Home | History | Annotate | Download | only in Scalar
      1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file transforms calls of the current function (self recursion) followed
     11 // by a return instruction with a branch to the entry of the function, creating
     12 // a loop.  This pass also implements the following extensions to the basic
     13 // algorithm:
     14 //
     15 //  1. Trivial instructions between the call and return do not prevent the
     16 //     transformation from taking place, though currently the analysis cannot
     17 //     support moving any really useful instructions (only dead ones).
     18 //  2. This pass transforms functions that are prevented from being tail
     19 //     recursive by an associative and commutative expression to use an
     20 //     accumulator variable, thus compiling the typical naive factorial or
     21 //     'fib' implementation into efficient code.
     22 //  3. TRE is performed if the function returns void, if the return
     23 //     returns the result returned by the call, or if the function returns a
     24 //     run-time constant on all exits from the function.  It is possible, though
     25 //     unlikely, that the return returns something else (like constant 0), and
     26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
     27 //     the function return the exact same value.
     28 //  4. If it can prove that callees do not access their caller stack frame,
     29 //     they are marked as eligible for tail call elimination (by the code
     30 //     generator).
     31 //
     32 // There are several improvements that could be made:
     33 //
     34 //  1. If the function has any alloca instructions, these instructions will be
     35 //     moved out of the entry block of the function, causing them to be
     36 //     evaluated each time through the tail recursion.  Safely keeping allocas
     37 //     in the entry block requires analysis to proves that the tail-called
     38 //     function does not read or write the stack object.
     39 //  2. Tail recursion is only performed if the call immediately precedes the
     40 //     return instruction.  It's possible that there could be a jump between
     41 //     the call and the return.
     42 //  3. There can be intervening operations between the call and the return that
     43 //     prevent the TRE from occurring.  For example, there could be GEP's and
     44 //     stores to memory that will not be read or written by the call.  This
     45 //     requires some substantial analysis (such as with DSA) to prove safe to
     46 //     move ahead of the call, but doing so could allow many more TREs to be
     47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
     48 //  4. The algorithm we use to detect if callees access their caller stack
     49 //     frames is very primitive.
     50 //
     51 //===----------------------------------------------------------------------===//
     52 
     53 #define DEBUG_TYPE "tailcallelim"
     54 #include "llvm/Transforms/Scalar.h"
     55 #include "llvm/ADT/STLExtras.h"
     56 #include "llvm/ADT/SmallPtrSet.h"
     57 #include "llvm/ADT/Statistic.h"
     58 #include "llvm/Analysis/CaptureTracking.h"
     59 #include "llvm/Analysis/InlineCost.h"
     60 #include "llvm/Analysis/InstructionSimplify.h"
     61 #include "llvm/Analysis/Loads.h"
     62 #include "llvm/Analysis/TargetTransformInfo.h"
     63 #include "llvm/IR/Constants.h"
     64 #include "llvm/IR/DerivedTypes.h"
     65 #include "llvm/IR/Function.h"
     66 #include "llvm/IR/Instructions.h"
     67 #include "llvm/IR/IntrinsicInst.h"
     68 #include "llvm/IR/Module.h"
     69 #include "llvm/Pass.h"
     70 #include "llvm/Support/CFG.h"
     71 #include "llvm/Support/CallSite.h"
     72 #include "llvm/Support/Debug.h"
     73 #include "llvm/Support/ValueHandle.h"
     74 #include "llvm/Support/raw_ostream.h"
     75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     76 #include "llvm/Transforms/Utils/Local.h"
     77 using namespace llvm;
     78 
     79 STATISTIC(NumEliminated, "Number of tail calls removed");
     80 STATISTIC(NumRetDuped,   "Number of return duplicated");
     81 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
     82 
     83 namespace {
     84   struct TailCallElim : public FunctionPass {
     85     const TargetTransformInfo *TTI;
     86 
     87     static char ID; // Pass identification, replacement for typeid
     88     TailCallElim() : FunctionPass(ID) {
     89       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
     90     }
     91 
     92     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     93 
     94     virtual bool runOnFunction(Function &F);
     95 
     96   private:
     97     CallInst *FindTRECandidate(Instruction *I,
     98                                bool CannotTailCallElimCallsMarkedTail);
     99     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
    100                                     BasicBlock *&OldEntry,
    101                                     bool &TailCallsAreMarkedTail,
    102                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
    103                                     bool CannotTailCallElimCallsMarkedTail);
    104     bool FoldReturnAndProcessPred(BasicBlock *BB,
    105                                   ReturnInst *Ret, BasicBlock *&OldEntry,
    106                                   bool &TailCallsAreMarkedTail,
    107                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
    108                                   bool CannotTailCallElimCallsMarkedTail);
    109     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
    110                                bool &TailCallsAreMarkedTail,
    111                                SmallVectorImpl<PHINode *> &ArgumentPHIs,
    112                                bool CannotTailCallElimCallsMarkedTail);
    113     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
    114     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
    115   };
    116 }
    117 
    118 char TailCallElim::ID = 0;
    119 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
    120                       "Tail Call Elimination", false, false)
    121 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
    122 INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
    123                     "Tail Call Elimination", false, false)
    124 
    125 // Public interface to the TailCallElimination pass
    126 FunctionPass *llvm::createTailCallEliminationPass() {
    127   return new TailCallElim();
    128 }
    129 
    130 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
    131   AU.addRequired<TargetTransformInfo>();
    132 }
    133 
    134 /// CanTRE - Scan the specified basic block for alloca instructions.
