Home | History | Annotate | Download | only in JIT
      1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DefaultJITMemoryManager class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "jit"
     15 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/ADT/Twine.h"
     19 #include "llvm/Config/config.h"
     20 #include "llvm/IR/GlobalValue.h"
     21 #include "llvm/Support/Allocator.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/DynamicLibrary.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Support/Memory.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include <cassert>
     29 #include <climits>
     30 #include <cstring>
     31 #include <vector>
     32 
     33 #if defined(__linux__)
     34 #if defined(HAVE_SYS_STAT_H)
     35 #include <sys/stat.h>
     36 #endif
     37 #include <fcntl.h>
     38 #include <unistd.h>
     39 #endif
     40 
     41 using namespace llvm;
     42 
     43 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
     44 
     45 JITMemoryManager::~JITMemoryManager() {}
     46 
     47 //===----------------------------------------------------------------------===//
     48 // Memory Block Implementation.
     49 //===----------------------------------------------------------------------===//
     50 
     51 namespace {
     52   /// MemoryRangeHeader - For a range of memory, this is the header that we put
     53   /// on the block of memory.  It is carefully crafted to be one word of memory.
     54   /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
     55   /// which starts with this.
     56   struct FreeRangeHeader;
     57   struct MemoryRangeHeader {
     58     /// ThisAllocated - This is true if this block is currently allocated.  If
     59     /// not, this can be converted to a FreeRangeHeader.
     60     unsigned ThisAllocated : 1;
     61 
     62     /// PrevAllocated - Keep track of whether the block immediately before us is
     63     /// allocated.  If not, the word immediately before this header is the size
     64     /// of the previous block.
     65     unsigned PrevAllocated : 1;
     66 
     67     /// BlockSize - This is the size in bytes of this memory block,
     68     /// including this header.
     69     uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
     70 
     71 
     72     /// getBlockAfter - Return the memory block immediately after this one.
     73     ///
     74     MemoryRangeHeader &getBlockAfter() const {
     75       return *reinterpret_cast<MemoryRangeHeader *>(
     76                 reinterpret_cast<char*>(
     77                   const_cast<MemoryRangeHeader *>(this))+BlockSize);
     78     }
     79 
     80     /// getFreeBlockBefore - If the block before this one is free, return it,
     81     /// otherwise return null.
     82     FreeRangeHeader *getFreeBlockBefore() const {
     83       if (PrevAllocated) return 0;
     84       intptr_t PrevSize = reinterpret_cast<intptr_t *>(
     85                             const_cast<MemoryRangeHeader *>(this))[-1];
     86       return reinterpret_cast<FreeRangeHeader *>(
     87                reinterpret_cast<char*>(
     88                  const_cast<MemoryRangeHeader *>(this))-PrevSize);
     89     }
     90 
     91     /// FreeBlock - Turn an allocated block into a free block, adjusting
     92     /// bits in the object headers, and adding an end of region memory block.
     93     FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
     94 
     95     /// TrimAllocationToSize - If this allocated block is significantly larger
     96     /// than NewSize, split it into two pieces (where the former is NewSize
     97     /// bytes, including the header), and add the new block to the free list.
     98     FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
     99                                           uint64_t NewSize);
    100   };
    101 
    102   /// FreeRangeHeader - For a memory block that isn't already allocated, this
    103   /// keeps track of the current block and has a pointer to the next free block.
    104   /// Free blocks are kept on a circularly linked list.
    105   struct FreeRangeHeader : public MemoryRangeHeader {
    106     FreeRangeHeader *Prev;
    107     FreeRangeHeader *Next;
    108 
    109     /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
    110     /// smaller than this size cannot be created.
    111     static unsigned getMinBlockSize() {
    112       return sizeof(FreeRangeHeader)+sizeof(intptr_t);
    113     }
    114 
    115     /// SetEndOfBlockSizeMarker - The word at the end of every free block is
    116     /// known to be the size of the free block.  Set it for this block.
