Home | History | Annotate | Download | only in Sema
      1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements type-related semantic analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTConsumer.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/TypeLoc.h"
     23 #include "clang/AST/TypeLocVisitor.h"
     24 #include "clang/Basic/OpenCL.h"
     25 #include "clang/Basic/PartialDiagnostic.h"
     26 #include "clang/Basic/TargetInfo.h"
     27 #include "clang/Lex/Preprocessor.h"
     28 #include "clang/Parse/ParseDiagnostic.h"
     29 #include "clang/Sema/DeclSpec.h"
     30 #include "clang/Sema/DelayedDiagnostic.h"
     31 #include "clang/Sema/Lookup.h"
     32 #include "clang/Sema/ScopeInfo.h"
     33 #include "clang/Sema/Template.h"
     34 #include "llvm/ADT/SmallPtrSet.h"
     35 #include "llvm/ADT/SmallString.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "TypeLocBuilder.h"
     38 
     39 using namespace clang;
     40 
     41 enum TypeDiagSelector {
     42   TDS_Function,
     43   TDS_Pointer,
     44   TDS_ObjCObjOrBlock
     45 };
     46 
     47 /// isOmittedBlockReturnType - Return true if this declarator is missing a
     48 /// return type because this is a omitted return type on a block literal.
     49 static bool isOmittedBlockReturnType(const Declarator &D) {
     50   if (D.getContext() != Declarator::BlockLiteralContext ||
     51       D.getDeclSpec().hasTypeSpecifier())
     52     return false;
     53 
     54   if (D.getNumTypeObjects() == 0)
     55     return true;   // ^{ ... }
     56 
     57   if (D.getNumTypeObjects() == 1 &&
     58       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
     59     return true;   // ^(int X, float Y) { ... }
     60 
     61   return false;
     62 }
     63 
     64 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
     65 /// doesn't apply to the given type.
     66 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
     67                                      QualType type) {
     68   TypeDiagSelector WhichType;
     69   bool useExpansionLoc = true;
     70   switch (attr.getKind()) {
     71   case AttributeList::AT_ObjCGC:        WhichType = TDS_Pointer; break;
     72   case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
     73   default:
     74     // Assume everything else was a function attribute.
     75     WhichType = TDS_Function;
     76     useExpansionLoc = false;
     77     break;
     78   }
     79 
     80   SourceLocation loc = attr.getLoc();
     81   StringRef name = attr.getName()->getName();
     82 
     83   // The GC attributes are usually written with macros;  special-case them.
     84   if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
     85     if (attr.getParameterName()->isStr("strong")) {
     86       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
     87     } else if (attr.getParameterName()->isStr("weak")) {
     88       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
     89     }
     90   }
     91 
     92   S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
     93     << type;
     94 }
     95 
     96 // objc_gc applies to Objective-C pointers or, otherwise, to the
     97 // smallest available pointer type (i.e. 'void*' in 'void**').
     98 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
     99     case AttributeList::AT_ObjCGC: \
    100     case AttributeList::AT_ObjCOwnership
    101 
    102 // Function type attributes.
    103 #define FUNCTION_TYPE_ATTRS_CASELIST \
    104     case AttributeList::AT_NoReturn: \
    105     case AttributeList::AT_CDecl: \
    106     case AttributeList::AT_FastCall: \
    107     case AttributeList::AT_StdCall: \
    108     case AttributeList::AT_ThisCall: \
    109     case AttributeList::AT_Pascal: \
    110     case AttributeList::AT_Regparm: \
    111     case AttributeList::AT_Pcs: \
    112     case AttributeList::AT_PnaclCall: \
    113     case AttributeList::AT_IntelOclBicc
    114 
    115 // Microsoft-specific type qualifiers.
    116 #define MS_TYPE_ATTRS_CASELIST  \
    117     case AttributeList::AT_Ptr32: \
    118     case AttributeList::AT_Ptr64: \
    119     case AttributeList::AT_SPtr: \
    120     case AttributeList::AT_UPtr
    121 
    122 namespace {
    123   /// An object which stores processing state for the entire
    124   /// GetTypeForDeclarator process.
    125   class TypeProcessingState {
    126     Sema &sema;
    127 
    128     /// The declarator being processed.
    129     Declarator &declarator;
    130 
    131     /// The index of the declarator chunk we're currently processing.
    132     /// May be the total number of valid chunks, indicating the
    133     /// DeclSpec.
    134     unsigned chunkIndex;
    135 
    136     /// Whether there are non-trivial modifications to the decl spec.
    137     bool trivial;
    138 
    139     /// Whether we saved the attributes in the decl spec.
    140     bool hasSavedAttrs;
    141 
    142     /// The original set of attributes on the DeclSpec.
    143     SmallVector<AttributeList*, 2> savedAttrs;
    144 
    145     /// A list of attributes to diagnose the uselessness of when the
    146     /// processing is complete.
    147     SmallVector<AttributeList*, 2> ignoredTypeAttrs;
    148 
    149   public:
    150     TypeProcessingState(Sema &sema, Declarator &declarator)
    151       : sema(sema), declarator(declarator),
    152         chunkIndex(declarator.getNumTypeObjects()),
    153         trivial(true), hasSavedAttrs(false) {}
    154 
    155     Sema &getSema() const {
    156       return sema;
    157     }
    158 
    159     Declarator &getDeclarator() const {
    160       return declarator;
    161     }
    162 
    163     bool isProcessingDeclSpec() const {
    164       return chunkIndex == declarator.getNumTypeObjects();
    165     }
    166 
    167     unsigned getCurrentChunkIndex() const {
    168       return chunkIndex;
    169     }
    170 
    171     void setCurrentChunkIndex(unsigned idx) {
    172       assert(idx <= declarator.getNumTypeObjects());
    173       chunkIndex = idx;
    174     }
    175 
    176     AttributeList *&getCurrentAttrListRef() const {
    177       if (isProcessingDeclSpec())
    178         return getMutableDeclSpec().getAttributes().getListRef();
    179       return declarator.getTypeObject(chunkIndex).getAttrListRef();
    180     }
    181 
    182     /// Save the current set of attributes on the DeclSpec.
    183     void saveDeclSpecAttrs() {
    184       // Don't try to save them multiple times.
    185       if (hasSavedAttrs) return;
    186 
    187       DeclSpec &spec = getMutableDeclSpec();
    188       for (AttributeList *attr = spec.getAttributes().getList(); attr;
    189              attr = attr->getNext())
    190         savedAttrs.push_back(attr);
    191       trivial &= savedAttrs.empty();
    192       hasSavedAttrs = true;
    193     }
    194 
    195     /// Record that we had nowhere to put the given type attribute.
    196     /// We will diagnose such attributes later.
    197     void addIgnoredTypeAttr(AttributeList &attr) {
    198       ignoredTypeAttrs.push_back(&attr);
    199     }
    200 
    201     /// Diagnose all the ignored type attributes, given that the
    202     /// declarator worked out to the given type.
    203     void diagnoseIgnoredTypeAttrs(QualType type) const {
    204       for (SmallVectorImpl<AttributeList*>::const_iterator
    205              i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
    206            i != e; ++i)
    207         diagnoseBadTypeAttribute(getSema(), **i, type);
    208     }
    209 
    210     ~TypeProcessingState() {
    211       if (trivial) return;
    212 
    213       restoreDeclSpecAttrs();
    214     }
    215 
    216   private:
    217     DeclSpec &getMutableDeclSpec() const {
    218       return const_cast<DeclSpec&>(declarator.getDeclSpec());
    219     }
    220 
    221     void restoreDeclSpecAttrs() {
    222       assert(hasSavedAttrs);
    223 
    224       if (savedAttrs.empty()) {
    225         getMutableDeclSpec().getAttributes().set(0);
    226         return;
    227       }
    228 
    229       getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
    230       for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
    231         savedAttrs[i]->setNext(savedAttrs[i+1]);
    232       savedAttrs.back()->setNext(0);
    233     }
    234   };
    235 
    236   /// Basically std::pair except that we really want to avoid an
    237   /// implicit operator= for safety concerns.  It's also a minor
    238   /// link-time optimization for this to be a private type.
    239   struct AttrAndList {
    240     /// The attribute.
    241     AttributeList &first;
    242 
    243     /// The head of the list the attribute is currently in.
    244     AttributeList *&second;
    245 
    246     AttrAndList(AttributeList &attr, AttributeList *&head)
    247       : first(attr), second(head) {}
    248   };
    249 }
    250 
    251 namespace llvm {
    252   template <> struct isPodLike<AttrAndList> {
    253     static const bool value = true;
    254   };
    255 }
    256 
    257 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
    258   attr.setNext(head);
    259   head = &attr;
    260 }
    261 
    262 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
    263   if (head == &attr) {
    264     head = attr.getNext();
    265     return;
    266   }
    267 
    268   AttributeList *cur = head;
    269   while (true) {
    270     assert(cur && cur->getNext() && "ran out of attrs?");
    271     if (cur->getNext() == &attr) {
    272       cur->setNext(attr.getNext());
    273       return;
    274     }
    275     cur = cur->getNext();
    276   }
    277 }
    278 
    279 static void moveAttrFromListToList(AttributeList &attr,
    280                                    AttributeList *&fromList,
    281                                    AttributeList *&toList) {
    282   spliceAttrOutOfList(attr, fromList);
    283   spliceAttrIntoList(attr, toList);
    284 }
    285 
    286 /// The location of a type attribute.
    287 enum TypeAttrLocation {
    288   /// The attribute is in the decl-specifier-seq.
    289   TAL_DeclSpec,
    290   /// The attribute is part of a DeclaratorChunk.
    291   TAL_DeclChunk,
    292   /// The attribute is immediately after the declaration's name.
    293   TAL_DeclName
    294 };
    295 
    296 static void processTypeAttrs(TypeProcessingState &state,
    297                              QualType &type, TypeAttrLocation TAL,
    298                              AttributeList *attrs);
    299 
    300 static bool handleFunctionTypeAttr(TypeProcessingState &state,
    301                                    AttributeList &attr,
    302                                    QualType &type);
    303 
    304 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
    305                                              AttributeList &attr,
    306                                              QualType &type);
    307 
    308 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
    309                                  AttributeList &attr, QualType &type);
    310 
    311 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
    312                                        AttributeList &attr, QualType &type);
    313 
    314 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
    315                                       AttributeList &attr, QualType &type) {
    316   if (attr.getKind() == AttributeList::AT_ObjCGC)
    317     return handleObjCGCTypeAttr(state, attr, type);
    318   assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
    319   return handleObjCOwnershipTypeAttr(state, attr, type);
    320 }
    321 
    322 /// Given the index of a declarator chunk, check whether that chunk
    323 /// directly specifies the return type of a function and, if so, find
    324 /// an appropriate place for it.
    325 ///
    326 /// \param i - a notional index which the search will start
    327 ///   immediately inside
    328 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
    329                                                 unsigned i) {
    330   assert(i <= declarator.getNumTypeObjects());
    331 
    332   DeclaratorChunk *result = 0;
    333 
    334   // First, look inwards past parens for a function declarator.
    335   for (; i != 0; --i) {
    336     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
    337     switch (fnChunk.Kind) {
    338     case DeclaratorChunk::Paren:
    339       continue;
    340 
    341     // If we find anything except a function, bail out.
    342     case DeclaratorChunk::Pointer:
    343     case DeclaratorChunk::BlockPointer:
    344     case DeclaratorChunk::Array:
    345     case DeclaratorChunk::Reference:
    346     case DeclaratorChunk::MemberPointer:
    347       return result;
    348 
    349     // If we do find a function declarator, scan inwards from that,
    350     // looking for a block-pointer declarator.
    351     case DeclaratorChunk::Function:
    352       for (--i; i != 0; --i) {
    353         DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
    354         switch (blockChunk.Kind) {
    355         case DeclaratorChunk::Paren:
    356         case DeclaratorChunk::Pointer:
    357         case DeclaratorChunk::Array:
    358         case DeclaratorChunk::Function:
    359         case DeclaratorChunk::Reference:
    360         case DeclaratorChunk::MemberPointer:
    361           continue;
    362         case DeclaratorChunk::BlockPointer:
    363           result = &blockChunk;
    364           goto continue_outer;
    365         }
    366         llvm_unreachable("bad declarator chunk kind");
    367       }
    368 
    369       // If we run out of declarators doing that, we're done.
    370       return result;
    371     }
    372     llvm_unreachable("bad declarator chunk kind");
    373 
    374     // Okay, reconsider from our new point.
    375   continue_outer: ;
    376   }
    377 
    378   // Ran out of chunks, bail out.
    379   return result;
    380 }
    381 
    382 /// Given that an objc_gc attribute was written somewhere on a
    383 /// declaration *other* than on the declarator itself (for which, use
    384 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
    385 /// didn't apply in whatever position it was written in, try to move
    386 /// it to a more appropriate position.
    387 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
    388                                           AttributeList &attr,
    389                                           QualType type) {
    390   Declarator &declarator = state.getDeclarator();
    391 
    392   // Move it to the outermost normal or block pointer declarator.
    393   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
    394     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
    395     switch (chunk.Kind) {
    396     case DeclaratorChunk::Pointer:
    397     case DeclaratorChunk::BlockPointer: {
    398       // But don't move an ARC ownership attribute to the return type
    399       // of a block.
    400       DeclaratorChunk *destChunk = 0;
    401       if (state.isProcessingDeclSpec() &&
    402           attr.getKind() == AttributeList::AT_ObjCOwnership)
    403         destChunk = maybeMovePastReturnType(declarator, i - 1);
    404       if (!destChunk) destChunk = &chunk;
    405 
    406       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    407                              destChunk->getAttrListRef());
    408       return;
    409     }
    410 
    411     case DeclaratorChunk::Paren:
    412     case DeclaratorChunk::Array:
    413       continue;
    414 
    415     // We may be starting at the return type of a block.
    416     case DeclaratorChunk::Function:
    417       if (state.isProcessingDeclSpec() &&
    418           attr.getKind() == AttributeList::AT_ObjCOwnership) {
    419         if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
    420           moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    421                                  dest->getAttrListRef());
    422           return;
    423         }
    424       }
    425       goto error;
    426 
    427     // Don't walk through these.
    428     case DeclaratorChunk::Reference:
    429     case DeclaratorChunk::MemberPointer:
    430       goto error;
    431     }
    432   }
    433  error:
    434 
    435   diagnoseBadTypeAttribute(state.getSema(), attr, type);
    436 }
    437 
    438 /// Distribute an objc_gc type attribute that was written on the
    439 /// declarator.
    440 static void
    441 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
    442                                             AttributeList &attr,
    443                                             QualType &declSpecType) {
    444   Declarator &declarator = state.getDeclarator();
    445 
    446   // objc_gc goes on the innermost pointer to something that's not a
    447   // pointer.
    448   unsigned innermost = -1U;
    449   bool considerDeclSpec = true;
    450   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    451     DeclaratorChunk &chunk = declarator.getTypeObject(i);
    452     switch (chunk.Kind) {
    453     case DeclaratorChunk::Pointer:
    454     case DeclaratorChunk::BlockPointer:
    455       innermost = i;
    456       continue;
    457 
    458     case DeclaratorChunk::Reference:
    459     case DeclaratorChunk::MemberPointer:
    460     case DeclaratorChunk::Paren:
    461     case DeclaratorChunk::Array:
    462       continue;
    463 
    464     case DeclaratorChunk::Function:
    465       considerDeclSpec = false;
    466       goto done;
    467     }
    468   }
    469  done:
    470 
    471   // That might actually be the decl spec if we weren't blocked by
    472   // anything in the declarator.
    473   if (considerDeclSpec) {
    474     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
    475       // Splice the attribute into the decl spec.  Prevents the
    476       // attribute from being applied multiple times and gives
    477       // the source-location-filler something to work with.
    478       state.saveDeclSpecAttrs();
    479       moveAttrFromListToList(attr, declarator.getAttrListRef(),
    480                declarator.getMutableDeclSpec().getAttributes().getListRef());
    481       return;
    482     }
    483   }
    484 
    485   // Otherwise, if we found an appropriate chunk, splice the attribute
    486   // into it.
    487   if (innermost != -1U) {
    488     moveAttrFromListToList(attr, declarator.getAttrListRef(),
    489                        declarator.getTypeObject(innermost).getAttrListRef());
    490     return;
    491   }
    492 
    493   // Otherwise, diagnose when we're done building the type.
    494   spliceAttrOutOfList(attr, declarator.getAttrListRef());
    495   state.addIgnoredTypeAttr(attr);
    496 }
    497 
    498 /// A function type attribute was written somewhere in a declaration
    499 /// *other* than on the declarator itself or in the decl spec.  Given
    500 /// that it didn't apply in whatever position it was written in, try
    501 /// to move it to a more appropriate position.
    502 static void distributeFunctionTypeAttr(TypeProcessingState &state,
    503                                        AttributeList &attr,
    504                                        QualType type) {
    505   Declarator &declarator = state.getDeclarator();
    506 
    507   // Try to push the attribute from the return type of a function to
    508   // the function itself.
    509   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
    510     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
    511     switch (chunk.Kind) {
    512     case DeclaratorChunk::Function:
    513       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    514                              chunk.getAttrListRef());
    515       return;
    516 
    517     case DeclaratorChunk::Paren:
    518     case DeclaratorChunk::Pointer:
    519     case DeclaratorChunk::BlockPointer:
    520     case DeclaratorChunk::Array:
    521     case DeclaratorChunk::Reference:
    522     case DeclaratorChunk::MemberPointer:
    523       continue;
    524     }
    525   }
    526 
    527   diagnoseBadTypeAttribute(state.getSema(), attr, type);
    528 }
    529 
    530 /// Try to distribute a function type attribute to the innermost
    531 /// function chunk or type.  Returns true if the attribute was
    532 /// distributed, false if no location was found.
    533 static bool
    534 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
    535                                       AttributeList &attr,
    536                                       AttributeList *&attrList,
    537                                       QualType &declSpecType) {
    538   Declarator &declarator = state.getDeclarator();
    539 
    540   // Put it on the innermost function chunk, if there is one.
    541   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    542     DeclaratorChunk &chunk = declarator.getTypeObject(i);
    543     if (chunk.Kind != DeclaratorChunk::Function) continue;
    544 
    545     moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
    546     return true;
    547   }
    548 
    549   return handleFunctionTypeAttr(state, attr, declSpecType);
    550 }
    551 
    552 /// A function type attribute was written in the decl spec.  Try to
    553 /// apply it somewhere.
    554 static void
    555 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
    556                                        AttributeList &attr,
    557                                        QualType &declSpecType) {
    558   state.saveDeclSpecAttrs();
    559 
    560   // C++11 attributes before the decl specifiers actually appertain to
    561   // the declarators. Move them straight there. We don't support the
    562   // 'put them wherever you like' semantics we allow for GNU attributes.
    563   if (attr.isCXX11Attribute()) {
    564     moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    565                            state.getDeclarator().getAttrListRef());
    566     return;
    567   }
    568 
    569   // Try to distribute to the innermost.
    570   if (distributeFunctionTypeAttrToInnermost(state, attr,
    571                                             state.getCurrentAttrListRef(),
    572                                             declSpecType))
    573     return;
    574 
    575   // If that failed, diagnose the bad attribute when the declarator is
    576   // fully built.
    577   state.addIgnoredTypeAttr(attr);
    578 }
    579 
    580 /// A function type attribute was written on the declarator.  Try to
    581 /// apply it somewhere.
    582 static void
    583 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
    584                                          AttributeList &attr,
    585                                          QualType &declSpecType) {
    586   Declarator &declarator = state.getDeclarator();
    587 
    588   // Try to distribute to the innermost.
    589   if (distributeFunctionTypeAttrToInnermost(state, attr,
    590                                             declarator.getAttrListRef(),
    591                                             declSpecType))
    592     return;
    593 
    594   // If that failed, diagnose the bad attribute when the declarator is
    595   // fully built.
    596   spliceAttrOutOfList(attr, declarator.getAttrListRef());
    597   state.addIgnoredTypeAttr(attr);
    598 }
    599 
    600 /// \brief Given that there are attributes written on the declarator
    601 /// itself, try to distribute any type attributes to the appropriate
    602 /// declarator chunk.
    603 ///
    604 /// These are attributes like the following:
    605 ///   int f ATTR;
    606 ///   int (f ATTR)();
    607 /// but not necessarily this:
    608 ///   int f() ATTR;
    609 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
    610                                               QualType &declSpecType) {
    611   // Collect all the type attributes from the declarator itself.
    612   assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
    613   AttributeList *attr = state.getDeclarator().getAttributes();
    614   AttributeList *next;
    615   do {
    616     next = attr->getNext();
    617 
    618     // Do not distribute C++11 attributes. They have strict rules for what
    619     // they appertain to.
    620     if (attr->isCXX11Attribute())
    621       continue;
    622 
    623     switch (attr->getKind()) {
    624     OBJC_POINTER_TYPE_ATTRS_CASELIST:
    625       distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
    626       break;
    627 
    628     case AttributeList::AT_NSReturnsRetained:
    629       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
    630         break;
    631       // fallthrough
    632 
    633     FUNCTION_TYPE_ATTRS_CASELIST:
    634       distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
    635       break;
    636 
    637     MS_TYPE_ATTRS_CASELIST:
    638       // Microsoft type attributes cannot go after the declarator-id.
    639       continue;
    640 
    641     default:
    642       break;
    643     }
    644   } while ((attr = next));
    645 }
    646 
    647 /// Add a synthetic '()' to a block-literal declarator if it is
    648 /// required, given the return type.
    649 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
    650                                           QualType declSpecType) {
    651   Declarator &declarator = state.getDeclarator();
    652 
    653   // First, check whether the declarator would produce a function,
    654   // i.e. whether the innermost semantic chunk is a function.
    655   if (declarator.isFunctionDeclarator()) {
    656     // If so, make that declarator a prototyped declarator.
    657     declarator.getFunctionTypeInfo().hasPrototype = true;
    658     return;
    659   }
    660 
    661   // If there are any type objects, the type as written won't name a
    662   // function, regardless of the decl spec type.  This is because a
    663   // block signature declarator is always an abstract-declarator, and
    664   // abstract-declarators can't just be parentheses chunks.  Therefore
    665   // we need to build a function chunk unless there are no type
    666   // objects and the decl spec type is a function.
    667   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
    668     return;
    669 
    670   // Note that there *are* cases with invalid declarators where
    671   // declarators consist solely of parentheses.  In general, these
    672   // occur only in failed efforts to make function declarators, so
    673   // faking up the function chunk is still the right thing to do.
    674 
    675   // Otherwise, we need to fake up a function declarator.
    676   SourceLocation loc = declarator.getLocStart();
    677 
    678   // ...and *prepend* it to the declarator.
    679   SourceLocation NoLoc;
    680   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
    681                              /*HasProto=*/true,
    682                              /*IsAmbiguous=*/false,
    683                              /*LParenLoc=*/NoLoc,
    684                              /*ArgInfo=*/0,
    685                              /*NumArgs=*/0,
    686                              /*EllipsisLoc=*/NoLoc,
    687                              /*RParenLoc=*/NoLoc,
    688                              /*TypeQuals=*/0,
    689                              /*RefQualifierIsLvalueRef=*/true,
    690                              /*RefQualifierLoc=*/NoLoc,
    691                              /*ConstQualifierLoc=*/NoLoc,
    692                              /*VolatileQualifierLoc=*/NoLoc,
    693                              /*MutableLoc=*/NoLoc,
    694                              EST_None,
    695                              /*ESpecLoc=*/NoLoc,
    696                              /*Exceptions=*/0,
    697                              /*ExceptionRanges=*/0,
    698                              /*NumExceptions=*/0,
    699                              /*NoexceptExpr=*/0,
    700                              loc, loc, declarator));
    701 
    702   // For consistency, make sure the state still has us as processing
    703   // the decl spec.
    704   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
    705   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
    706 }
    707 
    708 /// \brief Convert the specified declspec to the appropriate type
    709 /// object.
    710 /// \param state Specifies the declarator containing the declaration specifier
    711 /// to be converted, along with other associated processing state.
    712 /// \returns The type described by the declaration specifiers.  This function
    713 /// never returns null.
    714 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
    715   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
    716   // checking.