    135 /// If it contains any that are variable-sized or not in the entry block,
    136 /// returns false.
    137 static bool CanTRE(AllocaInst *AI) {
    138   // Because of PR962, we don't TRE allocas outside the entry block.
    139 
    140   // If this alloca is in the body of the function, or if it is a variable
    141   // sized allocation, we cannot tail call eliminate calls marked 'tail'
    142   // with this mechanism.
    143   BasicBlock *BB = AI->getParent();
    144   return BB == &BB->getParent()->getEntryBlock() &&
    145          isa<ConstantInt>(AI->getArraySize());
    146 }
    147 
    148 namespace {
    149 struct AllocaCaptureTracker : public CaptureTracker {
    150   AllocaCaptureTracker() : Captured(false) {}
    151 
    152   void tooManyUses() LLVM_OVERRIDE { Captured = true; }
    153 
    154   bool shouldExplore(Use *U) LLVM_OVERRIDE {
    155     Value *V = U->getUser();
    156     if (isa<CallInst>(V) || isa<InvokeInst>(V))
    157       UsesAlloca.insert(V);
    158     return true;
    159   }
    160 
    161   bool captured(Use *U) LLVM_OVERRIDE {
    162     if (isa<ReturnInst>(U->getUser()))
    163       return false;
    164     Captured = true;
    165     return true;
    166   }
    167 
    168   bool Captured;
    169   SmallPtrSet<const Value *, 16> UsesAlloca;
    170 };
    171 } // end anonymous namespace
    172 
    173 bool TailCallElim::runOnFunction(Function &F) {
    174   // If this function is a varargs function, we won't be able to PHI the args
    175   // right, so don't even try to convert it...
    176   if (F.getFunctionType()->isVarArg()) return false;
    177 
    178   TTI = &getAnalysis<TargetTransformInfo>();
    179   BasicBlock *OldEntry = 0;
    180   bool TailCallsAreMarkedTail = false;
    181   SmallVector<PHINode*, 8> ArgumentPHIs;
    182   bool MadeChange = false;
    183 
    184   // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls
    185   // marked with the 'tail' attribute, because doing so would cause the stack
    186   // size to increase (real TRE would deallocate variable sized allocas, TRE
    187   // doesn't).
    188   bool CanTRETailMarkedCall = true;
    189 
    190   // Find calls that can be marked tail.
    191   AllocaCaptureTracker ACT;
    192   for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) {
    193     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    194       if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
    195         CanTRETailMarkedCall &= CanTRE(AI);
    196         PointerMayBeCaptured(AI, &ACT);
    197         // If any allocas are captured, exit.
    198         if (ACT.Captured)
    199           return false;
    200       }
    201     }
    202   }
    203 
    204   // Second pass, change any tail recursive calls to loops.
    205   //
    206   // FIXME: The code generator produces really bad code when an 'escaping
    207   // alloca' is changed from being a static alloca to being a dynamic alloca.
    208   // Until this is resolved, disable this transformation if that would ever
    209   // happen.  This bug is PR962.
