1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file transforms calls of the current function (self recursion) followed 11 // by a return instruction with a branch to the entry of the function, creating 12 // a loop. This pass also implements the following extensions to the basic 13 // algorithm: 14 // 15 // 1. Trivial instructions between the call and return do not prevent the 16 // transformation from taking place, though currently the analysis cannot 17 // support moving any really useful instructions (only dead ones). 18 // 2. This pass transforms functions that are prevented from being tail 19 // recursive by an associative and commutative expression to use an 20 // accumulator variable, thus compiling the typical naive factorial or 21 // 'fib' implementation into efficient code. 22 // 3. TRE is performed if the function returns void, if the return 23 // returns the result returned by the call, or if the function returns a 24 // run-time constant on all exits from the function. It is possible, though 25 // unlikely, that the return returns something else (like constant 0), and 26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27 // the function return the exact same value. 28 // 4. If it can prove that callees do not access their caller stack frame, 29 // they are marked as eligible for tail call elimination (by the code 30 // generator). 31 // 32 // There are several improvements that could be made: 33 // 34 // 1. If the function has any alloca instructions, these instructions will be 35 // moved out of the entry block of the function, causing them to be 36 // evaluated each time through the tail recursion. Safely keeping allocas 37 // in the entry block requires analysis to proves that the tail-called 38 // function does not read or write the stack object. 39 // 2. Tail recursion is only performed if the call immediately precedes the 40 // return instruction. It's possible that there could be a jump between 41 // the call and the return. 42 // 3. There can be intervening operations between the call and the return that 43 // prevent the TRE from occurring. For example, there could be GEP's and 44 // stores to memory that will not be read or written by the call. This 45 // requires some substantial analysis (such as with DSA) to prove safe to 46 // move ahead of the call, but doing so could allow many more TREs to be 47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48 // 4. The algorithm we use to detect if callees access their caller stack 49 // frames is very primitive. 50 // 51 //===----------------------------------------------------------------------===// 52 53 #define DEBUG_TYPE "tailcallelim" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/ADT/STLExtras.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/Analysis/CaptureTracking.h" 59 #include "llvm/Analysis/InlineCost.h" 60 #include "llvm/Analysis/InstructionSimplify.h" 61 #include "llvm/Analysis/Loads.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/Instructions.h" 67 #include "llvm/IR/IntrinsicInst.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/CFG.h" 71 #include "llvm/Support/CallSite.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ValueHandle.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 using namespace llvm; 78 79 STATISTIC(NumEliminated, "Number of tail calls removed"); 80 STATISTIC(NumRetDuped, "Number of return duplicated"); 81 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 82 83 namespace { 84 struct TailCallElim : public FunctionPass { 85 const TargetTransformInfo *TTI; 86 87 static char ID; // Pass identification, replacement for typeid 88 TailCallElim() : FunctionPass(ID) { 89 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 90 } 91 92 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 93 94 virtual bool runOnFunction(Function &F); 95 96 private: 97 CallInst *FindTRECandidate(Instruction *I, 98 bool CannotTailCallElimCallsMarkedTail); 99 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 100 BasicBlock *&OldEntry, 101 bool &TailCallsAreMarkedTail, 102 SmallVectorImpl<PHINode *> &ArgumentPHIs, 103 bool CannotTailCallElimCallsMarkedTail); 104 bool FoldReturnAndProcessPred(BasicBlock *BB, 105 ReturnInst *Ret, BasicBlock *&OldEntry, 106 bool &TailCallsAreMarkedTail, 107 SmallVectorImpl<PHINode *> &ArgumentPHIs, 108 bool CannotTailCallElimCallsMarkedTail); 109 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, 110 bool &TailCallsAreMarkedTail, 111 SmallVectorImpl<PHINode *> &ArgumentPHIs, 112 bool CannotTailCallElimCallsMarkedTail); 