Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/IR/Intrinsics.h"
     17 #include "llvm/Support/ConstantRange.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
     20 using namespace llvm;
     21 using namespace PatternMatch;
     22 
     23 
     24 /// AddOne - Add one to a ConstantInt.
     25 static Constant *AddOne(ConstantInt *C) {
     26   return ConstantInt::get(C->getContext(), C->getValue() + 1);
     27 }
     28 /// SubOne - Subtract one from a ConstantInt.
     29 static Constant *SubOne(ConstantInt *C) {
     30   return ConstantInt::get(C->getContext(), C->getValue()-1);
     31 }
     32 
     33 /// isFreeToInvert - Return true if the specified value is free to invert (apply
     34 /// ~ to).  This happens in cases where the ~ can be eliminated.
     35 static inline bool isFreeToInvert(Value *V) {
     36   // ~(~(X)) -> X.
     37   if (BinaryOperator::isNot(V))
     38     return true;
     39 
     40   // Constants can be considered to be not'ed values.
     41   if (isa<ConstantInt>(V))
     42     return true;
     43 
     44   // Compares can be inverted if they have a single use.
     45   if (CmpInst *CI = dyn_cast<CmpInst>(V))
     46     return CI->hasOneUse();
     47 
     48   return false;
     49 }
     50 
     51 static inline Value *dyn_castNotVal(Value *V) {
     52   // If this is not(not(x)) don't return that this is a not: we want the two
     53   // not's to be folded first.
     54   if (BinaryOperator::isNot(V)) {
     55     Value *Operand = BinaryOperator::getNotArgument(V);
     56     if (!isFreeToInvert(Operand))
     57       return Operand;
     58   }
     59 
     60   // Constants can be considered to be not'ed values...
     61   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
     62     return ConstantInt::get(C->getType(), ~C->getValue());
     63   return 0;
     64 }
     65 
     66 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
     67 /// predicate into a three bit mask. It also returns whether it is an ordered
     68 /// predicate by reference.
     69 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
     70   isOrdered = false;
     71   switch (CC) {
     72   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
     73   case FCmpInst::FCMP_UNO:                   return 0;  // 000
     74   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
     75   case FCmpInst::FCMP_UGT:                   return 1;  // 001
     76   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
     77   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
     78   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
     79   case FCmpInst::FCMP_UGE:                   return 3;  // 011
     80   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
     81   case FCmpInst::FCMP_ULT:                   return 4;  // 100
     82   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
     83   case FCmpInst::FCMP_UNE:                   return 5;  // 101
     84   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
     85   case FCmpInst::FCMP_ULE:                   return 6;  // 110
     86     // True -> 7
     87   default:
     88     // Not expecting FCMP_FALSE and FCMP_TRUE;
     89     llvm_unreachable("Unexpected FCmp predicate!");
     90   }
     91 }
     92 
     93 /// getNewICmpValue - This is the complement of getICmpCode, which turns an
     94 /// opcode and two operands into either a constant true or false, or a brand
     95 /// new ICmp instruction. The sign is passed in to determine which kind
     96 /// of predicate to use in the new icmp instruction.
     97 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
     98                               InstCombiner::BuilderTy *Builder) {
     99   ICmpInst::Predicate NewPred;
    100   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
    101     return NewConstant;
    102   return Builder->CreateICmp(NewPred, LHS, RHS);
    103 }
    104 
    105 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
    106 /// opcode and two operands into either a FCmp instruction. isordered is passed
    107 /// in to determine which kind of predicate to use in the new fcmp instruction.
    108 static Value *getFCmpValue(bool isordered, unsigned code,
    109                            Value *LHS, Value *RHS,
    110                            InstCombiner::BuilderTy *Builder) {
    111   CmpInst::Predicate Pred;
    112   switch (code) {
    113   default: llvm_unreachable("Illegal FCmp code!");
    114   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
    115   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
    116   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
    117   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
    118   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
    119   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
    120   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
    121   case 7:
    122     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
    123     Pred = FCmpInst::FCMP_ORD; break;
    124   }
    125   return Builder->CreateFCmp(Pred, LHS, RHS);
    126 }
    127 
    128 // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
    129 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
    130 // guaranteed to be a binary operator.
    131 Instruction *InstCombiner::OptAndOp(Instruction *Op,
    132                                     ConstantInt *OpRHS,
    133                                     ConstantInt *AndRHS,
    134                                     BinaryOperator &TheAnd) {
    135   Value *X = Op->getOperand(0);
    136   Constant *Together = 0;
    137   if (!Op->isShift())
    138     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
    139 
    140   switch (Op->getOpcode()) {
    141   case Instruction::Xor:
    142     if (Op->hasOneUse()) {
    143       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
    144       Value *And = Builder->CreateAnd(X, AndRHS);
    145       And->takeName(Op);
    146       return BinaryOperator::CreateXor(And, Together);
    147     }
    148     break;
    149   case Instruction::Or:
    150     if (Op->hasOneUse()){
    151       if (Together != OpRHS) {
    152         // (X | C1) & C2 --> (X | (C1&C2)) & C2
    153         Value *Or = Builder->CreateOr(X, Together);
    154         Or->takeName(Op);
    155         return BinaryOperator::CreateAnd(Or, AndRHS);
    156       }
    157 
    158       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
    159       if (TogetherCI && !TogetherCI->isZero()){
    160         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
    161         // NOTE: This reduces the number of bits set in the & mask, which
    162         // can expose opportunities for store narrowing.