    117     void SetEndOfBlockSizeMarker() {
    118       void *EndOfBlock = (char*)this + BlockSize;
    119       ((intptr_t *)EndOfBlock)[-1] = BlockSize;
    120     }
    121 
    122     FreeRangeHeader *RemoveFromFreeList() {
    123       assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
    124       Next->Prev = Prev;
    125       return Prev->Next = Next;
    126     }
    127 
    128     void AddToFreeList(FreeRangeHeader *FreeList) {
    129       Next = FreeList;
    130       Prev = FreeList->Prev;
    131       Prev->Next = this;
    132       Next->Prev = this;
    133     }
    134 
    135     /// GrowBlock - The block after this block just got deallocated.  Merge it
    136     /// into the current block.
    137     void GrowBlock(uintptr_t NewSize);
    138 
    139     /// AllocateBlock - Mark this entire block allocated, updating freelists
    140     /// etc.  This returns a pointer to the circular free-list.
    141     FreeRangeHeader *AllocateBlock();
    142   };
    143 }
    144 
    145 
    146 /// AllocateBlock - Mark this entire block allocated, updating freelists
    147 /// etc.  This returns a pointer to the circular free-list.
    148 FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
    149   assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
    150          "Cannot allocate an allocated block!");
    151   // Mark this block allocated.
    152   ThisAllocated = 1;
    153   getBlockAfter().PrevAllocated = 1;
    154 
    155   // Remove it from the free list.
    156   return RemoveFromFreeList();
    157 }
    158 
    159 /// FreeBlock - Turn an allocated block into a free block, adjusting
    160 /// bits in the object headers, and adding an end of region memory block.
    161 /// If possible, coalesce this block with neighboring blocks.  Return the
    162 /// FreeRangeHeader to allocate from.
    163 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
    164   MemoryRangeHeader *FollowingBlock = &getBlockAfter();
    165   assert(ThisAllocated && "This block is already free!");
    166   assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
    167 
    168   FreeRangeHeader *FreeListToReturn = FreeList;
    169 
    170   // If the block after this one is free, merge it into this block.
    171   if (!FollowingBlock->ThisAllocated) {
    172     FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
    173     // "FreeList" always needs to be a valid free block.  If we're about to
    174     // coalesce with it, update our notion of what the free list is.
    175     if (&FollowingFreeBlock == FreeList) {
    176       FreeList = FollowingFreeBlock.Next;
    177       FreeListToReturn = 0;
    178       assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
    179     }
    180     FollowingFreeBlock.RemoveFromFreeList();
    181 
    182     // Include the following block into this one.
    183     BlockSize += FollowingFreeBlock.BlockSize;
    184     FollowingBlock = &FollowingFreeBlock.getBlockAfter();
    185 
    186     // Tell the block after the block we are coalescing that this block is
    187     // allocated.
    188     FollowingBlock->PrevAllocated = 1;
    189   }
    190 
    191   assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
    192 
    193   if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
    194     PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
    195     return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
    196   }
    197 
    198   // Otherwise, mark this block free.
    199   FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
    200   FollowingBlock->PrevAllocated = 0;
    201   FreeBlock.ThisAllocated = 0;
    202 
    203   // Link this into the linked list of free blocks.
    204   FreeBlock.AddToFreeList(FreeList);
    205 
    206   // Add a marker at the end of the block, indicating the size of this free
    207   // block.
    208   FreeBlock.SetEndOfBlockSizeMarker();
    209   return FreeListToReturn ? FreeListToReturn : &FreeBlock;
    210 }
    211 
    212 /// GrowBlock - The block after this block just got deallocated.  Merge it
    213 /// into the current block.
    214 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
    215   assert(NewSize > BlockSize && "Not growing block?");
    216   BlockSize = NewSize;
    217   SetEndOfBlockSizeMarker();
    218   getBlockAfter().PrevAllocated = 0;
    219 }
    220 
    221 /// TrimAllocationToSize - If this allocated block is significantly larger
    222 /// than NewSize, split it into two pieces (where the former is NewSize
    223 /// bytes, including the header), and add the new block to the free list.
