1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "InstCombine.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 #include "llvm/Support/PatternMatch.h" 20 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 /// ShrinkDemandedConstant - Check to see if the specified operand of the 25 /// specified instruction is a constant integer. If so, check to see if there 26 /// are any bits set in the constant that are not demanded. If so, shrink the 27 /// constant and return true. 28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 29 APInt Demanded) { 30 assert(I && "No instruction?"); 31 assert(OpNo < I->getNumOperands() && "Operand index too large"); 32 33 // If the operand is not a constant integer, nothing to do. 34 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 35 if (!OpC) return false; 36 37 // If there are no bits set that aren't demanded, nothing to do. 38 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 39 if ((~Demanded & OpC->getValue()) == 0) 40 return false; 41 42 // This instruction is producing bits that are not demanded. Shrink the RHS. 43 Demanded &= OpC->getValue(); 44 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 45 return true; 46 } 47 48 49 50 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that 51 /// SimplifyDemandedBits knows about. See if the instruction has any 52 /// properties that allow us to simplify its operands. 53 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 54 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 55 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 56 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 57 58 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 59 KnownZero, KnownOne, 0); 60 if (V == 0) return false; 61 if (V == &Inst) return true; 62 ReplaceInstUsesWith(Inst, V); 63 return true; 64 } 65 66 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the 67 /// specified instruction operand if possible, updating it in place. It returns 68 /// true if it made any change and false otherwise. 69 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 70 APInt &KnownZero, APInt &KnownOne, 71 unsigned Depth) { 72 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, 73 KnownZero, KnownOne, Depth); 74 if (NewVal == 0) return false; 75 U = NewVal; 76 return true; 77 } 78 79 80 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler 81 /// value based on the demanded bits. When this function is called, it is known 82 /// that only the bits set in DemandedMask of the result of V are ever used 83 /// downstream. Consequently, depending on the mask and V, it may be possible 84 /// to replace V with a constant or one of its operands. In such cases, this 85 /// function does the replacement and returns true. In all other cases, it 86 /// returns false after analyzing the expression and setting KnownOne and known 87 /// to be one in the expression. KnownZero contains all the bits that are known 88 /// to be zero in the expression. These are provided to potentially allow the 89 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify 90 /// the expression. KnownOne and KnownZero always follow the invariant that 91 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that 92 /// the bits in KnownOne and KnownZero may only be accurate for those bits set 93 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero 94 /// and KnownOne must all be the same. 95 /// 96 /// This returns null if it did not change anything and it permits no 97 /// simplification. This returns V itself if it did some simplification of V's 98 /// operands based on the information about what bits are demanded. This returns 99 /// some other non-null value if it found out that V is equal to another value 100 /// in the context where the specified bits are demanded, but not for all users. 101 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 102 APInt &KnownZero, APInt &KnownOne, 103 unsigned Depth) { 104 assert(V != 0 && "Null pointer of Value???"); 105 assert(Depth <= 6 && "Limit Search Depth"); 106 uint32_t BitWidth = DemandedMask.getBitWidth(); 107 Type *VTy = V->getType(); 108 assert((TD || !VTy->isPointerTy()) && 109 "SimplifyDemandedBits needs to know bit widths!"); 110 assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && 111 (!VTy->isIntOrIntVectorTy() || 112 VTy->getScalarSizeInBits() == BitWidth) && 113 KnownZero.getBitWidth() == BitWidth && 114 KnownOne.getBitWidth() == BitWidth && 115 "Value *V, DemandedMask, KnownZero and KnownOne " 116 "must have same BitWidth"); 117 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 118 // We know all of the bits for a constant! 119 KnownOne = CI->getValue() & DemandedMask; 120 KnownZero = ~KnownOne & DemandedMask; 121 return 0; 122 } 123 if (isa<ConstantPointerNull>(V)) { 124 // We know all of the bits for a constant! 125 KnownOne.clearAllBits(); 126 KnownZero = DemandedMask; 127 return 0; 128 } 129 130 KnownZero.clearAllBits(); 131 KnownOne.clearAllBits(); 132 if (DemandedMask == 0) { // Not demanding any bits from V. 133 if (isa<UndefValue>(V)) 134 return 0; 135 return UndefValue::get(VTy); 136 } 137 138 if (Depth == 6) // Limit search depth. 139 return 0; 140 141 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 142 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 143 144 Instruction *I = dyn_cast<Instruction>(V); 145 if (!I) { 146 ComputeMaskedBits(V, KnownZero, KnownOne, Depth); 147 return 0; // Only analyze instructions. 148 } 149 150 // If there are multiple uses of this value and we aren't at the root, then 151 // we can't do any simplifications of the operands, because DemandedMask 152 // only reflects the bits demanded by *one* of the users. 153 if (Depth != 0 && !I->hasOneUse()) { 154 // Despite the fact that we can't simplify this instruction in all User's 155 // context, we can at least compute the knownzero/knownone bits, and we can 156 // do simplifications that apply to *just* the one user if we know that 157 // this instruction has a simpler value in that context. 