113 bool CanMoveAboveCall(Instruction *I, CallInst *CI); 114 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); 115 }; 116 } 117 118 char TailCallElim::ID = 0; 119 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", 120 "Tail Call Elimination", false, false) 121 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 122 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", 123 "Tail Call Elimination", false, false) 124 125 // Public interface to the TailCallElimination pass 126 FunctionPass *llvm::createTailCallEliminationPass() { 127 return new TailCallElim(); 128 } 129 130 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const { 131 AU.addRequired<TargetTransformInfo>(); 132 } 133 134 /// CanTRE - Scan the specified basic block for alloca instructions. 135 /// If it contains any that are variable-sized or not in the entry block, 136 /// returns false. 137 static bool CanTRE(AllocaInst *AI) { 138 // Because of PR962, we don't TRE allocas outside the entry block. 139 140 // If this alloca is in the body of the function, or if it is a variable 141 // sized allocation, we cannot tail call eliminate calls marked 'tail' 142 // with this mechanism. 143 BasicBlock *BB = AI->getParent(); 144 return BB == &BB->getParent()->getEntryBlock() && 145 isa<ConstantInt>(AI->getArraySize()); 146 } 147 148 namespace { 149 struct AllocaCaptureTracker : public CaptureTracker { 150 AllocaCaptureTracker() : Captured(false) {} 151 152 void tooManyUses() LLVM_OVERRIDE { Captured = true; } 153 154 bool shouldExplore(Use *U) LLVM_OVERRIDE { 155 Value *V = U->getUser(); 156 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 157 UsesAlloca.insert(V); 158 return true; 159 } 160 161 bool captured(Use *U) LLVM_OVERRIDE { 162 if (isa<ReturnInst>(U->getUser())) 163 return false; 164 Captured = true; 165 return true; 166 } 167 168 bool Captured; 169 SmallPtrSet<const Value *, 16> UsesAlloca; 170 }; 171 } // end anonymous namespace 172 173 bool TailCallElim::runOnFunction(Function &F) { 174 // If this function is a varargs function, we won't be able to PHI the args 175 // right, so don't even try to convert it... 176 if (F.getFunctionType()->isVarArg()) return false; 177 178 TTI = &getAnalysis<TargetTransformInfo>(); 179 BasicBlock *OldEntry = 0; 180 bool TailCallsAreMarkedTail = false; 181 SmallVector<PHINode*, 8> ArgumentPHIs; 182 bool MadeChange = false; 183 184 // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls 185 // marked with the 'tail' attribute, because doing so would cause the stack 186 // size to increase (real TRE would deallocate variable sized allocas, TRE 187 // doesn't). 188 bool CanTRETailMarkedCall = true; 189 190 // Find calls that can be marked tail. 191 AllocaCaptureTracker ACT; 192 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) { 193 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 194 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 195 CanTRETailMarkedCall &= CanTRE(AI); 196 PointerMayBeCaptured(AI, &ACT); 197 // If any allocas are captured, exit. 198 if (ACT.Captured) 199 return false; 200 } 201 } 202 } 203 204 // Second pass, change any tail recursive calls to loops. 205 // 206 // FIXME: The code generator produces really bad code when an 'escaping 207 // alloca' is changed from being a static alloca to being a dynamic alloca. 208 // Until this is resolved, disable this transformation if that would ever 209 // happen. This bug is PR962. 210 if (ACT.UsesAlloca.empty()) { 211 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 212 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 213 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 214 ArgumentPHIs, !CanTRETailMarkedCall); 215 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 216 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, 217 TailCallsAreMarkedTail, ArgumentPHIs, 218 !CanTRETailMarkedCall); 219 MadeChange |= Change; 220 } 221 } 222 } 223 224 // If we eliminated any tail recursions, it's possible that we inserted some 225 // silly PHI nodes which just merge an initial value (the incoming operand) 226 // with themselves. Check to see if we did and clean up our mess if so. This 227 // occurs when a function passes an argument straight through to its tail 228 // call. 229 if (!ArgumentPHIs.empty()) { 230 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { 231 PHINode *PN = ArgumentPHIs[i]; 232 233 // If the PHI Node is a dynamic constant, replace it with the value it is. 234 if (Value *PNV = SimplifyInstruction(PN)) { 235 PN->replaceAllUsesWith(PNV); 236 PN->eraseFromParent(); 237 } 238 } 239 } 240 241 // At this point, we know that the function does not have any captured 242 // allocas. If additionally the function does not call setjmp, mark all calls 243 // in the function that do not access stack memory with the tail keyword. This 244 // implies ensuring that there does not exist any path from a call that takes 245 // in an alloca but does not capture it and the call which we wish to mark 246 // with "tail". 