    224 FreeRangeHeader *MemoryRangeHeader::
    225 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
    226   assert(ThisAllocated && getBlockAfter().PrevAllocated &&
    227          "Cannot deallocate part of an allocated block!");
    228 
    229   // Don't allow blocks to be trimmed below minimum required size
    230   NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
    231 
    232   // Round up size for alignment of header.
    233   unsigned HeaderAlign = __alignof(FreeRangeHeader);
    234   NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
    235 
    236   // Size is now the size of the block we will remove from the start of the
    237   // current block.
    238   assert(NewSize <= BlockSize &&
    239          "Allocating more space from this block than exists!");
    240 
    241   // If splitting this block will cause the remainder to be too small, do not
    242   // split the block.
    243   if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
    244     return FreeList;
    245 
    246   // Otherwise, we splice the required number of bytes out of this block, form
    247   // a new block immediately after it, then mark this block allocated.
    248   MemoryRangeHeader &FormerNextBlock = getBlockAfter();
    249 
    250   // Change the size of this block.
    251   BlockSize = NewSize;
    252 
    253   // Get the new block we just sliced out and turn it into a free block.
    254   FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
    255   NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
    256   NewNextBlock.ThisAllocated = 0;
    257   NewNextBlock.PrevAllocated = 1;
    258   NewNextBlock.SetEndOfBlockSizeMarker();
    259   FormerNextBlock.PrevAllocated = 0;
    260   NewNextBlock.AddToFreeList(FreeList);
    261   return &NewNextBlock;
    262 }
    263 
    264 //===----------------------------------------------------------------------===//
    265 // Memory Block Implementation.
    266 //===----------------------------------------------------------------------===//
    267 
    268 namespace {
    269 
    270   class DefaultJITMemoryManager;
    271 
    272   class JITSlabAllocator : public SlabAllocator {
    273     DefaultJITMemoryManager &JMM;
    274   public:
    275     JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
    276     virtual ~JITSlabAllocator() { }
    277     virtual MemSlab *Allocate(size_t Size);
    278     virtual void Deallocate(MemSlab *Slab);
    279   };
    280 
    281   /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
    282   /// This splits a large block of MAP_NORESERVE'd memory into two
    283   /// sections, one for function stubs, one for the functions themselves.  We
    284   /// have to do this because we may need to emit a function stub while in the
    285   /// middle of emitting a function, and we don't know how large the function we
    286   /// are emitting is.
    287   class DefaultJITMemoryManager : public JITMemoryManager {
    288 
    289     // Whether to poison freed memory.
    290     bool PoisonMemory;
    291 
    292     /// LastSlab - This points to the last slab allocated and is used as the
    293     /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
    294     /// stubs, data, and code contiguously in memory.  In general, however, this
    295     /// is not possible because the NearBlock parameter is ignored on Windows
    296     /// platforms and even on Unix it works on a best-effort pasis.
    297     sys::MemoryBlock LastSlab;
    298 
    299     // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
    300     // confuse them with the blocks of memory described above.
    301     std::vector<sys::MemoryBlock> CodeSlabs;
    302     JITSlabAllocator BumpSlabAllocator;
    303     BumpPtrAllocator StubAllocator;
    304     BumpPtrAllocator DataAllocator;
    305 
    306     // Circular list of free blocks.
    307     FreeRangeHeader *FreeMemoryList;
    308 
    309     // When emitting code into a memory block, this is the block.
    310     MemoryRangeHeader *CurBlock;
    311 
    312     uint8_t *GOTBase;     // Target Specific reserved memory
    313   public:
    314     DefaultJITMemoryManager();
    315     ~DefaultJITMemoryManager();
    316 
    317     /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
    318     /// last slab it allocated, so that subsequent allocations follow it.
    319     sys::MemoryBlock allocateNewSlab(size_t size);
    320 
    321     /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
    322     /// least this much unless more is requested.
    323     static const size_t DefaultCodeSlabSize;
    324 
    325     /// DefaultSlabSize - Allocate data into slabs of this size unless we get
    326     /// an allocation above SizeThreshold.
    327     static const size_t DefaultSlabSize;
    328 
    329     /// DefaultSizeThreshold - For any allocation larger than this threshold, we
    330     /// should allocate a separate slab.