158 if (I->getOpcode() == Instruction::And) { 159 // If either the LHS or the RHS are Zero, the result is zero. 160 ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 161 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 162 163 // If all of the demanded bits are known 1 on one side, return the other. 164 // These bits cannot contribute to the result of the 'and' in this 165 // context. 166 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 167 (DemandedMask & ~LHSKnownZero)) 168 return I->getOperand(0); 169 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 170 (DemandedMask & ~RHSKnownZero)) 171 return I->getOperand(1); 172 173 // If all of the demanded bits in the inputs are known zeros, return zero. 174 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 175 return Constant::getNullValue(VTy); 176 177 } else if (I->getOpcode() == Instruction::Or) { 178 // We can simplify (X|Y) -> X or Y in the user's context if we know that 179 // only bits from X or Y are demanded. 180 181 // If either the LHS or the RHS are One, the result is One. 182 ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 183 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 184 185 // If all of the demanded bits are known zero on one side, return the 186 // other. These bits cannot contribute to the result of the 'or' in this 187 // context. 188 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 189 (DemandedMask & ~LHSKnownOne)) 190 return I->getOperand(0); 191 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 192 (DemandedMask & ~RHSKnownOne)) 193 return I->getOperand(1); 194 195 // If all of the potentially set bits on one side are known to be set on 196 // the other side, just use the 'other' side. 197 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 198 (DemandedMask & (~RHSKnownZero))) 199 return I->getOperand(0); 200 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 201 (DemandedMask & (~LHSKnownZero))) 202 return I->getOperand(1); 203 } else if (I->getOpcode() == Instruction::Xor) { 204 // We can simplify (X^Y) -> X or Y in the user's context if we know that 205 // only bits from X or Y are demanded. 206 207 ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 208 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 209 210 // If all of the demanded bits are known zero on one side, return the 211 // other. 212 if ((DemandedMask & RHSKnownZero) == DemandedMask) 213 return I->getOperand(0); 214 if ((DemandedMask & LHSKnownZero) == DemandedMask) 215 return I->getOperand(1); 216 } 217 218 // Compute the KnownZero/KnownOne bits to simplify things downstream. 219 ComputeMaskedBits(I, KnownZero, KnownOne, Depth); 220 return 0; 221 } 222 223 // If this is the root being simplified, allow it to have multiple uses, 224 // just set the DemandedMask to all bits so that we can try to simplify the 225 // operands. This allows visitTruncInst (for example) to simplify the 226 // operand of a trunc without duplicating all the logic below. 227 if (Depth == 0 && !V->hasOneUse()) 228 DemandedMask = APInt::getAllOnesValue(BitWidth); 229 230 switch (I->getOpcode()) { 231 default: 232 ComputeMaskedBits(I, KnownZero, KnownOne, Depth); 233 break; 234 case Instruction::And: 235 // If either the LHS or the RHS are Zero, the result is zero. 236 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 237 RHSKnownZero, RHSKnownOne, Depth+1) || 238 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 239 LHSKnownZero, LHSKnownOne, Depth+1)) 240 return I; 241 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 242 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 243 244 // If all of the demanded bits are known 1 on one side, return the other. 245 // These bits cannot contribute to the result of the 'and'. 246 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 247 (DemandedMask & ~LHSKnownZero)) 248 return I->getOperand(0); 249 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 250 (DemandedMask & ~RHSKnownZero)) 251 return I->getOperand(1); 252 253 // If all of the demanded bits in the inputs are known zeros, return zero. 254 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 255 return Constant::getNullValue(VTy); 256 257 // If the RHS is a constant, see if we can simplify it. 258 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 259 return I; 260 261 // Output known-1 bits are only known if set in both the LHS & RHS. 262 KnownOne = RHSKnownOne & LHSKnownOne; 263 // Output known-0 are known to be clear if zero in either the LHS | RHS. 264 KnownZero = RHSKnownZero | LHSKnownZero; 265 break; 266 case Instruction::Or: 267 // If either the LHS or the RHS are One, the result is One. 268 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 269 RHSKnownZero, RHSKnownOne, Depth+1) || 270 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 271 LHSKnownZero, LHSKnownOne, Depth+1)) 272 return I; 273 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 274 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 275 276 // If all of the demanded bits are known zero on one side, return the other. 277 // These bits cannot contribute to the result of the 'or'. 278 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 279 (DemandedMask & ~LHSKnownOne)) 280 return I->getOperand(0); 281 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 282 (DemandedMask & ~RHSKnownOne)) 283 return I->getOperand(1); 284 285 // If all of the potentially set bits on one side are known to be set on 286 // the other side, just use the 'other' side. 287 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 288 (DemandedMask & (~RHSKnownZero))) 289 return I->getOperand(0); 290 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 291 (DemandedMask & (~LHSKnownZero))) 292 return I->getOperand(1); 293 294 // If the RHS is a constant, see if we can simplify it. 295 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 296 return I; 297 298 // Output known-0 bits are only known if clear in both the LHS & RHS. 299 KnownZero = RHSKnownZero & LHSKnownZero; 300 // Output known-1 are known to be set if set in either the LHS | RHS. 301 KnownOne = RHSKnownOne | LHSKnownOne; 302 break; 303 case Instruction::Xor: { 304 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 305 RHSKnownZero, RHSKnownOne, Depth+1) || 306 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 307 LHSKnownZero, LHSKnownOne, Depth+1)) 308 return I; 309 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 310 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 311 312 // If all of the demanded bits are known zero on one side, return the other. 