    717 
    718   Sema &S = state.getSema();
    719   Declarator &declarator = state.getDeclarator();
    720   const DeclSpec &DS = declarator.getDeclSpec();
    721   SourceLocation DeclLoc = declarator.getIdentifierLoc();
    722   if (DeclLoc.isInvalid())
    723     DeclLoc = DS.getLocStart();
    724 
    725   ASTContext &Context = S.Context;
    726 
    727   QualType Result;
    728   switch (DS.getTypeSpecType()) {
    729   case DeclSpec::TST_void:
    730     Result = Context.VoidTy;
    731     break;
    732   case DeclSpec::TST_char:
    733     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
    734       Result = Context.CharTy;
    735     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
    736       Result = Context.SignedCharTy;
    737     else {
    738       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
    739              "Unknown TSS value");
    740       Result = Context.UnsignedCharTy;
    741     }
    742     break;
    743   case DeclSpec::TST_wchar:
    744     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
    745       Result = Context.WCharTy;
    746     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
    747       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
    748         << DS.getSpecifierName(DS.getTypeSpecType());
    749       Result = Context.getSignedWCharType();
    750     } else {
    751       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
    752         "Unknown TSS value");
    753       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
    754         << DS.getSpecifierName(DS.getTypeSpecType());
    755       Result = Context.getUnsignedWCharType();
    756     }
    757     break;
    758   case DeclSpec::TST_char16:
    759       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
    760         "Unknown TSS value");
    761       Result = Context.Char16Ty;
    762     break;
    763   case DeclSpec::TST_char32:
    764       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
    765         "Unknown TSS value");
    766       Result = Context.Char32Ty;
    767     break;
    768   case DeclSpec::TST_unspecified:
    769     // "<proto1,proto2>" is an objc qualified ID with a missing id.
    770     if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
    771       Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
    772                                          (ObjCProtocolDecl*const*)PQ,
    773                                          DS.getNumProtocolQualifiers());
    774       Result = Context.getObjCObjectPointerType(Result);
    775       break;
    776     }
    777 
    778     // If this is a missing declspec in a block literal return context, then it
    779     // is inferred from the return statements inside the block.
    780     // The declspec is always missing in a lambda expr context; it is either
    781     // specified with a trailing return type or inferred.
    782     if (declarator.getContext() == Declarator::LambdaExprContext ||
    783         isOmittedBlockReturnType(declarator)) {
    784       Result = Context.DependentTy;
    785       break;
    786     }
    787 
    788     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
    789     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
    790     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
    791     // Note that the one exception to this is function definitions, which are
    792     // allowed to be completely missing a declspec.  This is handled in the
    793     // parser already though by it pretending to have seen an 'int' in this
    794     // case.
    795     if (S.getLangOpts().ImplicitInt) {
    796       // In C89 mode, we only warn if there is a completely missing declspec
    797       // when one is not allowed.
    798       if (DS.isEmpty()) {
    799         S.Diag(DeclLoc, diag::ext_missing_declspec)
    800           << DS.getSourceRange()
    801         << FixItHint::CreateInsertion(DS.getLocStart(), "int");
    802       }
    803     } else if (!DS.hasTypeSpecifier()) {
    804       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
    805       // "At least one type specifier shall be given in the declaration
    806       // specifiers in each declaration, and in the specifier-qualifier list in
    807       // each struct declaration and type name."
    808       if (S.getLangOpts().CPlusPlus) {
    809         S.Diag(DeclLoc, diag::err_missing_type_specifier)
    810           << DS.getSourceRange();
    811 
    812         // When this occurs in C++ code, often something is very broken with the
    813         // value being declared, poison it as invalid so we don't get chains of
    814         // errors.
    815         declarator.setInvalidType(true);
    816       } else {
    817         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
    818           << DS.getSourceRange();
    819       }
    820     }
    821 
    822     // FALL THROUGH.
    823   case DeclSpec::TST_int: {
    824     if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
    825       switch (DS.getTypeSpecWidth()) {
    826       case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
    827       case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
    828       case DeclSpec::TSW_long:        Result = Context.LongTy; break;
    829       case DeclSpec::TSW_longlong:
    830         Result = Context.LongLongTy;
    831 
    832         // 'long long' is a C99 or C++11 feature.
    833         if (!S.getLangOpts().C99) {
    834           if (S.getLangOpts().CPlusPlus)
    835             S.Diag(DS.getTypeSpecWidthLoc(),
    836                    S.getLangOpts().CPlusPlus11 ?
    837                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
    838           else
    839             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
    840         }
    841         break;
    842       }
    843     } else {
    844       switch (DS.getTypeSpecWidth()) {
    845       case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
    846       case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
    847       case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
    848       case DeclSpec::TSW_longlong:
    849         Result = Context.UnsignedLongLongTy;
    850 
    851         // 'long long' is a C99 or C++11 feature.
    852         if (!S.getLangOpts().C99) {
    853           if (S.getLangOpts().CPlusPlus)
    854             S.Diag(DS.getTypeSpecWidthLoc(),
    855                    S.getLangOpts().CPlusPlus11 ?
    856                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
    857           else
    858             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
    859         }
    860         break;
    861       }
    862     }
    863     break;
    864   }
    865   case DeclSpec::TST_int128:
    866     if (!S.PP.getTargetInfo().hasInt128Type())
    867       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
    868     if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
    869       Result = Context.UnsignedInt128Ty;
    870     else
    871       Result = Context.Int128Ty;
    872     break;
    873   case DeclSpec::TST_half: Result = Context.HalfTy; break;
    874   case DeclSpec::TST_float: Result = Context.FloatTy; break;
    875   case DeclSpec::TST_double:
    876     if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
    877       Result = Context.LongDoubleTy;
    878     else
    879       Result = Context.DoubleTy;
    880 
    881     if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
    882       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
    883       declarator.setInvalidType(true);
    884     }
    885     break;
    886   case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
    887   case DeclSpec::TST_decimal32:    // _Decimal32
    888   case DeclSpec::TST_decimal64:    // _Decimal64
    889   case DeclSpec::TST_decimal128:   // _Decimal128
    890     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
    891     Result = Context.IntTy;
    892     declarator.setInvalidType(true);
    893     break;
    894   case DeclSpec::TST_class:
    895   case DeclSpec::TST_enum:
    896   case DeclSpec::TST_union:
    897   case DeclSpec::TST_struct:
    898   case DeclSpec::TST_interface: {
    899     TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
    900     if (!D) {
    901       // This can happen in C++ with ambiguous lookups.
    902       Result = Context.IntTy;
    903       declarator.setInvalidType(true);
    904       break;
    905     }
    906 
    907     // If the type is deprecated or unavailable, diagnose it.
    908     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
    909 
    910     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
    911            DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
    912 
    913     // TypeQuals handled by caller.
    914     Result = Context.getTypeDeclType(D);
    915 
    916     // In both C and C++, make an ElaboratedType.
    917     ElaboratedTypeKeyword Keyword
    918       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
    919     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
    920     break;
    921   }
    922   case DeclSpec::TST_typename: {
    923     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
    924            DS.getTypeSpecSign() == 0 &&
    925            "Can't handle qualifiers on typedef names yet!");
    926     Result = S.GetTypeFromParser(DS.getRepAsType());
    927     if (Result.isNull())
    928       declarator.setInvalidType(true);
    929     else if (DeclSpec::ProtocolQualifierListTy PQ
    930                = DS.getProtocolQualifiers()) {
    931       if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
    932         // Silently drop any existing protocol qualifiers.
    933         // TODO: determine whether that's the right thing to do.
    934         if (ObjT->getNumProtocols())
    935           Result = ObjT->getBaseType();
    936 
    937         if (DS.getNumProtocolQualifiers())
    938           Result = Context.getObjCObjectType(Result,
    939                                              (ObjCProtocolDecl*const*) PQ,
    940                                              DS.getNumProtocolQualifiers());
    941       } else if (Result->isObjCIdType()) {
    942         // id<protocol-list>
    943         Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
    944                                            (ObjCProtocolDecl*const*) PQ,
    945                                            DS.getNumProtocolQualifiers());
    946         Result = Context.getObjCObjectPointerType(Result);
    947       } else if (Result->isObjCClassType()) {
    948         // Class<protocol-list>
    949         Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
    950                                            (ObjCProtocolDecl*const*) PQ,
    951                                            DS.getNumProtocolQualifiers());
    952         Result = Context.getObjCObjectPointerType(Result);
    953       } else {
    954         S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
    955           << DS.getSourceRange();
    956         declarator.setInvalidType(true);
    957       }
    958     }
    959 
    960     // TypeQuals handled by caller.
    961     break;
    962   }
    963   case DeclSpec::TST_typeofType:
    964     // FIXME: Preserve type source info.
    965     Result = S.GetTypeFromParser(DS.getRepAsType());
    966     assert(!Result.isNull() && "Didn't get a type for typeof?");
    967     if (!Result->isDependentType())
    968       if (const TagType *TT = Result->getAs<TagType>())
    969         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
    970     // TypeQuals handled by caller.
    971     Result = Context.getTypeOfType(Result);
    972     break;
    973   case DeclSpec::TST_typeofExpr: {
    974     Expr *E = DS.getRepAsExpr();
    975     assert(E && "Didn't get an expression for typeof?");
    976     // TypeQuals handled by caller.
    977     Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
    978     if (Result.isNull()) {
    979       Result = Context.IntTy;
    980       declarator.setInvalidType(true);
    981     }
    982     break;
    983   }
    984   case DeclSpec::TST_decltype: {
    985     Expr *E = DS.getRepAsExpr();
    986     assert(E && "Didn't get an expression for decltype?");
    987     // TypeQuals handled by caller.
    988     Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
    989     if (Result.isNull()) {
    990       Result = Context.IntTy;
    991       declarator.setInvalidType(true);
    992     }
    993     break;
    994   }
    995   case DeclSpec::TST_underlyingType:
    996     Result = S.GetTypeFromParser(DS.getRepAsType());
    997     assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
    998     Result = S.BuildUnaryTransformType(Result,
    999                                        UnaryTransformType::EnumUnderlyingType,
   1000                                        DS.getTypeSpecTypeLoc());
   1001     if (Result.isNull()) {
   1002       Result = Context.IntTy;
   1003       declarator.setInvalidType(true);
   1004     }
   1005     break;
   1006 
   1007   case DeclSpec::TST_auto:
   1008     // TypeQuals handled by caller.
   1009     Result = Context.getAutoType(QualType(), /*decltype(auto)*/false);
   1010     break;
   1011 
   1012   case DeclSpec::TST_decltype_auto:
   1013     Result = Context.getAutoType(QualType(), /*decltype(auto)*/true);
   1014     break;
   1015 
   1016   case DeclSpec::TST_unknown_anytype:
   1017     Result = Context.UnknownAnyTy;
   1018     break;
   1019 
   1020   case DeclSpec::TST_atomic:
   1021     Result = S.GetTypeFromParser(DS.getRepAsType());
   1022     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
   1023     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
   1024     if (Result.isNull()) {
   1025       Result = Context.IntTy;
   1026       declarator.setInvalidType(true);
   1027     }
   1028     break;
   1029 
   1030   case DeclSpec::TST_image1d_t:
   1031     Result = Context.OCLImage1dTy;
   1032     break;
   1033 
   1034   case DeclSpec::TST_image1d_array_t:
   1035     Result = Context.OCLImage1dArrayTy;
   1036     break;
   1037 
   1038   case DeclSpec::TST_image1d_buffer_t:
   1039     Result = Context.OCLImage1dBufferTy;
   1040     break;
   1041 
   1042   case DeclSpec::TST_image2d_t:
   1043     Result = Context.OCLImage2dTy;
   1044     break;
   1045 
   1046   case DeclSpec::TST_image2d_array_t:
   1047     Result = Context.OCLImage2dArrayTy;
   1048     break;
   1049 
   1050   case DeclSpec::TST_image3d_t:
   1051     Result = Context.OCLImage3dTy;
   1052     break;
   1053 
   1054   case DeclSpec::TST_sampler_t:
   1055     Result = Context.OCLSamplerTy;
   1056     break;
   1057 
   1058   case DeclSpec::TST_event_t:
   1059     Result = Context.OCLEventTy;
   1060     break;
   1061 
   1062   case DeclSpec::TST_error:
   1063     Result = Context.IntTy;
   1064     declarator.setInvalidType(true);
   1065     break;
   1066   }
   1067 
   1068   // Handle complex types.
   1069   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
   1070     if (S.getLangOpts().Freestanding)
   1071       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
   1072     Result = Context.getComplexType(Result);
   1073   } else if (DS.isTypeAltiVecVector()) {
   1074     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
   1075     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
   1076     VectorType::VectorKind VecKind = VectorType::AltiVecVector;
   1077     if (DS.isTypeAltiVecPixel())
   1078       VecKind = VectorType::AltiVecPixel;
   1079     else if (DS.isTypeAltiVecBool())
   1080       VecKind = VectorType::AltiVecBool;
   1081     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
   1082   }
   1083 
   1084   // FIXME: Imaginary.
   1085   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
   1086     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
   1087 
   1088   // Before we process any type attributes, synthesize a block literal
   1089   // function declarator if necessary.
   1090   if (declarator.getContext() == Declarator::BlockLiteralContext)
   1091     maybeSynthesizeBlockSignature(state, Result);
   1092 
   1093   // Apply any type attributes from the decl spec.  This may cause the
   1094   // list of type attributes to be temporarily saved while the type
   1095   // attributes are pushed around.
   1096   if (AttributeList *attrs = DS.getAttributes().getList())
   1097     processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
   1098 
   1099   // Apply const/volatile/restrict qualifiers to T.
   1100   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   1101 
   1102     // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
   1103     // of a function type includes any type qualifiers, the behavior is
   1104     // undefined."
   1105     if (Result->isFunctionType() && TypeQuals) {
   1106       if (TypeQuals & DeclSpec::TQ_const)
   1107         S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
   1108           << Result << DS.getSourceRange();
   1109       else if (TypeQuals & DeclSpec::TQ_volatile)
   1110         S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
   1111           << Result << DS.getSourceRange();
   1112       else {
   1113         assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
   1114                "Has CVRA quals but not C, V, R, or A?");
   1115         // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
   1116         // function type later, in BuildQualifiedType.
   1117       }
   1118     }
   1119 
   1120     // C++ [dcl.ref]p1:
   1121     //   Cv-qualified references are ill-formed except when the
   1122     //   cv-qualifiers are introduced through the use of a typedef
   1123     //   (7.1.3) or of a template type argument (14.3), in which
   1124     //   case the cv-qualifiers are ignored.
   1125     // FIXME: Shouldn't we be checking SCS_typedef here?
   1126     if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
   1127         TypeQuals && Result->isReferenceType()) {
   1128       TypeQuals &= ~DeclSpec::TQ_const;
   1129       TypeQuals &= ~DeclSpec::TQ_volatile;
   1130       TypeQuals &= ~DeclSpec::TQ_atomic;
   1131     }
   1132 
   1133     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
   1134     // than once in the same specifier-list or qualifier-list, either directly
   1135     // or via one or more typedefs."
   1136     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
   1137         && TypeQuals & Result.getCVRQualifiers()) {
   1138       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
   1139         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
   1140           << "const";
   1141       }
   1142 
   1143       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
   1144         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
   1145           << "volatile";
   1146       }
   1147 
   1148       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
   1149       // produce a warning in this case.
   1150     }
   1151 
   1152     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
   1153 
   1154     // If adding qualifiers fails, just use the unqualified type.
   1155     if (Qualified.isNull())
   1156       declarator.setInvalidType(true);
   1157     else
   1158       Result = Qualified;
   1159   }
   1160 
   1161   return Result;
   1162 }
   1163 
   1164 static std::string getPrintableNameForEntity(DeclarationName Entity) {
   1165   if (Entity)
   1166     return Entity.getAsString();
   1167 
   1168   return "type name";
   1169 }
   1170 
   1171 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
   1172                                   Qualifiers Qs, const DeclSpec *DS) {
   1173   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
   1174   // object or incomplete types shall not be restrict-qualified."
   1175   if (Qs.hasRestrict()) {
   1176     unsigned DiagID = 0;
   1177     QualType ProblemTy;
   1178 
   1179     if (T->isAnyPointerType() || T->isReferenceType() ||
   1180         T->isMemberPointerType()) {
   1181       QualType EltTy;
   1182       if (T->isObjCObjectPointerType())
   1183         EltTy = T;
   1184       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
   1185         EltTy = PTy->getPointeeType();
   1186       else
   1187         EltTy = T->getPointeeType();
   1188 
   1189       // If we have a pointer or reference, the pointee must have an object
   1190       // incomplete type.
   1191       if (!EltTy->isIncompleteOrObjectType()) {
   1192         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
   1193         ProblemTy = EltTy;
   1194       }
   1195     } else if (!T->isDependentType()) {
   1196       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
   1197       ProblemTy = T;
   1198     }
   1199 
   1200     if (DiagID) {
   1201       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
   1202       Qs.removeRestrict();
   1203     }
   1204   }
   1205 
   1206   return Context.getQualifiedType(T, Qs);
   1207 }
   1208 
   1209 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
   1210                                   unsigned CVRA, const DeclSpec *DS) {
   1211   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
   1212   unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
   1213 
   1214   // C11 6.7.3/5:
   1215   //   If the same qualifier appears more than once in the same
   1216   //   specifier-qualifier-list, either directly or via one or more typedefs,
   1217   //   the behavior is the same as if it appeared only once.
   1218   //
   1219   // It's not specified what happens when the _Atomic qualifier is applied to
   1220   // a type specified with the _Atomic specifier, but we assume that this
   1221   // should be treated as if the _Atomic qualifier appeared multiple times.
   1222   if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
   1223     // C11 6.7.3/5:
   1224     //   If other qualifiers appear along with the _Atomic qualifier in a
   1225     //   specifier-qualifier-list, the resulting type is the so-qualified
   1226     //   atomic type.
   1227     //
   1228     // Don't need to worry about array types here, since _Atomic can't be
   1229     // applied to such types.
   1230     SplitQualType Split = T.getSplitUnqualifiedType();
   1231     T = BuildAtomicType(QualType(Split.Ty, 0),
   1232                         DS ? DS->getAtomicSpecLoc() : Loc);
   1233     if (T.isNull())
   1234       return T;
   1235     Split.Quals.addCVRQualifiers(CVR);
   1236     return BuildQualifiedType(T, Loc, Split.Quals);
   1237   }
   1238 
   1239   return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
   1240 }
   1241 
   1242 /// \brief Build a paren type including \p T.
   1243 QualType Sema::BuildParenType(QualType T) {
   1244   return Context.getParenType(T);
   1245 }
   1246 
   1247 /// Given that we're building a pointer or reference to the given
   1248 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
   1249                                            SourceLocation loc,
   1250                                            bool isReference) {
   1251   // Bail out if retention is unrequired or already specified.
   1252   if (!type->isObjCLifetimeType() ||
   1253       type.getObjCLifetime() != Qualifiers::OCL_None)
   1254     return type;
   1255 
   1256   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
   1257 
   1258   // If the object type is const-qualified, we can safely use
   1259   // __unsafe_unretained.  This is safe (because there are no read
   1260   // barriers), and it'll be safe to coerce anything but __weak* to
   1261   // the resulting type.
   1262   if (type.isConstQualified()) {
   1263     implicitLifetime = Qualifiers::OCL_ExplicitNone;
   1264 
   1265   // Otherwise, check whether the static type does not require
   1266   // retaining.  This currently only triggers for Class (possibly
   1267   // protocol-qualifed, and arrays thereof).
   1268   } else if (type->isObjCARCImplicitlyUnretainedType()) {
   1269     implicitLifetime = Qualifiers::OCL_ExplicitNone;
   1270 
   1271   // If we are in an unevaluated context, like sizeof, skip adding a
   1272   // qualification.
   1273   } else if (S.isUnevaluatedContext()) {
   1274     return type;
   1275 
   1276   // If that failed, give an error and recover using __strong.  __strong
   1277   // is the option most likely to prevent spurious second-order diagnostics,
   1278   // like when binding a reference to a field.
   1279   } else {
   1280     // These types can show up in private ivars in system headers, so
   1281     // we need this to not be an error in those cases.  Instead we
   1282     // want to delay.
   1283     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
   1284       S.DelayedDiagnostics.add(
   1285           sema::DelayedDiagnostic::makeForbiddenType(loc,
   1286               diag::err_arc_indirect_no_ownership, type, isReference));
   1287     } else {
   1288       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
   1289     }
   1290     implicitLifetime = Qualifiers::OCL_Strong;
   1291   }
   1292   assert(implicitLifetime && "didn't infer any lifetime!");
   1293 
   1294   Qualifiers qs;
   1295   qs.addObjCLifetime(implicitLifetime);
   1296   return S.Context.getQualifiedType(type, qs);
   1297 }
   1298 
   1299 /// \brief Build a pointer type.
   1300 ///
   1301 /// \param T The type to which we'll be building a pointer.
   1302 ///
   1303 /// \param Loc The location of the entity whose type involves this
   1304 /// pointer type or, if there is no such entity, the location of the
   1305 /// type that will have pointer type.
   1306 ///
   1307 /// \param Entity The name of the entity that involves the pointer
   1308 /// type, if known.
   1309 ///
   1310 /// \returns A suitable pointer type, if there are no
   1311 /// errors. Otherwise, returns a NULL type.
   1312 QualType Sema::BuildPointerType(QualType T,
   1313                                 SourceLocation Loc, DeclarationName Entity) {
   1314   if (T->isReferenceType()) {
   1315     // C++ 8.3.2p4: There shall be no ... pointers to references ...
   1316     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
   1317       << getPrintableNameForEntity(Entity) << T;
   1318     return QualType();
   1319   }
   1320 
   1321   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
   1322 
   1323   // In ARC, it is forbidden to build pointers to unqualified pointers.
   1324   if (getLangOpts().ObjCAutoRefCount)
   1325     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
   1326 
   1327   // Build the pointer type.
   1328   return Context.getPointerType(T);
   1329 }
   1330 
   1331 /// \brief Build a reference type.
   1332 ///
   1333 /// \param T The type to which we'll be building a reference.
   1334 ///
   1335 /// \param Loc The location of the entity whose type involves this
   1336 /// reference type or, if there is no such entity, the location of the
   1337 /// type that will have reference type.
   1338 ///
   1339 /// \param Entity The name of the entity that involves the reference
   1340 /// type, if known.
   1341 ///
   1342 /// \returns A suitable reference type, if there are no
   1343 /// errors. Otherwise, returns a NULL type.
   1344 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
   1345                                   SourceLocation Loc,
   1346                                   DeclarationName Entity) {
   1347   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
   1348          "Unresolved overloaded function type");
   1349 
   1350   // C++0x [dcl.ref]p6:
   1351   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
   1352   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
   1353   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
   1354   //   the type "lvalue reference to T", while an attempt to create the type
   1355   //   "rvalue reference to cv TR" creates the type TR.
   1356   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
   1357 
   1358   // C++ [dcl.ref]p4: There shall be no references to references.
   1359   //
   1360   // According to C++ DR 106, references to references are only
   1361   // diagnosed when they are written directly (e.g., "int & &"),
   1362   // but not when they happen via a typedef:
   1363   //
   1364   //   typedef int& intref;
   1365   //   typedef intref& intref2;
   1366   //
   1367   // Parser::ParseDeclaratorInternal diagnoses the case where
   1368   // references are written directly; here, we handle the
   1369   // collapsing of references-to-references as described in C++0x.
   1370   // DR 106 and 540 introduce reference-collapsing into C++98/03.
   1371 
   1372   // C++ [dcl.ref]p1:
   1373   //   A declarator that specifies the type "reference to cv void"
   1374   //   is ill-formed.
   1375   if (T->isVoidType()) {
   1376     Diag(Loc, diag::err_reference_to_void);
   1377     return QualType();
   1378   }
   1379 
   1380   // In ARC, it is forbidden to build references to unqualified pointers.
   1381   if (getLangOpts().ObjCAutoRefCount)
   1382     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
   1383 
   1384   // Handle restrict on references.
   1385   if (LValueRef)
   1386     return Context.getLValueReferenceType(T, SpelledAsLValue);
   1387   return Context.getRValueReferenceType(T);
   1388 }
   1389 
   1390 /// Check whether the specified array size makes the array type a VLA.  If so,
   1391 /// return true, if not, return the size of the array in SizeVal.
   1392 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
   1393   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
   1394   // (like gnu99, but not c99) accept any evaluatable value as an extension.