247 if (!F.callsFunctionThatReturnsTwice()) { 248 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 249 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 250 if (CallInst *CI = dyn_cast<CallInst>(I)) { 251 if (!ACT.UsesAlloca.count(CI)) { 252 CI->setTailCall(); 253 MadeChange = true; 254 } 255 } 256 } 257 } 258 } 259 260 return MadeChange; 261 } 262 263 264 /// CanMoveAboveCall - Return true if it is safe to move the specified 265 /// instruction from after the call to before the call, assuming that all 266 /// instructions between the call and this instruction are movable. 267 /// 268 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { 269 // FIXME: We can move load/store/call/free instructions above the call if the 270 // call does not mod/ref the memory location being processed. 271 if (I->mayHaveSideEffects()) // This also handles volatile loads. 272 return false; 273 274 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 275 // Loads may always be moved above calls without side effects. 276 if (CI->mayHaveSideEffects()) { 277 // Non-volatile loads may be moved above a call with side effects if it 278 // does not write to memory and the load provably won't trap. 279 // FIXME: Writes to memory only matter if they may alias the pointer 280 // being loaded from. 281 if (CI->mayWriteToMemory() || 282 !isSafeToLoadUnconditionally(L->getPointerOperand(), L, 283 L->getAlignment())) 284 return false; 285 } 286 } 287 288 // Otherwise, if this is a side-effect free instruction, check to make sure 289 // that it does not use the return value of the call. If it doesn't use the 290 // return value of the call, it must only use things that are defined before 291 // the call, or movable instructions between the call and the instruction 292 // itself. 293 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 294 if (I->getOperand(i) == CI) 295 return false; 296 return true; 297 } 298 299 // isDynamicConstant - Return true if the specified value is the same when the 300 // return would exit as it was when the initial iteration of the recursive 301 // function was executed. 302 // 303 // We currently handle static constants and arguments that are not modified as 304 // part of the recursion. 305 // 306 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 307 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 308 309 // Check to see if this is an immutable argument, if so, the value 310 // will be available to initialize the accumulator. 311 if (Argument *Arg = dyn_cast<Argument>(V)) { 312 // Figure out which argument number this is... 313 unsigned ArgNo = 0; 314 Function *F = CI->getParent()->getParent(); 315 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 316 ++ArgNo; 317 318 // If we are passing this argument into call as the corresponding 319 // argument operand, then the argument is dynamically constant. 320 // Otherwise, we cannot transform this function safely. 321 if (CI->getArgOperand(ArgNo) == Arg) 322 return true; 323 } 324 325 // Switch cases are always constant integers. If the value is being switched 326 // on and the return is only reachable from one of its cases, it's 327 // effectively constant. 328 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 329 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 330 if (SI->getCondition() == V) 331 return SI->getDefaultDest() != RI->getParent(); 332 333 // Not a constant or immutable argument, we can't safely transform. 334 return false; 335 } 336 337 // getCommonReturnValue - Check to see if the function containing the specified 338 // tail call consistently returns the same runtime-constant value at all exit 339 // points except for IgnoreRI. If so, return the returned value. 340 // 341 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 342 Function *F = CI->getParent()->getParent(); 343 Value *ReturnedValue = 0; 344 345 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { 346 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); 347 if (RI == 0 || RI == IgnoreRI) continue; 348 349 // We can only perform this transformation if the value returned is 350 // evaluatable at the start of the initial invocation of the function, 351 // instead of at the end of the evaluation. 