    331     static const size_t DefaultSizeThreshold;
    332 
    333     /// getPointerToNamedFunction - This method returns the address of the
    334     /// specified function by using the dlsym function call.
    335     virtual void *getPointerToNamedFunction(const std::string &Name,
    336                                             bool AbortOnFailure = true);
    337 
    338     void AllocateGOT();
    339 
    340     // Testing methods.
    341     virtual bool CheckInvariants(std::string &ErrorStr);
    342     size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
    343     size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
    344     size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
    345     unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
    346     unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
    347     unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
    348 
    349     /// startFunctionBody - When a function starts, allocate a block of free
    350     /// executable memory, returning a pointer to it and its actual size.
    351     uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
    352 
    353       FreeRangeHeader* candidateBlock = FreeMemoryList;
    354       FreeRangeHeader* head = FreeMemoryList;
    355       FreeRangeHeader* iter = head->Next;
    356 
    357       uintptr_t largest = candidateBlock->BlockSize;
    358 
    359       // Search for the largest free block
    360       while (iter != head) {
    361         if (iter->BlockSize > largest) {
    362           largest = iter->BlockSize;
    363           candidateBlock = iter;
    364         }
    365         iter = iter->Next;
    366       }
    367 
    368       largest = largest - sizeof(MemoryRangeHeader);
    369 
    370       // If this block isn't big enough for the allocation desired, allocate
    371       // another block of memory and add it to the free list.
    372       if (largest < ActualSize ||
    373           largest <= FreeRangeHeader::getMinBlockSize()) {
    374         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
    375         candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
    376       }
    377 
    378       // Select this candidate block for allocation
    379       CurBlock = candidateBlock;
    380 
    381       // Allocate the entire memory block.
    382       FreeMemoryList = candidateBlock->AllocateBlock();
    383       ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
    384       return (uint8_t *)(CurBlock + 1);
    385     }
    386 
    387     /// allocateNewCodeSlab - Helper method to allocate a new slab of code
    388     /// memory from the OS and add it to the free list.  Returns the new
    389     /// FreeRangeHeader at the base of the slab.
    390     FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
    391       // If the user needs at least MinSize free memory, then we account for
    392       // two MemoryRangeHeaders: the one in the user's block, and the one at the
    393       // end of the slab.
    394       size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
    395       size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
    396       sys::MemoryBlock B = allocateNewSlab(SlabSize);
    397       CodeSlabs.push_back(B);
    398       char *MemBase = (char*)(B.base());
    399 
    400       // Put a tiny allocated block at the end of the memory chunk, so when
    401       // FreeBlock calls getBlockAfter it doesn't fall off the end.
    402       MemoryRangeHeader *EndBlock =
    403           (MemoryRangeHeader*)(MemBase + B.size()) - 1;
    404       EndBlock->ThisAllocated = 1;
    405       EndBlock->PrevAllocated = 0;
    406       EndBlock->BlockSize = sizeof(MemoryRangeHeader);
    407 
    408       // Start out with a vast new block of free memory.
    409       FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
    410       NewBlock->ThisAllocated = 0;
    411       // Make sure getFreeBlockBefore doesn't look into unmapped memory.
    412       NewBlock->PrevAllocated = 1;
    413       NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
    414       NewBlock->SetEndOfBlockSizeMarker();
    415       NewBlock->AddToFreeList(FreeMemoryList);
    416 
    417       assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
    418              "The block was too small!");
    419       return NewBlock;
    420     }
    421 
    422     /// endFunctionBody - The function F is now allocated, and takes the memory
    423     /// in the range [FunctionStart,FunctionEnd).
    424     void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    425                          uint8_t *FunctionEnd) {
    426       assert(FunctionEnd > FunctionStart);
    427       assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
    428              "Mismatched function start/end!");
    429 
    430       uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
    431 
    432       // Release the memory at the end of this block that isn't needed.
    433       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    434     }
    435 
    436     /// allocateSpace - Allocate a memory block of the given size.  This method
    437     /// cannot be called between calls to startFunctionBody and endFunctionBody.