   1395   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
   1396   public:
   1397     VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
   1398 
   1399     virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
   1400     }
   1401 
   1402     virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
   1403       S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
   1404     }
   1405   } Diagnoser;
   1406 
   1407   return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
   1408                                            S.LangOpts.GNUMode).isInvalid();
   1409 }
   1410 
   1411 
   1412 /// \brief Build an array type.
   1413 ///
   1414 /// \param T The type of each element in the array.
   1415 ///
   1416 /// \param ASM C99 array size modifier (e.g., '*', 'static').
   1417 ///
   1418 /// \param ArraySize Expression describing the size of the array.
   1419 ///
   1420 /// \param Brackets The range from the opening '[' to the closing ']'.
   1421 ///
   1422 /// \param Entity The name of the entity that involves the array
   1423 /// type, if known.
   1424 ///
   1425 /// \returns A suitable array type, if there are no errors. Otherwise,
   1426 /// returns a NULL type.
   1427 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
   1428                               Expr *ArraySize, unsigned Quals,
   1429                               SourceRange Brackets, DeclarationName Entity) {
   1430 
   1431   SourceLocation Loc = Brackets.getBegin();
   1432   if (getLangOpts().CPlusPlus) {
   1433     // C++ [dcl.array]p1:
   1434     //   T is called the array element type; this type shall not be a reference
   1435     //   type, the (possibly cv-qualified) type void, a function type or an
   1436     //   abstract class type.
   1437     //
   1438     // C++ [dcl.array]p3:
   1439     //   When several "array of" specifications are adjacent, [...] only the
   1440     //   first of the constant expressions that specify the bounds of the arrays
   1441     //   may be omitted.
   1442     //
   1443     // Note: function types are handled in the common path with C.
   1444     if (T->isReferenceType()) {
   1445       Diag(Loc, diag::err_illegal_decl_array_of_references)
   1446       << getPrintableNameForEntity(Entity) << T;
   1447       return QualType();
   1448     }
   1449 
   1450     if (T->isVoidType() || T->isIncompleteArrayType()) {
   1451       Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
   1452       return QualType();
   1453     }
   1454 
   1455     if (RequireNonAbstractType(Brackets.getBegin(), T,
   1456                                diag::err_array_of_abstract_type))
   1457       return QualType();
   1458 
   1459   } else {
   1460     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
   1461     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
   1462     if (RequireCompleteType(Loc, T,
   1463                             diag::err_illegal_decl_array_incomplete_type))
   1464       return QualType();
   1465   }
   1466 
   1467   if (T->isFunctionType()) {
   1468     Diag(Loc, diag::err_illegal_decl_array_of_functions)
   1469       << getPrintableNameForEntity(Entity) << T;
   1470     return QualType();
   1471   }
   1472 
   1473   if (const RecordType *EltTy = T->getAs<RecordType>()) {
   1474     // If the element type is a struct or union that contains a variadic
   1475     // array, accept it as a GNU extension: C99 6.7.2.1p2.
   1476     if (EltTy->getDecl()->hasFlexibleArrayMember())
   1477       Diag(Loc, diag::ext_flexible_array_in_array) << T;
   1478   } else if (T->isObjCObjectType()) {
   1479     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
   1480     return QualType();
   1481   }
   1482 
   1483   // Do placeholder conversions on the array size expression.
   1484   if (ArraySize && ArraySize->hasPlaceholderType()) {
   1485     ExprResult Result = CheckPlaceholderExpr(ArraySize);
   1486     if (Result.isInvalid()) return QualType();
   1487     ArraySize = Result.take();
   1488   }
   1489 
   1490   // Do lvalue-to-rvalue conversions on the array size expression.
   1491   if (ArraySize && !ArraySize->isRValue()) {
   1492     ExprResult Result = DefaultLvalueConversion(ArraySize);
   1493     if (Result.isInvalid())
   1494       return QualType();
   1495 
   1496     ArraySize = Result.take();
   1497   }
   1498 
   1499   // C99 6.7.5.2p1: The size expression shall have integer type.
   1500   // C++11 allows contextual conversions to such types.
   1501   if (!getLangOpts().CPlusPlus11 &&
   1502       ArraySize && !ArraySize->isTypeDependent() &&
   1503       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
   1504     Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
   1505       << ArraySize->getType() << ArraySize->getSourceRange();
   1506     return QualType();
   1507   }
   1508 
   1509   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
   1510   if (!ArraySize) {
   1511     if (ASM == ArrayType::Star)
   1512       T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
   1513     else
   1514       T = Context.getIncompleteArrayType(T, ASM, Quals);
   1515   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
   1516     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
   1517   } else if ((!T->isDependentType() && !T->isIncompleteType() &&
   1518               !T->isConstantSizeType()) ||
   1519              isArraySizeVLA(*this, ArraySize, ConstVal)) {
   1520     // Even in C++11, don't allow contextual conversions in the array bound
   1521     // of a VLA.
   1522     if (getLangOpts().CPlusPlus11 &&
   1523         !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
   1524       Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
   1525         << ArraySize->getType() << ArraySize->getSourceRange();
   1526       return QualType();
   1527     }
   1528 
   1529     // C99: an array with an element type that has a non-constant-size is a VLA.
   1530     // C99: an array with a non-ICE size is a VLA.  We accept any expression
   1531     // that we can fold to a non-zero positive value as an extension.
   1532     T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
   1533   } else {
   1534     // C99 6.7.5.2p1: If the expression is a constant expression, it shall
   1535     // have a value greater than zero.
   1536     if (ConstVal.isSigned() && ConstVal.isNegative()) {
   1537       if (Entity)
   1538         Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
   1539           << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
   1540       else
   1541         Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
   1542           << ArraySize->getSourceRange();
   1543       return QualType();
   1544     }
   1545     if (ConstVal == 0) {
   1546       // GCC accepts zero sized static arrays. We allow them when
   1547       // we're not in a SFINAE context.
   1548       Diag(ArraySize->getLocStart(),
   1549            isSFINAEContext()? diag::err_typecheck_zero_array_size
   1550                             : diag::ext_typecheck_zero_array_size)
   1551         << ArraySize->getSourceRange();
   1552 
   1553       if (ASM == ArrayType::Static) {
   1554         Diag(ArraySize->getLocStart(),
   1555              diag::warn_typecheck_zero_static_array_size)
   1556           << ArraySize->getSourceRange();
   1557         ASM = ArrayType::Normal;
   1558       }
   1559     } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
   1560                !T->isIncompleteType()) {
   1561       // Is the array too large?
   1562       unsigned ActiveSizeBits
   1563         = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
   1564       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   1565         Diag(ArraySize->getLocStart(), diag::err_array_too_large)
   1566           << ConstVal.toString(10)
   1567           << ArraySize->getSourceRange();
   1568         return QualType();
   1569       }
   1570     }
   1571 
   1572     T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
   1573   }
   1574 
   1575   // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
   1576   if (getLangOpts().OpenCL && T->isVariableArrayType()) {
   1577     Diag(Loc, diag::err_opencl_vla);
   1578     return QualType();
   1579   }
   1580   // If this is not C99, extwarn about VLA's and C99 array size modifiers.
   1581   if (!getLangOpts().C99) {
   1582     if (T->isVariableArrayType()) {
   1583       // Prohibit the use of non-POD types in VLAs.
   1584       // FIXME: C++1y allows this.
   1585       QualType BaseT = Context.getBaseElementType(T);
   1586       if (!T->isDependentType() &&
   1587           !BaseT.isPODType(Context) &&
   1588           !BaseT->isObjCLifetimeType()) {
   1589         Diag(Loc, diag::err_vla_non_pod)
   1590           << BaseT;
   1591         return QualType();
   1592       }
   1593       // Prohibit the use of VLAs during template argument deduction.
   1594       else if (isSFINAEContext()) {
   1595         Diag(Loc, diag::err_vla_in_sfinae);
   1596         return QualType();
   1597       }
   1598       // Just extwarn about VLAs.
   1599       else
   1600         Diag(Loc, getLangOpts().CPlusPlus1y
   1601                       ? diag::warn_cxx11_compat_array_of_runtime_bound
   1602                       : diag::ext_vla);
   1603     } else if (ASM != ArrayType::Normal || Quals != 0)
   1604       Diag(Loc,
   1605            getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
   1606                                      : diag::ext_c99_array_usage) << ASM;
   1607   }
   1608 
   1609   if (T->isVariableArrayType()) {
   1610     // Warn about VLAs for -Wvla.
   1611     Diag(Loc, diag::warn_vla_used);
   1612   }
   1613 
   1614   return T;
   1615 }
   1616 
   1617 /// \brief Build an ext-vector type.
   1618 ///
   1619 /// Run the required checks for the extended vector type.
   1620 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
   1621                                   SourceLocation AttrLoc) {
   1622   // unlike gcc's vector_size attribute, we do not allow vectors to be defined
   1623   // in conjunction with complex types (pointers, arrays, functions, etc.).
   1624   if (!T->isDependentType() &&
   1625       !T->isIntegerType() && !T->isRealFloatingType()) {
   1626     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
   1627     return QualType();
   1628   }
   1629 
   1630   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
   1631     llvm::APSInt vecSize(32);
   1632     if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
   1633       Diag(AttrLoc, diag::err_attribute_argument_type)
   1634         << "ext_vector_type" << AANT_ArgumentIntegerConstant
   1635         << ArraySize->getSourceRange();
   1636       return QualType();
   1637     }
   1638 
   1639     // unlike gcc's vector_size attribute, the size is specified as the
   1640     // number of elements, not the number of bytes.
   1641     unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
   1642 
   1643     if (vectorSize == 0) {
   1644       Diag(AttrLoc, diag::err_attribute_zero_size)
   1645       << ArraySize->getSourceRange();
   1646       return QualType();
   1647     }
   1648 
   1649     if (VectorType::isVectorSizeTooLarge(vectorSize)) {
   1650       Diag(AttrLoc, diag::err_attribute_size_too_large)
   1651         << ArraySize->getSourceRange();
   1652       return QualType();
   1653     }
   1654 
   1655     return Context.getExtVectorType(T, vectorSize);
   1656   }
   1657 
   1658   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
   1659 }
   1660 
   1661 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
   1662   if (T->isArrayType() || T->isFunctionType()) {
   1663     Diag(Loc, diag::err_func_returning_array_function)
   1664       << T->isFunctionType() << T;
   1665     return true;
   1666   }
   1667 
   1668   // Functions cannot return half FP.
   1669   if (T->isHalfType()) {
   1670     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
   1671       FixItHint::CreateInsertion(Loc, "*");
   1672     return true;
   1673   }
   1674 
   1675   // Methods cannot return interface types. All ObjC objects are
   1676   // passed by reference.
   1677   if (T->isObjCObjectType()) {
   1678     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
   1679     return 0;
   1680   }
   1681 
   1682   return false;
   1683 }
   1684 
   1685 QualType Sema::BuildFunctionType(QualType T,
   1686                                  llvm::MutableArrayRef<QualType> ParamTypes,
   1687                                  SourceLocation Loc, DeclarationName Entity,
   1688                                  const FunctionProtoType::ExtProtoInfo &EPI) {
   1689   bool Invalid = false;
   1690 
   1691   Invalid |= CheckFunctionReturnType(T, Loc);
   1692 
   1693   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
   1694     // FIXME: Loc is too inprecise here, should use proper locations for args.
   1695     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
   1696     if (ParamType->isVoidType()) {
   1697       Diag(Loc, diag::err_param_with_void_type);
   1698       Invalid = true;
   1699     } else if (ParamType->isHalfType()) {
   1700       // Disallow half FP arguments.
   1701       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
   1702         FixItHint::CreateInsertion(Loc, "*");
   1703       Invalid = true;
   1704     }
   1705 
   1706     ParamTypes[Idx] = ParamType;
   1707   }
   1708 
   1709   if (Invalid)
   1710     return QualType();
   1711 
   1712   return Context.getFunctionType(T, ParamTypes, EPI);
   1713 }
   1714 
   1715 /// \brief Build a member pointer type \c T Class::*.
   1716 ///
   1717 /// \param T the type to which the member pointer refers.
   1718 /// \param Class the class type into which the member pointer points.
   1719 /// \param Loc the location where this type begins
   1720 /// \param Entity the name of the entity that will have this member pointer type
   1721 ///
   1722 /// \returns a member pointer type, if successful, or a NULL type if there was
   1723 /// an error.
   1724 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
   1725                                       SourceLocation Loc,
   1726                                       DeclarationName Entity) {
   1727   // Verify that we're not building a pointer to pointer to function with
   1728   // exception specification.
   1729   if (CheckDistantExceptionSpec(T)) {
   1730     Diag(Loc, diag::err_distant_exception_spec);
   1731 
   1732     // FIXME: If we're doing this as part of template instantiation,
   1733     // we should return immediately.
   1734 
   1735     // Build the type anyway, but use the canonical type so that the
   1736     // exception specifiers are stripped off.
   1737     T = Context.getCanonicalType(T);
   1738   }
   1739 
   1740   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
   1741   //   with reference type, or "cv void."
   1742   if (T->isReferenceType()) {
   1743     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
   1744       << (Entity? Entity.getAsString() : "type name") << T;
   1745     return QualType();
   1746   }
   1747 
   1748   if (T->isVoidType()) {
   1749     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
   1750       << (Entity? Entity.getAsString() : "type name");
   1751     return QualType();
   1752   }
   1753 
   1754   if (!Class->isDependentType() && !Class->isRecordType()) {
   1755     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
   1756     return QualType();
   1757   }
   1758 
   1759   // C++ allows the class type in a member pointer to be an incomplete type.
   1760   // In the Microsoft ABI, the size of the member pointer can vary
   1761   // according to the class type, which means that we really need a
   1762   // complete type if possible, which means we need to instantiate templates.
   1763   //
   1764   // If template instantiation fails or the type is just incomplete, we have to
   1765   // add an extra slot to the member pointer.  Yes, this does cause problems
   1766   // when passing pointers between TUs that disagree about the size.
   1767   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   1768     CXXRecordDecl *RD = Class->getAsCXXRecordDecl();
   1769     if (RD && !RD->hasAttr<MSInheritanceAttr>()) {
   1770       // Lock in the inheritance model on the first use of a member pointer.
   1771       // Otherwise we may disagree about the size at different points in the TU.
   1772       // FIXME: MSVC picks a model on the first use that needs to know the size,
   1773       // rather than on the first mention of the type, e.g. typedefs.
   1774       if (RequireCompleteType(Loc, Class, 0) && !RD->isBeingDefined()) {
   1775         // We know it doesn't have an attribute and it's incomplete, so use the
   1776         // unspecified inheritance model.  If we're in the record body, we can
   1777         // figure out the inheritance model.
   1778         for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
   1779              E = RD->redecls_end(); I != E; ++I) {
   1780           I->addAttr(::new (Context) UnspecifiedInheritanceAttr(
   1781               RD->getSourceRange(), Context));
   1782         }
   1783       }
   1784     }
   1785   }
   1786 
   1787   return Context.getMemberPointerType(T, Class.getTypePtr());
   1788 }
   1789 
   1790 /// \brief Build a block pointer type.
   1791 ///
   1792 /// \param T The type to which we'll be building a block pointer.
   1793 ///
   1794 /// \param Loc The source location, used for diagnostics.
   1795 ///
   1796 /// \param Entity The name of the entity that involves the block pointer
   1797 /// type, if known.
   1798 ///
   1799 /// \returns A suitable block pointer type, if there are no
   1800 /// errors. Otherwise, returns a NULL type.
   1801 QualType Sema::BuildBlockPointerType(QualType T,
   1802                                      SourceLocation Loc,
   1803                                      DeclarationName Entity) {
   1804   if (!T->isFunctionType()) {
   1805     Diag(Loc, diag::err_nonfunction_block_type);
   1806     return QualType();
   1807   }
   1808 
   1809   return Context.getBlockPointerType(T);
   1810 }
   1811 
   1812 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
   1813   QualType QT = Ty.get();
   1814   if (QT.isNull()) {
   1815     if (TInfo) *TInfo = 0;
   1816     return QualType();
   1817   }
   1818 
   1819   TypeSourceInfo *DI = 0;
   1820   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
   1821     QT = LIT->getType();
   1822     DI = LIT->getTypeSourceInfo();
   1823   }
   1824 
   1825   if (TInfo) *TInfo = DI;
   1826   return QT;
   1827 }
   1828 
   1829 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
   1830                                             Qualifiers::ObjCLifetime ownership,
   1831                                             unsigned chunkIndex);
   1832 
   1833 /// Given that this is the declaration of a parameter under ARC,
   1834 /// attempt to infer attributes and such for pointer-to-whatever
   1835 /// types.
   1836 static void inferARCWriteback(TypeProcessingState &state,
   1837                               QualType &declSpecType) {
   1838   Sema &S = state.getSema();
   1839   Declarator &declarator = state.getDeclarator();
   1840 
   1841   // TODO: should we care about decl qualifiers?
   1842 
   1843   // Check whether the declarator has the expected form.  We walk
   1844   // from the inside out in order to make the block logic work.
   1845   unsigned outermostPointerIndex = 0;
   1846   bool isBlockPointer = false;
   1847   unsigned numPointers = 0;
   1848   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
   1849     unsigned chunkIndex = i;
   1850     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
   1851     switch (chunk.Kind) {
   1852     case DeclaratorChunk::Paren:
   1853       // Ignore parens.
   1854       break;
   1855 
   1856     case DeclaratorChunk::Reference:
   1857     case DeclaratorChunk::Pointer:
   1858       // Count the number of pointers.  Treat references
   1859       // interchangeably as pointers; if they're mis-ordered, normal
   1860       // type building will discover that.
   1861       outermostPointerIndex = chunkIndex;
   1862       numPointers++;
   1863       break;
   1864 
   1865     case DeclaratorChunk::BlockPointer:
   1866       // If we have a pointer to block pointer, that's an acceptable
   1867       // indirect reference; anything else is not an application of
   1868       // the rules.
   1869       if (numPointers != 1) return;
   1870       numPointers++;
   1871       outermostPointerIndex = chunkIndex;
   1872       isBlockPointer = true;
   1873 
   1874       // We don't care about pointer structure in return values here.
   1875       goto done;
   1876 
   1877     case DeclaratorChunk::Array: // suppress if written (id[])?
   1878     case DeclaratorChunk::Function:
   1879     case DeclaratorChunk::MemberPointer:
   1880       return;
   1881     }
   1882   }
   1883  done:
   1884 
   1885   // If we have *one* pointer, then we want to throw the qualifier on
   1886   // the declaration-specifiers, which means that it needs to be a
   1887   // retainable object type.
   1888   if (numPointers == 1) {
   1889     // If it's not a retainable object type, the rule doesn't apply.
   1890     if (!declSpecType->isObjCRetainableType()) return;
   1891 
   1892     // If it already has lifetime, don't do anything.
   1893     if (declSpecType.getObjCLifetime()) return;
   1894 
   1895     // Otherwise, modify the type in-place.
   1896     Qualifiers qs;
   1897 
   1898     if (declSpecType->isObjCARCImplicitlyUnretainedType())
   1899       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
   1900     else
   1901       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
   1902     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
   1903 
   1904   // If we have *two* pointers, then we want to throw the qualifier on
   1905   // the outermost pointer.
   1906   } else if (numPointers == 2) {
   1907     // If we don't have a block pointer, we need to check whether the
   1908     // declaration-specifiers gave us something that will turn into a
   1909     // retainable object pointer after we slap the first pointer on it.
   1910     if (!isBlockPointer && !declSpecType->isObjCObjectType())
   1911       return;
   1912 
   1913     // Look for an explicit lifetime attribute there.
   1914     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
   1915     if (chunk.Kind != DeclaratorChunk::Pointer &&
   1916         chunk.Kind != DeclaratorChunk::BlockPointer)
   1917       return;
   1918     for (const AttributeList *attr = chunk.getAttrs(); attr;
   1919            attr = attr->getNext())
   1920       if (attr->getKind() == AttributeList::AT_ObjCOwnership)
   1921         return;
   1922 
   1923     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
   1924                                           outermostPointerIndex);
   1925 
   1926   // Any other number of pointers/references does not trigger the rule.
   1927   } else return;
   1928 
   1929   // TODO: mark whether we did this inference?
   1930 }
   1931 
   1932 static void diagnoseIgnoredQualifiers(
   1933     Sema &S, unsigned Quals,
   1934     SourceLocation FallbackLoc,
   1935     SourceLocation ConstQualLoc = SourceLocation(),
   1936     SourceLocation VolatileQualLoc = SourceLocation(),
   1937     SourceLocation RestrictQualLoc = SourceLocation(),
   1938     SourceLocation AtomicQualLoc = SourceLocation()) {
   1939   if (!Quals)
   1940     return;
   1941 
   1942   const SourceManager &SM = S.getSourceManager();
   1943 
   1944   struct Qual {
   1945     unsigned Mask;
   1946     const char *Name;
   1947     SourceLocation Loc;
   1948   } const QualKinds[4] = {
   1949     { DeclSpec::TQ_const, "const", ConstQualLoc },
   1950     { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
   1951     { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
   1952     { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
   1953   };
   1954 
   1955   llvm::SmallString<32> QualStr;
   1956   unsigned NumQuals = 0;
   1957   SourceLocation Loc;
   1958   FixItHint FixIts[4];
   1959 
   1960   // Build a string naming the redundant qualifiers.
   1961   for (unsigned I = 0; I != 4; ++I) {
   1962     if (Quals & QualKinds[I].Mask) {
   1963       if (!QualStr.empty()) QualStr += ' ';
   1964       QualStr += QualKinds[I].Name;
   1965 
   1966       // If we have a location for the qualifier, offer a fixit.
   1967       SourceLocation QualLoc = QualKinds[I].Loc;
   1968       if (!QualLoc.isInvalid()) {
   1969         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
   1970         if (Loc.isInvalid() || SM.isBeforeInTranslationUnit(QualLoc, Loc))
   1971           Loc = QualLoc;
   1972       }
   1973 
   1974       ++NumQuals;
   1975     }
   1976   }
   1977 
   1978   S.Diag(Loc.isInvalid() ? FallbackLoc : Loc, diag::warn_qual_return_type)
   1979     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
   1980 }
   1981 
   1982 // Diagnose pointless type qualifiers on the return type of a function.
   1983 static void diagnoseIgnoredFunctionQualifiers(Sema &S, QualType RetTy,
   1984                                               Declarator &D,
   1985                                               unsigned FunctionChunkIndex) {
   1986   if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
   1987     // FIXME: TypeSourceInfo doesn't preserve location information for
   1988     // qualifiers.
   1989     diagnoseIgnoredQualifiers(S, RetTy.getLocalCVRQualifiers(),
   1990                               D.getIdentifierLoc());
   1991     return;
   1992   }
   1993 
   1994   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
   1995                 End = D.getNumTypeObjects();
   1996        OuterChunkIndex != End; ++OuterChunkIndex) {
   1997     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
   1998     switch (OuterChunk.Kind) {
   1999     case DeclaratorChunk::Paren:
   2000       continue;
   2001 
   2002     case DeclaratorChunk::Pointer: {
   2003       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
   2004       diagnoseIgnoredQualifiers(
   2005           S, PTI.TypeQuals,
   2006           SourceLocation(),
   2007           SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
   2008           SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
   2009           SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
   2010           SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
   2011       return;
   2012     }
   2013 
   2014     case DeclaratorChunk::Function:
   2015     case DeclaratorChunk::BlockPointer:
   2016     case DeclaratorChunk::Reference:
   2017     case DeclaratorChunk::Array:
   2018     case DeclaratorChunk::MemberPointer:
   2019       // FIXME: We can't currently provide an accurate source location and a
   2020       // fix-it hint for these.
   2021       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
   2022       diagnoseIgnoredQualifiers(S, RetTy.getCVRQualifiers() | AtomicQual,
   2023                                 D.getIdentifierLoc());
   2024       return;
   2025     }
   2026 
   2027     llvm_unreachable("unknown declarator chunk kind");
   2028   }
   2029 
   2030   // If the qualifiers come from a conversion function type, don't diagnose
   2031   // them -- they're not necessarily redundant, since such a conversion
   2032   // operator can be explicitly called as "x.operator const int()".
   2033   if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
   2034     return;
   2035 
   2036   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
   2037   // which are present there.