313 // These bits cannot contribute to the result of the 'xor'. 314 if ((DemandedMask & RHSKnownZero) == DemandedMask) 315 return I->getOperand(0); 316 if ((DemandedMask & LHSKnownZero) == DemandedMask) 317 return I->getOperand(1); 318 319 // If all of the demanded bits are known to be zero on one side or the 320 // other, turn this into an *inclusive* or. 321 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 322 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 323 Instruction *Or = 324 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 325 I->getName()); 326 return InsertNewInstWith(Or, *I); 327 } 328 329 // If all of the demanded bits on one side are known, and all of the set 330 // bits on that side are also known to be set on the other side, turn this 331 // into an AND, as we know the bits will be cleared. 332 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 333 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 334 // all known 335 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 336 Constant *AndC = Constant::getIntegerValue(VTy, 337 ~RHSKnownOne & DemandedMask); 338 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 339 return InsertNewInstWith(And, *I); 340 } 341 } 342 343 // If the RHS is a constant, see if we can simplify it. 344 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 345 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 346 return I; 347 348 // If our LHS is an 'and' and if it has one use, and if any of the bits we 349 // are flipping are known to be set, then the xor is just resetting those 350 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 351 // simplifying both of them. 352 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 353 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 354 isa<ConstantInt>(I->getOperand(1)) && 355 isa<ConstantInt>(LHSInst->getOperand(1)) && 356 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 357 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 358 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 359 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 360 361 Constant *AndC = 362 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 363 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 364 InsertNewInstWith(NewAnd, *I); 365 366 Constant *XorC = 367 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 368 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 369 return InsertNewInstWith(NewXor, *I); 370 } 371 372 // Output known-0 bits are known if clear or set in both the LHS & RHS. 373 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 374 // Output known-1 are known to be set if set in only one of the LHS, RHS. 375 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 376 break; 377 } 378 case Instruction::Select: 379 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, 380 RHSKnownZero, RHSKnownOne, Depth+1) || 381 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 382 LHSKnownZero, LHSKnownOne, Depth+1)) 383 return I; 384 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 385 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 386 387 // If the operands are constants, see if we can simplify them. 388 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 389 ShrinkDemandedConstant(I, 2, DemandedMask)) 390 return I; 391 392 // Only known if known in both the LHS and RHS. 393 KnownOne = RHSKnownOne & LHSKnownOne; 394 KnownZero = RHSKnownZero & LHSKnownZero; 395 break; 396 case Instruction::Trunc: { 397 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 398 DemandedMask = DemandedMask.zext(truncBf); 399 KnownZero = KnownZero.zext(truncBf); 400 KnownOne = KnownOne.zext(truncBf); 401 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 402 KnownZero, KnownOne, Depth+1)) 403 return I; 404 DemandedMask = DemandedMask.trunc(BitWidth); 405 KnownZero = KnownZero.trunc(BitWidth); 406 KnownOne = KnownOne.trunc(BitWidth); 407 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 408 break; 409 } 410 case Instruction::BitCast: 411 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 412 return 0; // vector->int or fp->int? 413 414 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 415 if (VectorType *SrcVTy = 416 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 417 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 418 // Don't touch a bitcast between vectors of different element counts. 419 return 0; 420 } else 421 // Don't touch a scalar-to-vector bitcast. 422 return 0; 423 } else if (I->getOperand(0)->getType()->isVectorTy()) 424 // Don't touch a vector-to-scalar bitcast. 425 return 0; 426 427 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 428 KnownZero, KnownOne, Depth+1)) 429 return I; 430 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 431 break; 432 case Instruction::ZExt: { 433 // Compute the bits in the result that are not present in the input. 434 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 435 436 DemandedMask = DemandedMask.trunc(SrcBitWidth); 437 KnownZero = KnownZero.trunc(SrcBitWidth); 438 KnownOne = KnownOne.trunc(SrcBitWidth); 439 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 440 KnownZero, KnownOne, Depth+1)) 441 return I; 442 DemandedMask = DemandedMask.zext(BitWidth); 443 KnownZero = KnownZero.zext(BitWidth); 444 KnownOne = KnownOne.zext(BitWidth); 445 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 446 // The top bits are known to be zero. 447 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 448 break; 449 } 450 case Instruction::SExt: { 451 // Compute the bits in the result that are not present in the input. 