    210   if (ACT.UsesAlloca.empty()) {
    211     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    212       if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
    213         bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
    214                                             ArgumentPHIs, !CanTRETailMarkedCall);
    215         if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
    216           Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
    217                                             TailCallsAreMarkedTail, ArgumentPHIs,
    218                                             !CanTRETailMarkedCall);
    219         MadeChange |= Change;
    220       }
    221     }
    222   }
    223 
    224   // If we eliminated any tail recursions, it's possible that we inserted some
    225   // silly PHI nodes which just merge an initial value (the incoming operand)
    226   // with themselves.  Check to see if we did and clean up our mess if so.  This
    227   // occurs when a function passes an argument straight through to its tail
    228   // call.
    229   if (!ArgumentPHIs.empty()) {
    230     for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
    231       PHINode *PN = ArgumentPHIs[i];
    232 
    233       // If the PHI Node is a dynamic constant, replace it with the value it is.
    234       if (Value *PNV = SimplifyInstruction(PN)) {
    235         PN->replaceAllUsesWith(PNV);
    236         PN->eraseFromParent();
    237       }
    238     }
    239   }
    240 
    241   // At this point, we know that the function does not have any captured
    242   // allocas. If additionally the function does not call setjmp, mark all calls
    243   // in the function that do not access stack memory with the tail keyword. This
    244   // implies ensuring that there does not exist any path from a call that takes
    245   // in an alloca but does not capture it and the call which we wish to mark
    246   // with "tail".
    247   if (!F.callsFunctionThatReturnsTwice()) {
    248     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    249       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    250         if (CallInst *CI = dyn_cast<CallInst>(I)) {
    251           if (!ACT.UsesAlloca.count(CI)) {
    252             CI->setTailCall();
    253             MadeChange = true;
    254           }
    255         }
    256       }
    257     }
    258   }
    259 
    260   return MadeChange;
    261 }
    262 
    263 
    264 /// CanMoveAboveCall - Return true if it is safe to move the specified
    265 /// instruction from after the call to before the call, assuming that all
    266 /// instructions between the call and this instruction are movable.
    267 ///
    268 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
    269   // FIXME: We can move load/store/call/free instructions above the call if the
    270   // call does not mod/ref the memory location being processed.
    271   if (I->mayHaveSideEffects())  // This also handles volatile loads.
    272     return false;
    273 
    274   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    275     // Loads may always be moved above calls without side effects.
    276     if (CI->mayHaveSideEffects()) {
    277       // Non-volatile loads may be moved above a call with side effects if it
    278       // does not write to memory and the load provably won't trap.
    279       // FIXME: Writes to memory only matter if they may alias the pointer
    280       // being loaded from.
    281       if (CI->mayWriteToMemory() ||
    282           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
    283                                        L->getAlignment()))
    284         return false;
    285     }
    286   }
    287 
    288   // Otherwise, if this is a side-effect free instruction, check to make sure
    289   // that it does not use the return value of the call.  If it doesn't use the
    290   // return value of the call, it must only use things that are defined before
    291   // the call, or movable instructions between the call and the instruction
    292   // itself.
    293   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    294     if (I->getOperand(i) == CI)
    295       return false;
    296   return true;
    297 }
    298 
    299 // isDynamicConstant - Return true if the specified value is the same when the
    300 // return would exit as it was when the initial iteration of the recursive
    301 // function was executed.
    302 //
    303 // We currently handle static constants and arguments that are not modified as
    304 // part of the recursion.
    305 //
    306 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
    307   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
    308 
    309   // Check to see if this is an immutable argument, if so, the value
    310   // will be available to initialize the accumulator.
    311   if (Argument *Arg = dyn_cast<Argument>(V)) {
    312     // Figure out which argument number this is...
    313     unsigned ArgNo = 0;
    314     Function *F = CI->getParent()->getParent();
    315     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
    316       ++ArgNo;
    317 
    318     // If we are passing this argument into call as the corresponding
    319     // argument operand, then the argument is dynamically constant.
    320     // Otherwise, we cannot transform this function safely.
    321     if (CI->getArgOperand(ArgNo) == Arg)
    322       return true;
    323   }
    324 
    325   // Switch cases are always constant integers. If the value is being switched
    326   // on and the return is only reachable from one of its cases, it's
    327   // effectively constant.
    328   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
    329     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
    330       if (SI->getCondition() == V)
    331         return SI->getDefaultDest() != RI->getParent();
    332 
    333   // Not a constant or immutable argument, we can't safely transform.
    334   return false;
    335 }
    336 
    337 // getCommonReturnValue - Check to see if the function containing the specified
    338 // tail call consistently returns the same runtime-constant value at all exit
    339 // points except for IgnoreRI.  If so, return the returned value.