   2038   diagnoseIgnoredQualifiers(S, D.getDeclSpec().getTypeQualifiers(),
   2039                             D.getIdentifierLoc(),
   2040                             D.getDeclSpec().getConstSpecLoc(),
   2041                             D.getDeclSpec().getVolatileSpecLoc(),
   2042                             D.getDeclSpec().getRestrictSpecLoc(),
   2043                             D.getDeclSpec().getAtomicSpecLoc());
   2044 }
   2045 
   2046 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
   2047                                              TypeSourceInfo *&ReturnTypeInfo) {
   2048   Sema &SemaRef = state.getSema();
   2049   Declarator &D = state.getDeclarator();
   2050   QualType T;
   2051   ReturnTypeInfo = 0;
   2052 
   2053   // The TagDecl owned by the DeclSpec.
   2054   TagDecl *OwnedTagDecl = 0;
   2055 
   2056   bool ContainsPlaceholderType = false;
   2057 
   2058   switch (D.getName().getKind()) {
   2059   case UnqualifiedId::IK_ImplicitSelfParam:
   2060   case UnqualifiedId::IK_OperatorFunctionId:
   2061   case UnqualifiedId::IK_Identifier:
   2062   case UnqualifiedId::IK_LiteralOperatorId:
   2063   case UnqualifiedId::IK_TemplateId:
   2064     T = ConvertDeclSpecToType(state);
   2065     ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
   2066 
   2067     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
   2068       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   2069       // Owned declaration is embedded in declarator.
   2070       OwnedTagDecl->setEmbeddedInDeclarator(true);
   2071     }
   2072     break;
   2073 
   2074   case UnqualifiedId::IK_ConstructorName:
   2075   case UnqualifiedId::IK_ConstructorTemplateId:
   2076   case UnqualifiedId::IK_DestructorName:
   2077     // Constructors and destructors don't have return types. Use
   2078     // "void" instead.
   2079     T = SemaRef.Context.VoidTy;
   2080     if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
   2081       processTypeAttrs(state, T, TAL_DeclSpec, attrs);
   2082     break;
   2083 
   2084   case UnqualifiedId::IK_ConversionFunctionId:
   2085     // The result type of a conversion function is the type that it
   2086     // converts to.
   2087     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
   2088                                   &ReturnTypeInfo);
   2089     ContainsPlaceholderType = T->getContainedAutoType();
   2090     break;
   2091   }
   2092 
   2093   if (D.getAttributes())
   2094     distributeTypeAttrsFromDeclarator(state, T);
   2095 
   2096   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
   2097   // In C++11, a function declarator using 'auto' must have a trailing return
   2098   // type (this is checked later) and we can skip this. In other languages
   2099   // using auto, we need to check regardless.
   2100   if (ContainsPlaceholderType &&
   2101       (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
   2102     int Error = -1;
   2103 
   2104     switch (D.getContext()) {
   2105     case Declarator::KNRTypeListContext:
   2106       llvm_unreachable("K&R type lists aren't allowed in C++");
   2107     case Declarator::LambdaExprContext:
   2108       llvm_unreachable("Can't specify a type specifier in lambda grammar");
   2109     case Declarator::ObjCParameterContext:
   2110     case Declarator::ObjCResultContext:
   2111     case Declarator::PrototypeContext:
   2112       Error = 0; // Function prototype
   2113       break;
   2114     case Declarator::MemberContext:
   2115       if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
   2116         break;
   2117       switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
   2118       case TTK_Enum: llvm_unreachable("unhandled tag kind");
   2119       case TTK_Struct: Error = 1; /* Struct member */ break;
   2120       case TTK_Union:  Error = 2; /* Union member */ break;
   2121       case TTK_Class:  Error = 3; /* Class member */ break;
   2122       case TTK_Interface: Error = 4; /* Interface member */ break;
   2123       }
   2124       break;
   2125     case Declarator::CXXCatchContext:
   2126     case Declarator::ObjCCatchContext:
   2127       Error = 5; // Exception declaration
   2128       break;
   2129     case Declarator::TemplateParamContext:
   2130       Error = 6; // Template parameter
   2131       break;
   2132     case Declarator::BlockLiteralContext:
   2133       Error = 7; // Block literal
   2134       break;
   2135     case Declarator::TemplateTypeArgContext:
   2136       Error = 8; // Template type argument
   2137       break;
   2138     case Declarator::AliasDeclContext:
   2139     case Declarator::AliasTemplateContext:
   2140       Error = 10; // Type alias
   2141       break;
   2142     case Declarator::TrailingReturnContext:
   2143       if (!SemaRef.getLangOpts().CPlusPlus1y)
   2144         Error = 11; // Function return type
   2145       break;
   2146     case Declarator::ConversionIdContext:
   2147       if (!SemaRef.getLangOpts().CPlusPlus1y)
   2148         Error = 12; // conversion-type-id
   2149       break;
   2150     case Declarator::TypeNameContext:
   2151       Error = 13; // Generic
   2152       break;
   2153     case Declarator::FileContext:
   2154     case Declarator::BlockContext:
   2155     case Declarator::ForContext:
   2156     case Declarator::ConditionContext:
   2157     case Declarator::CXXNewContext:
   2158       break;
   2159     }
   2160 
   2161     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   2162       Error = 9;
   2163 
   2164     // In Objective-C it is an error to use 'auto' on a function declarator.
   2165     if (D.isFunctionDeclarator())
   2166       Error = 11;
   2167 
   2168     // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
   2169     // contains a trailing return type. That is only legal at the outermost
   2170     // level. Check all declarator chunks (outermost first) anyway, to give
   2171     // better diagnostics.
   2172     if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
   2173       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   2174         unsigned chunkIndex = e - i - 1;
   2175         state.setCurrentChunkIndex(chunkIndex);
   2176         DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
   2177         if (DeclType.Kind == DeclaratorChunk::Function) {
   2178           const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
   2179           if (FTI.hasTrailingReturnType()) {
   2180             Error = -1;
   2181             break;
   2182           }
   2183         }
   2184       }
   2185     }
   2186 
   2187     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
   2188     if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
   2189       AutoRange = D.getName().getSourceRange();
   2190 
   2191     if (Error != -1) {
   2192       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
   2193         << Error << AutoRange;
   2194       T = SemaRef.Context.IntTy;
   2195       D.setInvalidType(true);
   2196     } else
   2197       SemaRef.Diag(AutoRange.getBegin(),
   2198                    diag::warn_cxx98_compat_auto_type_specifier)
   2199         << AutoRange;
   2200   }
   2201 
   2202   if (SemaRef.getLangOpts().CPlusPlus &&
   2203       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
   2204     // Check the contexts where C++ forbids the declaration of a new class
   2205     // or enumeration in a type-specifier-seq.
   2206     switch (D.getContext()) {
   2207     case Declarator::TrailingReturnContext:
   2208       // Class and enumeration definitions are syntactically not allowed in
   2209       // trailing return types.
   2210       llvm_unreachable("parser should not have allowed this");
   2211       break;
   2212     case Declarator::FileContext:
   2213     case Declarator::MemberContext:
   2214     case Declarator::BlockContext:
   2215     case Declarator::ForContext:
   2216     case Declarator::BlockLiteralContext:
   2217     case Declarator::LambdaExprContext:
   2218       // C++11 [dcl.type]p3:
   2219       //   A type-specifier-seq shall not define a class or enumeration unless
   2220       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
   2221       //   the declaration of a template-declaration.
   2222     case Declarator::AliasDeclContext:
   2223       break;
   2224     case Declarator::AliasTemplateContext:
   2225       SemaRef.Diag(OwnedTagDecl->getLocation(),
   2226              diag::err_type_defined_in_alias_template)
   2227         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
   2228       D.setInvalidType(true);
   2229       break;
   2230     case Declarator::TypeNameContext:
   2231     case Declarator::ConversionIdContext:
   2232     case Declarator::TemplateParamContext:
   2233     case Declarator::CXXNewContext:
   2234     case Declarator::CXXCatchContext:
   2235     case Declarator::ObjCCatchContext:
   2236     case Declarator::TemplateTypeArgContext:
   2237       SemaRef.Diag(OwnedTagDecl->getLocation(),
   2238              diag::err_type_defined_in_type_specifier)
   2239         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
   2240       D.setInvalidType(true);
   2241       break;
   2242     case Declarator::PrototypeContext:
   2243     case Declarator::ObjCParameterContext:
   2244     case Declarator::ObjCResultContext:
   2245     case Declarator::KNRTypeListContext:
   2246       // C++ [dcl.fct]p6:
   2247       //   Types shall not be defined in return or parameter types.
   2248       SemaRef.Diag(OwnedTagDecl->getLocation(),
   2249                    diag::err_type_defined_in_param_type)
   2250         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
   2251       D.setInvalidType(true);
   2252       break;
   2253     case Declarator::ConditionContext:
   2254       // C++ 6.4p2:
   2255       // The type-specifier-seq shall not contain typedef and shall not declare
   2256       // a new class or enumeration.
   2257       SemaRef.Diag(OwnedTagDecl->getLocation(),
   2258                    diag::err_type_defined_in_condition);
   2259       D.setInvalidType(true);
   2260       break;
   2261     }
   2262   }
   2263 
   2264   return T;
   2265 }
   2266 
   2267 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
   2268   std::string Quals =
   2269     Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
   2270 
   2271   switch (FnTy->getRefQualifier()) {
   2272   case RQ_None:
   2273     break;
   2274 
   2275   case RQ_LValue:
   2276     if (!Quals.empty())
   2277       Quals += ' ';
   2278     Quals += '&';
   2279     break;
   2280 
   2281   case RQ_RValue:
   2282     if (!Quals.empty())
   2283       Quals += ' ';
   2284     Quals += "&&";
   2285     break;
   2286   }
   2287 
   2288   return Quals;
   2289 }
   2290 
   2291 /// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
   2292 /// can be contained within the declarator chunk DeclType, and produce an
   2293 /// appropriate diagnostic if not.
   2294 static void checkQualifiedFunction(Sema &S, QualType T,
   2295                                    DeclaratorChunk &DeclType) {
   2296   // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
   2297   // cv-qualifier or a ref-qualifier can only appear at the topmost level
   2298   // of a type.
   2299   int DiagKind = -1;
   2300   switch (DeclType.Kind) {
   2301   case DeclaratorChunk::Paren:
   2302   case DeclaratorChunk::MemberPointer:
   2303     // These cases are permitted.
   2304     return;
   2305   case DeclaratorChunk::Array:
   2306   case DeclaratorChunk::Function:
   2307     // These cases don't allow function types at all; no need to diagnose the
   2308     // qualifiers separately.
   2309     return;
   2310   case DeclaratorChunk::BlockPointer:
   2311     DiagKind = 0;
   2312     break;
   2313   case DeclaratorChunk::Pointer:
   2314     DiagKind = 1;
   2315     break;
   2316   case DeclaratorChunk::Reference:
   2317     DiagKind = 2;
   2318     break;
   2319   }
   2320 
   2321   assert(DiagKind != -1);
   2322   S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
   2323     << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
   2324     << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
   2325 }
   2326 
   2327 /// Produce an approprioate diagnostic for an ambiguity between a function
   2328 /// declarator and a C++ direct-initializer.
   2329 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
   2330                                        DeclaratorChunk &DeclType, QualType RT) {
   2331   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
   2332   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
   2333 
   2334   // If the return type is void there is no ambiguity.
   2335   if (RT->isVoidType())
   2336     return;
   2337 
   2338   // An initializer for a non-class type can have at most one argument.
   2339   if (!RT->isRecordType() && FTI.NumArgs > 1)
   2340     return;
   2341 
   2342   // An initializer for a reference must have exactly one argument.
   2343   if (RT->isReferenceType() && FTI.NumArgs != 1)
   2344     return;
   2345 
   2346   // Only warn if this declarator is declaring a function at block scope, and
   2347   // doesn't have a storage class (such as 'extern') specified.
   2348   if (!D.isFunctionDeclarator() ||
   2349       D.getFunctionDefinitionKind() != FDK_Declaration ||
   2350       !S.CurContext->isFunctionOrMethod() ||
   2351       D.getDeclSpec().getStorageClassSpec()
   2352         != DeclSpec::SCS_unspecified)
   2353     return;
   2354 
   2355   // Inside a condition, a direct initializer is not permitted. We allow one to
   2356   // be parsed in order to give better diagnostics in condition parsing.
   2357   if (D.getContext() == Declarator::ConditionContext)
   2358     return;
   2359 
   2360   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
   2361 
   2362   S.Diag(DeclType.Loc,
   2363          FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
   2364                      : diag::warn_empty_parens_are_function_decl)
   2365     << ParenRange;
   2366 
   2367   // If the declaration looks like:
   2368   //   T var1,
   2369   //   f();
   2370   // and name lookup finds a function named 'f', then the ',' was
   2371   // probably intended to be a ';'.
   2372   if (!D.isFirstDeclarator() && D.getIdentifier()) {
   2373     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
   2374     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
   2375     if (Comma.getFileID() != Name.getFileID() ||
   2376         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
   2377       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
   2378                           Sema::LookupOrdinaryName);
   2379       if (S.LookupName(Result, S.getCurScope()))
   2380         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
   2381           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
   2382           << D.getIdentifier();
   2383     }
   2384   }
   2385 
   2386   if (FTI.NumArgs > 0) {
   2387     // For a declaration with parameters, eg. "T var(T());", suggest adding parens
   2388     // around the first parameter to turn the declaration into a variable
   2389     // declaration.
   2390     SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
   2391     SourceLocation B = Range.getBegin();
   2392     SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
   2393     // FIXME: Maybe we should suggest adding braces instead of parens
   2394     // in C++11 for classes that don't have an initializer_list constructor.
   2395     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
   2396       << FixItHint::CreateInsertion(B, "(")
   2397       << FixItHint::CreateInsertion(E, ")");
   2398   } else {
   2399     // For a declaration without parameters, eg. "T var();", suggest replacing the
   2400     // parens with an initializer to turn the declaration into a variable
   2401     // declaration.
   2402     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
   2403 
   2404     // Empty parens mean value-initialization, and no parens mean
   2405     // default initialization. These are equivalent if the default
   2406     // constructor is user-provided or if zero-initialization is a
   2407     // no-op.
   2408     if (RD && RD->hasDefinition() &&
   2409         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
   2410       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
   2411         << FixItHint::CreateRemoval(ParenRange);
   2412     else {
   2413       std::string Init = S.getFixItZeroInitializerForType(RT);
   2414       if (Init.empty() && S.LangOpts.CPlusPlus11)
   2415         Init = "{}";
   2416       if (!Init.empty())
   2417         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
   2418           << FixItHint::CreateReplacement(ParenRange, Init);
   2419     }
   2420   }
   2421 }
   2422 
   2423 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
   2424                                                 QualType declSpecType,
   2425                                                 TypeSourceInfo *TInfo) {
   2426 
   2427   QualType T = declSpecType;
   2428   Declarator &D = state.getDeclarator();
   2429   Sema &S = state.getSema();
   2430   ASTContext &Context = S.Context;
   2431   const LangOptions &LangOpts = S.getLangOpts();
   2432 
   2433   // The name we're declaring, if any.
   2434   DeclarationName Name;
   2435   if (D.getIdentifier())
   2436     Name = D.getIdentifier();
   2437 
   2438   // Does this declaration declare a typedef-name?
   2439   bool IsTypedefName =
   2440     D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
   2441     D.getContext() == Declarator::AliasDeclContext ||
   2442     D.getContext() == Declarator::AliasTemplateContext;
   2443 
   2444   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
   2445   bool IsQualifiedFunction = T->isFunctionProtoType() &&
   2446       (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
   2447        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
   2448 
   2449   // If T is 'decltype(auto)', the only declarators we can have are parens
   2450   // and at most one function declarator if this is a function declaration.
   2451   if (const AutoType *AT = T->getAs<AutoType>()) {
   2452     if (AT->isDecltypeAuto()) {
   2453       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   2454         unsigned Index = E - I - 1;
   2455         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
   2456         unsigned DiagId = diag::err_decltype_auto_compound_type;
   2457         unsigned DiagKind = 0;
   2458         switch (DeclChunk.Kind) {
   2459         case DeclaratorChunk::Paren:
   2460           continue;
   2461         case DeclaratorChunk::Function: {
   2462           unsigned FnIndex;
   2463           if (D.isFunctionDeclarationContext() &&
   2464               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
   2465             continue;
   2466           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
   2467           break;
   2468         }
   2469         case DeclaratorChunk::Pointer:
   2470         case DeclaratorChunk::BlockPointer:
   2471         case DeclaratorChunk::MemberPointer:
   2472           DiagKind = 0;
   2473           break;
   2474         case DeclaratorChunk::Reference:
   2475           DiagKind = 1;
   2476           break;
   2477         case DeclaratorChunk::Array:
   2478           DiagKind = 2;
   2479           break;
   2480         }
   2481 
   2482         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
   2483         D.setInvalidType(true);
   2484         break;
   2485       }
   2486     }
   2487   }
   2488 
   2489   // Walk the DeclTypeInfo, building the recursive type as we go.
   2490   // DeclTypeInfos are ordered from the identifier out, which is
   2491   // opposite of what we want :).
   2492   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   2493     unsigned chunkIndex = e - i - 1;
   2494     state.setCurrentChunkIndex(chunkIndex);
   2495     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
   2496     if (IsQualifiedFunction) {
   2497       checkQualifiedFunction(S, T, DeclType);
   2498       IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
   2499     }
   2500     switch (DeclType.Kind) {
   2501     case DeclaratorChunk::Paren:
   2502       T = S.BuildParenType(T);
   2503       break;
   2504     case DeclaratorChunk::BlockPointer:
   2505       // If blocks are disabled, emit an error.
   2506       if (!LangOpts.Blocks)
   2507         S.Diag(DeclType.Loc, diag::err_blocks_disable);
   2508 
   2509       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
   2510       if (DeclType.Cls.TypeQuals)
   2511         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
   2512       break;
   2513     case DeclaratorChunk::Pointer:
   2514       // Verify that we're not building a pointer to pointer to function with
   2515       // exception specification.
   2516       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   2517         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   2518         D.setInvalidType(true);
   2519         // Build the type anyway.
   2520       }
   2521       if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
   2522         T = Context.getObjCObjectPointerType(T);
   2523         if (DeclType.Ptr.TypeQuals)
   2524           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
   2525         break;
   2526       }
   2527       T = S.BuildPointerType(T, DeclType.Loc, Name);
   2528       if (DeclType.Ptr.TypeQuals)
   2529         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
   2530 
   2531       break;
   2532     case DeclaratorChunk::Reference: {
   2533       // Verify that we're not building a reference to pointer to function with
   2534       // exception specification.
   2535       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   2536         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   2537         D.setInvalidType(true);
   2538         // Build the type anyway.
   2539       }
   2540       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
   2541 
   2542       Qualifiers Quals;
   2543       if (DeclType.Ref.HasRestrict)
   2544         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
   2545       break;
   2546     }
   2547     case DeclaratorChunk::Array: {
   2548       // Verify that we're not building an array of pointers to function with
   2549       // exception specification.
   2550       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   2551         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   2552         D.setInvalidType(true);
   2553         // Build the type anyway.
   2554       }
   2555       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
   2556       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
   2557       ArrayType::ArraySizeModifier ASM;
   2558       if (ATI.isStar)
   2559         ASM = ArrayType::Star;
   2560       else if (ATI.hasStatic)
   2561         ASM = ArrayType::Static;
   2562       else
   2563         ASM = ArrayType::Normal;
   2564       if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
   2565         // FIXME: This check isn't quite right: it allows star in prototypes
   2566         // for function definitions, and disallows some edge cases detailed
   2567         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
   2568         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
   2569         ASM = ArrayType::Normal;
   2570         D.setInvalidType(true);
   2571       }
   2572 
   2573       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
   2574       // shall appear only in a declaration of a function parameter with an
   2575       // array type, ...
   2576       if (ASM == ArrayType::Static || ATI.TypeQuals) {
   2577         if (!(D.isPrototypeContext() ||
   2578               D.getContext() == Declarator::KNRTypeListContext)) {
   2579           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
   2580               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
   2581           // Remove the 'static' and the type qualifiers.
   2582           if (ASM == ArrayType::Static)
   2583             ASM = ArrayType::Normal;
   2584           ATI.TypeQuals = 0;
   2585           D.setInvalidType(true);
   2586         }
   2587 
   2588         // C99 6.7.5.2p1: ... and then only in the outermost array type
   2589         // derivation.
   2590         unsigned x = chunkIndex;
   2591         while (x != 0) {
   2592           // Walk outwards along the declarator chunks.
   2593           x--;
   2594           const DeclaratorChunk &DC = D.getTypeObject(x);
   2595           switch (DC.Kind) {
   2596           case DeclaratorChunk::Paren:
   2597             continue;
   2598           case DeclaratorChunk::Array:
   2599           case DeclaratorChunk::Pointer:
   2600           case DeclaratorChunk::Reference:
   2601           case DeclaratorChunk::MemberPointer:
   2602             S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
   2603               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
   2604             if (ASM == ArrayType::Static)
   2605               ASM = ArrayType::Normal;
   2606             ATI.TypeQuals = 0;
   2607             D.setInvalidType(true);
   2608             break;
   2609           case DeclaratorChunk::Function:
   2610           case DeclaratorChunk::BlockPointer:
   2611             // These are invalid anyway, so just ignore.
   2612             break;
   2613           }
   2614         }
   2615       }
   2616 
   2617       if (const AutoType *AT = T->getContainedAutoType()) {
   2618         // We've already diagnosed this for decltype(auto).
   2619         if (!AT->isDecltypeAuto())
   2620           S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
   2621             << getPrintableNameForEntity(Name) << T;
   2622         T = QualType();
   2623         break;
   2624       }
   2625 
   2626       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
   2627                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
   2628       break;
   2629     }
   2630     case DeclaratorChunk::Function: {
   2631       // If the function declarator has a prototype (i.e. it is not () and
   2632       // does not have a K&R-style identifier list), then the arguments are part
   2633       // of the type, otherwise the argument list is ().
   2634       const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
   2635       IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
   2636 
   2637       // Check for auto functions and trailing return type and adjust the
   2638       // return type accordingly.
   2639       if (!D.isInvalidType()) {
   2640         // trailing-return-type is only required if we're declaring a function,
   2641         // and not, for instance, a pointer to a function.
   2642         if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
   2643             !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
   2644             !S.getLangOpts().CPlusPlus1y) {
   2645           S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   2646                diag::err_auto_missing_trailing_return);
   2647           T = Context.IntTy;
   2648           D.setInvalidType(true);
   2649         } else if (FTI.hasTrailingReturnType()) {
   2650           // T must be exactly 'auto' at this point. See CWG issue 681.
   2651           if (isa<ParenType>(T)) {
   2652             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   2653                  diag::err_trailing_return_in_parens)
   2654               << T << D.getDeclSpec().getSourceRange();
   2655             D.setInvalidType(true);
   2656           } else if (D.getContext() != Declarator::LambdaExprContext &&
   2657                      (T.hasQualifiers() || !isa<AutoType>(T) ||
   2658                       cast<AutoType>(T)->isDecltypeAuto())) {
   2659             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   2660                  diag::err_trailing_return_without_auto)
   2661               << T << D.getDeclSpec().getSourceRange();
   2662             D.setInvalidType(true);
   2663           }
   2664           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
   2665           if (T.isNull()) {
   2666             // An error occurred parsing the trailing return type.
   2667             T = Context.IntTy;
   2668             D.setInvalidType(true);
   2669           }
   2670         }
   2671       }
   2672 
   2673       // C99 6.7.5.3p1: The return type may not be a function or array type.
   2674       // For conversion functions, we'll diagnose this particular error later.
   2675       if ((T->isArrayType() || T->isFunctionType()) &&
   2676           (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
   2677         unsigned diagID = diag::err_func_returning_array_function;
   2678         // Last processing chunk in block context means this function chunk
   2679         // represents the block.
   2680         if (chunkIndex == 0 &&
   2681             D.getContext() == Declarator::BlockLiteralContext)
   2682           diagID = diag::err_block_returning_array_function;
   2683         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
   2684         T = Context.IntTy;
   2685         D.setInvalidType(true);
   2686       }
   2687 
   2688       // Do not allow returning half FP value.
   2689       // FIXME: This really should be in BuildFunctionType.
   2690       if (T->isHalfType()) {
   2691         if (S.getLangOpts().OpenCL) {
   2692           if (!S.getOpenCLOptions().cl_khr_fp16) {
   2693             S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
   2694             D.setInvalidType(true);
   2695           }
   2696         } else {
   2697           S.Diag(D.getIdentifierLoc(),
   2698             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
   2699           D.setInvalidType(true);
   2700         }
   2701       }
   2702 
   2703       // Methods cannot return interface types. All ObjC objects are
   2704       // passed by reference.
