1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loop-simplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/ADT/DepthFirstIterator.h" 43 #include "llvm/ADT/SetOperations.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/DependenceAnalysis.h" 48 #include "llvm/Analysis/Dominators.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LoopPass.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/Support/CFG.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 using namespace llvm; 64 65 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 66 STATISTIC(NumNested , "Number of nested loops split out"); 67 68 namespace { 69 struct LoopSimplify : public LoopPass { 70 static char ID; // Pass identification, replacement for typeid 71 LoopSimplify() : LoopPass(ID) { 72 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 73 } 74 75 // AA - If we have an alias analysis object to update, this is it, otherwise 76 // this is null. 77 AliasAnalysis *AA; 78 LoopInfo *LI; 79 DominatorTree *DT; 80 ScalarEvolution *SE; 81 Loop *L; 82 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 83 84 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 85 // We need loop information to identify the loops... 86 AU.addRequired<DominatorTree>(); 87 AU.addPreserved<DominatorTree>(); 88 89 AU.addRequired<LoopInfo>(); 90 AU.addPreserved<LoopInfo>(); 91 92 AU.addPreserved<AliasAnalysis>(); 93 AU.addPreserved<ScalarEvolution>(); 94 AU.addPreserved<DependenceAnalysis>(); 95 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 96 } 97 98 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 99 void verifyAnalysis() const; 100 101 private: 102 bool ProcessLoop(Loop *L, LPPassManager &LPM); 103 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 104 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM, 105 BasicBlock *Preheader); 106 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 107 }; 108 } 109 110 static void PlaceSplitBlockCarefully(BasicBlock *NewBB, 111 SmallVectorImpl<BasicBlock*> &SplitPreds, 112 Loop *L); 113 114 char LoopSimplify::ID = 0; 115 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 116 "Canonicalize natural loops", true, false) 117 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 118 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 119 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 120 "Canonicalize natural loops", true, false) 121 122 // Publicly exposed interface to pass... 123 char &llvm::LoopSimplifyID = LoopSimplify::ID; 124 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 125 126 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 127 /// it in any convenient order) inserting preheaders... 128 /// 129 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 130 L = l; 131 bool Changed = false; 132 LI = &getAnalysis<LoopInfo>(); 133 AA = getAnalysisIfAvailable<AliasAnalysis>(); 134 DT = &getAnalysis<DominatorTree>(); 135 SE = getAnalysisIfAvailable<ScalarEvolution>(); 136 137 Changed |= ProcessLoop(L, LPM); 138 139 return Changed; 140 } 141 142 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 143 /// all loops have preheaders. 144 /// 145 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 146 bool Changed = false; 147 ReprocessLoop: 148 149 // Check to see that no blocks (other than the header) in this loop have 150 // predecessors that are not in the loop. This is not valid for natural 151 // loops, but can occur if the blocks are unreachable. Since they are 152 // unreachable we can just shamelessly delete those CFG edges! 153 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 154 BB != E; ++BB) { 155 if (*BB == L->getHeader()) continue; 156 157 SmallPtrSet<BasicBlock*, 4> BadPreds; 158 for (pred_iterator PI = pred_begin(*BB), 159 PE = pred_end(*BB); PI != PE; ++PI) { 160 BasicBlock *P = *PI; 161 if (!L->contains(P)) 162 BadPreds.insert(P); 163 } 164 165 // Delete each unique out-of-loop (and thus dead) predecessor. 166 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 167 E = BadPreds.end(); I != E; ++I) { 168 169 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 170 << (*I)->getName() << "\n"); 171 172 // Inform each successor of each dead pred. 173 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 174 (*SI)->removePredecessor(*I); 175 // Zap the dead pred's terminator and replace it with unreachable. 