452 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 453 454 APInt InputDemandedBits = DemandedMask & 455 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 456 457 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 458 // If any of the sign extended bits are demanded, we know that the sign 459 // bit is demanded. 460 if ((NewBits & DemandedMask) != 0) 461 InputDemandedBits.setBit(SrcBitWidth-1); 462 463 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 464 KnownZero = KnownZero.trunc(SrcBitWidth); 465 KnownOne = KnownOne.trunc(SrcBitWidth); 466 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, 467 KnownZero, KnownOne, Depth+1)) 468 return I; 469 InputDemandedBits = InputDemandedBits.zext(BitWidth); 470 KnownZero = KnownZero.zext(BitWidth); 471 KnownOne = KnownOne.zext(BitWidth); 472 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 473 474 // If the sign bit of the input is known set or clear, then we know the 475 // top bits of the result. 476 477 // If the input sign bit is known zero, or if the NewBits are not demanded 478 // convert this into a zero extension. 479 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 480 // Convert to ZExt cast 481 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 482 return InsertNewInstWith(NewCast, *I); 483 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 484 KnownOne |= NewBits; 485 } 486 break; 487 } 488 case Instruction::Add: { 489 // Figure out what the input bits are. If the top bits of the and result 490 // are not demanded, then the add doesn't demand them from its input 491 // either. 492 unsigned NLZ = DemandedMask.countLeadingZeros(); 493 494 // If there is a constant on the RHS, there are a variety of xformations 495 // we can do. 496 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 497 // If null, this should be simplified elsewhere. Some of the xforms here 498 // won't work if the RHS is zero. 499 if (RHS->isZero()) 500 break; 501 502 // If the top bit of the output is demanded, demand everything from the 503 // input. Otherwise, we demand all the input bits except NLZ top bits. 504 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); 505 506 // Find information about known zero/one bits in the input. 507 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 508 LHSKnownZero, LHSKnownOne, Depth+1)) 509 return I; 510 511 // If the RHS of the add has bits set that can't affect the input, reduce 512 // the constant. 513 if (ShrinkDemandedConstant(I, 1, InDemandedBits)) 514 return I; 515 516 // Avoid excess work. 517 if (LHSKnownZero == 0 && LHSKnownOne == 0) 518 break; 519 520 // Turn it into OR if input bits are zero. 521 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { 522 Instruction *Or = 523 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 524 I->getName()); 525 return InsertNewInstWith(Or, *I); 526 } 527 528 // We can say something about the output known-zero and known-one bits, 529 // depending on potential carries from the input constant and the 530 // unknowns. For example if the LHS is known to have at most the 0x0F0F0 531 // bits set and the RHS constant is 0x01001, then we know we have a known 532 // one mask of 0x00001 and a known zero mask of 0xE0F0E. 533 534 // To compute this, we first compute the potential carry bits. These are 535 // the bits which may be modified. I'm not aware of a better way to do 536 // this scan. 537 const APInt &RHSVal = RHS->getValue(); 538 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); 539 540 // Now that we know which bits have carries, compute the known-1/0 sets. 541 542 // Bits are known one if they are known zero in one operand and one in the 543 // other, and there is no input carry. 544 KnownOne = ((LHSKnownZero & RHSVal) | 545 (LHSKnownOne & ~RHSVal)) & ~CarryBits; 546 547 // Bits are known zero if they are known zero in both operands and there 548 // is no input carry. 549 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; 550 } else { 551 // If the high-bits of this ADD are not demanded, then it does not demand 552 // the high bits of its LHS or RHS. 553 if (DemandedMask[BitWidth-1] == 0) { 554 // Right fill the mask of bits for this ADD to demand the most 555 // significant bit and all those below it. 556 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 557 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 558 LHSKnownZero, LHSKnownOne, Depth+1) || 559 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 560 LHSKnownZero, LHSKnownOne, Depth+1)) 561 return I; 562 } 563 } 564 break; 565 } 566 case Instruction::Sub: 567 // If the high-bits of this SUB are not demanded, then it does not demand 568 // the high bits of its LHS or RHS. 569 if (DemandedMask[BitWidth-1] == 0) { 570 // Right fill the mask of bits for this SUB to demand the most 571 // significant bit and all those below it. 572 uint32_t NLZ = DemandedMask.countLeadingZeros(); 573 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 574 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 575 LHSKnownZero, LHSKnownOne, Depth+1) || 576 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 577 LHSKnownZero, LHSKnownOne, Depth+1)) 578 return I; 579 } 580 581 // Otherwise just hand the sub off to ComputeMaskedBits to fill in 582 // the known zeros and ones. 583 ComputeMaskedBits(V, KnownZero, KnownOne, Depth); 584 585 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 586 // zero. 587 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) { 588 APInt I0 = C0->getValue(); 589 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) { 590 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0); 591 return InsertNewInstWith(Xor, *I); 592 } 593 } 594 break; 595 case Instruction::Shl: 596 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 597 { 598 Value *VarX; ConstantInt *C1; 599 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) { 600 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 601 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask, 602 KnownZero, KnownOne); 603 if (R) 604 return R; 605 } 606 } 607 608 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 609 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 610 611 // If the shift is NUW/NSW, then it does demand the high bits. 612 ShlOperator *IOp = cast<ShlOperator>(I); 613 if (IOp->hasNoSignedWrap()) 614 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 615 else if (IOp->hasNoUnsignedWrap()) 616 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 617 618 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 619 KnownZero, KnownOne, Depth+1)) 620 return I; 621 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 622 KnownZero <<= ShiftAmt; 623 KnownOne <<= ShiftAmt; 624 // low bits known zero. 625 if (ShiftAmt) 626 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 627 } 628 break; 629 case Instruction::LShr: 630 // For a logical shift right 631 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 632 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 633 634 // Unsigned shift right. 635 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 636 637 // If the shift is exact, then it does demand the low bits (and knows that 638 // they are zero). 639 if (cast<LShrOperator>(I)->isExact()) 640 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 641 642 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 643 KnownZero, KnownOne, Depth+1)) 644 return I; 645 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 646 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 647 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 648 if (ShiftAmt) { 649 // Compute the new bits that are at the top now. 650 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 651 KnownZero |= HighBits; // high bits known zero. 652 } 653 } 654 break; 655 case Instruction::AShr: 656 // If this is an arithmetic shift right and only the low-bit is set, we can 657 // always convert this into a logical shr, even if the shift amount is 658 // variable. The low bit of the shift cannot be an input sign bit unless 659 // the shift amount is >= the size of the datatype, which is undefined. 660 if (DemandedMask == 1) { 661 // Perform the logical shift right. 662 Instruction *NewVal = BinaryOperator::CreateLShr( 663 I->getOperand(0), I->getOperand(1), I->getName()); 664 return InsertNewInstWith(NewVal, *I); 665 } 666 667 // If the sign bit is the only bit demanded by this ashr, then there is no 668 // need to do it, the shift doesn't change the high bit. 669 if (DemandedMask.isSignBit()) 670 return I->getOperand(0); 671 672 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 673 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 674 675 // Signed shift right. 676 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 677 // If any of the "high bits" are demanded, we should set the sign bit as 678 // demanded. 679 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 680 DemandedMaskIn.setBit(BitWidth-1); 681 682 // If the shift is exact, then it does demand the low bits (and knows that 683 // they are zero). 684 if (cast<AShrOperator>(I)->isExact()) 685 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 686 687 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 688 KnownZero, KnownOne, Depth+1)) 689 return I; 690 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 691 // Compute the new bits that are at the top now. 692 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 693 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 694 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 695 696 // Handle the sign bits. 697 APInt SignBit(APInt::getSignBit(BitWidth)); 698 // Adjust to where it is now in the mask. 699 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 700 701 // If the input sign bit is known to be zero, or if none of the top bits 702 // are demanded, turn this into an unsigned shift right. 703 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 704 (HighBits & ~DemandedMask) == HighBits) { 705 // Perform the logical shift right. 706 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0), 707 SA, I->getName()); 708 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact()); 709 return InsertNewInstWith(NewVal, *I); 710 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 711 KnownOne |= HighBits; 712 } 713 } 714 break; 715 case Instruction::SRem: 716 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 717 // X % -1 demands all the bits because we don't want to introduce 718 // INT_MIN % -1 (== undef) by accident. 719 if (Rem->isAllOnesValue()) 720 break; 721 APInt RA = Rem->getValue().abs(); 722 if (RA.isPowerOf2()) { 723 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 724 return I->getOperand(0); 725 726 APInt LowBits = RA - 1; 727 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 728 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, 729 LHSKnownZero, LHSKnownOne, Depth+1)) 730 return I; 731 732 // The low bits of LHS are unchanged by the srem. 733 KnownZero = LHSKnownZero & LowBits; 734 KnownOne = LHSKnownOne & LowBits; 735 736 // If LHS is non-negative or has all low bits zero, then the upper bits 737 // are all zero. 738 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 739 KnownZero |= ~LowBits; 740 741 // If LHS is negative and not all low bits are zero, then the upper bits 742 // are all one. 743 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 744 KnownOne |= ~LowBits; 745 746 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 747 } 748 } 749 750 // The sign bit is the LHS's sign bit, except when the result of the 751 // remainder is zero. 752 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 753 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 754 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 755 // If