352 // 353 Value *RetOp = RI->getOperand(0); 354 if (!isDynamicConstant(RetOp, CI, RI)) 355 return 0; 356 357 if (ReturnedValue && RetOp != ReturnedValue) 358 return 0; // Cannot transform if differing values are returned. 359 ReturnedValue = RetOp; 360 } 361 return ReturnedValue; 362 } 363 364 /// CanTransformAccumulatorRecursion - If the specified instruction can be 365 /// transformed using accumulator recursion elimination, return the constant 366 /// which is the start of the accumulator value. Otherwise return null. 367 /// 368 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, 369 CallInst *CI) { 370 if (!I->isAssociative() || !I->isCommutative()) return 0; 371 assert(I->getNumOperands() == 2 && 372 "Associative/commutative operations should have 2 args!"); 373 374 // Exactly one operand should be the result of the call instruction. 375 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 376 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 377 return 0; 378 379 // The only user of this instruction we allow is a single return instruction. 380 if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back())) 381 return 0; 382 383 // Ok, now we have to check all of the other return instructions in this 384 // function. If they return non-constants or differing values, then we cannot 385 // transform the function safely. 386 return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI); 387 } 388 389 static Instruction *FirstNonDbg(BasicBlock::iterator I) { 390 while (isa<DbgInfoIntrinsic>(I)) 391 ++I; 392 return &*I; 393 } 394 395 CallInst* 396 TailCallElim::FindTRECandidate(Instruction *TI, 397 bool CannotTailCallElimCallsMarkedTail) { 398 BasicBlock *BB = TI->getParent(); 399 Function *F = BB->getParent(); 400 401 if (&BB->front() == TI) // Make sure there is something before the terminator. 402 return 0; 403 404 // Scan backwards from the return, checking to see if there is a tail call in 405 // this block. If so, set CI to it. 406 CallInst *CI = 0; 407 BasicBlock::iterator BBI = TI; 408 while (true) { 409 CI = dyn_cast<CallInst>(BBI); 410 if (CI && CI->getCalledFunction() == F) 411 break; 412 413 if (BBI == BB->begin()) 414 return 0; // Didn't find a potential tail call. 415 --BBI; 416 } 417 418 // If this call is marked as a tail call, and if there are dynamic allocas in 419 // the function, we cannot perform this optimization. 420 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 421 return 0; 422 423 // As a special case, detect code like this: 424 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 425 // and disable this xform in this case, because the code generator will 426 // lower the call to fabs into inline code. 427 if (BB == &F->getEntryBlock() && 428 FirstNonDbg(BB->front()) == CI && 429 FirstNonDbg(llvm::next(BB->begin())) == TI && 430 CI->getCalledFunction() && 431 !TTI->isLoweredToCall(CI->getCalledFunction())) { 432 // A single-block function with just a call and a return. Check that 433 // the arguments match. 434 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 435 E = CallSite(CI).arg_end(); 436 Function::arg_iterator FI = F->arg_begin(), 437 FE = F->arg_end(); 438 for (; I != E && FI != FE; ++I, ++FI) 439 if (*I != &*FI) break; 440 if (I == E && FI == FE) 441 return 0; 442 } 443 444 return CI; 445 } 446 447 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 448 BasicBlock *&OldEntry, 449 bool &TailCallsAreMarkedTail, 450 SmallVectorImpl<PHINode *> &ArgumentPHIs, 451 bool CannotTailCallElimCallsMarkedTail) { 452 // If we are introducing accumulator recursion to eliminate operations after 453 // the call instruction that are both associative and commutative, the initial 454 // value for the accumulator is placed in this variable. If this value is set 455 // then we actually perform accumulator recursion elimination instead of 456 // simple tail recursion elimination. If the operation is an LLVM instruction 457 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 458 // we are handling the case when the return instruction returns a constant C 459 // which is different to the constant returned by other return instructions 460 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 461 // special case of accumulator recursion, the operation being "return C". 