176 TerminatorInst *TI = (*I)->getTerminator(); 177 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 178 (*I)->getTerminator()->eraseFromParent(); 179 new UnreachableInst((*I)->getContext(), *I); 180 Changed = true; 181 } 182 } 183 184 // If there are exiting blocks with branches on undef, resolve the undef in 185 // the direction which will exit the loop. This will help simplify loop 186 // trip count computations. 187 SmallVector<BasicBlock*, 8> ExitingBlocks; 188 L->getExitingBlocks(ExitingBlocks); 189 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 190 E = ExitingBlocks.end(); I != E; ++I) 191 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 192 if (BI->isConditional()) { 193 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 194 195 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 196 << (*I)->getName() << "\n"); 197 198 BI->setCondition(ConstantInt::get(Cond->getType(), 199 !L->contains(BI->getSuccessor(0)))); 200 201 // This may make the loop analyzable, force SCEV recomputation. 202 if (SE) 203 SE->forgetLoop(L); 204 205 Changed = true; 206 } 207 } 208 209 // Does the loop already have a preheader? If so, don't insert one. 210 BasicBlock *Preheader = L->getLoopPreheader(); 211 if (!Preheader) { 212 Preheader = InsertPreheaderForLoop(L, this); 213 if (Preheader) { 214 ++NumInserted; 215 Changed = true; 216 } 217 } 218 219 // Next, check to make sure that all exit nodes of the loop only have 220 // predecessors that are inside of the loop. This check guarantees that the 221 // loop preheader/header will dominate the exit blocks. If the exit block has 222 // predecessors from outside of the loop, split the edge now. 223 SmallVector<BasicBlock*, 8> ExitBlocks; 224 L->getExitBlocks(ExitBlocks); 225 226 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 227 ExitBlocks.end()); 228 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 229 E = ExitBlockSet.end(); I != E; ++I) { 230 BasicBlock *ExitBlock = *I; 231 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 232 PI != PE; ++PI) 233 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 234 // allowed. 235 if (!L->contains(*PI)) { 236 if (RewriteLoopExitBlock(L, ExitBlock)) { 237 ++NumInserted; 238 Changed = true; 239 } 240 break; 241 } 242 } 243 244 // If the header has more than two predecessors at this point (from the 245 // preheader and from multiple backedges), we must adjust the loop. 246 BasicBlock *LoopLatch = L->getLoopLatch(); 247 if (!LoopLatch) { 248 // If this is really a nested loop, rip it out into a child loop. Don't do 249 // this for loops with a giant number of backedges, just factor them into a 250 // common backedge instead. 251 if (L->getNumBackEdges() < 8) { 252 if (SeparateNestedLoop(L, LPM, Preheader)) { 253 ++NumNested; 254 // This is a big restructuring change, reprocess the whole loop. 255 Changed = true; 256 // GCC doesn't tail recursion eliminate this. 257 goto ReprocessLoop; 258 } 259 } 260 261 // If we either couldn't, or didn't want to, identify nesting of the loops, 262 // insert a new block that all backedges target, then make it jump to the 263 // loop header. 264 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 265 if (LoopLatch) { 266 ++NumInserted; 267 Changed = true; 268 } 269 } 270 271 // Scan over the PHI nodes in the loop header. Since they now have only two 272 // incoming values (the loop is canonicalized), we may have simplified the PHI 273 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 274 PHINode *PN; 275 for (BasicBlock::iterator I = L->getHeader()->begin(); 276 (PN = dyn_cast<PHINode>(I++)); ) 277 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 278 if (AA) AA->deleteValue(PN); 279 if (SE) SE->forgetValue(PN); 280 PN->replaceAllUsesWith(V); 281 PN->eraseFromParent(); 282 } 283 284 // If this loop has multiple exits and the exits all go to the same 285 // block, attempt to merge the exits. This helps several passes, such 286 // as LoopRotation, which do not support loops with multiple exits. 287 // SimplifyCFG also does this (and this code uses the same utility 288 // function), however this code is loop-aware, where SimplifyCFG is 289 // not. That gives it the advantage of being able to hoist 290 // loop-invariant instructions out of the way to open up more 291 // opportunities, and the disadvantage of having the responsibility 292 // to preserve dominator information. 