVectorElts = IE.getType()->getNumElements();
    457       unsigned ExtractedIdx =
    458         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
    459       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
    460 
    461       if (ExtractedIdx >= NumVectorElts) // Out of range extract.
    462         return ReplaceInstUsesWith(IE, VecOp);
    463 
    464       if (InsertedIdx >= NumVectorElts)  // Out of range insert.
    465         return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
    466 
    467       // If we are extracting a value from a vector, then inserting it right
    468       // back into the same place, just use the input vector.
    469       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
    470         return ReplaceInstUsesWith(IE, VecOp);
    471 
    472       // If this insertelement isn't used by some other insertelement, turn it
    473       // (and any insertelements it points to), into one big shuffle.
    474       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
    475         SmallVector<Constant*, 16> Mask;
    476         Value *RHS = 0;
    477         Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
    478         if (RHS == 0) RHS = UndefValue::get(LHS->getType());
    479         // We now have a shuffle of LHS, RHS, Mask.
    480         return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
    481       }
    482     }
    483   }
    484 
    485   unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
    486   APInt UndefElts(VWidth, 0);
    487   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
    488   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
    489     if (V != &IE)
    490       return ReplaceInstUsesWith(IE, V);
    491     return &IE;
    492   }
    493 
    494   return 0;
    495 }
    496 
    497 /// Return true if we can evaluate the specified expression tree if the vector
    498 /// elements were shuffled in a different order.
    499 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
    500                                 unsigned Depth = 5) {
    501   // We can always reorder the elements of a constant.
    502   if (isa<Constant>(V))
    503     return true;
    504 
    505   // We won't reorder vector arguments. No IPO here.
    506   Instruction *I = dyn_cast<Instruction>(V);
    507   if (!I) return false;
    508 
    509   // Two users may expect different orders of the elements. Don't try it.
    510   if (!I->hasOneUse())
    511     return false;
    512 
    513   if (Depth == 0) return false;
    514 
    515   switch (I->getOpcode()) {
    516     case Instruction::Add:
    517     case Instruction::FAdd:
    518     case Instruction::Sub:
    519     case Instruction::FSub:
    520     case Instruction::Mul:
    521     case Instruction::FMul:
    522     case Instruction::UDiv:
    523     case Instruction::SDiv:
    524     case Instruction::FDiv:
    525     case Instruction::URem:
    526     case Instruction::SRem:
    527     case Instruction::FRem:
    528     case Instruction::Shl:
    529     case Instruction::LShr:
    530     case Instruction::AShr:
    531     case Instruction::And:
    532     case Instruction::Or:
    533     case Instruction::Xor:
    534     case Instruction::ICmp:
    535     case Instruction::FCmp:
    536     case Instruction::Trunc:
    537     case Instruction::ZExt:
    538     case Instruction::SExt:
    539     case Instruction::FPToUI:
    540     case Instruction::FPToSI:
    541     case Instruction::UIToFP:
    542     case Instruction::SIToFP:
    543     case Instruction::FPTrunc:
    544     case Instruction::FPExt:
    545     case Instruction::GetElementPtr: {
    546       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
    547         if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
    548           return false;
    549       }
    550       return true;
    551     }
    552     case Instruction::InsertElement: {
    553       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
    554       if (!CI) return false;
    555       int ElementNumber = CI->getLimitedValue();
    556 
    557       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
    558       // can't put an element into multiple indices.
    559       bool SeenOnce = false;
    560       for (int i = 0, e = Mask.size(); i != e; ++i) {
    561         if (Mask[i] == ElementNumber) {
    562           if (SeenOnce)
    563             return false;
    564           SeenOnce = true;
    565         }
    566       }
    567       return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
    568     }
    569   }
    570   return false;
    571 }
    572 
    573 /// Rebuild a new instruction just like 'I' but with the new operands given.
    574 /// In the event of type mismatch, the type of the operands is correct.