462 Value *AccumulatorRecursionEliminationInitVal = 0; 463 Instruction *AccumulatorRecursionInstr = 0; 464 465 // Ok, we found a potential tail call. We can currently only transform the 466 // tail call if all of the instructions between the call and the return are 467 // movable to above the call itself, leaving the call next to the return. 468 // Check that this is the case now. 469 BasicBlock::iterator BBI = CI; 470 for (++BBI; &*BBI != Ret; ++BBI) { 471 if (CanMoveAboveCall(BBI, CI)) continue; 472 473 // If we can't move the instruction above the call, it might be because it 474 // is an associative and commutative operation that could be transformed 475 // using accumulator recursion elimination. Check to see if this is the 476 // case, and if so, remember the initial accumulator value for later. 477 if ((AccumulatorRecursionEliminationInitVal = 478 CanTransformAccumulatorRecursion(BBI, CI))) { 479 // Yes, this is accumulator recursion. Remember which instruction 480 // accumulates. 481 AccumulatorRecursionInstr = BBI; 482 } else { 483 return false; // Otherwise, we cannot eliminate the tail recursion! 484 } 485 } 486 487 // We can only transform call/return pairs that either ignore the return value 488 // of the call and return void, ignore the value of the call and return a 489 // constant, return the value returned by the tail call, or that are being 490 // accumulator recursion variable eliminated. 491 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 492 !isa<UndefValue>(Ret->getReturnValue()) && 493 AccumulatorRecursionEliminationInitVal == 0 && 494 !getCommonReturnValue(0, CI)) { 495 // One case remains that we are able to handle: the current return 496 // instruction returns a constant, and all other return instructions 497 // return a different constant. 498 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 499 return false; // Current return instruction does not return a constant. 500 // Check that all other return instructions return a common constant. If 501 // so, record it in AccumulatorRecursionEliminationInitVal. 502 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 503 if (!AccumulatorRecursionEliminationInitVal) 504 return false; 505 } 506 507 BasicBlock *BB = Ret->getParent(); 508 Function *F = BB->getParent(); 509 510 // OK! We can transform this tail call. If this is the first one found, 511 // create the new entry block, allowing us to branch back to the old entry. 512 if (OldEntry == 0) { 513 OldEntry = &F->getEntryBlock(); 514 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 515 NewEntry->takeName(OldEntry); 516 OldEntry->setName("tailrecurse"); 517 BranchInst::Create(OldEntry, NewEntry); 518 519 // If this tail call is marked 'tail' and if there are any allocas in the 520 // entry block, move them up to the new entry block. 521 TailCallsAreMarkedTail = CI->isTailCall(); 522 if (TailCallsAreMarkedTail) 523 // Move all fixed sized allocas from OldEntry to NewEntry. 524 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 525 NEBI = NewEntry->begin(); OEBI != E; ) 526 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 527 if (isa<ConstantInt>(AI->getArraySize())) 528 AI->moveBefore(NEBI); 529 530 // Now that we have created a new block, which jumps to the entry 531 // block, insert a PHI node for each argument of the function. 532 // For now, we initialize each PHI to only have the real arguments 533 // which are passed in. 534 Instruction *InsertPos = OldEntry->begin(); 535 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 536 I != E; ++I) { 537 PHINode *PN = PHINode::Create(I->getType(), 2, 538 I->getName() + ".tr", InsertPos); 539 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 540 PN->addIncoming(I, NewEntry); 541 ArgumentPHIs.push_back(PN); 542 } 543 } 544 545 // If this function has self recursive calls in the tail position where some 546 // are marked tail and some are not, only transform one flavor or another. We 547 // have to choose whether we move allocas in the entry block to the new entry 548 // block or not, so we can't make a good choice for both. NOTE: We could do 549 // slightly better here in the case that the function has no entry block 550 // allocas. 