   2705       if (T->isObjCObjectType()) {
   2706         SourceLocation DiagLoc, FixitLoc;
   2707         if (TInfo) {
   2708           DiagLoc = TInfo->getTypeLoc().getLocStart();
   2709           FixitLoc = S.PP.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
   2710         } else {
   2711           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
   2712           FixitLoc = S.PP.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
   2713         }
   2714         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
   2715           << 0 << T
   2716           << FixItHint::CreateInsertion(FixitLoc, "*");
   2717 
   2718         T = Context.getObjCObjectPointerType(T);
   2719         if (TInfo) {
   2720           TypeLocBuilder TLB;
   2721           TLB.pushFullCopy(TInfo->getTypeLoc());
   2722           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
   2723           TLoc.setStarLoc(FixitLoc);
   2724           TInfo = TLB.getTypeSourceInfo(Context, T);
   2725         }
   2726 
   2727         D.setInvalidType(true);
   2728       }
   2729 
   2730       // cv-qualifiers on return types are pointless except when the type is a
   2731       // class type in C++.
   2732       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
   2733           !(S.getLangOpts().CPlusPlus &&
   2734             (T->isDependentType() || T->isRecordType())))
   2735         diagnoseIgnoredFunctionQualifiers(S, T, D, chunkIndex);
   2736 
   2737       // Objective-C ARC ownership qualifiers are ignored on the function
   2738       // return type (by type canonicalization). Complain if this attribute
   2739       // was written here.
   2740       if (T.getQualifiers().hasObjCLifetime()) {
   2741         SourceLocation AttrLoc;
   2742         if (chunkIndex + 1 < D.getNumTypeObjects()) {
   2743           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
   2744           for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
   2745                Attr; Attr = Attr->getNext()) {
   2746             if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
   2747               AttrLoc = Attr->getLoc();
   2748               break;
   2749             }
   2750           }
   2751         }
   2752         if (AttrLoc.isInvalid()) {
   2753           for (const AttributeList *Attr
   2754                  = D.getDeclSpec().getAttributes().getList();
   2755                Attr; Attr = Attr->getNext()) {
   2756             if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
   2757               AttrLoc = Attr->getLoc();
   2758               break;
   2759             }
   2760           }
   2761         }
   2762 
   2763         if (AttrLoc.isValid()) {
   2764           // The ownership attributes are almost always written via
   2765           // the predefined
   2766           // __strong/__weak/__autoreleasing/__unsafe_unretained.
   2767           if (AttrLoc.isMacroID())
   2768             AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
   2769 
   2770           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
   2771             << T.getQualifiers().getObjCLifetime();
   2772         }
   2773       }
   2774 
   2775       if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
   2776         // C++ [dcl.fct]p6:
   2777         //   Types shall not be defined in return or parameter types.
   2778         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   2779         if (Tag->isCompleteDefinition())
   2780           S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
   2781             << Context.getTypeDeclType(Tag);
   2782       }
   2783 
   2784       // Exception specs are not allowed in typedefs. Complain, but add it
   2785       // anyway.
   2786       if (IsTypedefName && FTI.getExceptionSpecType())
   2787         S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
   2788           << (D.getContext() == Declarator::AliasDeclContext ||
   2789               D.getContext() == Declarator::AliasTemplateContext);
   2790 
   2791       // If we see "T var();" or "T var(T());" at block scope, it is probably
   2792       // an attempt to initialize a variable, not a function declaration.
   2793       if (FTI.isAmbiguous)
   2794         warnAboutAmbiguousFunction(S, D, DeclType, T);
   2795 
   2796       if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
   2797         // Simple void foo(), where the incoming T is the result type.
   2798         T = Context.getFunctionNoProtoType(T);
   2799       } else {
   2800         // We allow a zero-parameter variadic function in C if the
   2801         // function is marked with the "overloadable" attribute. Scan
   2802         // for this attribute now.
   2803         if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
   2804           bool Overloadable = false;
   2805           for (const AttributeList *Attrs = D.getAttributes();
   2806                Attrs; Attrs = Attrs->getNext()) {
   2807             if (Attrs->getKind() == AttributeList::AT_Overloadable) {
   2808               Overloadable = true;
   2809               break;
   2810             }
   2811           }
   2812 
   2813           if (!Overloadable)
   2814             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
   2815         }
   2816 
   2817         if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
   2818           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
   2819           // definition.
   2820           S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
   2821           D.setInvalidType(true);
   2822           // Recover by creating a K&R-style function type.
   2823           T = Context.getFunctionNoProtoType(T);
   2824           break;
   2825         }
   2826 
   2827         FunctionProtoType::ExtProtoInfo EPI;
   2828         EPI.Variadic = FTI.isVariadic;
   2829         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
   2830         EPI.TypeQuals = FTI.TypeQuals;
   2831         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
   2832                     : FTI.RefQualifierIsLValueRef? RQ_LValue
   2833                     : RQ_RValue;
   2834 
   2835         // Otherwise, we have a function with an argument list that is
   2836         // potentially variadic.
   2837         SmallVector<QualType, 16> ArgTys;
   2838         ArgTys.reserve(FTI.NumArgs);
   2839 
   2840         SmallVector<bool, 16> ConsumedArguments;
   2841         ConsumedArguments.reserve(FTI.NumArgs);
   2842         bool HasAnyConsumedArguments = false;
   2843 
   2844         for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
   2845           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   2846           QualType ArgTy = Param->getType();
   2847           assert(!ArgTy.isNull() && "Couldn't parse type?");
   2848 
   2849           // Look for 'void'.  void is allowed only as a single argument to a
   2850           // function with no other parameters (C99 6.7.5.3p10).  We record
   2851           // int(void) as a FunctionProtoType with an empty argument list.
   2852           if (ArgTy->isVoidType()) {
   2853             // If this is something like 'float(int, void)', reject it.  'void'
   2854             // is an incomplete type (C99 6.2.5p19) and function decls cannot
   2855             // have arguments of incomplete type.
   2856             if (FTI.NumArgs != 1 || FTI.isVariadic) {
   2857               S.Diag(DeclType.Loc, diag::err_void_only_param);
   2858               ArgTy = Context.IntTy;
   2859               Param->setType(ArgTy);
   2860             } else if (FTI.ArgInfo[i].Ident) {
   2861               // Reject, but continue to parse 'int(void abc)'.
   2862               S.Diag(FTI.ArgInfo[i].IdentLoc,
   2863                    diag::err_param_with_void_type);
   2864               ArgTy = Context.IntTy;
   2865               Param->setType(ArgTy);
   2866             } else {
   2867               // Reject, but continue to parse 'float(const void)'.
   2868               if (ArgTy.hasQualifiers())
   2869                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
   2870 
   2871               // Do not add 'void' to the ArgTys list.
   2872               break;
   2873             }
   2874           } else if (ArgTy->isHalfType()) {
   2875             // Disallow half FP arguments.
   2876             // FIXME: This really should be in BuildFunctionType.
   2877             if (S.getLangOpts().OpenCL) {
   2878               if (!S.getOpenCLOptions().cl_khr_fp16) {
   2879                 S.Diag(Param->getLocation(),
   2880                   diag::err_opencl_half_argument) << ArgTy;
   2881                 D.setInvalidType();
   2882                 Param->setInvalidDecl();
   2883               }
   2884             } else {
   2885               S.Diag(Param->getLocation(),
   2886                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
   2887               D.setInvalidType();
   2888             }
   2889           } else if (!FTI.hasPrototype) {
   2890             if (ArgTy->isPromotableIntegerType()) {
   2891               ArgTy = Context.getPromotedIntegerType(ArgTy);
   2892               Param->setKNRPromoted(true);
   2893             } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
   2894               if (BTy->getKind() == BuiltinType::Float) {
   2895                 ArgTy = Context.DoubleTy;
   2896                 Param->setKNRPromoted(true);
   2897               }
   2898             }
   2899           }
   2900 
   2901           if (LangOpts.ObjCAutoRefCount) {
   2902             bool Consumed = Param->hasAttr<NSConsumedAttr>();
   2903             ConsumedArguments.push_back(Consumed);
   2904             HasAnyConsumedArguments |= Consumed;
   2905           }
   2906 
   2907           ArgTys.push_back(ArgTy);
   2908         }
   2909 
   2910         if (HasAnyConsumedArguments)
   2911           EPI.ConsumedArguments = ConsumedArguments.data();
   2912 
   2913         SmallVector<QualType, 4> Exceptions;
   2914         SmallVector<ParsedType, 2> DynamicExceptions;
   2915         SmallVector<SourceRange, 2> DynamicExceptionRanges;
   2916         Expr *NoexceptExpr = 0;
   2917 
   2918         if (FTI.getExceptionSpecType() == EST_Dynamic) {
   2919           // FIXME: It's rather inefficient to have to split into two vectors
   2920           // here.
   2921           unsigned N = FTI.NumExceptions;
   2922           DynamicExceptions.reserve(N);
   2923           DynamicExceptionRanges.reserve(N);
   2924           for (unsigned I = 0; I != N; ++I) {
   2925             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
   2926             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
   2927           }
   2928         } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
   2929           NoexceptExpr = FTI.NoexceptExpr;
   2930         }
   2931 
   2932         S.checkExceptionSpecification(FTI.getExceptionSpecType(),
   2933                                       DynamicExceptions,
   2934                                       DynamicExceptionRanges,
   2935                                       NoexceptExpr,
   2936                                       Exceptions,
   2937                                       EPI);
   2938 
   2939         T = Context.getFunctionType(T, ArgTys, EPI);
   2940       }
   2941 
   2942       break;
   2943     }
   2944     case DeclaratorChunk::MemberPointer:
   2945       // The scope spec must refer to a class, or be dependent.
   2946       CXXScopeSpec &SS = DeclType.Mem.Scope();
   2947       QualType ClsType;
   2948       if (SS.isInvalid()) {
   2949         // Avoid emitting extra errors if we already errored on the scope.
   2950         D.setInvalidType(true);
   2951       } else if (S.isDependentScopeSpecifier(SS) ||
   2952                  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
   2953         NestedNameSpecifier *NNS
   2954           = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
   2955         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
   2956         switch (NNS->getKind()) {
   2957         case NestedNameSpecifier::Identifier:
   2958           ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
   2959                                                  NNS->getAsIdentifier());
   2960           break;
   2961 
   2962         case NestedNameSpecifier::Namespace:
   2963         case NestedNameSpecifier::NamespaceAlias:
   2964         case NestedNameSpecifier::Global:
   2965           llvm_unreachable("Nested-name-specifier must name a type");
   2966 
   2967         case NestedNameSpecifier::TypeSpec:
   2968         case NestedNameSpecifier::TypeSpecWithTemplate:
   2969           ClsType = QualType(NNS->getAsType(), 0);
   2970           // Note: if the NNS has a prefix and ClsType is a nondependent
   2971           // TemplateSpecializationType, then the NNS prefix is NOT included
   2972           // in ClsType; hence we wrap ClsType into an ElaboratedType.
   2973           // NOTE: in particular, no wrap occurs if ClsType already is an
   2974           // Elaborated, DependentName, or DependentTemplateSpecialization.
   2975           if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
   2976             ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
   2977           break;
   2978         }
   2979       } else {
   2980         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
   2981              diag::err_illegal_decl_mempointer_in_nonclass)
   2982           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
   2983           << DeclType.Mem.Scope().getRange();
   2984         D.setInvalidType(true);
   2985       }
   2986 
   2987       if (!ClsType.isNull())
   2988         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
   2989       if (T.isNull()) {
   2990         T = Context.IntTy;
   2991         D.setInvalidType(true);
   2992       } else if (DeclType.Mem.TypeQuals) {
   2993         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
   2994       }
   2995       break;
   2996     }
   2997 
   2998     if (T.isNull()) {
   2999       D.setInvalidType(true);
   3000       T = Context.IntTy;
   3001     }
   3002 
   3003     // See if there are any attributes on this declarator chunk.
   3004     if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
   3005       processTypeAttrs(state, T, TAL_DeclChunk, attrs);
   3006   }
   3007 
   3008   if (LangOpts.CPlusPlus && T->isFunctionType()) {
   3009     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
   3010     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
   3011 
   3012     // C++ 8.3.5p4:
   3013     //   A cv-qualifier-seq shall only be part of the function type
   3014     //   for a nonstatic member function, the function type to which a pointer
   3015     //   to member refers, or the top-level function type of a function typedef
   3016     //   declaration.
   3017     //
   3018     // Core issue 547 also allows cv-qualifiers on function types that are
   3019     // top-level template type arguments.
   3020     bool FreeFunction;
   3021     if (!D.getCXXScopeSpec().isSet()) {
   3022       FreeFunction = ((D.getContext() != Declarator::MemberContext &&
   3023                        D.getContext() != Declarator::LambdaExprContext) ||
   3024                       D.getDeclSpec().isFriendSpecified());
   3025     } else {
   3026       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
   3027       FreeFunction = (DC && !DC->isRecord());
   3028     }
   3029 
   3030     // C++11 [dcl.fct]p6 (w/DR1417):
   3031     // An attempt to specify a function type with a cv-qualifier-seq or a
   3032     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
   3033     //  - the function type for a non-static member function,
   3034     //  - the function type to which a pointer to member refers,
   3035     //  - the top-level function type of a function typedef declaration or
   3036     //    alias-declaration,
   3037     //  - the type-id in the default argument of a type-parameter, or
   3038     //  - the type-id of a template-argument for a type-parameter
   3039     if (IsQualifiedFunction &&
   3040         !(!FreeFunction &&
   3041           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
   3042         !IsTypedefName &&
   3043         D.getContext() != Declarator::TemplateTypeArgContext) {
   3044       SourceLocation Loc = D.getLocStart();
   3045       SourceRange RemovalRange;
   3046       unsigned I;
   3047       if (D.isFunctionDeclarator(I)) {
   3048         SmallVector<SourceLocation, 4> RemovalLocs;
   3049         const DeclaratorChunk &Chunk = D.getTypeObject(I);
   3050         assert(Chunk.Kind == DeclaratorChunk::Function);
   3051         if (Chunk.Fun.hasRefQualifier())
   3052           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
   3053         if (Chunk.Fun.TypeQuals & Qualifiers::Const)
   3054           RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
   3055         if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
   3056           RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
   3057         // FIXME: We do not track the location of the __restrict qualifier.
   3058         //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
   3059         //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
   3060         if (!RemovalLocs.empty()) {
   3061           std::sort(RemovalLocs.begin(), RemovalLocs.end(),
   3062                     BeforeThanCompare<SourceLocation>(S.getSourceManager()));
   3063           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
   3064           Loc = RemovalLocs.front();
   3065         }
   3066       }
   3067 
   3068       S.Diag(Loc, diag::err_invalid_qualified_function_type)
   3069         << FreeFunction << D.isFunctionDeclarator() << T
   3070         << getFunctionQualifiersAsString(FnTy)
   3071         << FixItHint::CreateRemoval(RemovalRange);
   3072 
   3073       // Strip the cv-qualifiers and ref-qualifiers from the type.
   3074       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
   3075       EPI.TypeQuals = 0;
   3076       EPI.RefQualifier = RQ_None;
   3077 
   3078       T = Context.getFunctionType(FnTy->getResultType(), FnTy->getArgTypes(),
   3079                                   EPI);
   3080       // Rebuild any parens around the identifier in the function type.
   3081       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   3082         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
   3083           break;
   3084         T = S.BuildParenType(T);
   3085       }
   3086     }
   3087   }
   3088 
   3089   // Apply any undistributed attributes from the declarator.
   3090   if (!T.isNull())
   3091     if (AttributeList *attrs = D.getAttributes())
   3092       processTypeAttrs(state, T, TAL_DeclName, attrs);
   3093 
   3094   // Diagnose any ignored type attributes.
   3095   if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
   3096 
   3097   // C++0x [dcl.constexpr]p9:
   3098   //  A constexpr specifier used in an object declaration declares the object
   3099   //  as const.
   3100   if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
   3101     T.addConst();
   3102   }
   3103 
   3104   // If there was an ellipsis in the declarator, the declaration declares a
   3105   // parameter pack whose type may be a pack expansion type.
   3106   if (D.hasEllipsis() && !T.isNull()) {
   3107     // C++0x [dcl.fct]p13:
   3108     //   A declarator-id or abstract-declarator containing an ellipsis shall
   3109     //   only be used in a parameter-declaration. Such a parameter-declaration
   3110     //   is a parameter pack (14.5.3). [...]
   3111     switch (D.getContext()) {
   3112     case Declarator::PrototypeContext:
   3113       // C++0x [dcl.fct]p13:
   3114       //   [...] When it is part of a parameter-declaration-clause, the
   3115       //   parameter pack is a function parameter pack (14.5.3). The type T
   3116       //   of the declarator-id of the function parameter pack shall contain
   3117       //   a template parameter pack; each template parameter pack in T is
   3118       //   expanded by the function parameter pack.
   3119       //
   3120       // We represent function parameter packs as function parameters whose
   3121       // type is a pack expansion.
   3122       if (!T->containsUnexpandedParameterPack()) {
   3123         S.Diag(D.getEllipsisLoc(),
   3124              diag::err_function_parameter_pack_without_parameter_packs)
   3125           << T <<  D.getSourceRange();
   3126         D.setEllipsisLoc(SourceLocation());
   3127       } else {
   3128         T = Context.getPackExpansionType(T, None);
   3129       }
   3130       break;
   3131 
   3132     case Declarator::TemplateParamContext:
   3133       // C++0x [temp.param]p15:
   3134       //   If a template-parameter is a [...] is a parameter-declaration that
   3135       //   declares a parameter pack (8.3.5), then the template-parameter is a
   3136       //   template parameter pack (14.5.3).
   3137       //
   3138       // Note: core issue 778 clarifies that, if there are any unexpanded
   3139       // parameter packs in the type of the non-type template parameter, then
   3140       // it expands those parameter packs.
   3141       if (T->containsUnexpandedParameterPack())
   3142         T = Context.getPackExpansionType(T, None);
   3143       else
   3144         S.Diag(D.getEllipsisLoc(),
   3145                LangOpts.CPlusPlus11
   3146                  ? diag::warn_cxx98_compat_variadic_templates
   3147                  : diag::ext_variadic_templates);
   3148       break;
   3149 
   3150     case Declarator::FileContext:
   3151     case Declarator::KNRTypeListContext:
   3152     case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
   3153     case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
   3154     case Declarator::TypeNameContext:
   3155     case Declarator::CXXNewContext:
   3156     case Declarator::AliasDeclContext:
   3157     case Declarator::AliasTemplateContext:
   3158     case Declarator::MemberContext:
   3159     case Declarator::BlockContext:
   3160     case Declarator::ForContext:
   3161     case Declarator::ConditionContext:
   3162     case Declarator::CXXCatchContext:
   3163     case Declarator::ObjCCatchContext:
   3164     case Declarator::BlockLiteralContext:
   3165     case Declarator::LambdaExprContext:
   3166     case Declarator::ConversionIdContext:
   3167     case Declarator::TrailingReturnContext:
   3168     case Declarator::TemplateTypeArgContext:
   3169       // FIXME: We may want to allow parameter packs in block-literal contexts
   3170       // in the future.
   3171       S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
   3172       D.setEllipsisLoc(SourceLocation());
   3173       break;
   3174     }
   3175   }
   3176 
   3177   if (T.isNull())
   3178     return Context.getNullTypeSourceInfo();
   3179   else if (D.isInvalidType())
   3180     return Context.getTrivialTypeSourceInfo(T);
   3181 
   3182   return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
   3183 }
   3184 
   3185 /// GetTypeForDeclarator - Convert the type for the specified
   3186 /// declarator to Type instances.
   3187 ///
   3188 /// The result of this call will never be null, but the associated
   3189 /// type may be a null type if there's an unrecoverable error.
   3190 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
   3191   // Determine the type of the declarator. Not all forms of declarator
   3192   // have a type.
   3193 
   3194   TypeProcessingState state(*this, D);
   3195 
   3196   TypeSourceInfo *ReturnTypeInfo = 0;
   3197   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
   3198   if (T.isNull())
   3199     return Context.getNullTypeSourceInfo();
   3200 
   3201   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
   3202     inferARCWriteback(state, T);
   3203 
   3204   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
   3205 }
   3206 
   3207 static void transferARCOwnershipToDeclSpec(Sema &S,
   3208                                            QualType &declSpecTy,
   3209                                            Qualifiers::ObjCLifetime ownership) {
   3210   if (declSpecTy->isObjCRetainableType() &&
   3211       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
   3212     Qualifiers qs;
   3213     qs.addObjCLifetime(ownership);
   3214     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
   3215   }
   3216 }
   3217 
   3218 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
   3219                                             Qualifiers::ObjCLifetime ownership,
   3220                                             unsigned chunkIndex) {
   3221   Sema &S = state.getSema();
   3222   Declarator &D = state.getDeclarator();
   3223 
   3224   // Look for an explicit lifetime attribute.
   3225   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
   3226   for (const AttributeList *attr = chunk.getAttrs(); attr;
   3227          attr = attr->getNext())
   3228     if (attr->getKind() == AttributeList::AT_ObjCOwnership)
   3229       return;
   3230 
   3231   const char *attrStr = 0;
   3232   switch (ownership) {
   3233   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
   3234   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
   3235   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
   3236   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
   3237   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
   3238   }
   3239 
   3240   // If there wasn't one, add one (with an invalid source location
   3241   // so that we don't make an AttributedType for it).
   3242   AttributeList *attr = D.getAttributePool()
   3243     .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
   3244             /*scope*/ 0, SourceLocation(),
   3245             &S.Context.Idents.get(attrStr), SourceLocation(),
   3246             /*args*/ 0, 0, AttributeList::AS_GNU);
   3247   spliceAttrIntoList(*attr, chunk.getAttrListRef());
   3248 
   3249   // TODO: mark whether we did this inference?
   3250 }
   3251 
   3252 /// \brief Used for transferring ownership in casts resulting in l-values.
   3253 static void transferARCOwnership(TypeProcessingState &state,
   3254                                  QualType &declSpecTy,
   3255                                  Qualifiers::ObjCLifetime ownership) {
   3256   Sema &S = state.getSema();
   3257   Declarator &D = state.getDeclarator();
   3258 
   3259   int inner = -1;
   3260   bool hasIndirection = false;
   3261   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   3262     DeclaratorChunk &chunk = D.getTypeObject(i);
   3263     switch (chunk.Kind) {
   3264     case DeclaratorChunk::Paren:
   3265       // Ignore parens.
   3266       break;
   3267 
   3268     case DeclaratorChunk::Array:
   3269     case DeclaratorChunk::Reference:
   3270     case DeclaratorChunk::Pointer:
   3271       if (inner != -1)
   3272         hasIndirection = true;
   3273       inner = i;
   3274       break;
   3275 
   3276     case DeclaratorChunk::BlockPointer:
   3277       if (inner != -1)
   3278         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
   3279       return;
   3280 
   3281     case DeclaratorChunk::Function:
   3282     case DeclaratorChunk::MemberPointer:
   3283       return;
   3284     }
   3285   }
   3286 
   3287   if (inner == -1)
   3288     return;
   3289 
   3290   DeclaratorChunk &chunk = D.getTypeObject(inner);
   3291   if (chunk.Kind == DeclaratorChunk::Pointer) {
   3292     if (declSpecTy->isObjCRetainableType())
   3293       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
   3294     if (declSpecTy->isObjCObjectType() && hasIndirection)
   3295       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
   3296   } else {
   3297     assert(chunk.Kind == DeclaratorChunk::Array ||
   3298            chunk.Kind == DeclaratorChunk::Reference);
   3299     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
   3300   }
   3301 }
   3302 
   3303 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
   3304   TypeProcessingState state(*this, D);
   3305 
   3306   TypeSourceInfo *ReturnTypeInfo = 0;
   3307   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
   3308   if (declSpecTy.isNull())
   3309     return Context.getNullTypeSourceInfo();
   3310 
   3311   if (getLangOpts().ObjCAutoRefCount) {
   3312     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
   3313     if (ownership != Qualifiers::OCL_None)
   3314       transferARCOwnership(state, declSpecTy, ownership);
   3315   }
   3316 
   3317   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
   3318 }
   3319 
   3320 /// Map an AttributedType::Kind to an AttributeList::Kind.