293 bool UniqueExit = true; 294 if (!ExitBlocks.empty()) 295 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 296 if (ExitBlocks[i] != ExitBlocks[0]) { 297 UniqueExit = false; 298 break; 299 } 300 if (UniqueExit) { 301 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 302 BasicBlock *ExitingBlock = ExitingBlocks[i]; 303 if (!ExitingBlock->getSinglePredecessor()) continue; 304 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 305 if (!BI || !BI->isConditional()) continue; 306 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 307 if (!CI || CI->getParent() != ExitingBlock) continue; 308 309 // Attempt to hoist out all instructions except for the 310 // comparison and the branch. 311 bool AllInvariant = true; 312 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 313 Instruction *Inst = I++; 314 // Skip debug info intrinsics. 315 if (isa<DbgInfoIntrinsic>(Inst)) 316 continue; 317 if (Inst == CI) 318 continue; 319 if (!L->makeLoopInvariant(Inst, Changed, 320 Preheader ? Preheader->getTerminator() : 0)) { 321 AllInvariant = false; 322 break; 323 } 324 } 325 if (!AllInvariant) continue; 326 327 // The block has now been cleared of all instructions except for 328 // a comparison and a conditional branch. SimplifyCFG may be able 329 // to fold it now. 330 if (!FoldBranchToCommonDest(BI)) continue; 331 332 // Success. The block is now dead, so remove it from the loop, 333 // update the dominator tree and delete it. 334 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 335 << ExitingBlock->getName() << "\n"); 336 337 // If any reachable control flow within this loop has changed, notify 338 // ScalarEvolution. Currently assume the parent loop doesn't change 339 // (spliting edges doesn't count). If blocks, CFG edges, or other values 340 // in the parent loop change, then we need call to forgetLoop() for the 341 // parent instead. 342 if (SE) 343 SE->forgetLoop(L); 344 345 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 346 Changed = true; 347 LI->removeBlock(ExitingBlock); 348 349 DomTreeNode *Node = DT->getNode(ExitingBlock); 350 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 351 Node->getChildren(); 352 while (!Children.empty()) { 353 DomTreeNode *Child = Children.front(); 354 DT->changeImmediateDominator(Child, Node->getIDom()); 355 } 356 DT->eraseNode(ExitingBlock); 357 358 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 359 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 360 ExitingBlock->eraseFromParent(); 361 } 362 } 363 364 return Changed; 365 } 366 367 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 368 /// preheader, this method is called to insert one. This method has two phases: 369 /// preheader insertion and analysis updating. 370 /// 371 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 372 BasicBlock *Header = L->getHeader(); 373 374 // Compute the set of predecessors of the loop that are not in the loop. 375 SmallVector<BasicBlock*, 8> OutsideBlocks; 376 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 377 PI != PE; ++PI) { 378 BasicBlock *P = *PI; 379 if (!L->contains(P)) { // Coming in from outside the loop? 380 // If the loop is branched to from an indirect branch, we won't 381 // be able to fully transform the loop, because it prohibits 382 // edge splitting. 383 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 384 385 // Keep track of it. 386 OutsideBlocks.push_back(P); 387 } 388 } 389 390 // Split out the loop pre-header. 391 BasicBlock *PreheaderBB; 392 if (!Header->isLandingPad()) { 393 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 394 PP); 395 } else { 396 SmallVector<BasicBlock*, 2> NewBBs; 397 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 398 ".split-lp", PP, NewBBs); 399 PreheaderBB = NewBBs[0]; 400 } 401 402 PreheaderBB->getTerminator()->setDebugLoc( 403 Header->getFirstNonPHI()->getDebugLoc()); 404 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 405 << PreheaderBB->getName() << "\n"); 406 407 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 408 // code layout too horribly. 409 PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 410 411 return PreheaderBB; 412 } 413 414 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 415 /// blocks. This method is used to split exit blocks that have predecessors 416 /// outside of the loop. 417 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 418 SmallVector<BasicBlock*, 8> LoopBlocks; 419 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 420 BasicBlock *P = *I; 421 if (L->contains(P)) { 422 // Don't do this if the loop is exited via an indirect branch. 