    438     uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    439       CurBlock = FreeMemoryList;
    440       FreeMemoryList = FreeMemoryList->AllocateBlock();
    441 
    442       uint8_t *result = (uint8_t *)(CurBlock + 1);
    443 
    444       if (Alignment == 0) Alignment = 1;
    445       result = (uint8_t*)(((intptr_t)result+Alignment-1) &
    446                ~(intptr_t)(Alignment-1));
    447 
    448       uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
    449       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    450 
    451       return result;
    452     }
    453 
    454     /// allocateStub - Allocate memory for a function stub.
    455     uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
    456                           unsigned Alignment) {
    457       return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
    458     }
    459 
    460     /// allocateGlobal - Allocate memory for a global.
    461     uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    462       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    463     }
    464 
    465     /// allocateCodeSection - Allocate memory for a code section.
    466     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
    467                                  unsigned SectionID) {
    468       // Grow the required block size to account for the block header
    469       Size += sizeof(*CurBlock);
    470 
    471       // Alignment handling.
    472       if (!Alignment)
    473         Alignment = 16;
    474       Size += Alignment - 1;
    475 
    476       FreeRangeHeader* candidateBlock = FreeMemoryList;
    477       FreeRangeHeader* head = FreeMemoryList;
    478       FreeRangeHeader* iter = head->Next;
    479 
    480       uintptr_t largest = candidateBlock->BlockSize;
    481 
    482       // Search for the largest free block.
    483       while (iter != head) {
    484         if (iter->BlockSize > largest) {
    485           largest = iter->BlockSize;
    486           candidateBlock = iter;
    487         }
    488         iter = iter->Next;
    489       }
    490 
    491       largest = largest - sizeof(MemoryRangeHeader);
    492 
    493       // If this block isn't big enough for the allocation desired, allocate
    494       // another block of memory and add it to the free list.
    495       if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
    496         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
    497         candidateBlock = allocateNewCodeSlab((size_t)Size);
    498       }
    499 
    500       // Select this candidate block for allocation
    501       CurBlock = candidateBlock;
    502 
    503       // Allocate the entire memory block.
    504       FreeMemoryList = candidateBlock->AllocateBlock();
    505       // Release the memory at the end of this block that isn't needed.
    506       FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
    507       uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
    508       return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
    509     }
    510 
    511     /// allocateDataSection - Allocate memory for a data section.
    512     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
    513                                  unsigned SectionID, bool IsReadOnly) {
    514       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    515     }
    516 
    517     bool finalizeMemory(std::string *ErrMsg) {
    518       return false;
    519     }
    520 
    521     uint8_t *getGOTBase() const {
    522       return GOTBase;
    523     }
    524 
    525     void deallocateBlock(void *Block) {
    526       // Find the block that is allocated for this function.
    527       MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
    528       assert(MemRange->ThisAllocated && "Block isn't allocated!");
    529 
    530       // Fill the buffer with garbage!
    531       if (PoisonMemory) {
    532         memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
    533       }
    534 
    535       // Free the memory.
    536       FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
    537     }
    538 
    539     /// deallocateFunctionBody - Deallocate all memory for the specified
    540     /// function body.
    541     void deallocateFunctionBody(void *Body) {
    542       if (Body) deallocateBlock(Body);
    543     }
    544 
    545     /// setMemoryWritable - When code generation is in progress,
    546     /// the code pages may need permissions changed.
    547     void setMemoryWritable()
    548     {
    549       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    550         sys::Memory::setWritable(CodeSlabs[i]);
    551     }
    552     /// setMemoryExecutable - When code generation is done and we're ready to
    553     /// start execution, the code pages may need permissions changed.
    554     void setMemoryExecutable()
    555     {
    556       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    557         sys::Memory::setExecutable(CodeSlabs[i]);
    558     }
    559 
    560     /// setPoisonMemory - Controls whether we write garbage over freed memory.