   3321 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
   3322   switch (kind) {
   3323   case AttributedType::attr_address_space:
   3324     return AttributeList::AT_AddressSpace;
   3325   case AttributedType::attr_regparm:
   3326     return AttributeList::AT_Regparm;
   3327   case AttributedType::attr_vector_size:
   3328     return AttributeList::AT_VectorSize;
   3329   case AttributedType::attr_neon_vector_type:
   3330     return AttributeList::AT_NeonVectorType;
   3331   case AttributedType::attr_neon_polyvector_type:
   3332     return AttributeList::AT_NeonPolyVectorType;
   3333   case AttributedType::attr_objc_gc:
   3334     return AttributeList::AT_ObjCGC;
   3335   case AttributedType::attr_objc_ownership:
   3336     return AttributeList::AT_ObjCOwnership;
   3337   case AttributedType::attr_noreturn:
   3338     return AttributeList::AT_NoReturn;
   3339   case AttributedType::attr_cdecl:
   3340     return AttributeList::AT_CDecl;
   3341   case AttributedType::attr_fastcall:
   3342     return AttributeList::AT_FastCall;
   3343   case AttributedType::attr_stdcall:
   3344     return AttributeList::AT_StdCall;
   3345   case AttributedType::attr_thiscall:
   3346     return AttributeList::AT_ThisCall;
   3347   case AttributedType::attr_pascal:
   3348     return AttributeList::AT_Pascal;
   3349   case AttributedType::attr_pcs:
   3350   case AttributedType::attr_pcs_vfp:
   3351     return AttributeList::AT_Pcs;
   3352   case AttributedType::attr_pnaclcall:
   3353     return AttributeList::AT_PnaclCall;
   3354   case AttributedType::attr_inteloclbicc:
   3355     return AttributeList::AT_IntelOclBicc;
   3356   case AttributedType::attr_ptr32:
   3357     return AttributeList::AT_Ptr32;
   3358   case AttributedType::attr_ptr64:
   3359     return AttributeList::AT_Ptr64;
   3360   case AttributedType::attr_sptr:
   3361     return AttributeList::AT_SPtr;
   3362   case AttributedType::attr_uptr:
   3363     return AttributeList::AT_UPtr;
   3364   }
   3365   llvm_unreachable("unexpected attribute kind!");
   3366 }
   3367 
   3368 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
   3369                                   const AttributeList *attrs) {
   3370   AttributedType::Kind kind = TL.getAttrKind();
   3371 
   3372   assert(attrs && "no type attributes in the expected location!");
   3373   AttributeList::Kind parsedKind = getAttrListKind(kind);
   3374   while (attrs->getKind() != parsedKind) {
   3375     attrs = attrs->getNext();
   3376     assert(attrs && "no matching attribute in expected location!");
   3377   }
   3378 
   3379   TL.setAttrNameLoc(attrs->getLoc());
   3380   if (TL.hasAttrExprOperand())
   3381     TL.setAttrExprOperand(attrs->getArg(0));
   3382   else if (TL.hasAttrEnumOperand())
   3383     TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
   3384 
   3385   // FIXME: preserve this information to here.
   3386   if (TL.hasAttrOperand())
   3387     TL.setAttrOperandParensRange(SourceRange());
   3388 }
   3389 
   3390 namespace {
   3391   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
   3392     ASTContext &Context;
   3393     const DeclSpec &DS;
   3394 
   3395   public:
   3396     TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
   3397       : Context(Context), DS(DS) {}
   3398 
   3399     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
   3400       fillAttributedTypeLoc(TL, DS.getAttributes().getList());
   3401       Visit(TL.getModifiedLoc());
   3402     }
   3403     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
   3404       Visit(TL.getUnqualifiedLoc());
   3405     }
   3406     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
   3407       TL.setNameLoc(DS.getTypeSpecTypeLoc());
   3408     }
   3409     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
   3410       TL.setNameLoc(DS.getTypeSpecTypeLoc());
   3411       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
   3412       // addition field. What we have is good enough for dispay of location
   3413       // of 'fixit' on interface name.
   3414       TL.setNameEndLoc(DS.getLocEnd());
   3415     }
   3416     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
   3417       // Handle the base type, which might not have been written explicitly.
   3418       if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
   3419         TL.setHasBaseTypeAsWritten(false);
   3420         TL.getBaseLoc().initialize(Context, SourceLocation());
   3421       } else {
   3422         TL.setHasBaseTypeAsWritten(true);
   3423         Visit(TL.getBaseLoc());
   3424       }
   3425 
   3426       // Protocol qualifiers.
   3427       if (DS.getProtocolQualifiers()) {
   3428         assert(TL.getNumProtocols() > 0);
   3429         assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
   3430         TL.setLAngleLoc(DS.getProtocolLAngleLoc());
   3431         TL.setRAngleLoc(DS.getSourceRange().getEnd());
   3432         for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
   3433           TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
   3434       } else {
   3435         assert(TL.getNumProtocols() == 0);
   3436         TL.setLAngleLoc(SourceLocation());
   3437         TL.setRAngleLoc(SourceLocation());
   3438       }
   3439     }
   3440     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
   3441       TL.setStarLoc(SourceLocation());
   3442       Visit(TL.getPointeeLoc());
   3443     }
   3444     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
   3445       TypeSourceInfo *TInfo = 0;
   3446       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   3447 
   3448       // If we got no declarator info from previous Sema routines,
   3449       // just fill with the typespec loc.
   3450       if (!TInfo) {
   3451         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
   3452         return;
   3453       }
   3454 
   3455       TypeLoc OldTL = TInfo->getTypeLoc();
   3456       if (TInfo->getType()->getAs<ElaboratedType>()) {
   3457         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
   3458         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
   3459             .castAs<TemplateSpecializationTypeLoc>();
   3460         TL.copy(NamedTL);
   3461       } else {
   3462         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
   3463         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
   3464       }
   3465 
   3466     }
   3467     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
   3468       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
   3469       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
   3470       TL.setParensRange(DS.getTypeofParensRange());
   3471     }
   3472     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
   3473       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
   3474       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
   3475       TL.setParensRange(DS.getTypeofParensRange());
   3476       assert(DS.getRepAsType());
   3477       TypeSourceInfo *TInfo = 0;
   3478       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   3479       TL.setUnderlyingTInfo(TInfo);
   3480     }
   3481     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
   3482       // FIXME: This holds only because we only have one unary transform.
   3483       assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
   3484       TL.setKWLoc(DS.getTypeSpecTypeLoc());
   3485       TL.setParensRange(DS.getTypeofParensRange());
   3486       assert(DS.getRepAsType());
   3487       TypeSourceInfo *TInfo = 0;
   3488       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   3489       TL.setUnderlyingTInfo(TInfo);
   3490     }
   3491     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
   3492       // By default, use the source location of the type specifier.
   3493       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
   3494       if (TL.needsExtraLocalData()) {
   3495         // Set info for the written builtin specifiers.
   3496         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
   3497         // Try to have a meaningful source location.
   3498         if (TL.getWrittenSignSpec() != TSS_unspecified)
   3499           // Sign spec loc overrides the others (e.g., 'unsigned long').
   3500           TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
   3501         else if (TL.getWrittenWidthSpec() != TSW_unspecified)
   3502           // Width spec loc overrides type spec loc (e.g., 'short int').
   3503           TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
   3504       }
   3505     }
   3506     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
   3507       ElaboratedTypeKeyword Keyword
   3508         = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
   3509       if (DS.getTypeSpecType() == TST_typename) {
   3510         TypeSourceInfo *TInfo = 0;
   3511         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   3512         if (TInfo) {
   3513           TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
   3514           return;
   3515         }
   3516       }
   3517       TL.setElaboratedKeywordLoc(Keyword != ETK_None
   3518                                  ? DS.getTypeSpecTypeLoc()
   3519                                  : SourceLocation());
   3520       const CXXScopeSpec& SS = DS.getTypeSpecScope();
   3521       TL.setQualifierLoc(SS.getWithLocInContext(Context));
   3522       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
   3523     }
   3524     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
   3525       assert(DS.getTypeSpecType() == TST_typename);
   3526       TypeSourceInfo *TInfo = 0;
   3527       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   3528       assert(TInfo);
   3529       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
   3530     }
   3531     void VisitDependentTemplateSpecializationTypeLoc(
   3532                                  DependentTemplateSpecializationTypeLoc TL) {
   3533       assert(DS.getTypeSpecType() == TST_typename);
   3534       TypeSourceInfo *TInfo = 0;
   3535       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   3536       assert(TInfo);
   3537       TL.copy(
   3538           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
   3539     }
   3540     void VisitTagTypeLoc(TagTypeLoc TL) {
   3541       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
   3542     }
   3543     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
   3544       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
   3545       // or an _Atomic qualifier.
   3546       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
   3547         TL.setKWLoc(DS.getTypeSpecTypeLoc());
   3548         TL.setParensRange(DS.getTypeofParensRange());
   3549 
   3550         TypeSourceInfo *TInfo = 0;
   3551         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   3552         assert(TInfo);
   3553         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
   3554       } else {
   3555         TL.setKWLoc(DS.getAtomicSpecLoc());
   3556         // No parens, to indicate this was spelled as an _Atomic qualifier.
   3557         TL.setParensRange(SourceRange());
   3558         Visit(TL.getValueLoc());
   3559       }
   3560     }
   3561 
   3562     void VisitTypeLoc(TypeLoc TL) {
   3563       // FIXME: add other typespec types and change this to an assert.
   3564       TL.initialize(Context, DS.getTypeSpecTypeLoc());
   3565     }
   3566   };
   3567 
   3568   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
   3569     ASTContext &Context;
   3570     const DeclaratorChunk &Chunk;
   3571 
   3572   public:
   3573     DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
   3574       : Context(Context), Chunk(Chunk) {}
   3575 
   3576     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
   3577       llvm_unreachable("qualified type locs not expected here!");
   3578     }
   3579     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
   3580       llvm_unreachable("decayed type locs not expected here!");
   3581     }
   3582 
   3583     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
   3584       fillAttributedTypeLoc(TL, Chunk.getAttrs());
   3585     }
   3586     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
   3587       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
   3588       TL.setCaretLoc(Chunk.Loc);
   3589     }
   3590     void VisitPointerTypeLoc(PointerTypeLoc TL) {
   3591       assert(Chunk.Kind == DeclaratorChunk::Pointer);
   3592       TL.setStarLoc(Chunk.Loc);
   3593     }
   3594     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
   3595       assert(Chunk.Kind == DeclaratorChunk::Pointer);
   3596       TL.setStarLoc(Chunk.Loc);
   3597     }
   3598     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
   3599       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
   3600       const CXXScopeSpec& SS = Chunk.Mem.Scope();
   3601       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
   3602 
   3603       const Type* ClsTy = TL.getClass();
   3604       QualType ClsQT = QualType(ClsTy, 0);
   3605       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
   3606       // Now copy source location info into the type loc component.
   3607       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
   3608       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
   3609       case NestedNameSpecifier::Identifier:
   3610         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
   3611         {
   3612           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
   3613           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
   3614           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
   3615           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
   3616         }
   3617         break;
   3618 
   3619       case NestedNameSpecifier::TypeSpec:
   3620       case NestedNameSpecifier::TypeSpecWithTemplate:
   3621         if (isa<ElaboratedType>(ClsTy)) {
   3622           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
   3623           ETLoc.setElaboratedKeywordLoc(SourceLocation());
   3624           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
   3625           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
   3626           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
   3627         } else {
   3628           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
   3629         }
   3630         break;
   3631 
   3632       case NestedNameSpecifier::Namespace:
   3633       case NestedNameSpecifier::NamespaceAlias:
   3634       case NestedNameSpecifier::Global:
   3635         llvm_unreachable("Nested-name-specifier must name a type");
   3636       }
   3637 
   3638       // Finally fill in MemberPointerLocInfo fields.
   3639       TL.setStarLoc(Chunk.Loc);
   3640       TL.setClassTInfo(ClsTInfo);
   3641     }
   3642     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
   3643       assert(Chunk.Kind == DeclaratorChunk::Reference);
   3644       // 'Amp' is misleading: this might have been originally
   3645       /// spelled with AmpAmp.
   3646       TL.setAmpLoc(Chunk.Loc);
   3647     }
   3648     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
   3649       assert(Chunk.Kind == DeclaratorChunk::Reference);
   3650       assert(!Chunk.Ref.LValueRef);
   3651       TL.setAmpAmpLoc(Chunk.Loc);
   3652     }
   3653     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
   3654       assert(Chunk.Kind == DeclaratorChunk::Array);
   3655       TL.setLBracketLoc(Chunk.Loc);
   3656       TL.setRBracketLoc(Chunk.EndLoc);
   3657       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
   3658     }
   3659     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
   3660       assert(Chunk.Kind == DeclaratorChunk::Function);
   3661       TL.setLocalRangeBegin(Chunk.Loc);
   3662       TL.setLocalRangeEnd(Chunk.EndLoc);
   3663 
   3664       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
   3665       TL.setLParenLoc(FTI.getLParenLoc());
   3666       TL.setRParenLoc(FTI.getRParenLoc());
   3667       for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
   3668         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   3669         TL.setArg(tpi++, Param);
   3670       }
   3671       // FIXME: exception specs
   3672     }
   3673     void VisitParenTypeLoc(ParenTypeLoc TL) {
   3674       assert(Chunk.Kind == DeclaratorChunk::Paren);
   3675       TL.setLParenLoc(Chunk.Loc);
   3676       TL.setRParenLoc(Chunk.EndLoc);
   3677     }
   3678 
   3679     void VisitTypeLoc(TypeLoc TL) {
   3680       llvm_unreachable("unsupported TypeLoc kind in declarator!");
   3681     }
   3682   };
   3683 }
   3684 
   3685 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
   3686   SourceLocation Loc;
   3687   switch (Chunk.Kind) {
   3688   case DeclaratorChunk::Function:
   3689   case DeclaratorChunk::Array:
   3690   case DeclaratorChunk::Paren:
   3691     llvm_unreachable("cannot be _Atomic qualified");
   3692 
   3693   case DeclaratorChunk::Pointer:
   3694     Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
   3695     break;
   3696 
   3697   case DeclaratorChunk::BlockPointer:
   3698   case DeclaratorChunk::Reference:
   3699   case DeclaratorChunk::MemberPointer:
   3700     // FIXME: Provide a source location for the _Atomic keyword.
   3701     break;
   3702   }
   3703 
   3704   ATL.setKWLoc(Loc);
   3705   ATL.setParensRange(SourceRange());
   3706 }
   3707 
   3708 /// \brief Create and instantiate a TypeSourceInfo with type source information.
   3709 ///
   3710 /// \param T QualType referring to the type as written in source code.
   3711 ///
   3712 /// \param ReturnTypeInfo For declarators whose return type does not show
   3713 /// up in the normal place in the declaration specifiers (such as a C++
   3714 /// conversion function), this pointer will refer to a type source information
   3715 /// for that return type.
   3716 TypeSourceInfo *
   3717 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
   3718                                      TypeSourceInfo *ReturnTypeInfo) {
   3719   TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
   3720   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
   3721 
   3722   // Handle parameter packs whose type is a pack expansion.
   3723   if (isa<PackExpansionType>(T)) {
   3724     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
   3725     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
   3726   }
   3727 
   3728   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   3729     // An AtomicTypeLoc might be produced by an atomic qualifier in this
   3730     // declarator chunk.
   3731     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
   3732       fillAtomicQualLoc(ATL, D.getTypeObject(i));
   3733       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
   3734     }
   3735 
   3736     while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
   3737       fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
   3738       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
   3739     }
   3740 
   3741     DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
   3742     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
   3743   }
   3744 
   3745   // If we have different source information for the return type, use
   3746   // that.  This really only applies to C++ conversion functions.
   3747   if (ReturnTypeInfo) {
   3748     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
   3749     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
   3750     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
   3751   } else {
   3752     TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
   3753   }
   3754 
   3755   return TInfo;
   3756 }
   3757 
   3758 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
   3759 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
   3760   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
   3761   // and Sema during declaration parsing. Try deallocating/caching them when
   3762   // it's appropriate, instead of allocating them and keeping them around.
   3763   LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
   3764                                                        TypeAlignment);
   3765   new (LocT) LocInfoType(T, TInfo);
   3766   assert(LocT->getTypeClass() != T->getTypeClass() &&
   3767          "LocInfoType's TypeClass conflicts with an existing Type class");
   3768   return ParsedType::make(QualType(LocT, 0));
   3769 }
   3770 
   3771 void LocInfoType::getAsStringInternal(std::string &Str,
   3772                                       const PrintingPolicy &Policy) const {
   3773   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
   3774          " was used directly instead of getting the QualType through"
   3775          " GetTypeFromParser");
   3776 }
   3777 
   3778 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
   3779   // C99 6.7.6: Type names have no identifier.  This is already validated by
   3780   // the parser.
   3781   assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
   3782 
   3783   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3784   QualType T = TInfo->getType();
   3785   if (D.isInvalidType())
   3786     return true;
   3787 
   3788   // Make sure there are no unused decl attributes on the declarator.
   3789   // We don't want to do this for ObjC parameters because we're going
   3790   // to apply them to the actual parameter declaration.
   3791   // Likewise, we don't want to do this for alias declarations, because
   3792   // we are actually going to build a declaration from this eventually.
   3793   if (D.getContext() != Declarator::ObjCParameterContext &&
   3794       D.getContext() != Declarator::AliasDeclContext &&
   3795       D.getContext() != Declarator::AliasTemplateContext)
   3796     checkUnusedDeclAttributes(D);
   3797 
   3798   if (getLangOpts().CPlusPlus) {
   3799     // Check that there are no default arguments (C++ only).
   3800     CheckExtraCXXDefaultArguments(D);
   3801   }
   3802 
   3803   return CreateParsedType(T, TInfo);
   3804 }
   3805 
   3806 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
   3807   QualType T = Context.getObjCInstanceType();
   3808   TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   3809   return CreateParsedType(T, TInfo);
   3810 }
   3811 
   3812 
   3813 //===----------------------------------------------------------------------===//
   3814 // Type Attribute Processing
   3815 //===----------------------------------------------------------------------===//
   3816 
   3817 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
   3818 /// specified type.  The attribute contains 1 argument, the id of the address
   3819 /// space for the type.
   3820 static void HandleAddressSpaceTypeAttribute(QualType &Type,
   3821                                             const AttributeList &Attr, Sema &S){
   3822 
   3823   // If this type is already address space qualified, reject it.
   3824   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
   3825   // qualifiers for two or more different address spaces."
   3826   if (Type.getAddressSpace()) {
   3827     S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
   3828     Attr.setInvalid();
   3829     return;
   3830   }
   3831 
   3832   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
   3833   // qualified by an address-space qualifier."
   3834   if (Type->isFunctionType()) {
   3835     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
   3836     Attr.setInvalid();
   3837     return;
   3838   }
   3839 
   3840   // Check the attribute arguments.
   3841   if (Attr.getNumArgs() != 1) {
   3842     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   3843       << Attr.getName() << 1;
   3844     Attr.setInvalid();
   3845     return;
   3846   }
   3847   Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
   3848   llvm::APSInt addrSpace(32);
   3849   if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
   3850       !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
   3851     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
   3852       << Attr.getName() << AANT_ArgumentIntegerConstant
   3853       << ASArgExpr->getSourceRange();
   3854     Attr.setInvalid();
   3855     return;
   3856   }
   3857 
   3858   // Bounds checking.
   3859   if (addrSpace.isSigned()) {
   3860     if (addrSpace.isNegative()) {
   3861       S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
   3862         << ASArgExpr->getSourceRange();
   3863       Attr.setInvalid();
   3864       return;
   3865     }
   3866     addrSpace.setIsSigned(false);
   3867   }
   3868   llvm::APSInt max(addrSpace.getBitWidth());
   3869   max = Qualifiers::MaxAddressSpace;
   3870   if (addrSpace > max) {
   3871     S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
   3872       << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
   3873     Attr.setInvalid();
   3874     return;
   3875   }
   3876 
   3877   unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
   3878   Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
   3879 }
   3880 
   3881 /// Does this type have a "direct" ownership qualifier?  That is,
   3882 /// is it written like "__strong id", as opposed to something like
   3883 /// "typeof(foo)", where that happens to be strong?
   3884 static bool hasDirectOwnershipQualifier(QualType type) {
   3885   // Fast path: no qualifier at all.
   3886   assert(type.getQualifiers().hasObjCLifetime());
   3887 
   3888   while (true) {
   3889     // __strong id
   3890     if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
   3891       if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
   3892         return true;
   3893 
   3894       type = attr->getModifiedType();
   3895 
   3896     // X *__strong (...)
   3897     } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
   3898       type = paren->getInnerType();
   3899 
   3900     // That's it for things we want to complain about.  In particular,
   3901     // we do not want to look through typedefs, typeof(expr),
   3902     // typeof(type), or any other way that the type is somehow
   3903     // abstracted.
   3904     } else {
   3905 
   3906       return false;
   3907     }
   3908   }
   3909 }
   3910 
   3911 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
   3912 /// attribute on the specified type.
   3913 ///
   3914 /// Returns 'true' if the attribute was handled.
   3915 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
   3916                                        AttributeList &attr,
   3917                                        QualType &type) {
   3918   bool NonObjCPointer = false;
   3919 
   3920   if (!type->isDependentType() && !type->isUndeducedType()) {
   3921     if (const PointerType *ptr = type->getAs<PointerType>()) {
   3922       QualType pointee = ptr->getPointeeType();
   3923       if (pointee->isObjCRetainableType() || pointee->isPointerType())
   3924         return false;
   3925       // It is important not to lose the source info that there was an attribute
   3926       // applied to non-objc pointer. We will create an attributed type but
   3927       // its type will be the same as the original type.
   3928       NonObjCPointer = true;
   3929     } else if (!type->isObjCRetainableType()) {
   3930       return false;
   3931     }
   3932 
   3933     // Don't accept an ownership attribute in the declspec if it would
   3934     // just be the return type of a block pointer.
   3935     if (state.isProcessingDeclSpec()) {
   3936       Declarator &D = state.getDeclarator();
   3937       if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
   3938         return false;
   3939     }
   3940   }
   3941 
   3942   Sema &S = state.getSema();
   3943   SourceLocation AttrLoc = attr.getLoc();
   3944   if (AttrLoc.isMacroID())
   3945     AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
   3946 
   3947   if (!attr.getParameterName()) {
   3948     S.Diag(AttrLoc, diag::err_attribute_argument_type)
   3949       << attr.getName() << AANT_ArgumentString;
   3950     attr.setInvalid();
   3951     return true;
   3952   }
   3953 
   3954   // Consume lifetime attributes without further comment outside of
   3955   // ARC mode.
   3956   if (!S.getLangOpts().ObjCAutoRefCount)
   3957     return true;
   3958 
   3959   Qualifiers::ObjCLifetime lifetime;
   3960   if (attr.getParameterName()->isStr("none"))
   3961     lifetime = Qualifiers::OCL_ExplicitNone;
   3962   else if (attr.getParameterName()->isStr("strong"))
   3963     lifetime = Qualifiers::OCL_Strong;
   3964   else if (attr.getParameterName()->isStr("weak"))
   3965     lifetime = Qualifiers::OCL_Weak;
   3966   else if (attr.getParameterName()->isStr("autoreleasing"))
   3967     lifetime = Qualifiers::OCL_Autoreleasing;
   3968   else {
   3969     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
   3970       << "objc_ownership" << attr.getParameterName();
   3971     attr.setInvalid();
   3972     return true;
   3973   }
   3974 
   3975   SplitQualType underlyingType = type.split();
   3976 
   3977   // Check for redundant/conflicting ownership qualifiers.
   3978   if (Qualifiers::ObjCLifetime previousLifetime
   3979         = type.getQualifiers().getObjCLifetime()) {
   3980     // If it's written directly, that's an error.
   3981     if (hasDirectOwnershipQualifier(type)) {
   3982       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
   3983         << type;
   3984       return true;
   3985     }
   3986 
   3987     // Otherwise, if the qualifiers actually conflict, pull sugar off
   3988     // until we reach a type that is directly qualified.
   3989     if (previousLifetime != lifetime) {
   3990       // This should always terminate: the canonical type is
   3991       // qualified, so some bit of sugar must be hiding it.