423 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 424 425 LoopBlocks.push_back(P); 426 } 427 } 428 429 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 430 BasicBlock *NewExitBB = 0; 431 432 if (Exit->isLandingPad()) { 433 SmallVector<BasicBlock*, 2> NewBBs; 434 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0], 435 LoopBlocks.size()), 436 ".loopexit", ".nonloopexit", 437 this, NewBBs); 438 NewExitBB = NewBBs[0]; 439 } else { 440 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this); 441 } 442 443 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 444 << NewExitBB->getName() << "\n"); 445 return NewExitBB; 446 } 447 448 /// AddBlockAndPredsToSet - Add the specified block, and all of its 449 /// predecessors, to the specified set, if it's not already in there. Stop 450 /// predecessor traversal when we reach StopBlock. 451 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 452 std::set<BasicBlock*> &Blocks) { 453 std::vector<BasicBlock *> WorkList; 454 WorkList.push_back(InputBB); 455 do { 456 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 457 if (Blocks.insert(BB).second && BB != StopBlock) 458 // If BB is not already processed and it is not a stop block then 459 // insert its predecessor in the work list 460 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 461 BasicBlock *WBB = *I; 462 WorkList.push_back(WBB); 463 } 464 } while(!WorkList.empty()); 465 } 466 467 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 468 /// PHI node that tells us how to partition the loops. 469 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 470 AliasAnalysis *AA, LoopInfo *LI) { 471 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 472 PHINode *PN = cast<PHINode>(I); 473 ++I; 474 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { 475 // This is a degenerate PHI already, don't modify it! 476 PN->replaceAllUsesWith(V); 477 if (AA) AA->deleteValue(PN); 478 PN->eraseFromParent(); 479 continue; 480 } 481 482 // Scan this PHI node looking for a use of the PHI node by itself. 483 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 484 if (PN->getIncomingValue(i) == PN && 485 L->contains(PN->getIncomingBlock(i))) 486 // We found something tasty to remove. 487 return PN; 488 } 489 return 0; 490 } 491 492 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 493 // right after some 'outside block' block. This prevents the preheader from 494 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 495 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 496 SmallVectorImpl<BasicBlock*> &SplitPreds, 497 Loop *L) { 498 // Check to see if NewBB is already well placed. 499 Function::iterator BBI = NewBB; --BBI; 500 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 501 if (&*BBI == SplitPreds[i]) 502 return; 503 } 504 505 // If it isn't already after an outside block, move it after one. This is 506 // always good as it makes the uncond branch from the outside block into a 507 // fall-through. 508 509 // Figure out *which* outside block to put this after. Prefer an outside 510 // block that neighbors a BB actually in the loop. 511 BasicBlock *FoundBB = 0; 512 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 513 Function::iterator BBI = SplitPreds[i]; 514 if (++BBI != NewBB->getParent()->end() && 515 L->contains(BBI)) { 516 FoundBB = SplitPreds[i]; 517 break; 518 } 519 } 520 521 // If our heuristic for a *good* bb to place this after doesn't find 522 // anything, just pick something. It's likely better than leaving it within 523 // the loop. 524 if (!FoundBB) 525 FoundBB = SplitPreds[0]; 526 NewBB->moveAfter(FoundBB); 527 } 528 529 530 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 531 /// them out into a nested loop. This is important for code that looks like 532 /// this: 533 /// 534 /// Loop: 535 /// ... 536 /// br cond, Loop, Next 537 /// ... 538 /// br cond2, Loop, Out 539 /// 540 /// To identify this common case, we look at the PHI nodes in the header of the 541 /// loop. PHI nodes with unchanging values on one backedge correspond to values 542 /// that change in the "outer" loop, but not in the "inner" loop. 543 /// 544 /// If we are able to separate out a loop, return the new outer loop that was 545 /// created. 546 /// 547 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM, 548 BasicBlock *Preheader) { 549 // Don't try to separate loops without a preheader. 