    340 //
    341 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
    342   Function *F = CI->getParent()->getParent();
    343   Value *ReturnedValue = 0;
    344 
    345   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
    346     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
    347     if (RI == 0 || RI == IgnoreRI) continue;
    348 
    349     // We can only perform this transformation if the value returned is
    350     // evaluatable at the start of the initial invocation of the function,
    351     // instead of at the end of the evaluation.
    352     //
    353     Value *RetOp = RI->getOperand(0);
    354     if (!isDynamicConstant(RetOp, CI, RI))
    355       return 0;
    356 
    357     if (ReturnedValue && RetOp != ReturnedValue)
    358       return 0;     // Cannot transform if differing values are returned.
    359     ReturnedValue = RetOp;
    360   }
    361   return ReturnedValue;
    362 }
    363 
    364 /// CanTransformAccumulatorRecursion - If the specified instruction can be
    365 /// transformed using accumulator recursion elimination, return the constant
    366 /// which is the start of the accumulator value.  Otherwise return null.
    367 ///
    368 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
    369                                                       CallInst *CI) {
    370   if (!I->isAssociative() || !I->isCommutative()) return 0;
    371   assert(I->getNumOperands() == 2 &&
    372          "Associative/commutative operations should have 2 args!");
    373 
    374   // Exactly one operand should be the result of the call instruction.
    375   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
    376       (I->getOperand(0) != CI && I->getOperand(1) != CI))
    377     return 0;
    378 
    379   // The only user of this instruction we allow is a single return instruction.
    380   if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
    381     return 0;
    382 
    383   // Ok, now we have to check all of the other return instructions in this
    384   // function.  If they return non-constants or differing values, then we cannot
    385   // transform the function safely.
    386   return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
    387 }
    388 
    389 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
    390   while (isa<DbgInfoIntrinsic>(I))
    391     ++I;
    392   return &*I;
    393 }
    394 
    395 CallInst*
    396 TailCallElim::FindTRECandidate(Instruction *TI,
    397                                bool CannotTailCallElimCallsMarkedTail) {
    398   BasicBlock *BB = TI->getParent();
    399   Function *F = BB->getParent();
    400 
    401   if (&BB->front() == TI) // Make sure there is something before the terminator.
    402     return 0;
    403 
    404   // Scan backwards from the return, checking to see if there is a tail call in
    405   // this block.  If so, set CI to it.
    406   CallInst *CI = 0;
    407   BasicBlock::iterator BBI = TI;
    408   while (true) {
    409     CI = dyn_cast<CallInst>(BBI);
    410     if (CI && CI->getCalledFunction() == F)
    411       break;
    412 
    413     if (BBI == BB->begin())
    414       return 0;          // Didn't find a potential tail call.
    415     --BBI;
    416   }
    417 
    418   // If this call is marked as a tail call, and if there are dynamic allocas in
    419   // the function, we cannot perform this optimization.
    420   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
    421     return 0;
    422 
    423   // As a special case, detect code like this:
    424   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
    425   // and disable this xform in this case, because the code generator will
    426   // lower the call to fabs into inline code.
    427   if (BB == &F->getEntryBlock() &&
    428       FirstNonDbg(BB->front()) == CI &&
    429       FirstNonDbg(llvm::next(BB->begin())) == TI &&
    430       CI->getCalledFunction() &&
    431       !TTI->isLoweredToCall(CI->getCalledFunction())) {
    432     // A single-block function with just a call and a return. Check that
    433     // the arguments match.
    434     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
    435                            E = CallSite(CI).arg_end();
    436     Function::arg_iterator FI = F->arg_begin(),
    437                            FE = F->arg_end();
    438     for (; I != E && FI != FE; ++I, ++FI)
    439       if (*I != &*FI) break;
    440     if (I == E && FI == FE)
    441       return 0;
    442   }
    443 
    444   return CI;
    445 }
    446 
    447 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
    448                                        BasicBlock *&OldEntry,
    449                                        bool &TailCallsAreMarkedTail,
    450                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
    451                                        bool CannotTailCallElimCallsMarkedTail) {
    452   // If we are introducing accumulator recursion to eliminate operations after
    453   // the call instruction that are both associative and commutative, the initial
    454   // value for the accumulator is placed in this variable.  If this value is set
    455   // then we actually perform accumulator recursion elimination instead of
    456   // simple tail recursion elimination.  If the operation is an LLVM instruction
    457   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
    458   // we are handling the case when the return instruction returns a constant C
    459   // which is different to the constant returned by other return instructions
    460   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
    461   // special case of accumulator recursion, the operation being "return C".