    561     ///
    562     void setPoisonMemory(bool poison) {
    563       PoisonMemory = poison;
    564     }
    565   };
    566 }
    567 
    568 MemSlab *JITSlabAllocator::Allocate(size_t Size) {
    569   sys::MemoryBlock B = JMM.allocateNewSlab(Size);
    570   MemSlab *Slab = (MemSlab*)B.base();
    571   Slab->Size = B.size();
    572   Slab->NextPtr = 0;
    573   return Slab;
    574 }
    575 
    576 void JITSlabAllocator::Deallocate(MemSlab *Slab) {
    577   sys::MemoryBlock B(Slab, Slab->Size);
    578   sys::Memory::ReleaseRWX(B);
    579 }
    580 
    581 DefaultJITMemoryManager::DefaultJITMemoryManager()
    582   :
    583 #ifdef NDEBUG
    584     PoisonMemory(false),
    585 #else
    586     PoisonMemory(true),
    587 #endif
    588     LastSlab(0, 0),
    589     BumpSlabAllocator(*this),
    590     StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
    591     DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
    592 
    593   // Allocate space for code.
    594   sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
    595   CodeSlabs.push_back(MemBlock);
    596   uint8_t *MemBase = (uint8_t*)MemBlock.base();
    597 
    598   // We set up the memory chunk with 4 mem regions, like this:
    599   //  [ START
    600   //    [ Free      #0 ] -> Large space to allocate functions from.
    601   //    [ Allocated #1 ] -> Tiny space to separate regions.
    602   //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
    603   //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
    604   //  END ]
    605   //
    606   // The last three blocks are never deallocated or touched.
    607 
    608   // Add MemoryRangeHeader to the end of the memory region, indicating that
    609   // the space after the block of memory is allocated.  This is block #3.
    610   MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
    611   Mem3->ThisAllocated = 1;
    612   Mem3->PrevAllocated = 0;
    613   Mem3->BlockSize     = sizeof(MemoryRangeHeader);
    614 
    615   /// Add a tiny free region so that the free list always has one entry.
    616   FreeRangeHeader *Mem2 =
    617     (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
    618   Mem2->ThisAllocated = 0;
    619   Mem2->PrevAllocated = 1;
    620   Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
    621   Mem2->SetEndOfBlockSizeMarker();
    622   Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
    623   Mem2->Next = Mem2;
    624 
    625   /// Add a tiny allocated region so that Mem2 is never coalesced away.
    626   MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
    627   Mem1->ThisAllocated = 1;
    628   Mem1->PrevAllocated = 0;
    629   Mem1->BlockSize     = sizeof(MemoryRangeHeader);
    630 
    631   // Add a FreeRangeHeader to the start of the function body region, indicating
    632   // that the space is free.  Mark the previous block allocated so we never look
    633   // at it.
    634   FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
    635   Mem0->ThisAllocated = 0;
    636   Mem0->PrevAllocated = 1;
    637   Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
    638   Mem0->SetEndOfBlockSizeMarker();
    639   Mem0->AddToFreeList(Mem2);
    640 
    641   // Start out with the freelist pointing to Mem0.
    642   FreeMemoryList = Mem0;
    643 
    644   GOTBase = NULL;
    645 }
    646 
    647 void DefaultJITMemoryManager::AllocateGOT() {
    648   assert(GOTBase == 0 && "Cannot allocate the got multiple times");
    649   GOTBase = new uint8_t[sizeof(void*) * 8192];
    650   HasGOT = true;
    651 }
    652 
    653 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
    654   for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    655     sys::Memory::ReleaseRWX(CodeSlabs[i]);
    656 
    657   delete[] GOTBase;
    658 }
    659 
    660 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
    661   // Allocate a new block close to the last one.
    662   std::string ErrMsg;
    663   sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
    664   sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
    665   if (B.base() == 0) {
    666     report_fatal_error("Allocation failed when allocating new memory in the"
    667                        " JIT\n" + Twine(ErrMsg));
    668   }
    669   LastSlab = B;
    670   ++NumSlabs;
    671   // Initialize the slab to garbage when debugging.
    672   if (PoisonMemory) {
    673     memset(B.base(), 0xCD, B.size());
    674   }
    675   return B;
    676 }
    677 
    678 /// CheckInvariants - For testing only.  Return "" if all internal invariants
    679 /// are preserved, and a helpful error message otherwise.  For free and
    680 /// allocated blocks, make sure that adding BlockSize gives a valid block.