550 if (!Preheader) 551 return 0; 552 553 // The header is not a landing pad; preheader insertion should ensure this. 554 assert(!L->getHeader()->isLandingPad() && 555 "Can't insert backedge to landing pad"); 556 557 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI); 558 if (PN == 0) return 0; // No known way to partition. 559 560 // Pull out all predecessors that have varying values in the loop. This 561 // handles the case when a PHI node has multiple instances of itself as 562 // arguments. 563 SmallVector<BasicBlock*, 8> OuterLoopPreds; 564 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 565 if (PN->getIncomingValue(i) != PN || 566 !L->contains(PN->getIncomingBlock(i))) { 567 // We can't split indirectbr edges. 568 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 569 return 0; 570 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 571 } 572 } 573 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 574 575 // If ScalarEvolution is around and knows anything about values in 576 // this loop, tell it to forget them, because we're about to 577 // substantially change it. 578 if (SE) 579 SE->forgetLoop(L); 580 581 BasicBlock *Header = L->getHeader(); 582 BasicBlock *NewBB = 583 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this); 584 585 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 586 // code layout too horribly. 587 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 588 589 // Create the new outer loop. 590 Loop *NewOuter = new Loop(); 591 592 // Change the parent loop to use the outer loop as its child now. 593 if (Loop *Parent = L->getParentLoop()) 594 Parent->replaceChildLoopWith(L, NewOuter); 595 else 596 LI->changeTopLevelLoop(L, NewOuter); 597 598 // L is now a subloop of our outer loop. 599 NewOuter->addChildLoop(L); 600 601 // Add the new loop to the pass manager queue. 602 LPM.insertLoopIntoQueue(NewOuter); 603 604 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 605 I != E; ++I) 606 NewOuter->addBlockEntry(*I); 607 608 // Now reset the header in L, which had been moved by 609 // SplitBlockPredecessors for the outer loop. 610 L->moveToHeader(Header); 611 612 // Determine which blocks should stay in L and which should be moved out to 613 // the Outer loop now. 614 std::set<BasicBlock*> BlocksInL; 615 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 616 BasicBlock *P = *PI; 617 if (DT->dominates(Header, P)) 618 AddBlockAndPredsToSet(P, Header, BlocksInL); 619 } 620 621 // Scan all of the loop children of L, moving them to OuterLoop if they are 622 // not part of the inner loop. 623 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 624 for (size_t I = 0; I != SubLoops.size(); ) 625 if (BlocksInL.count(SubLoops[I]->getHeader())) 626 ++I; // Loop remains in L 627 else 628 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 629 630 // Now that we know which blocks are in L and which need to be moved to 631 // OuterLoop, move any blocks that need it. 632 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 633 BasicBlock *BB = L->getBlocks()[i]; 634 if (!BlocksInL.count(BB)) { 635 // Move this block to the parent, updating the exit blocks sets 636 L->removeBlockFromLoop(BB); 637 if ((*LI)[BB] == L) 638 LI->changeLoopFor(BB, NewOuter); 639 --i; 640 } 641 } 642 643 return NewOuter; 644 } 645 646 647 648 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 649 /// has more than one backedge in it. If this occurs, revector all of these 650 /// backedges to target a new basic block and have that block branch to the loop 651 /// header. This ensures that loops have exactly one backedge. 652 /// 653 BasicBlock * 654 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 655 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 656 657 // Get information about the loop 658 BasicBlock *Header = L->getHeader(); 659 Function *F = Header->getParent(); 660 661 // Unique backedge insertion currently depends on having a preheader. 662 if (!Preheader) 663 return 0; 664 665 // The header is not a landing pad; preheader insertion should ensure this. 666 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 667 668 // Figure out which basic blocks contain back-edges to the loop header. 669 std::vector<BasicBlock*> BackedgeBlocks; 670 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 671 BasicBlock *P = *I; 672 673 // Indirectbr edges cannot be split, so we must fail if we find one. 674 if (isa<IndirectBrInst>(P->getTerminator())) 675 return 0; 676 677 if (P != Preheader) BackedgeBlocks.push_back(P); 678 } 679 680 // Create and insert the new backedge block... 