    575 static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
    576   // We don't want to use the IRBuilder here because we want the replacement
    577   // instructions to appear next to 'I', not the builder's insertion point.
    578   switch (I->getOpcode()) {
    579     case Instruction::Add:
    580     case Instruction::FAdd:
    581     case Instruction::Sub:
    582     case Instruction::FSub:
    583     case Instruction::Mul:
    584     case Instruction::FMul:
    585     case Instruction::UDiv:
    586     case Instruction::SDiv:
    587     case Instruction::FDiv:
    588     case Instruction::URem:
    589     case Instruction::SRem:
    590     case Instruction::FRem:
    591     case Instruction::Shl:
    592     case Instruction::LShr:
    593     case Instruction::AShr:
    594     case Instruction::And:
    595     case Instruction::Or:
    596     case Instruction::Xor: {
    597       BinaryOperator *BO = cast<BinaryOperator>(I);
    598       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
    599       BinaryOperator *New =
    600           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
    601                                  NewOps[0], NewOps[1], "", BO);
    602       if (isa<OverflowingBinaryOperator>(BO)) {
    603         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
    604         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
    605       }
    606       if (isa<PossiblyExactOperator>(BO)) {
    607         New->setIsExact(BO->isExact());
    608       }
    609       return New;
    610     }
    611     case Instruction::ICmp:
    612       assert(NewOps.size() == 2 && "icmp with #ops != 2");
    613       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
    614                           NewOps[0], NewOps[1]);
    615     case Instruction::FCmp:
    616       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
    617       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
    618                           NewOps[0], NewOps[1]);
    619     case Instruction::Trunc:
    620     case Instruction::ZExt:
    621     case Instruction::SExt:
    622     case Instruction::FPToUI:
    623     case Instruction::FPToSI:
    624     case Instruction::UIToFP:
    625     case Instruction::SIToFP:
    626     case Instruction::FPTrunc:
    627     case Instruction::FPExt: {
    628       // It's possible that the mask has a different number of elements from
    629       // the original cast. We recompute the destination type to match the mask.
    630       Type *DestTy =
    631           VectorType::get(I->getType()->getScalarType(),
    632                           NewOps[0]->getType()->getVectorNumElements());
    633       assert(NewOps.size() == 1 && "cast with #ops != 1");
    634       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
    635                               "", I);
    636     }
    637     case Instruction::GetElementPtr: {
    638       Value *Ptr = NewOps[0];
    639       ArrayRef<Value*> Idx = NewOps.slice(1);
    640       GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
    641       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
    642       return GEP;
    643     }
    644   }
    645   llvm_unreachable("failed to rebuild vector instructions");
    646 }
    647 
    648 Value *
    649 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
    650   // Mask.size() does not need to be equal to the number of vector elements.
    651 
    652   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
    653   if (isa<UndefValue>(V)) {
    654     return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
    655                                            Mask.size()));
    656   }
    657   if (isa<ConstantAggregateZero>(V)) {
    658     return ConstantAggregateZero::get(
    659                VectorType::get(V->getType()->getScalarType(),
    660                                Mask.size()));
    661   }
    662   if (Constant *C = dyn_cast<Constant>(V)) {
    663     SmallVector<Constant *, 16> MaskValues;
    664     for (int i = 0, e = Mask.size(); i != e; ++i) {
    665       if (Mask[i] == -1)
    666         MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
    667       else
    668         MaskValues.push_back(Builder->getInt32(Mask[i]));
    669     }
    670     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
    671                                           ConstantVector::get(MaskValues));
    672   }
    673 
    674   Instruction *I = cast<Instruction>(V);
    675   switch (I->getOpcode()) {
    676     case Instruction::Add:
    677     case Instruction::FAdd:
    678     case Instruction::Sub:
    679     case Instruction::FSub:
    680     case Instruction::Mul:
    681     case Instruction::FMul:
    682     case Instruction::UDiv:
    683     case Instruction::SDiv:
    684     case Instruction::FDiv:
    685     case Instruction::URem:
    686     case Instruction::SRem:
    687     case Instruction::FRem:
    688     case Instruction::Shl:
    689     case Instruction::LShr:
    690     case Instruction::AShr:
    691     case Instruction::And:
    692     case Instruction::Or:
    693     case Instruction::Xor:
    694     case Instruction::ICmp:
    695     case Instruction::FCmp:
    696     case Instruction::Trunc:
    697     case Instruction::ZExt:
    698     case Instruction::SExt:
    699     case Instruction::FPToUI:
    700     case Instruction::FPToSI:
    701     case Instruction::UIToFP:
    702     case Instruction::SIToFP:
    703     case Instruction::FPTrunc:
    704     case Instruction::FPExt:
    705     case Instruction::Select:
    706     case Instruction::GetElementPtr: {
    707       SmallVector<Value*, 8> NewOps;
    708       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
    709       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
    710         Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
    711         NewOps.push_back(V);
    712         NeedsRebuild |= (V != I->getOperand(i));
    713       }
    714       if (NeedsRebuild) {
    715         return BuildNew(I, NewOps);
    716       }
    717       return I;
    718     }
    719     case Instruction::InsertElement: {
    720       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
    721 
    722       // The insertelement was inserting at Element. Figure out which element
    723       // that becomes after shuffling. The answer is guaranteed to be unique
    724       // by CanEvaluateShuffled.
    725       bool Found = false;
    726       int Index = 0;
    727       for (int e = Mask.size(); Index != e; ++Index) {
    728         if (Mask[Index] == Element) {
    729           Found = true;
    730           break;
    731         }
    732       }
    733 
    734       if (!Found)
    735         return UndefValue::get(
    736             VectorType::get(V->getType()->getScalarType(), Mask.size()));
    737 
    738       Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
    739       return InsertElementInst::Create(V, I->getOperand(1),
    740                                        Builder->getInt32(Index), "", I);
    741     }
    742   }
    743   llvm_unreachable("failed to reorder elements of vector instruction!");
    744 }
    745 
    746 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
    747   Value *LHS = SVI.getOperand(0);
    748   Value *RHS = SVI.getOperand(1);
    749   SmallVector<int, 16> Mask = SVI.getShuffleMask();
    750 
    751   bool MadeChange = false;
    752 
    753   // Undefined shuffle mask -> undefined value.
    754   if (isa<UndefValue>(SVI.getOperand(2)))
    755     return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
    756 
    757   unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
    758 
    759   APInt UndefElts(VWidth, 0);
    760   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
    761   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
    762     if (V != &SVI)
    763       return ReplaceInstUsesWith(SVI, V);
    764     LHS = SVI.getOperand(0);
    765     RHS = SVI.getOperand(1);
    766     MadeChange = true;
    767   }
    768 
    769   unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
    770 
    771   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
    772   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
    773   if (LHS == RHS || isa<UndefValue>(LHS)) {
    774     if (isa<UndefValue>(LHS) && LHS == RHS) {
    775       // shuffle(undef,undef,mask) -> undef.
    776       Value *Result = (VWidth == LHSWidth)
    777                       ? LHS : UndefValue::get(SVI.getType());
    778       return ReplaceInstUsesWith(SVI, Result);
    779     }
    780 
    781     // Remap any references to RHS to use LHS.
    782     SmallVector<Constant*, 16> Elts;
    783     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
    784       if (Mask[i] < 0) {
    785         Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
    786         continue;
    787       }
    788 
    789       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
    790           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
    791         Mask[i] = -1;     // Turn into undef.
    792         Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
    793       } else {
    794         Mask[i] = Mask[i] % e;  // Force to LHS.
    795         Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
    796                                         Mask[i]));
    797       }
    798     }
    799     SVI.setOperand(0, SVI.getOperand(1));
    800     SVI.setOperand(1, UndefValue::get(RHS->getType()));
    801     SVI.setOperand(2, ConstantVector::get(Elts));
    802     LHS = SVI.getOperand(0);
    803     RHS = SVI.getOperand(1);
    804     MadeChange = true;
    805   }
    806 
    807   if (VWidth == LHSWidth) {
    808     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
    809     bool isLHSID = true, isRHSID = true;
    810 
    811     for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    812       if (Mask[i] < 0) continue;  // Ignore undef values.