    681 /// For free blocks, make sure they're in the free list and that their end of
    682 /// block size marker is correct.  This function should return an error before
    683 /// accessing bad memory.  This function is defined here instead of in
    684 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
    685 /// implementation details of DefaultJITMemoryManager.
    686 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
    687   raw_string_ostream Err(ErrorStr);
    688 
    689   // Construct a the set of FreeRangeHeader pointers so we can query it
    690   // efficiently.
    691   llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
    692   FreeRangeHeader* FreeHead = FreeMemoryList;
    693   FreeRangeHeader* FreeRange = FreeHead;
    694 
    695   do {
    696     // Check that the free range pointer is in the blocks we've allocated.
    697     bool Found = false;
    698     for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
    699          E = CodeSlabs.end(); I != E && !Found; ++I) {
    700       char *Start = (char*)I->base();
    701       char *End = Start + I->size();
    702       Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
    703     }
    704     if (!Found) {
    705       Err << "Corrupt free list; points to " << FreeRange;
    706       return false;
    707     }
    708 
    709     if (FreeRange->Next->Prev != FreeRange) {
    710       Err << "Next and Prev pointers do not match.";
    711       return false;
    712     }
    713 
    714     // Otherwise, add it to the set.
    715     FreeHdrSet.insert(FreeRange);
    716     FreeRange = FreeRange->Next;
    717   } while (FreeRange != FreeHead);
    718 
    719   // Go over each block, and look at each MemoryRangeHeader.
    720   for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
    721        E = CodeSlabs.end(); I != E; ++I) {
    722     char *Start = (char*)I->base();
    723     char *End = Start + I->size();
    724 
    725     // Check each memory range.
    726     for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
    727          Start <= (char*)Hdr && (char*)Hdr < End;
    728          Hdr = &Hdr->getBlockAfter()) {
    729       if (Hdr->ThisAllocated == 0) {
    730         // Check that this range is in the free list.
    731         if (!FreeHdrSet.count(Hdr)) {
    732           Err << "Found free header at " << Hdr << " that is not in free list.";
    733           return false;
    734         }
    735 
    736         // Now make sure the size marker at the end of the block is correct.
    737         uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
    738         if (!(Start <= (char*)Marker && (char*)Marker < End)) {
    739           Err << "Block size in header points out of current MemoryBlock.";
    740           return false;
    741         }
    742         if (Hdr->BlockSize != *Marker) {
    743           Err << "End of block size marker (" << *Marker << ") "
    744               << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
    745           return false;
    746         }
    747       }
    748 
    749       if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
    750         Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
    751             << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
    752         return false;
    753       } else if (!LastHdr && !Hdr->PrevAllocated) {
    754         Err << "The first header should have PrevAllocated true.";
    755         return false;
    756       }
    757 
    758       // Remember the last header.
    759       LastHdr = Hdr;
    760     }
    761   }
    762 
    763   // All invariants are preserved.
    764   return true;
    765 }
    766 
    767 //===----------------------------------------------------------------------===//
    768 // getPointerToNamedFunction() implementation.
    769 //===----------------------------------------------------------------------===//
    770 
    771 // AtExitHandlers - List of functions to call when the program exits,
    772 // registered with the atexit() library function.
    773 static std::vector<void (*)()> AtExitHandlers;
    774 
    775 /// runAtExitHandlers - Run any functions registered by the program's
    776 /// calls to atexit(3), which we intercept and store in
    777 /// AtExitHandlers.