681 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 682 Header->getName()+".backedge", F); 683 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 684 685 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 686 << BEBlock->getName() << "\n"); 687 688 // Move the new backedge block to right after the last backedge block. 689 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 690 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 691 692 // Now that the block has been inserted into the function, create PHI nodes in 693 // the backedge block which correspond to any PHI nodes in the header block. 694 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 695 PHINode *PN = cast<PHINode>(I); 696 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 697 PN->getName()+".be", BETerminator); 698 if (AA) AA->copyValue(PN, NewPN); 699 700 // Loop over the PHI node, moving all entries except the one for the 701 // preheader over to the new PHI node. 702 unsigned PreheaderIdx = ~0U; 703 bool HasUniqueIncomingValue = true; 704 Value *UniqueValue = 0; 705 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 706 BasicBlock *IBB = PN->getIncomingBlock(i); 707 Value *IV = PN->getIncomingValue(i); 708 if (IBB == Preheader) { 709 PreheaderIdx = i; 710 } else { 711 NewPN->addIncoming(IV, IBB); 712 if (HasUniqueIncomingValue) { 713 if (UniqueValue == 0) 714 UniqueValue = IV; 715 else if (UniqueValue != IV) 716 HasUniqueIncomingValue = false; 717 } 718 } 719 } 720 721 // Delete all of the incoming values from the old PN except the preheader's 722 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 723 if (PreheaderIdx != 0) { 724 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 725 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 726 } 727 // Nuke all entries except the zero'th. 728 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 729 PN->removeIncomingValue(e-i, false); 730 731 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 732 PN->addIncoming(NewPN, BEBlock); 733 734 // As an optimization, if all incoming values in the new PhiNode (which is a 735 // subset of the incoming values of the old PHI node) have the same value, 736 // eliminate the PHI Node. 737 if (HasUniqueIncomingValue) { 738 NewPN->replaceAllUsesWith(UniqueValue); 739 if (AA) AA->deleteValue(NewPN); 740 BEBlock->getInstList().erase(NewPN); 741 } 742 } 743 744 // Now that all of the PHI nodes have been inserted and adjusted, modify the 745 // backedge blocks to just to the BEBlock instead of the header. 746 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 747 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 748 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 749 if (TI->getSuccessor(Op) == Header) 750 TI->setSuccessor(Op, BEBlock); 751 } 752 753 //===--- Update all analyses which we must preserve now -----------------===// 754 755 // Update Loop Information - we know that this block is now in the current 756 // loop and all parent loops. 757 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 758 759 // Update dominator information 760 DT->splitBlock(BEBlock); 761 762 return BEBlock; 763 } 764 765 void LoopSimplify::verifyAnalysis() const { 766 // It used to be possible to just assert L->isLoopSimplifyForm(), however 767 // with the introduction of indirectbr, there are now cases where it's 768 // not possible to transform a loop as necessary. We can at least check 769 // that there is an indirectbr near any time there's trouble. 770 771 // Indirectbr can interfere with preheader and unique backedge insertion. 772 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 773 bool HasIndBrPred = false; 774 for (pred_iterator PI = pred_begin(L->getHeader()), 775 PE = pred_end(L->getHeader()); PI != PE; ++PI) 776 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 777 HasIndBrPred = true; 778 break; 779 } 780 assert(HasIndBrPred && 781 "LoopSimplify has no excuse for missing loop header info!"); 782 (void)HasIndBrPred; 783 } 784 785 // Indirectbr can interfere with exit block canonicalization. 786 if (!L->hasDedicatedExits()) { 787 bool HasIndBrExiting = false; 788 SmallVector<BasicBlock*, 8> ExitingBlocks; 789 L->getExitingBlocks(ExitingBlocks); 790 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 791 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 792 HasIndBrExiting = true; 793 break; 794 } 795 } 796 797 assert(HasIndBrExiting && 798 "LoopSimplify has no excuse for missing exit block info!"); 799 (void)HasIndBrExiting; 800 } 801 } 802