    462   Value *AccumulatorRecursionEliminationInitVal = 0;
    463   Instruction *AccumulatorRecursionInstr = 0;
    464 
    465   // Ok, we found a potential tail call.  We can currently only transform the
    466   // tail call if all of the instructions between the call and the return are
    467   // movable to above the call itself, leaving the call next to the return.
    468   // Check that this is the case now.
    469   BasicBlock::iterator BBI = CI;
    470   for (++BBI; &*BBI != Ret; ++BBI) {
    471     if (CanMoveAboveCall(BBI, CI)) continue;
    472 
    473     // If we can't move the instruction above the call, it might be because it
    474     // is an associative and commutative operation that could be transformed
    475     // using accumulator recursion elimination.  Check to see if this is the
    476     // case, and if so, remember the initial accumulator value for later.
    477     if ((AccumulatorRecursionEliminationInitVal =
    478                            CanTransformAccumulatorRecursion(BBI, CI))) {
    479       // Yes, this is accumulator recursion.  Remember which instruction
    480       // accumulates.
    481       AccumulatorRecursionInstr = BBI;
    482     } else {
    483       return false;   // Otherwise, we cannot eliminate the tail recursion!
    484     }
    485   }
    486 
    487   // We can only transform call/return pairs that either ignore the return value
    488   // of the call and return void, ignore the value of the call and return a
    489   // constant, return the value returned by the tail call, or that are being
    490   // accumulator recursion variable eliminated.
    491   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
    492       !isa<UndefValue>(Ret->getReturnValue()) &&
    493       AccumulatorRecursionEliminationInitVal == 0 &&
    494       !getCommonReturnValue(0, CI)) {
    495     // One case remains that we are able to handle: the current return
    496     // instruction returns a constant, and all other return instructions
    497     // return a different constant.
    498     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
    499       return false; // Current return instruction does not return a constant.
    500     // Check that all other return instructions return a common constant.  If
    501     // so, record it in AccumulatorRecursionEliminationInitVal.
    502     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
    503     if (!AccumulatorRecursionEliminationInitVal)
    504       return false;
    505   }
    506 
    507   BasicBlock *BB = Ret->getParent();
    508   Function *F = BB->getParent();
    509 
    510   // OK! We can transform this tail call.  If this is the first one found,
    511   // create the new entry block, allowing us to branch back to the old entry.
    512   if (OldEntry == 0) {
    513     OldEntry = &F->getEntryBlock();
    514     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
    515     NewEntry->takeName(OldEntry);
    516     OldEntry->setName("tailrecurse");
    517     BranchInst::Create(OldEntry, NewEntry);
    518 
    519     // If this tail call is marked 'tail' and if there are any allocas in the
    520     // entry block, move them up to the new entry block.
    521     TailCallsAreMarkedTail = CI->isTailCall();
    522     if (TailCallsAreMarkedTail)
    523       // Move all fixed sized allocas from OldEntry to NewEntry.
    524       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
    525              NEBI = NewEntry->begin(); OEBI != E; )
    526         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
    527           if (isa<ConstantInt>(AI->getArraySize()))
    528             AI->moveBefore(NEBI);
    529 
    530     // Now that we have created a new block, which jumps to the entry
    531     // block, insert a PHI node for each argument of the function.
    532     // For now, we initialize each PHI to only have the real arguments
    533     // which are passed in.
    534     Instruction *InsertPos = OldEntry->begin();
    535     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    536          I != E; ++I) {
    537       PHINode *PN = PHINode::Create(I->getType(), 2,
    538                                     I->getName() + ".tr", InsertPos);
    539       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
    540       PN->addIncoming(I, NewEntry);
    541       ArgumentPHIs.push_back(PN);
    542     }
    543   }
    544 
    545   // If this function has self recursive calls in the tail position where some
    546   // are marked tail and some are not, only transform one flavor or another.  We
    547   // have to choose whether we move allocas in the entry block to the new entry
    548   // block or not, so we can't make a good choice for both.  NOTE: We could do
    549   // slightly better here in the case that the function has no entry block
    550   // allocas.
    551   if (TailCallsAreMarkedTail && !CI->isTailCall())
    552     return false;
    553 
    554   // Ok, now that we know we have a pseudo-entry block WITH all of the
    555   // required PHI nodes, add entries into the PHI node for the actual
    556   // parameters passed into the tail-recursive call.