   3992       while (!underlyingType.Quals.hasObjCLifetime()) {
   3993         underlyingType = underlyingType.getSingleStepDesugaredType();
   3994       }
   3995       underlyingType.Quals.removeObjCLifetime();
   3996     }
   3997   }
   3998 
   3999   underlyingType.Quals.addObjCLifetime(lifetime);
   4000 
   4001   if (NonObjCPointer) {
   4002     StringRef name = attr.getName()->getName();
   4003     switch (lifetime) {
   4004     case Qualifiers::OCL_None:
   4005     case Qualifiers::OCL_ExplicitNone:
   4006       break;
   4007     case Qualifiers::OCL_Strong: name = "__strong"; break;
   4008     case Qualifiers::OCL_Weak: name = "__weak"; break;
   4009     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
   4010     }
   4011     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
   4012       << TDS_ObjCObjOrBlock << type;
   4013   }
   4014 
   4015   QualType origType = type;
   4016   if (!NonObjCPointer)
   4017     type = S.Context.getQualifiedType(underlyingType);
   4018 
   4019   // If we have a valid source location for the attribute, use an
   4020   // AttributedType instead.
   4021   if (AttrLoc.isValid())
   4022     type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
   4023                                        origType, type);
   4024 
   4025   // Forbid __weak if the runtime doesn't support it.
   4026   if (lifetime == Qualifiers::OCL_Weak &&
   4027       !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
   4028 
   4029     // Actually, delay this until we know what we're parsing.
   4030     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
   4031       S.DelayedDiagnostics.add(
   4032           sema::DelayedDiagnostic::makeForbiddenType(
   4033               S.getSourceManager().getExpansionLoc(AttrLoc),
   4034               diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
   4035     } else {
   4036       S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
   4037     }
   4038 
   4039     attr.setInvalid();
   4040     return true;
   4041   }
   4042 
   4043   // Forbid __weak for class objects marked as
   4044   // objc_arc_weak_reference_unavailable
   4045   if (lifetime == Qualifiers::OCL_Weak) {
   4046     if (const ObjCObjectPointerType *ObjT =
   4047           type->getAs<ObjCObjectPointerType>()) {
   4048       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
   4049         if (Class->isArcWeakrefUnavailable()) {
   4050             S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
   4051             S.Diag(ObjT->getInterfaceDecl()->getLocation(),
   4052                    diag::note_class_declared);
   4053         }
   4054       }
   4055     }
   4056   }
   4057 
   4058   return true;
   4059 }
   4060 
   4061 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
   4062 /// attribute on the specified type.  Returns true to indicate that
   4063 /// the attribute was handled, false to indicate that the type does
   4064 /// not permit the attribute.
   4065 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
   4066                                  AttributeList &attr,
   4067                                  QualType &type) {
   4068   Sema &S = state.getSema();
   4069 
   4070   // Delay if this isn't some kind of pointer.
   4071   if (!type->isPointerType() &&
   4072       !type->isObjCObjectPointerType() &&
   4073       !type->isBlockPointerType())
   4074     return false;
   4075 
   4076   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
   4077     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
   4078     attr.setInvalid();
   4079     return true;
   4080   }
   4081 
   4082   // Check the attribute arguments.
   4083   if (!attr.getParameterName()) {
   4084     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
   4085       << attr.getName() << AANT_ArgumentString;
   4086     attr.setInvalid();
   4087     return true;
   4088   }
   4089   Qualifiers::GC GCAttr;
   4090   if (attr.getNumArgs() != 0) {
   4091     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   4092       << attr.getName() << 1;
   4093     attr.setInvalid();
   4094     return true;
   4095   }
   4096   if (attr.getParameterName()->isStr("weak"))
   4097     GCAttr = Qualifiers::Weak;
   4098   else if (attr.getParameterName()->isStr("strong"))
   4099     GCAttr = Qualifiers::Strong;
   4100   else {
   4101     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
   4102       << "objc_gc" << attr.getParameterName();
   4103     attr.setInvalid();
   4104     return true;
   4105   }
   4106 
   4107   QualType origType = type;
   4108   type = S.Context.getObjCGCQualType(origType, GCAttr);
   4109 
   4110   // Make an attributed type to preserve the source information.
   4111   if (attr.getLoc().isValid())
   4112     type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
   4113                                        origType, type);
   4114 
   4115   return true;
   4116 }
   4117 
   4118 namespace {
   4119   /// A helper class to unwrap a type down to a function for the
   4120   /// purposes of applying attributes there.
   4121   ///
   4122   /// Use:
   4123   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
   4124   ///   if (unwrapped.isFunctionType()) {
   4125   ///     const FunctionType *fn = unwrapped.get();
   4126   ///     // change fn somehow
   4127   ///     T = unwrapped.wrap(fn);
   4128   ///   }
   4129   struct FunctionTypeUnwrapper {
   4130     enum WrapKind {
   4131       Desugar,
   4132       Parens,
   4133       Pointer,
   4134       BlockPointer,
   4135       Reference,
   4136       MemberPointer
   4137     };
   4138 
   4139     QualType Original;
   4140     const FunctionType *Fn;
   4141     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
   4142 
   4143     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
   4144       while (true) {
   4145         const Type *Ty = T.getTypePtr();
   4146         if (isa<FunctionType>(Ty)) {
   4147           Fn = cast<FunctionType>(Ty);
   4148           return;
   4149         } else if (isa<ParenType>(Ty)) {
   4150           T = cast<ParenType>(Ty)->getInnerType();
   4151           Stack.push_back(Parens);
   4152         } else if (isa<PointerType>(Ty)) {
   4153           T = cast<PointerType>(Ty)->getPointeeType();
   4154           Stack.push_back(Pointer);
   4155         } else if (isa<BlockPointerType>(Ty)) {
   4156           T = cast<BlockPointerType>(Ty)->getPointeeType();
   4157           Stack.push_back(BlockPointer);
   4158         } else if (isa<MemberPointerType>(Ty)) {
   4159           T = cast<MemberPointerType>(Ty)->getPointeeType();
   4160           Stack.push_back(MemberPointer);
   4161         } else if (isa<ReferenceType>(Ty)) {
   4162           T = cast<ReferenceType>(Ty)->getPointeeType();
   4163           Stack.push_back(Reference);
   4164         } else {
   4165           const Type *DTy = Ty->getUnqualifiedDesugaredType();
   4166           if (Ty == DTy) {
   4167             Fn = 0;
   4168             return;
   4169           }
   4170 
   4171           T = QualType(DTy, 0);
   4172           Stack.push_back(Desugar);
   4173         }
   4174       }
   4175     }
   4176 
   4177     bool isFunctionType() const { return (Fn != 0); }
   4178     const FunctionType *get() const { return Fn; }
   4179 
   4180     QualType wrap(Sema &S, const FunctionType *New) {
   4181       // If T wasn't modified from the unwrapped type, do nothing.
   4182       if (New == get()) return Original;
   4183 
   4184       Fn = New;
   4185       return wrap(S.Context, Original, 0);
   4186     }
   4187 
   4188   private:
   4189     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
   4190       if (I == Stack.size())
   4191         return C.getQualifiedType(Fn, Old.getQualifiers());
   4192 
   4193       // Build up the inner type, applying the qualifiers from the old
   4194       // type to the new type.
   4195       SplitQualType SplitOld = Old.split();
   4196 
   4197       // As a special case, tail-recurse if there are no qualifiers.
   4198       if (SplitOld.Quals.empty())
   4199         return wrap(C, SplitOld.Ty, I);
   4200       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
   4201     }
   4202 
   4203     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
   4204       if (I == Stack.size()) return QualType(Fn, 0);
   4205 
   4206       switch (static_cast<WrapKind>(Stack[I++])) {
   4207       case Desugar:
   4208         // This is the point at which we potentially lose source
   4209         // information.
   4210         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
   4211 
   4212       case Parens: {
   4213         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
   4214         return C.getParenType(New);
   4215       }
   4216 
   4217       case Pointer: {
   4218         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
   4219         return C.getPointerType(New);
   4220       }
   4221 
   4222       case BlockPointer: {
   4223         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
   4224         return C.getBlockPointerType(New);
   4225       }
   4226 
   4227       case MemberPointer: {
   4228         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
   4229         QualType New = wrap(C, OldMPT->getPointeeType(), I);
   4230         return C.getMemberPointerType(New, OldMPT->getClass());
   4231       }
   4232 
   4233       case Reference: {
   4234         const ReferenceType *OldRef = cast<ReferenceType>(Old);
   4235         QualType New = wrap(C, OldRef->getPointeeType(), I);
   4236         if (isa<LValueReferenceType>(OldRef))
   4237           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
   4238         else
   4239           return C.getRValueReferenceType(New);
   4240       }
   4241       }
   4242 
   4243       llvm_unreachable("unknown wrapping kind");
   4244     }
   4245   };
   4246 }
   4247 
   4248 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
   4249                                              AttributeList &Attr,
   4250                                              QualType &Type) {
   4251   Sema &S = State.getSema();
   4252 
   4253   AttributeList::Kind Kind = Attr.getKind();
   4254   QualType Desugared = Type;
   4255   const AttributedType *AT = dyn_cast<AttributedType>(Type);
   4256   while (AT) {
   4257     AttributedType::Kind CurAttrKind = AT->getAttrKind();
   4258 
   4259     // You cannot specify duplicate type attributes, so if the attribute has
   4260     // already been applied, flag it.
   4261     if (getAttrListKind(CurAttrKind) == Kind) {
   4262       S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
   4263         << Attr.getName();
   4264       return true;
   4265     }
   4266 
   4267     // You cannot have both __sptr and __uptr on the same type, nor can you
   4268     // have __ptr32 and __ptr64.
   4269     if ((CurAttrKind == AttributedType::attr_ptr32 &&
   4270          Kind == AttributeList::AT_Ptr64) ||
   4271         (CurAttrKind == AttributedType::attr_ptr64 &&
   4272          Kind == AttributeList::AT_Ptr32)) {
   4273       S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
   4274         << "'__ptr32'" << "'__ptr64'";
   4275       return true;
   4276     } else if ((CurAttrKind == AttributedType::attr_sptr &&
   4277                 Kind == AttributeList::AT_UPtr) ||
   4278                (CurAttrKind == AttributedType::attr_uptr &&
   4279                 Kind == AttributeList::AT_SPtr)) {
   4280       S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
   4281         << "'__sptr'" << "'__uptr'";
   4282       return true;
   4283     }
   4284 
   4285     Desugared = AT->getEquivalentType();
   4286     AT = dyn_cast<AttributedType>(Desugared);
   4287   }
   4288 
   4289   // Pointer type qualifiers can only operate on pointer types, but not
   4290   // pointer-to-member types.
   4291   if (!isa<PointerType>(Desugared)) {
   4292     S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
   4293                           diag::err_attribute_no_member_pointers :
   4294                           diag::err_attribute_pointers_only) << Attr.getName();
   4295     return true;
   4296   }
   4297 
   4298   AttributedType::Kind TAK;
   4299   switch (Kind) {
   4300   default: llvm_unreachable("Unknown attribute kind");
   4301   case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
   4302   case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
   4303   case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
   4304   case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
   4305   }
   4306 
   4307   Type = S.Context.getAttributedType(TAK, Type, Type);
   4308   return false;
   4309 }
   4310 
   4311 static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
   4312   assert(!Attr.isInvalid());
   4313   switch (Attr.getKind()) {
   4314   default:
   4315     llvm_unreachable("not a calling convention attribute");
   4316   case AttributeList::AT_CDecl:
   4317     return AttributedType::attr_cdecl;
   4318   case AttributeList::AT_FastCall:
   4319     return AttributedType::attr_fastcall;
   4320   case AttributeList::AT_StdCall:
   4321     return AttributedType::attr_stdcall;
   4322   case AttributeList::AT_ThisCall:
   4323     return AttributedType::attr_thiscall;
   4324   case AttributeList::AT_Pascal:
   4325     return AttributedType::attr_pascal;
   4326   case AttributeList::AT_Pcs: {
   4327     // We know attr is valid so it can only have one of two strings args.
   4328     StringLiteral *Str = cast<StringLiteral>(Attr.getArg(0));
   4329     return llvm::StringSwitch<AttributedType::Kind>(Str->getString())
   4330         .Case("aapcs", AttributedType::attr_pcs)
   4331         .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
   4332   }
   4333   case AttributeList::AT_PnaclCall:
   4334     return AttributedType::attr_pnaclcall;
   4335   case AttributeList::AT_IntelOclBicc:
   4336     return AttributedType::attr_inteloclbicc;
   4337   }
   4338   llvm_unreachable("unexpected attribute kind!");
   4339 }
   4340 
   4341 /// Process an individual function attribute.  Returns true to
   4342 /// indicate that the attribute was handled, false if it wasn't.
   4343 static bool handleFunctionTypeAttr(TypeProcessingState &state,
   4344                                    AttributeList &attr,
   4345                                    QualType &type) {
   4346   Sema &S = state.getSema();
   4347 
   4348   FunctionTypeUnwrapper unwrapped(S, type);
   4349 
   4350   if (attr.getKind() == AttributeList::AT_NoReturn) {
   4351     if (S.CheckNoReturnAttr(attr))
   4352       return true;
   4353 
   4354     // Delay if this is not a function type.
   4355     if (!unwrapped.isFunctionType())
   4356       return false;
   4357 
   4358     // Otherwise we can process right away.
   4359     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
   4360     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   4361     return true;
   4362   }
   4363 
   4364   // ns_returns_retained is not always a type attribute, but if we got
   4365   // here, we're treating it as one right now.
   4366   if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
   4367     assert(S.getLangOpts().ObjCAutoRefCount &&
   4368            "ns_returns_retained treated as type attribute in non-ARC");
   4369     if (attr.getNumArgs()) return true;
   4370 
   4371     // Delay if this is not a function type.
   4372     if (!unwrapped.isFunctionType())
   4373       return false;
   4374 
   4375     FunctionType::ExtInfo EI
   4376       = unwrapped.get()->getExtInfo().withProducesResult(true);
   4377     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   4378     return true;
   4379   }
   4380 
   4381   if (attr.getKind() == AttributeList::AT_Regparm) {
   4382     unsigned value;
   4383     if (S.CheckRegparmAttr(attr, value))
   4384       return true;
   4385 
   4386     // Delay if this is not a function type.
   4387     if (!unwrapped.isFunctionType())
   4388       return false;
   4389 
   4390     // Diagnose regparm with fastcall.
   4391     const FunctionType *fn = unwrapped.get();
   4392     CallingConv CC = fn->getCallConv();
   4393     if (CC == CC_X86FastCall) {
   4394       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   4395         << FunctionType::getNameForCallConv(CC)
   4396         << "regparm";
   4397       attr.setInvalid();
   4398       return true;
   4399     }
   4400 
   4401     FunctionType::ExtInfo EI =
   4402       unwrapped.get()->getExtInfo().withRegParm(value);
   4403     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   4404     return true;
   4405   }
   4406 
   4407   // Delay if the type didn't work out to a function.
   4408   if (!unwrapped.isFunctionType()) return false;
   4409 
   4410   // Otherwise, a calling convention.
   4411   CallingConv CC;
   4412   if (S.CheckCallingConvAttr(attr, CC))
   4413     return true;
   4414 
   4415   const FunctionType *fn = unwrapped.get();
   4416   CallingConv CCOld = fn->getCallConv();
   4417   if (S.Context.getCanonicalCallConv(CC) ==
   4418       S.Context.getCanonicalCallConv(CCOld)) {
   4419     FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
   4420     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   4421     return true;
   4422   }
   4423 
   4424   if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
   4425     // Should we diagnose reapplications of the same convention?
   4426     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   4427       << FunctionType::getNameForCallConv(CC)
   4428       << FunctionType::getNameForCallConv(CCOld);
   4429     attr.setInvalid();
   4430     return true;
   4431   }
   4432 
   4433   // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
   4434   if (CC == CC_X86FastCall) {
   4435     if (isa<FunctionNoProtoType>(fn)) {
   4436       S.Diag(attr.getLoc(), diag::err_cconv_knr)
   4437         << FunctionType::getNameForCallConv(CC);
   4438       attr.setInvalid();
   4439       return true;
   4440     }
   4441 
   4442     const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
   4443     if (FnP->isVariadic()) {
   4444       S.Diag(attr.getLoc(), diag::err_cconv_varargs)
   4445         << FunctionType::getNameForCallConv(CC);
   4446       attr.setInvalid();
   4447       return true;
   4448     }
   4449 
   4450     // Also diagnose fastcall with regparm.
   4451     if (fn->getHasRegParm()) {
   4452       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   4453         << "regparm"
   4454         << FunctionType::getNameForCallConv(CC);
   4455       attr.setInvalid();
   4456       return true;
   4457     }
   4458   }
   4459 
   4460   // Modify the CC from the wrapped function type, wrap it all back, and then
   4461   // wrap the whole thing in an AttributedType as written.  The modified type
   4462   // might have a different CC if we ignored the attribute.
   4463   FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
   4464   QualType Equivalent =
   4465       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   4466   type = S.Context.getAttributedType(getCCTypeAttrKind(attr), type, Equivalent);
   4467   return true;
   4468 }
   4469 
   4470 /// Handle OpenCL image access qualifiers: read_only, write_only, read_write
   4471 static void HandleOpenCLImageAccessAttribute(QualType& CurType,
   4472                                              const AttributeList &Attr,
   4473                                              Sema &S) {
   4474   // Check the attribute arguments.
   4475   if (Attr.getNumArgs() != 1) {
   4476     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   4477       << Attr.getName() << 1;
   4478     Attr.setInvalid();
   4479     return;
   4480   }
   4481   Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
   4482   llvm::APSInt arg(32);
   4483   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
   4484       !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
   4485     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
   4486       << Attr.getName() << AANT_ArgumentIntegerConstant
   4487       << sizeExpr->getSourceRange();
   4488     Attr.setInvalid();
   4489     return;
   4490   }
   4491   unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
   4492   switch (iarg) {
   4493   case CLIA_read_only:
   4494   case CLIA_write_only:
   4495   case CLIA_read_write:
   4496     // Implemented in a separate patch
   4497     break;
   4498   default:
   4499     // Implemented in a separate patch
   4500     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
   4501       << sizeExpr->getSourceRange();
   4502     Attr.setInvalid();
   4503     break;
   4504   }
   4505 }
   4506 
   4507 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
   4508 /// and float scalars, although arrays, pointers, and function return values are
   4509 /// allowed in conjunction with this construct. Aggregates with this attribute
   4510 /// are invalid, even if they are of the same size as a corresponding scalar.
   4511 /// The raw attribute should contain precisely 1 argument, the vector size for
   4512 /// the variable, measured in bytes. If curType and rawAttr are well formed,
   4513 /// this routine will return a new vector type.
   4514 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
   4515                                  Sema &S) {
   4516   // Check the attribute arguments.
   4517   if (Attr.getNumArgs() != 1) {
   4518     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   4519       << Attr.getName() << 1;
   4520     Attr.setInvalid();
   4521     return;
   4522   }
   4523   Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
   4524   llvm::APSInt vecSize(32);
   4525   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
   4526       !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
   4527     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
   4528       << Attr.getName() << AANT_ArgumentIntegerConstant
   4529       << sizeExpr->getSourceRange();
   4530     Attr.setInvalid();
   4531     return;
   4532   }
   4533   // the base type must be integer or float, and can't already be a vector.
   4534   if (!CurType->isBuiltinType() ||
   4535       (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
   4536     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
   4537     Attr.setInvalid();
   4538     return;
   4539   }
   4540   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
   4541   // vecSize is specified in bytes - convert to bits.
   4542   unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
   4543 
   4544   // the vector size needs to be an integral multiple of the type size.
   4545   if (vectorSize % typeSize) {
   4546     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
   4547       << sizeExpr->getSourceRange();
   4548     Attr.setInvalid();
   4549     return;
   4550   }
   4551   if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
   4552     S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
   4553       << sizeExpr->getSourceRange();
   4554     Attr.setInvalid();
   4555     return;
   4556   }
   4557   if (vectorSize == 0) {
   4558     S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
   4559       << sizeExpr->getSourceRange();
   4560     Attr.setInvalid();
   4561     return;
   4562   }
   4563 
   4564   // Success! Instantiate the vector type, the number of elements is > 0, and
   4565   // not required to be a power of 2, unlike GCC.
   4566   CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
   4567                                     VectorType::GenericVector);
   4568 }
   4569 
   4570 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
   4571 /// a type.
   4572 static void HandleExtVectorTypeAttr(QualType &CurType,
   4573                                     const AttributeList &Attr,
   4574                                     Sema &S) {
   4575   Expr *sizeExpr;
   4576 
   4577   // Special case where the argument is a template id.
   4578   if (Attr.getParameterName()) {
   4579     CXXScopeSpec SS;
   4580     SourceLocation TemplateKWLoc;
   4581     UnqualifiedId id;
   4582     id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
   4583 
   4584     ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
   4585                                           id, false, false);
   4586     if (Size.isInvalid())
   4587       return;
   4588 
   4589     sizeExpr = Size.get();
   4590   } else {
   4591     // check the attribute arguments.
   4592     if (Attr.getNumArgs() != 1) {
   4593       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   4594         << Attr.getName() << 1;
   4595       return;
   4596     }
   4597     sizeExpr = Attr.getArg(0);
   4598   }
   4599 
   4600   // Create the vector type.
   4601   QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
   4602   if (!T.isNull())
   4603     CurType = T;
   4604 }
   4605 
   4606 static bool isPermittedNeonBaseType(QualType &Ty,
   4607                                     VectorType::VectorKind VecKind,
   4608                                     bool IsAArch64) {
   4609   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
   4610   if (!BTy)
   4611     return false;
   4612 
   4613   if (VecKind == VectorType::NeonPolyVector) {
   4614     if (IsAArch64) {
   4615       // AArch64 polynomial vectors are unsigned
   4616       return BTy->getKind() == BuiltinType::UChar ||
   4617              BTy->getKind() == BuiltinType::UShort;
   4618     } else {
   4619       // AArch32 polynomial vector are signed.
   4620       return BTy->getKind() == BuiltinType::SChar ||
   4621              BTy->getKind() == BuiltinType::Short;
   4622     }
   4623   }
   4624 
   4625   // Non-polynomial vector types: the usual suspects are allowed, as well as
   4626   // float64_t on AArch64.
   4627   if (IsAArch64 && BTy->getKind() == BuiltinType::Double)
   4628     return true;
   4629 
   4630   return BTy->getKind() == BuiltinType::SChar ||
   4631          BTy->getKind() == BuiltinType::UChar ||
   4632          BTy->getKind() == BuiltinType::Short ||
   4633          BTy->getKind() == BuiltinType::UShort ||
   4634          BTy->getKind() == BuiltinType::Int ||
   4635          BTy->getKind() == BuiltinType::UInt ||
   4636          BTy->getKind() == BuiltinType::LongLong ||
   4637          BTy->getKind() == BuiltinType::ULongLong ||
   4638          BTy->getKind() == BuiltinType::Float ||
   4639          BTy->getKind() == BuiltinType::Half;
   4640 }
   4641 
   4642 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
   4643 /// "neon_polyvector_type" attributes are used to create vector types that
   4644 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
   4645 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
   4646 /// the argument to these Neon attributes is the number of vector elements,
   4647 /// not the vector size in bytes.  The vector width and element type must
   4648 /// match one of the standard Neon vector types.
   4649 static void HandleNeonVectorTypeAttr(QualType& CurType,
   4650                                      const AttributeList &Attr, Sema &S,
   4651                                      VectorType::VectorKind VecKind) {
   4652   // Check the attribute arguments.
   4653   if (Attr.getNumArgs() != 1) {
   4654     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   4655       << Attr.getName() << 1;
   4656     Attr.setInvalid();
   4657     return;
   4658   }
   4659   // The number of elements must be an ICE.
   4660   Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
   4661   llvm::APSInt numEltsInt(32);
   4662   if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
   4663       !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
   4664     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
   4665       << Attr.getName() << AANT_ArgumentIntegerConstant
   4666       << numEltsExpr->getSourceRange();
   4667     Attr.setInvalid();
   4668     return;
   4669   }
   4670   // Only certain element types are supported for Neon vectors.
   4671   llvm::Triple::ArchType Arch =
   4672         S.Context.getTargetInfo().getTriple().getArch();
   4673   if (!isPermittedNeonBaseType(CurType, VecKind,
   4674                                Arch == llvm::Triple::aarch64)) {
   4675     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
   4676     Attr.setInvalid();
   4677     return;
   4678   }
   4679 
   4680   // The total size of the vector must be 64 or 128 bits.