    813       // Is this an identity shuffle of the LHS value?
    814       isLHSID &= (Mask[i] == (int)i);
    815 
    816       // Is this an identity shuffle of the RHS value?
    817       isRHSID &= (Mask[i]-e == i);
    818     }
    819 
    820     // Eliminate identity shuffles.
    821     if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
    822     if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
    823   }
    824 
    825   if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
    826     Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
    827     return ReplaceInstUsesWith(SVI, V);
    828   }
    829 
    830   // If the LHS is a shufflevector itself, see if we can combine it with this
    831   // one without producing an unusual shuffle.
    832   // Cases that might be simplified:
    833   // 1.
    834   // x1=shuffle(v1,v2,mask1)
    835   //  x=shuffle(x1,undef,mask)
    836   //        ==>
    837   //  x=shuffle(v1,undef,newMask)
    838   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
    839   // 2.
    840   // x1=shuffle(v1,undef,mask1)
    841   //  x=shuffle(x1,x2,mask)
    842   // where v1.size() == mask1.size()
    843   //        ==>
    844   //  x=shuffle(v1,x2,newMask)
    845   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
    846   // 3.
    847   // x2=shuffle(v2,undef,mask2)
    848   //  x=shuffle(x1,x2,mask)
    849   // where v2.size() == mask2.size()
    850   //        ==>
    851   //  x=shuffle(x1,v2,newMask)
    852   // newMask[i] = (mask[i] < x1.size())
    853   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
    854   // 4.
    855   // x1=shuffle(v1,undef,mask1)
    856   // x2=shuffle(v2,undef,mask2)
    857   //  x=shuffle(x1,x2,mask)
    858   // where v1.size() == v2.size()
    859   //        ==>
    860   //  x=shuffle(v1,v2,newMask)
    861   // newMask[i] = (mask[i] < x1.size())
    862   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
    863   //
    864   // Here we are really conservative:
    865   // we are absolutely afraid of producing a shuffle mask not in the input
    866   // program, because the code gen may not be smart enough to turn a merged
    867   // shuffle into two specific shuffles: it may produce worse code.  As such,
    868   // we only merge two shuffles if the result is either a splat or one of the
    869   // input shuffle masks.  In this case, merging the shuffles just removes
    870   // one instruction, which we know is safe.  This is good for things like
    871   // turning: (splat(splat)) -> splat, or
    872   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
    873   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
    874   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
    875   if (LHSShuffle)
    876     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
    877       LHSShuffle = NULL;
    878   if (RHSShuffle)
    879     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
    880       RHSShuffle = NULL;
    881   if (!LHSShuffle && !RHSShuffle)
    882     return MadeChange ? &SVI : 0;
    883 
    884   Value* LHSOp0 = NULL;
    885   Value* LHSOp1 = NULL;
    886   Value* RHSOp0 = NULL;
    887   unsigned LHSOp0Width = 0;
    888   unsigned RHSOp0Width = 0;
    889   if (LHSShuffle) {
    890     LHSOp0 = LHSShuffle->getOperand(0);
    891     LHSOp1 = LHSShuffle->getOperand(1);
    892     LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
    893   }
    894   if (RHSShuffle) {
    895     RHSOp0 = RHSShuffle->getOperand(0);
    896     RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
    897   }
    898   Value* newLHS = LHS;
    899   Value* newRHS = RHS;
    900   if (LHSShuffle) {
    901     // case 1
    902     if (isa<UndefValue>(RHS)) {
    903       newLHS = LHSOp0;
    904       newRHS = LHSOp1;
    905     }
    906     // case 2 or 4
    907     else if (LHSOp0Width == LHSWidth) {
    908       newLHS = LHSOp0;
    909     }
    910   }
    911   // case 3 or 4
    912   if (RHSShuffle && RHSOp0Width == LHSWidth) {
    913     newRHS = RHSOp0;
    914   }
    915   // case 4
    916   if (LHSOp0 == RHSOp0) {