it's known zero, our sign bit is also zero. 756 if (LHSKnownZero.isNegative()) 757 KnownZero.setBit(KnownZero.getBitWidth() - 1); 758 } 759 break; 760 case Instruction::URem: { 761 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 762 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 763 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, 764 KnownZero2, KnownOne2, Depth+1) || 765 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, 766 KnownZero2, KnownOne2, Depth+1)) 767 return I; 768 769 unsigned Leaders = KnownZero2.countLeadingOnes(); 770 Leaders = std::max(Leaders, 771 KnownZero2.countLeadingOnes()); 772 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 773 break; 774 } 775 case Instruction::Call: 776 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 777 switch (II->getIntrinsicID()) { 778 default: break; 779 case Intrinsic::bswap: { 780 // If the only bits demanded come from one byte of the bswap result, 781 // just shift the input byte into position to eliminate the bswap. 782 unsigned NLZ = DemandedMask.countLeadingZeros(); 783 unsigned NTZ = DemandedMask.countTrailingZeros(); 784 785 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 786 // we need all the bits down to bit 8. Likewise, round NLZ. If we 787 // have 14 leading zeros, round to 8. 788 NLZ &= ~7; 789 NTZ &= ~7; 790 // If we need exactly one byte, we can do this transformation. 791 if (BitWidth-NLZ-NTZ == 8) { 792 unsigned ResultBit = NTZ; 793 unsigned InputBit = BitWidth-NTZ-8; 794 795 // Replace this with either a left or right shift to get the byte into 796 // the right place. 797 Instruction *NewVal; 798 if (InputBit > ResultBit) 799 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 800 ConstantInt::get(I->getType(), InputBit-ResultBit)); 801 else 802 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 803 ConstantInt::get(I->getType(), ResultBit-InputBit)); 804 NewVal->takeName(I); 805 return InsertNewInstWith(NewVal, *I); 806 } 807 808 // TODO: Could compute known zero/one bits based on the input. 809 break; 810 } 811 case Intrinsic::x86_sse42_crc32_64_8: 812 case Intrinsic::x86_sse42_crc32_64_64: 813 KnownZero = APInt::getHighBitsSet(64, 32); 814 return 0; 815 } 816 } 817 ComputeMaskedBits(V, KnownZero, KnownOne, Depth); 818 break; 819 } 820 821 // If the client is only demanding bits that we know, return the known 822 // constant. 823 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 824 return Constant::getIntegerValue(VTy, KnownOne); 825 return 0; 826 } 827 828 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 829 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 830 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 831 /// of "C2-C1". 832 /// 833 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 834 /// ..., bn}, without considering the specific value X is holding. 835 /// This transformation is legal iff one of following conditions is hold: 836 /// 1) All the bit in S are 0, in this case E1 == E2. 837 /// 2) We don't care those bits in S, per the input DemandedMask. 838 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 839 /// rest bits. 840 /// 841 /// Currently we only test condition 2). 842 /// 843 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 844 /// not successful. 845 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr, 846 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) { 847 848 unsigned ShlAmt = cast<ConstantInt>(Shl->getOperand(1))->getZExtValue(); 849 unsigned ShrAmt = cast<ConstantInt>(Shr->getOperand(1))->getZExtValue(); 850 851 KnownOne.clearAllBits(); 852 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1); 853 KnownZero &= DemandedMask; 854 855 if (ShlAmt == 0 || ShrAmt == 0) 856 return 0; 857 858 Value *VarX = Shr->getOperand(0); 859 Type *Ty = VarX->getType(); 860 861 APInt BitMask1(APInt::getAllOnesValue(Ty->getIntegerBitWidth())); 862 APInt BitMask2(APInt::getAllOnesValue(Ty->getIntegerBitWidth())); 863 864 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 865 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 866 (BitMask1.ashr(ShrAmt) << ShlAmt); 867 868 if (ShrAmt <= ShlAmt) { 869 BitMask2 <<= (ShlAmt - ShrAmt); 870 } else { 871 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 872 BitMask2.ashr(ShrAmt - ShlAmt); 873 } 874 875 // Check if condition-2 (see the comment to this function) is satified. 876 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 877 if (ShrAmt == ShlAmt) 878 return VarX; 879 880 if (!Shr->hasOneUse()) 881 return 0; 882 883 BinaryOperator *New; 884 if (ShrAmt < ShlAmt) { 885 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 886 New = BinaryOperator::CreateShl(VarX, Amt); 887 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 888 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 889 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 890 } else { 891 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 892 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 893 BinaryOperator::CreateAShr(VarX, Amt); 894 if (cast<BinaryOperator>(Shr)->isExact()) 895 New->setIsExact(true); 896 } 897 898 return InsertNewInstWith(New, *Shl); 899 } 900 901 return 0; 902 } 903 904 /// SimplifyDemandedVectorElts - The specified value produces a vector with 905 /// any number of elements. DemandedElts contains the set of elements that are 906 /// actually used by the caller. This method analyzes which elements of the 907 /// operand are undef and returns that information in UndefElts. 908 /// 909 /// If the information about demanded elements can be used to simplify the 910 /// operation, the operation is simplified, then the resultant value is 911 /// returned. This returns null if no change was made. 912 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 913 APInt &UndefElts, 914 unsigned Depth) { 915 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 916 APInt EltMask(APInt::getAllOnesValue(VWidth)); 917 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 918 919 if (isa<UndefValue>(V)) { 920 // If the entire vector is undefined, just return this info. 921 UndefElts = EltMask; 922 return 0; 923 } 924 925 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 926 UndefElts = EltMask; 927 return UndefValue::get(V->getType()); 928 } 929 930 UndefElts = 0; 931 932 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 933 if (Constant *C = dyn_cast<Constant>(V)) { 934 // Check if this is identity. If so, return 0 since we are not simplifying 935 // anything. 