551 if (TailCallsAreMarkedTail && !CI->isTailCall()) 552 return false; 553 554 // Ok, now that we know we have a pseudo-entry block WITH all of the 555 // required PHI nodes, add entries into the PHI node for the actual 556 // parameters passed into the tail-recursive call. 557 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 558 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 559 560 // If we are introducing an accumulator variable to eliminate the recursion, 561 // do so now. Note that we _know_ that no subsequent tail recursion 562 // eliminations will happen on this function because of the way the 563 // accumulator recursion predicate is set up. 564 // 565 if (AccumulatorRecursionEliminationInitVal) { 566 Instruction *AccRecInstr = AccumulatorRecursionInstr; 567 // Start by inserting a new PHI node for the accumulator. 568 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 569 PHINode *AccPN = 570 PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), 571 std::distance(PB, PE) + 1, 572 "accumulator.tr", OldEntry->begin()); 573 574 // Loop over all of the predecessors of the tail recursion block. For the 575 // real entry into the function we seed the PHI with the initial value, 576 // computed earlier. For any other existing branches to this block (due to 577 // other tail recursions eliminated) the accumulator is not modified. 578 // Because we haven't added the branch in the current block to OldEntry yet, 579 // it will not show up as a predecessor. 580 for (pred_iterator PI = PB; PI != PE; ++PI) { 581 BasicBlock *P = *PI; 582 if (P == &F->getEntryBlock()) 583 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 584 else 585 AccPN->addIncoming(AccPN, P); 586 } 587 588 if (AccRecInstr) { 589 // Add an incoming argument for the current block, which is computed by 590 // our associative and commutative accumulator instruction. 591 AccPN->addIncoming(AccRecInstr, BB); 592 593 // Next, rewrite the accumulator recursion instruction so that it does not 594 // use the result of the call anymore, instead, use the PHI node we just 595 // inserted. 596 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 597 } else { 598 // Add an incoming argument for the current block, which is just the 599 // constant returned by the current return instruction. 600 AccPN->addIncoming(Ret->getReturnValue(), BB); 601 } 602 603 // Finally, rewrite any return instructions in the program to return the PHI 604 // node instead of the "initval" that they do currently. This loop will 605 // actually rewrite the return value we are destroying, but that's ok. 606 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) 607 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) 608 RI->setOperand(0, AccPN); 609 ++NumAccumAdded; 610 } 611 612 // Now that all of the PHI nodes are in place, remove the call and 613 // ret instructions, replacing them with an unconditional branch. 614 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 615 NewBI->setDebugLoc(CI->getDebugLoc()); 616 617 BB->getInstList().erase(Ret); // Remove return. 618 BB->getInstList().erase(CI); // Remove call. 619 ++NumEliminated; 620 return true; 621 } 622 623 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, 624 ReturnInst *Ret, BasicBlock *&OldEntry, 625 bool &TailCallsAreMarkedTail, 626 SmallVectorImpl<PHINode *> &ArgumentPHIs, 627 bool CannotTailCallElimCallsMarkedTail) { 628 bool Change = false; 629 630 // If the return block contains nothing but the return and PHI's, 631 // there might be an opportunity to duplicate the return in its 632 // predecessors and perform TRC there. Look for predecessors that end 633 // in unconditional branch and recursive call(s). 634 SmallVector<BranchInst*, 8> UncondBranchPreds; 635 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 636 BasicBlock *Pred = *PI; 637 TerminatorInst *PTI = Pred->getTerminator(); 638 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 639 if (BI->isUnconditional()) 640 UncondBranchPreds.push_back(BI); 641 } 642 643 while (!UncondBranchPreds.empty()) { 644 BranchInst *BI = UncondBranchPreds.pop_back_val(); 645 BasicBlock *Pred = BI->getParent(); 646 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ 647 DEBUG(dbgs() << "FOLDING: " << *BB 648 << "INTO UNCOND BRANCH PRED: " << *Pred); 649 EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred), 650 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, 651 CannotTailCallElimCallsMarkedTail); 652 ++NumRetDuped; 653 Change = true; 654 } 655 } 656 657 return Change; 658 } 659 660 bool 661 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 662 bool &TailCallsAreMarkedTail, 663 SmallVectorImpl<PHINode *> &ArgumentPHIs, 664 bool CannotTailCallElimCallsMarkedTail) { 665 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); 666 if (!CI) 667 return false; 668 669 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 670 ArgumentPHIs, 671 CannotTailCallElimCallsMarkedTail); 672 } 673