    557   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
    558     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
    559 
    560   // If we are introducing an accumulator variable to eliminate the recursion,
    561   // do so now.  Note that we _know_ that no subsequent tail recursion
    562   // eliminations will happen on this function because of the way the
    563   // accumulator recursion predicate is set up.
    564   //
    565   if (AccumulatorRecursionEliminationInitVal) {
    566     Instruction *AccRecInstr = AccumulatorRecursionInstr;
    567     // Start by inserting a new PHI node for the accumulator.
    568     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
    569     PHINode *AccPN =
    570       PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
    571                       std::distance(PB, PE) + 1,
    572                       "accumulator.tr", OldEntry->begin());
    573 
    574     // Loop over all of the predecessors of the tail recursion block.  For the
    575     // real entry into the function we seed the PHI with the initial value,
    576     // computed earlier.  For any other existing branches to this block (due to
    577     // other tail recursions eliminated) the accumulator is not modified.
    578     // Because we haven't added the branch in the current block to OldEntry yet,
    579     // it will not show up as a predecessor.
    580     for (pred_iterator PI = PB; PI != PE; ++PI) {
    581       BasicBlock *P = *PI;
    582       if (P == &F->getEntryBlock())
    583         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
    584       else
    585         AccPN->addIncoming(AccPN, P);
    586     }
    587 
    588     if (AccRecInstr) {
    589       // Add an incoming argument for the current block, which is computed by
    590       // our associative and commutative accumulator instruction.
    591       AccPN->addIncoming(AccRecInstr, BB);
    592 
    593       // Next, rewrite the accumulator recursion instruction so that it does not
    594       // use the result of the call anymore, instead, use the PHI node we just
    595       // inserted.
    596       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
    597     } else {
    598       // Add an incoming argument for the current block, which is just the
    599       // constant returned by the current return instruction.
    600       AccPN->addIncoming(Ret->getReturnValue(), BB);
    601     }
    602 
    603     // Finally, rewrite any return instructions in the program to return the PHI
    604     // node instead of the "initval" that they do currently.  This loop will
    605     // actually rewrite the return value we are destroying, but that's ok.
    606     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
    607       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
    608         RI->setOperand(0, AccPN);
    609     ++NumAccumAdded;
    610   }
    611 
    612   // Now that all of the PHI nodes are in place, remove the call and
    613   // ret instructions, replacing them with an unconditional branch.
    614   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
    615   NewBI->setDebugLoc(CI->getDebugLoc());
    616 
    617   BB->getInstList().erase(Ret);  // Remove return.
    618   BB->getInstList().erase(CI);   // Remove call.
    619   ++NumEliminated;
    620   return true;
    621 }
    622 
    623 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
    624                                        ReturnInst *Ret, BasicBlock *&OldEntry,
    625                                        bool &TailCallsAreMarkedTail,
    626                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
    627                                        bool CannotTailCallElimCallsMarkedTail) {
    628   bool Change = false;
    629 
    630   // If the return block contains nothing but the return and PHI's,
    631   // there might be an opportunity to duplicate the return in its
    632   // predecessors and perform TRC there. Look for predecessors that end
    633   // in unconditional branch and recursive call(s).
    634   SmallVector<BranchInst*, 8> UncondBranchPreds;
    635   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    636     BasicBlock *Pred = *PI;
    637     TerminatorInst *PTI = Pred->getTerminator();
    638     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
    639       if (BI->isUnconditional())
    640         UncondBranchPreds.push_back(BI);
    641   }
    642 
    643   while (!UncondBranchPreds.empty()) {
    644     BranchInst *BI = UncondBranchPreds.pop_back_val();
    645     BasicBlock *Pred = BI->getParent();
    646     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
    647       DEBUG(dbgs() << "FOLDING: " << *BB
    648             << "INTO UNCOND BRANCH PRED: " << *Pred);
    649       EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
    650                                  OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
    651                                  CannotTailCallElimCallsMarkedTail);
    652       ++NumRetDuped;
    653       Change = true;
    654     }
    655   }
    656 
    657   return Change;
    658 }
    659 
    660 bool
    661 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
    662                                     bool &TailCallsAreMarkedTail,
    663                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
    664                                     bool CannotTailCallElimCallsMarkedTail) {
    665   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
    666   if (!CI)
    667     return false;
    668 
    669   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
    670                                     ArgumentPHIs,
    671                                     CannotTailCallElimCallsMarkedTail);
    672 }
    673