936 if (DemandedElts.isAllOnesValue()) 937 return 0; 938 939 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 940 Constant *Undef = UndefValue::get(EltTy); 941 942 SmallVector<Constant*, 16> Elts; 943 for (unsigned i = 0; i != VWidth; ++i) { 944 if (!DemandedElts[i]) { // If not demanded, set to undef. 945 Elts.push_back(Undef); 946 UndefElts.setBit(i); 947 continue; 948 } 949 950 Constant *Elt = C->getAggregateElement(i); 951 if (Elt == 0) return 0; 952 953 if (isa<UndefValue>(Elt)) { // Already undef. 954 Elts.push_back(Undef); 955 UndefElts.setBit(i); 956 } else { // Otherwise, defined. 957 Elts.push_back(Elt); 958 } 959 } 960 961 // If we changed the constant, return it. 962 Constant *NewCV = ConstantVector::get(Elts); 963 return NewCV != C ? NewCV : 0; 964 } 965 966 // Limit search depth. 967 if (Depth == 10) 968 return 0; 969 970 // If multiple users are using the root value, proceed with 971 // simplification conservatively assuming that all elements 972 // are needed. 973 if (!V->hasOneUse()) { 974 // Quit if we find multiple users of a non-root value though. 975 // They'll be handled when it's their turn to be visited by 976 // the main instcombine process. 977 if (Depth != 0) 978 // TODO: Just compute the UndefElts information recursively. 979 return 0; 980 981 // Conservatively assume that all elements are needed. 982 DemandedElts = EltMask; 983 } 984 985 Instruction *I = dyn_cast<Instruction>(V); 986 if (!I) return 0; // Only analyze instructions. 987 988 bool MadeChange = false; 989 APInt UndefElts2(VWidth, 0); 990 Value *TmpV; 991 switch (I->getOpcode()) { 992 default: break; 993 994 case Instruction::InsertElement: { 995 // If this is a variable index, we don't know which element it overwrites. 996 // demand exactly the same input as we produce. 997 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 998 if (Idx == 0) { 999 // Note that we can't propagate undef elt info, because we don't know 1000 // which elt is getting updated. 1001 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1002 UndefElts2, Depth+1); 1003 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1004 break; 1005 } 1006 1007 // If this is inserting an element that isn't demanded, remove this 1008 // insertelement. 1009 unsigned IdxNo = Idx->getZExtValue(); 1010 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1011 Worklist.Add(I); 1012 return I->getOperand(0); 1013 } 1014 1015 // Otherwise, the element inserted overwrites whatever was there, so the 1016 // input demanded set is simpler than the output set. 1017 APInt DemandedElts2 = DemandedElts; 1018 DemandedElts2.clearBit(IdxNo); 1019 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1020 UndefElts, Depth+1); 1021 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1022 1023 // The inserted element is defined. 1024 UndefElts.clearBit(IdxNo); 1025 break; 1026 } 1027 case Instruction::ShuffleVector: { 1028 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1029 uint64_t LHSVWidth = 1030 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 1031 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1032 for (unsigned i = 0; i < VWidth; i++) { 1033 if (DemandedElts[i]) { 1034 unsigned MaskVal = Shuffle->getMaskValue(i); 1035 if (MaskVal != -1u) { 1036 assert(MaskVal < LHSVWidth * 2 && 1037 "shufflevector mask index out of range!"); 1038 if (MaskVal < LHSVWidth) 1039 LeftDemanded.setBit(MaskVal); 1040 else 1041 RightDemanded.setBit(MaskVal - LHSVWidth); 1042 } 1043 } 1044 } 1045 1046 APInt UndefElts4(LHSVWidth, 0); 1047 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1048 UndefElts4, Depth+1); 1049 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1050 1051 APInt UndefElts3(LHSVWidth, 0); 1052 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1053 UndefElts3, Depth+1); 1054 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1055 1056 bool NewUndefElts = false; 1057 for (unsigned i = 0; i < VWidth; i++) { 1058 unsigned MaskVal = Shuffle->getMaskValue(i); 1059 if (MaskVal == -1u) { 1060 UndefElts.setBit(i); 1061 } else if (!DemandedElts[i]) { 1062 NewUndefElts = true; 1063 UndefElts.setBit(i); 1064 } else if (MaskVal < LHSVWidth) { 1065 if (UndefElts4[MaskVal]) { 1066 NewUndefElts = true; 1067 UndefElts.setBit(i); 1068 } 1069 } else { 1070 if (UndefElts3[MaskVal - LHSVWidth]) { 1071 NewUndefElts = true; 1072 UndefElts.setBit(i); 1073 } 1074 } 1075 } 1076 1077 if (NewUndefElts) { 1078 // Add additional discovered undefs. 1079 SmallVector<Constant*, 16> Elts; 1080 for (unsigned i = 0; i < VWidth; ++i) { 1081 if (UndefElts[i]) 1082 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1083 else 1084 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1085 Shuffle->getMaskValue(i))); 1086 } 1087 I->setOperand(2, ConstantVector::get(Elts)); 1088 MadeChange = true; 1089 } 1090 break; 1091 } 1092 case Instruction::Select: { 1093 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1094 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1095 for (unsigned i = 0; i < VWidth; i++) { 1096 if (CV->getAggregateElement(i)->isNullValue()) 1097 LeftDemanded.clearBit(i); 1098 else 1099 RightDemanded.clearBit(i); 1100 } 1101 } 1102 1103 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, 1104 UndefElts, Depth+1); 1105 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1106 1107 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1108 UndefElts2, Depth+1); 1109 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1110 1111 // Output elements are undefined if both are undefined. 