   4681   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
   4682   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
   4683   unsigned vecSize = typeSize * numElts;
   4684   if (vecSize != 64 && vecSize != 128) {
   4685     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
   4686     Attr.setInvalid();
   4687     return;
   4688   }
   4689 
   4690   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
   4691 }
   4692 
   4693 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
   4694                              TypeAttrLocation TAL, AttributeList *attrs) {
   4695   // Scan through and apply attributes to this type where it makes sense.  Some
   4696   // attributes (such as __address_space__, __vector_size__, etc) apply to the
   4697   // type, but others can be present in the type specifiers even though they
   4698   // apply to the decl.  Here we apply type attributes and ignore the rest.
   4699 
   4700   AttributeList *next;
   4701   do {
   4702     AttributeList &attr = *attrs;
   4703     next = attr.getNext();
   4704 
   4705     // Skip attributes that were marked to be invalid.
   4706     if (attr.isInvalid())
   4707       continue;
   4708 
   4709     if (attr.isCXX11Attribute()) {
   4710       // [[gnu::...]] attributes are treated as declaration attributes, so may
   4711       // not appertain to a DeclaratorChunk, even if we handle them as type
   4712       // attributes.
   4713       if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
   4714         if (TAL == TAL_DeclChunk) {
   4715           state.getSema().Diag(attr.getLoc(),
   4716                                diag::warn_cxx11_gnu_attribute_on_type)
   4717               << attr.getName();
   4718           continue;
   4719         }
   4720       } else if (TAL != TAL_DeclChunk) {
   4721         // Otherwise, only consider type processing for a C++11 attribute if
   4722         // it's actually been applied to a type.
   4723         continue;
   4724       }
   4725     }
   4726 
   4727     // If this is an attribute we can handle, do so now,
   4728     // otherwise, add it to the FnAttrs list for rechaining.
   4729     switch (attr.getKind()) {
   4730     default:
   4731       // A C++11 attribute on a declarator chunk must appertain to a type.
   4732       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
   4733         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
   4734           << attr.getName();
   4735         attr.setUsedAsTypeAttr();
   4736       }
   4737       break;
   4738 
   4739     case AttributeList::UnknownAttribute:
   4740       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
   4741         state.getSema().Diag(attr.getLoc(),
   4742                              diag::warn_unknown_attribute_ignored)
   4743           << attr.getName();
   4744       break;
   4745 
   4746     case AttributeList::IgnoredAttribute:
   4747       break;
   4748 
   4749     case AttributeList::AT_MayAlias:
   4750       // FIXME: This attribute needs to actually be handled, but if we ignore
   4751       // it it breaks large amounts of Linux software.
   4752       attr.setUsedAsTypeAttr();
   4753       break;
   4754     case AttributeList::AT_AddressSpace:
   4755       HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
   4756       attr.setUsedAsTypeAttr();
   4757       break;
   4758     OBJC_POINTER_TYPE_ATTRS_CASELIST:
   4759       if (!handleObjCPointerTypeAttr(state, attr, type))
   4760         distributeObjCPointerTypeAttr(state, attr, type);
   4761       attr.setUsedAsTypeAttr();
   4762       break;
   4763     case AttributeList::AT_VectorSize:
   4764       HandleVectorSizeAttr(type, attr, state.getSema());
   4765       attr.setUsedAsTypeAttr();
   4766       break;
   4767     case AttributeList::AT_ExtVectorType:
   4768       HandleExtVectorTypeAttr(type, attr, state.getSema());
   4769       attr.setUsedAsTypeAttr();
   4770       break;
   4771     case AttributeList::AT_NeonVectorType:
   4772       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
   4773                                VectorType::NeonVector);
   4774       attr.setUsedAsTypeAttr();
   4775       break;
   4776     case AttributeList::AT_NeonPolyVectorType:
   4777       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
   4778                                VectorType::NeonPolyVector);
   4779       attr.setUsedAsTypeAttr();
   4780       break;
   4781     case AttributeList::AT_OpenCLImageAccess:
   4782       HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
   4783       attr.setUsedAsTypeAttr();
   4784       break;
   4785 
   4786     case AttributeList::AT_Win64:
   4787       attr.setUsedAsTypeAttr();
   4788       break;
   4789     MS_TYPE_ATTRS_CASELIST:
   4790       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
   4791         attr.setUsedAsTypeAttr();
   4792       break;
   4793 
   4794     case AttributeList::AT_NSReturnsRetained:
   4795       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
   4796         break;
   4797       // fallthrough into the function attrs
   4798 
   4799     FUNCTION_TYPE_ATTRS_CASELIST:
   4800       attr.setUsedAsTypeAttr();
   4801 
   4802       // Never process function type attributes as part of the
   4803       // declaration-specifiers.
   4804       if (TAL == TAL_DeclSpec)
   4805         distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
   4806 
   4807       // Otherwise, handle the possible delays.
   4808       else if (!handleFunctionTypeAttr(state, attr, type))
   4809         distributeFunctionTypeAttr(state, attr, type);
   4810       break;
   4811     }
   4812   } while ((attrs = next));
   4813 }
   4814 
   4815 /// \brief Ensure that the type of the given expression is complete.
   4816 ///
   4817 /// This routine checks whether the expression \p E has a complete type. If the
   4818 /// expression refers to an instantiable construct, that instantiation is
   4819 /// performed as needed to complete its type. Furthermore
   4820 /// Sema::RequireCompleteType is called for the expression's type (or in the
   4821 /// case of a reference type, the referred-to type).
   4822 ///
   4823 /// \param E The expression whose type is required to be complete.
   4824 /// \param Diagnoser The object that will emit a diagnostic if the type is
   4825 /// incomplete.
   4826 ///
   4827 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
   4828 /// otherwise.
   4829 bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
   4830   QualType T = E->getType();
   4831 
   4832   // Fast path the case where the type is already complete.
   4833   if (!T->isIncompleteType())
   4834     return false;
   4835 
   4836   // Incomplete array types may be completed by the initializer attached to
   4837   // their definitions. For static data members of class templates we need to
   4838   // instantiate the definition to get this initializer and complete the type.
   4839   if (T->isIncompleteArrayType()) {
   4840     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   4841       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
   4842         if (Var->isStaticDataMember() &&
   4843             Var->getInstantiatedFromStaticDataMember()) {
   4844 
   4845           MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
   4846           assert(MSInfo && "Missing member specialization information?");
   4847           if (MSInfo->getTemplateSpecializationKind()
   4848                 != TSK_ExplicitSpecialization) {
   4849             // If we don't already have a point of instantiation, this is it.
   4850             if (MSInfo->getPointOfInstantiation().isInvalid()) {
   4851               MSInfo->setPointOfInstantiation(E->getLocStart());
   4852 
   4853               // This is a modification of an existing AST node. Notify
   4854               // listeners.
   4855               if (ASTMutationListener *L = getASTMutationListener())
   4856                 L->StaticDataMemberInstantiated(Var);
   4857             }
   4858 
   4859             InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
   4860 
   4861             // Update the type to the newly instantiated definition's type both
   4862             // here and within the expression.
   4863             if (VarDecl *Def = Var->getDefinition()) {
   4864               DRE->setDecl(Def);
   4865               T = Def->getType();
   4866               DRE->setType(T);
   4867               E->setType(T);
   4868             }
   4869           }
   4870 
   4871           // We still go on to try to complete the type independently, as it
   4872           // may also require instantiations or diagnostics if it remains
   4873           // incomplete.
   4874         }
   4875       }
   4876     }
   4877   }
   4878 
   4879   // FIXME: Are there other cases which require instantiating something other
   4880   // than the type to complete the type of an expression?
   4881 
   4882   // Look through reference types and complete the referred type.
   4883   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
   4884     T = Ref->getPointeeType();
   4885 
   4886   return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
   4887 }
   4888 
   4889 namespace {
   4890   struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
   4891     unsigned DiagID;
   4892 
   4893     TypeDiagnoserDiag(unsigned DiagID)
   4894       : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
   4895 
   4896     virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
   4897       if (Suppressed) return;
   4898       S.Diag(Loc, DiagID) << T;
   4899     }
   4900   };
   4901 }
   4902 
   4903 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
   4904   TypeDiagnoserDiag Diagnoser(DiagID);
   4905   return RequireCompleteExprType(E, Diagnoser);
   4906 }
   4907 
   4908 /// @brief Ensure that the type T is a complete type.
   4909 ///
   4910 /// This routine checks whether the type @p T is complete in any
   4911 /// context where a complete type is required. If @p T is a complete
   4912 /// type, returns false. If @p T is a class template specialization,
   4913 /// this routine then attempts to perform class template
   4914 /// instantiation. If instantiation fails, or if @p T is incomplete
   4915 /// and cannot be completed, issues the diagnostic @p diag (giving it
   4916 /// the type @p T) and returns true.
   4917 ///
   4918 /// @param Loc  The location in the source that the incomplete type
   4919 /// diagnostic should refer to.
   4920 ///
   4921 /// @param T  The type that this routine is examining for completeness.
   4922 ///
   4923 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
   4924 /// @c false otherwise.
   4925 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
   4926                                TypeDiagnoser &Diagnoser) {
   4927   if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
   4928     return true;
   4929   if (const TagType *Tag = T->getAs<TagType>()) {
   4930     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
   4931       Tag->getDecl()->setCompleteDefinitionRequired();
   4932       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
   4933     }
   4934   }
   4935   return false;
   4936 }
   4937 
   4938 /// \brief The implementation of RequireCompleteType
   4939 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
   4940                                    TypeDiagnoser &Diagnoser) {
   4941   // FIXME: Add this assertion to make sure we always get instantiation points.
   4942   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
   4943   // FIXME: Add this assertion to help us flush out problems with
   4944   // checking for dependent types and type-dependent expressions.
   4945   //
   4946   //  assert(!T->isDependentType() &&
   4947   //         "Can't ask whether a dependent type is complete");
   4948 
   4949   // If we have a complete type, we're done.
   4950   NamedDecl *Def = 0;
   4951   if (!T->isIncompleteType(&Def)) {
   4952     // If we know about the definition but it is not visible, complain.
   4953     if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(*this, Def)) {
   4954       // Suppress this error outside of a SFINAE context if we've already
   4955       // emitted the error once for this type. There's no usefulness in
   4956       // repeating the diagnostic.
   4957       // FIXME: Add a Fix-It that imports the corresponding module or includes
   4958       // the header.
   4959       Module *Owner = Def->getOwningModule();
   4960       Diag(Loc, diag::err_module_private_definition)
   4961         << T << Owner->getFullModuleName();
   4962       Diag(Def->getLocation(), diag::note_previous_definition);
   4963 
   4964       if (!isSFINAEContext()) {
   4965         // Recover by implicitly importing this module.
   4966         createImplicitModuleImport(Loc, Owner);
   4967       }
   4968     }
   4969 
   4970     return false;
   4971   }
   4972 
   4973   const TagType *Tag = T->getAs<TagType>();
   4974   const ObjCInterfaceType *IFace = 0;
   4975 
   4976   if (Tag) {
   4977     // Avoid diagnosing invalid decls as incomplete.
   4978     if (Tag->getDecl()->isInvalidDecl())
   4979       return true;
   4980 
   4981     // Give the external AST source a chance to complete the type.
   4982     if (Tag->getDecl()->hasExternalLexicalStorage()) {
   4983       Context.getExternalSource()->CompleteType(Tag->getDecl());
   4984       if (!Tag->isIncompleteType())
   4985         return false;
   4986     }
   4987   }
   4988   else if ((IFace = T->getAs<ObjCInterfaceType>())) {
   4989     // Avoid diagnosing invalid decls as incomplete.
   4990     if (IFace->getDecl()->isInvalidDecl())
   4991       return true;
   4992 
   4993     // Give the external AST source a chance to complete the type.
   4994     if (IFace->getDecl()->hasExternalLexicalStorage()) {
   4995       Context.getExternalSource()->CompleteType(IFace->getDecl());
   4996       if (!IFace->isIncompleteType())
   4997         return false;
   4998     }
   4999   }
   5000 
   5001   // If we have a class template specialization or a class member of a
   5002   // class template specialization, or an array with known size of such,
   5003   // try to instantiate it.
   5004   QualType MaybeTemplate = T;
   5005   while (const ConstantArrayType *Array
   5006            = Context.getAsConstantArrayType(MaybeTemplate))
   5007     MaybeTemplate = Array->getElementType();
   5008   if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
   5009     if (ClassTemplateSpecializationDecl *ClassTemplateSpec
   5010           = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
   5011       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
   5012         return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
   5013                                                       TSK_ImplicitInstantiation,
   5014                                             /*Complain=*/!Diagnoser.Suppressed);
   5015     } else if (CXXRecordDecl *Rec
   5016                  = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
   5017       CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
   5018       if (!Rec->isBeingDefined() && Pattern) {
   5019         MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
   5020         assert(MSI && "Missing member specialization information?");
   5021         // This record was instantiated from a class within a template.
   5022         if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
   5023           return InstantiateClass(Loc, Rec, Pattern,
   5024                                   getTemplateInstantiationArgs(Rec),
   5025                                   TSK_ImplicitInstantiation,
   5026                                   /*Complain=*/!Diagnoser.Suppressed);
   5027       }
   5028     }
   5029   }
   5030 
   5031   if (Diagnoser.Suppressed)
   5032     return true;
   5033 
   5034   // We have an incomplete type. Produce a diagnostic.
   5035   if (Ident___float128 &&
   5036       T == Context.getTypeDeclType(Context.getFloat128StubType())) {
   5037     Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
   5038     return true;
   5039   }
   5040 
   5041   Diagnoser.diagnose(*this, Loc, T);
   5042 
   5043   // If the type was a forward declaration of a class/struct/union
   5044   // type, produce a note.
   5045   if (Tag && !Tag->getDecl()->isInvalidDecl())
   5046     Diag(Tag->getDecl()->getLocation(),
   5047          Tag->isBeingDefined() ? diag::note_type_being_defined
   5048                                : diag::note_forward_declaration)
   5049       << QualType(Tag, 0);
   5050 
   5051   // If the Objective-C class was a forward declaration, produce a note.
   5052   if (IFace && !IFace->getDecl()->isInvalidDecl())
   5053     Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
   5054 
   5055   return true;
   5056 }
   5057 
   5058 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
   5059                                unsigned DiagID) {
   5060   TypeDiagnoserDiag Diagnoser(DiagID);
   5061   return RequireCompleteType(Loc, T, Diagnoser);
   5062 }
   5063 
   5064 /// \brief Get diagnostic %select index for tag kind for
   5065 /// literal type diagnostic message.
   5066 /// WARNING: Indexes apply to particular diagnostics only!
   5067 ///
   5068 /// \returns diagnostic %select index.
   5069 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
   5070   switch (Tag) {
   5071   case TTK_Struct: return 0;
   5072   case TTK_Interface: return 1;
   5073   case TTK_Class:  return 2;
   5074   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
   5075   }
   5076 }
   5077 
   5078 /// @brief Ensure that the type T is a literal type.
   5079 ///
   5080 /// This routine checks whether the type @p T is a literal type. If @p T is an
   5081 /// incomplete type, an attempt is made to complete it. If @p T is a literal
   5082 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
   5083 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
   5084 /// it the type @p T), along with notes explaining why the type is not a
   5085 /// literal type, and returns true.
   5086 ///
   5087 /// @param Loc  The location in the source that the non-literal type
   5088 /// diagnostic should refer to.
   5089 ///
   5090 /// @param T  The type that this routine is examining for literalness.
   5091 ///
   5092 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
   5093 ///
   5094 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
   5095 /// @c false otherwise.
   5096 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
   5097                               TypeDiagnoser &Diagnoser) {
   5098   assert(!T->isDependentType() && "type should not be dependent");
   5099 
   5100   QualType ElemType = Context.getBaseElementType(T);
   5101   RequireCompleteType(Loc, ElemType, 0);
   5102 
   5103   if (T->isLiteralType(Context))
   5104     return false;
   5105 
   5106   if (Diagnoser.Suppressed)
   5107     return true;
   5108 
   5109   Diagnoser.diagnose(*this, Loc, T);
   5110 
   5111   if (T->isVariableArrayType())
   5112     return true;
   5113 
   5114   const RecordType *RT = ElemType->getAs<RecordType>();
   5115   if (!RT)
   5116     return true;
   5117 
   5118   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   5119 
   5120   // A partially-defined class type can't be a literal type, because a literal
   5121   // class type must have a trivial destructor (which can't be checked until
   5122   // the class definition is complete).
   5123   if (!RD->isCompleteDefinition()) {
   5124     RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
   5125     return true;
   5126   }
   5127 
   5128   // If the class has virtual base classes, then it's not an aggregate, and
   5129   // cannot have any constexpr constructors or a trivial default constructor,
   5130   // so is non-literal. This is better to diagnose than the resulting absence
   5131   // of constexpr constructors.
   5132   if (RD->getNumVBases()) {
   5133     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
   5134       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
   5135     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   5136            E = RD->vbases_end(); I != E; ++I)
   5137       Diag(I->getLocStart(),
   5138            diag::note_constexpr_virtual_base_here) << I->getSourceRange();
   5139   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
   5140              !RD->hasTrivialDefaultConstructor()) {
   5141     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
   5142   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
   5143     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   5144          E = RD->bases_end(); I != E; ++I) {
   5145       if (!I->getType()->isLiteralType(Context)) {
   5146         Diag(I->getLocStart(),
   5147              diag::note_non_literal_base_class)
   5148           << RD << I->getType() << I->getSourceRange();
   5149         return true;
   5150       }
   5151     }
   5152     for (CXXRecordDecl::field_iterator I = RD->field_begin(),
   5153          E = RD->field_end(); I != E; ++I) {
   5154       if (!I->getType()->isLiteralType(Context) ||
   5155           I->getType().isVolatileQualified()) {
   5156         Diag(I->getLocation(), diag::note_non_literal_field)
   5157           << RD << *I << I->getType()
   5158           << I->getType().isVolatileQualified();
   5159         return true;
   5160       }
   5161     }
   5162   } else if (!RD->hasTrivialDestructor()) {
   5163     // All fields and bases are of literal types, so have trivial destructors.
   5164     // If this class's destructor is non-trivial it must be user-declared.
   5165     CXXDestructorDecl *Dtor = RD->getDestructor();
   5166     assert(Dtor && "class has literal fields and bases but no dtor?");
   5167     if (!Dtor)
   5168       return true;
   5169 
   5170     Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
   5171          diag::note_non_literal_user_provided_dtor :
   5172          diag::note_non_literal_nontrivial_dtor) << RD;
   5173     if (!Dtor->isUserProvided())
   5174       SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
   5175   }
   5176 
   5177   return true;
   5178 }
   5179 
   5180 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
   5181   TypeDiagnoserDiag Diagnoser(DiagID);
   5182   return RequireLiteralType(Loc, T, Diagnoser);
   5183 }
   5184 
   5185 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
   5186 /// and qualified by the nested-name-specifier contained in SS.
   5187 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
   5188                                  const CXXScopeSpec &SS, QualType T) {
   5189   if (T.isNull())
   5190     return T;
   5191   NestedNameSpecifier *NNS;
   5192   if (SS.isValid())
   5193     NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
   5194   else {
   5195     if (Keyword == ETK_None)
   5196       return T;
   5197     NNS = 0;
   5198   }
   5199   return Context.getElaboratedType(Keyword, NNS, T);
   5200 }
   5201 
   5202 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
   5203   ExprResult ER = CheckPlaceholderExpr(E);
   5204   if (ER.isInvalid()) return QualType();
   5205   E = ER.take();
   5206 
   5207   if (!E->isTypeDependent()) {
   5208     QualType T = E->getType();
   5209     if (const TagType *TT = T->getAs<TagType>())
   5210       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
   5211   }
   5212   return Context.getTypeOfExprType(E);
   5213 }
   5214 
   5215 /// getDecltypeForExpr - Given an expr, will return the decltype for
   5216 /// that expression, according to the rules in C++11
   5217 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
   5218 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
   5219   if (E->isTypeDependent())
   5220     return S.Context.DependentTy;
   5221 
   5222   // C++11 [dcl.type.simple]p4:
   5223   //   The type denoted by decltype(e) is defined as follows:
   5224   //
   5225   //     - if e is an unparenthesized id-expression or an unparenthesized class
   5226   //       member access (5.2.5), decltype(e) is the type of the entity named
   5227   //       by e. If there is no such entity, or if e names a set of overloaded
   5228   //       functions, the program is ill-formed;
   5229   //
   5230   // We apply the same rules for Objective-C ivar and property references.
   5231   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   5232     if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
   5233       return VD->getType();
   5234   } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   5235     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
   5236       return FD->getType();
   5237   } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
   5238     return IR->getDecl()->getType();
   5239   } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
   5240     if (PR->isExplicitProperty())
   5241       return PR->getExplicitProperty()->getType();
   5242   }
   5243 
   5244   // C++11 [expr.lambda.prim]p18:
   5245   //   Every occurrence of decltype((x)) where x is a possibly
   5246   //   parenthesized id-expression that names an entity of automatic
   5247   //   storage duration is treated as if x were transformed into an
   5248   //   access to a corresponding data member of the closure type that
   5249   //   would have been declared if x were an odr-use of the denoted
   5250   //   entity.
   5251   using namespace sema;
   5252   if (S.getCurLambda()) {
   5253     if (isa<ParenExpr>(E)) {
   5254       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   5255         if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
   5256           QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
   5257           if (!T.isNull())
   5258             return S.Context.getLValueReferenceType(T);
   5259         }
   5260       }
   5261     }
   5262   }
   5263 
   5264 
   5265   // C++11 [dcl.type.simple]p4:
   5266   //   [...]
   5267   QualType T = E->getType();
   5268   switch (E->getValueKind()) {
   5269   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
   5270   //       type of e;
   5271   case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
   5272   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
   5273   //       type of e;
   5274   case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
   5275   //  - otherwise, decltype(e) is the type of e.
   5276   case VK_RValue: break;
   5277   }
   5278 
   5279   return T;
   5280 }
   5281 
   5282 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
   5283   ExprResult ER = CheckPlaceholderExpr(E);
   5284   if (ER.isInvalid()) return QualType();
   5285   E = ER.take();
   5286 
   5287   return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
   5288 }
   5289 
   5290 QualType Sema::BuildUnaryTransformType(QualType BaseType,
   5291                                        UnaryTransformType::UTTKind UKind,
   5292                                        SourceLocation Loc) {
   5293   switch (UKind) {
   5294   case UnaryTransformType::EnumUnderlyingType:
   5295     if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
   5296       Diag(Loc, diag::err_only_enums_have_underlying_types);
   5297       return QualType();
   5298     } else {
   5299       QualType Underlying = BaseType;
   5300       if (!BaseType->isDependentType()) {
   5301         EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
   5302         assert(ED && "EnumType has no EnumDecl");
   5303         DiagnoseUseOfDecl(ED, Loc);
   5304         Underlying = ED->getIntegerType();
   5305       }
   5306       assert(!Underlying.isNull());
   5307       return Context.getUnaryTransformType(BaseType, Underlying,
   5308                                         UnaryTransformType::EnumUnderlyingType);
   5309     }
   5310   }
   5311   llvm_unreachable("unknown unary transform type");
   5312 }
   5313 
   5314 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
   5315   if (!T->isDependentType()) {
   5316     // FIXME: It isn't entirely clear whether incomplete atomic types
   5317     // are allowed or not; for simplicity, ban them for the moment.
   5318     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
   5319       return QualType();
   5320 
   5321     int DisallowedKind = -1;
   5322     if (T->isArrayType())
   5323       DisallowedKind = 1;
   5324     else if (T->isFunctionType())
   5325       DisallowedKind = 2;
   5326     else if (T->isReferenceType())
   5327       DisallowedKind = 3;
   5328     else if (T->isAtomicType())
   5329       DisallowedKind = 4;
   5330     else if (T.hasQualifiers())
   5331       DisallowedKind = 5;
   5332     else if (!T.isTriviallyCopyableType(Context))
   5333       // Some other non-trivially-copyable type (probably a C++ class)
   5334       DisallowedKind = 6;
   5335 
   5336     if (DisallowedKind != -1) {
   5337       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
   5338       return QualType();
   5339     }
   5340 
   5341     // FIXME: Do we need any handling for ARC here?
   5342   }
   5343 
   5344   // Build the pointer type.
   5345   return Context.getAtomicType(T);
   5346 }
   5347