    917     newLHS = LHSOp0;
    918     newRHS = NULL;
    919   }
    920 
    921   if (newLHS == LHS && newRHS == RHS)
    922     return MadeChange ? &SVI : 0;
    923 
    924   SmallVector<int, 16> LHSMask;
    925   SmallVector<int, 16> RHSMask;
    926   if (newLHS != LHS)
    927     LHSMask = LHSShuffle->getShuffleMask();
    928   if (RHSShuffle && newRHS != RHS)
    929     RHSMask = RHSShuffle->getShuffleMask();
    930 
    931   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
    932   SmallVector<int, 16> newMask;
    933   bool isSplat = true;
    934   int SplatElt = -1;
    935   // Create a new mask for the new ShuffleVectorInst so that the new
    936   // ShuffleVectorInst is equivalent to the original one.
    937   for (unsigned i = 0; i < VWidth; ++i) {
    938     int eltMask;
    939     if (Mask[i] < 0) {
    940       // This element is an undef value.
    941       eltMask = -1;
    942     } else if (Mask[i] < (int)LHSWidth) {
    943       // This element is from left hand side vector operand.
    944       //
    945       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
    946       // new mask value for the element.
    947       if (newLHS != LHS) {
    948         eltMask = LHSMask[Mask[i]];
    949         // If the value selected is an undef value, explicitly specify it
    950         // with a -1 mask value.
    951         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
    952           eltMask = -1;
    953       } else
    954         eltMask = Mask[i];
    955     } else {
    956       // This element is from right hand side vector operand
    957       //
    958       // If the value selected is an undef value, explicitly specify it
    959       // with a -1 mask value. (case 1)
    960       if (isa<UndefValue>(RHS))
    961         eltMask = -1;
    962       // If RHS is going to be replaced (case 3 or 4), calculate the
    963       // new mask value for the element.
    964       else if (newRHS != RHS) {
    965         eltMask = RHSMask[Mask[i]-LHSWidth];
    966         // If the value selected is an undef value, explicitly specify it
    967         // with a -1 mask value.
    968         if (eltMask >= (int)RHSOp0Width) {
    969           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
    970                  && "should have been check above");
    971           eltMask = -1;
    972         }
    973       } else
    974         eltMask = Mask[i]-LHSWidth;
    975 
    976       // If LHS's width is changed, shift the mask value accordingly.
    977       // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
    978       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
    979       // If newRHS == newLHS, we want to remap any references from newRHS to
    980       // newLHS so that we can properly identify splats that may occur due to
    981       // obfuscation accross the two vectors.
    982       if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
    983         eltMask += newLHSWidth;
    984     }
    985 
    986     // Check if this could still be a splat.
    987     if (eltMask >= 0) {
    988       if (SplatElt >= 0 && SplatElt != eltMask)
    989         isSplat = false;
    990       SplatElt = eltMask;
    991     }
    992 
    993     newMask.push_back(eltMask);
    994   }
    995 
    996   // If the result mask is equal to one of the original shuffle masks,
    997   // or is a splat, do the replacement.
    998   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
    999     SmallVector<Constant*, 16> Elts;
   1000     Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
   1001     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
   1002       if (newMask[i] < 0) {
   1003         Elts.push_back(UndefValue::get(Int32Ty));
   1004       } else {
   1005         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
   1006       }
   1007     }
   1008     if (newRHS == NULL)
   1009       newRHS = UndefValue::get(newLHS->getType());
   1010     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
   1011   }
   1012 
   1013   return MadeChange ? &SVI : 0;
   1014 }
   1015