    778 ///
    779 static void runAtExitHandlers() {
    780   while (!AtExitHandlers.empty()) {
    781     void (*Fn)() = AtExitHandlers.back();
    782     AtExitHandlers.pop_back();
    783     Fn();
    784   }
    785 }
    786 
    787 //===----------------------------------------------------------------------===//
    788 // Function stubs that are invoked instead of certain library calls
    789 //
    790 // Force the following functions to be linked in to anything that uses the
    791 // JIT. This is a hack designed to work around the all-too-clever Glibc
    792 // strategy of making these functions work differently when inlined vs. when
    793 // not inlined, and hiding their real definitions in a separate archive file
    794 // that the dynamic linker can't see. For more info, search for
    795 // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
    796 #if defined(__linux__)
    797 /* stat functions are redirecting to __xstat with a version number.  On x86-64
    798  * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
    799  * available as an exported symbol, so we have to add it explicitly.
    800  */
    801 namespace {
    802 class StatSymbols {
    803 public:
    804   StatSymbols() {
    805     sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
    806     sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
    807     sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
    808     sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
    809     sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
    810     sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
    811     sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
    812     sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
    813     sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
    814     sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
    815     sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
    816   }
    817 };
    818 }
    819 static StatSymbols initStatSymbols;
    820 #endif // __linux__
    821 
    822 // jit_exit - Used to intercept the "exit" library call.
    823 static void jit_exit(int Status) {
    824   runAtExitHandlers();   // Run atexit handlers...
    825   exit(Status);
    826 }
    827 
    828 // jit_atexit - Used to intercept the "atexit" library call.
    829 static int jit_atexit(void (*Fn)()) {
    830   AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
    831   return 0;  // Always successful
    832 }
    833 
    834 static int jit_noop() {
    835   return 0;
    836 }
    837 
    838 //===----------------------------------------------------------------------===//
    839 //
    840 /// getPointerToNamedFunction - This method returns the address of the specified
    841 /// function by using the dynamic loader interface.  As such it is only useful
    842 /// for resolving library symbols, not code generated symbols.
    843 ///
    844 void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
    845                                                          bool AbortOnFailure) {
    846   // Check to see if this is one of the functions we want to intercept.  Note,
    847   // we cast to intptr_t here to silence a -pedantic warning that complains
    848   // about casting a function pointer to a normal pointer.
    849   if (Name == "exit") return (void*)(intptr_t)&jit_exit;
    850   if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
    851 
    852   // We should not invoke parent's ctors/dtors from generated main()!
    853   // On Mingw and Cygwin, the symbol __main is resolved to
    854   // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
    855   // (and register wrong callee's dtors with atexit(3)).
    856   // We expect ExecutionEngine::runStaticConstructorsDestructors()
    857   // is called before ExecutionEngine::runFunctionAsMain() is called.
    858   if (Name == "__main") return (void*)(intptr_t)&jit_noop;
    859 
    860   const char *NameStr = Name.c_str();
    861   // If this is an asm specifier, skip the sentinal.
    862   if (NameStr[0] == 1) ++NameStr;
    863 
    864   // If it's an external function, look it up in the process image...
    865   void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
    866   if (Ptr) return Ptr;
    867 
    868   // If it wasn't found and if it starts with an underscore ('_') character,
    869   // try again without the underscore.
    870   if (NameStr[0] == '_') {
    871     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
    872     if (Ptr) return Ptr;
    873   }
    874 
    875   // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
    876   // are references to hidden visibility symbols that dlsym cannot resolve.
    877   // If we have one of these, strip off $LDBLStub and try again.
    878 #if defined(__APPLE__) && defined(__ppc__)
    879   if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
    880       memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
    881     // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
    882     // This mirrors logic in libSystemStubs.a.
    883     std::string Prefix = std::string(Name.begin(), Name.end()-9);
    884     if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
    885       return Ptr;
    886     if (void *Ptr = getPointerToNamedFunction(Prefix, false))
    887       return Ptr;
    888   }
    889 #endif
    890 
    891   if (AbortOnFailure) {
    892     report_fatal_error("Program used external function '"+Name+
    893                       "' which could not be resolved!");
    894   }
    895   return 0;
    896 }
    897 
    898 
    899 
    900 JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
    901   return new DefaultJITMemoryManager();
    902 }
    903 
    904 // Allocate memory for code in 512K slabs.
    905 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
    906 
    907 // Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
    908 const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
    909 
    910 // Waste at most 16K at the end of each bump slab.  (probably 4 pages)
    911 const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
    912