1112 UndefElts &= UndefElts2; 1113 break; 1114 } 1115 case Instruction::BitCast: { 1116 // Vector->vector casts only. 1117 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1118 if (!VTy) break; 1119 unsigned InVWidth = VTy->getNumElements(); 1120 APInt InputDemandedElts(InVWidth, 0); 1121 unsigned Ratio; 1122 1123 if (VWidth == InVWidth) { 1124 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1125 // elements as are demanded of us. 1126 Ratio = 1; 1127 InputDemandedElts = DemandedElts; 1128 } else if (VWidth > InVWidth) { 1129 // Untested so far. 1130 break; 1131 1132 // If there are more elements in the result than there are in the source, 1133 // then an input element is live if any of the corresponding output 1134 // elements are live. 1135 Ratio = VWidth/InVWidth; 1136 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1137 if (DemandedElts[OutIdx]) 1138 InputDemandedElts.setBit(OutIdx/Ratio); 1139 } 1140 } else { 1141 // Untested so far. 1142 break; 1143 1144 // If there are more elements in the source than there are in the result, 1145 // then an input element is live if the corresponding output element is 1146 // live. 1147 Ratio = InVWidth/VWidth; 1148 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1149 if (DemandedElts[InIdx/Ratio]) 1150 InputDemandedElts.setBit(InIdx); 1151 } 1152 1153 // div/rem demand all inputs, because they don't want divide by zero. 1154 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1155 UndefElts2, Depth+1); 1156 if (TmpV) { 1157 I->setOperand(0, TmpV); 1158 MadeChange = true; 1159 } 1160 1161 UndefElts = UndefElts2; 1162 if (VWidth > InVWidth) { 1163 llvm_unreachable("Unimp"); 1164 // If there are more elements in the result than there are in the source, 1165 // then an output element is undef if the corresponding input element is 1166 // undef. 1167 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1168 if (UndefElts2[OutIdx/Ratio]) 1169 UndefElts.setBit(OutIdx); 1170 } else if (VWidth < InVWidth) { 1171 llvm_unreachable("Unimp"); 1172 // If there are more elements in the source than there are in the result, 1173 // then a result element is undef if all of the corresponding input 1174 // elements are undef. 1175 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. 1176 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1177 if (!UndefElts2[InIdx]) // Not undef? 1178 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit. 1179 } 1180 break; 1181 } 1182 case Instruction::And: 1183 case Instruction::Or: 1184 case Instruction::Xor: 1185 case Instruction::Add: 1186 case Instruction::Sub: 1187 case Instruction::Mul: 1188 // div/rem demand all inputs, because they don't want divide by zero. 1189 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1190 UndefElts, Depth+1); 1191 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1192 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1193 UndefElts2, Depth+1); 1194 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1195 1196 // Output elements are undefined if both are undefined. Consider things 1197 // like undef&0. The result is known zero, not undef. 1198 UndefElts &= UndefElts2; 1199 break; 1200 case Instruction::FPTrunc: 1201 case Instruction::FPExt: 1202 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1203 UndefElts, Depth+1); 1204 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1205 break; 1206 1207 case Instruction::Call: { 1208 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1209 if (!II) break; 1210 switch (II->getIntrinsicID()) { 1211 default: break; 1212 1213 // Binary vector operations that work column-wise. A dest element is a 1214 // function of the corresponding input elements from the two inputs. 1215 case Intrinsic::x86_sse_sub_ss: 1216 case Intrinsic::x86_sse_mul_ss: 1217 case Intrinsic::x86_sse_min_ss: 1218 case Intrinsic::x86_sse_max_ss: 1219 case Intrinsic::x86_sse2_sub_sd: 1220 case Intrinsic::x86_sse2_mul_sd: 1221 case Intrinsic::x86_sse2_min_sd: 1222 case Intrinsic::x86_sse2_max_sd: 1223 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1224 UndefElts, Depth+1); 1225 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1226 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1227 UndefElts2, Depth+1); 1228 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1229 1230 // If only the low elt is demanded and this is a scalarizable intrinsic, 1231 // scalarize it now. 1232 if (DemandedElts == 1) { 1233 switch (II->getIntrinsicID()) { 1234 default: break; 1235 case Intrinsic::x86_sse_sub_ss: 1236 case Intrinsic::x86_sse_mul_ss: 1237 case Intrinsic::x86_sse2_sub_sd: 1238 case Intrinsic::x86_sse2_mul_sd: 1239 // TODO: Lower MIN/MAX/ABS/etc 1240 Value *LHS = II->getArgOperand(0); 1241 Value *RHS = II->getArgOperand(1); 1242 // Extract the element as scalars. 1243 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 1244 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1245 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, 1246 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1247 1248 switch (II->getIntrinsicID()) { 1249 default: llvm_unreachable("Case stmts out of sync!"); 1250 case Intrinsic::x86_sse_sub_ss: 1251 case Intrinsic::x86_sse2_sub_sd: 1252 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, 1253 II->getName()), *II); 1254 break; 1255 case Intrinsic::x86_sse_mul_ss: 1256 case Intrinsic::x86_sse2_mul_sd: 1257 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, 1258 II->getName()), *II); 1259 break; 1260 } 1261 1262 Instruction *New = 1263 InsertElementInst::Create( 1264 UndefValue::get(II->getType()), TmpV, 1265 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), 1266 II->getName()); 1267 InsertNewInstWith(New, *II); 1268 return New; 1269 } 1270 } 1271 1272 // Output elements are undefined if both are undefined. Consider things 1273 // like undef&0. The result is known zero, not undef. 1274 UndefElts &= UndefElts2; 1275 break; 1276 } 1277 break; 1278 } 1279 } 1280 return MadeChange ? I : 0; 1281 } 1282