    163         Together = ConstantExpr::getXor(AndRHS, Together);
    164         Value *And = Builder->CreateAnd(X, Together);
    165         And->takeName(Op);
    166         return BinaryOperator::CreateOr(And, OpRHS);
    167       }
    168     }
    169 
    170     break;
    171   case Instruction::Add:
    172     if (Op->hasOneUse()) {
    173       // Adding a one to a single bit bit-field should be turned into an XOR
    174       // of the bit.  First thing to check is to see if this AND is with a
    175       // single bit constant.
    176       const APInt &AndRHSV = AndRHS->getValue();
    177 
    178       // If there is only one bit set.
    179       if (AndRHSV.isPowerOf2()) {
    180         // Ok, at this point, we know that we are masking the result of the
    181         // ADD down to exactly one bit.  If the constant we are adding has
    182         // no bits set below this bit, then we can eliminate the ADD.
    183         const APInt& AddRHS = OpRHS->getValue();
    184 
    185         // Check to see if any bits below the one bit set in AndRHSV are set.
    186         if ((AddRHS & (AndRHSV-1)) == 0) {
    187           // If not, the only thing that can effect the output of the AND is
    188           // the bit specified by AndRHSV.  If that bit is set, the effect of
    189           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    190           // no effect.
    191           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
    192             TheAnd.setOperand(0, X);
    193             return &TheAnd;
    194           } else {
    195             // Pull the XOR out of the AND.
    196             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
    197             NewAnd->takeName(Op);
    198             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    199           }
    200         }
    201       }
    202     }
    203     break;
    204 
    205   case Instruction::Shl: {
    206     // We know that the AND will not produce any of the bits shifted in, so if
    207     // the anded constant includes them, clear them now!
    208     //
    209     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    210     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    211     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    212     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
    213 
    214     if (CI->getValue() == ShlMask)
    215       // Masking out bits that the shift already masks.
    216       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    217 
    218     if (CI != AndRHS) {                  // Reducing bits set in and.
    219       TheAnd.setOperand(1, CI);
    220       return &TheAnd;
    221     }
    222     break;
    223   }
    224   case Instruction::LShr: {
    225     // We know that the AND will not produce any of the bits shifted in, so if
    226     // the anded constant includes them, clear them now!  This only applies to
    227     // unsigned shifts, because a signed shr may bring in set bits!
    228     //
    229     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    230     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    231     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    232     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
    233 
    234     if (CI->getValue() == ShrMask)
    235       // Masking out bits that the shift already masks.
    236       return ReplaceInstUsesWith(TheAnd, Op);
    237 
    238     if (CI != AndRHS) {
    239       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
    240       return &TheAnd;
    241     }
    242     break;
    243   }
    244   case Instruction::AShr:
    245     // Signed shr.
    246     // See if this is shifting in some sign extension, then masking it out
    247     // with an and.
    248     if (Op->hasOneUse()) {
    249       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    250       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    251       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    252       Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
    253       if (C == AndRHS) {          // Masking out bits shifted in.
    254         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
    255         // Make the argument unsigned.
    256         Value *ShVal = Op->getOperand(0);
    257         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
    258         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
    259       }
    260     }
    261     break;
    262   }
    263   return 0;
    264 }
    265 
    266 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
    267 /// (V < Lo || V >= Hi).  In practice, we emit the more efficient
    268 /// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
    269 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
    270 /// insert new instructions.
    271 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    272                                      bool isSigned, bool Inside) {
    273   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
    274             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
    275          "Lo is not <= Hi in range emission code!");
    276 
    277   if (Inside) {
    278     if (Lo == Hi)  // Trivially false.
    279       return Builder->getFalse();
    280 
    281     // V >= Min && V < Hi --> V < Hi
    282     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    283       ICmpInst::Predicate pred = (isSigned ?
    284         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
    285       return Builder->CreateICmp(pred, V, Hi);
    286     }
    287 
    288     // Emit V-Lo <u Hi-Lo
    289     Constant *NegLo = ConstantExpr::getNeg(Lo);
    290     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    291     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    292     return Builder->CreateICmpULT(Add, UpperBound);
    293   }
    294 
    295   if (Lo == Hi)  // Trivially true.
    296     return Builder->getTrue();
    297 
    298   // V < Min || V >= Hi -> V > Hi-1
    299   Hi = SubOne(cast<ConstantInt>(Hi));
    300   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    301     ICmpInst::Predicate pred = (isSigned ?
    302         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    303     return Builder->CreateICmp(pred, V, Hi);
    304   }
    305 
    306   // Emit V-Lo >u Hi-1-Lo
    307   // Note that Hi has already had one subtracted from it, above.
    308   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
    309   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    310   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
    311   return Builder->CreateICmpUGT(Add, LowerBound);
    312 }
    313 
    314 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
    315 // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
    316 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
    317 // not, since all 1s are not contiguous.
    318 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
    319   const APInt& V = Val->getValue();
    320   uint32_t BitWidth = Val->getType()->getBitWidth();
    321   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
    322 
    323   // look for the first zero bit after the run of ones
    324   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
    325   // look for the first non-zero bit
    326   ME = V.getActiveBits();
    327   return true;
    328 }
    329 
    330 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
    331 /// where isSub determines whether the operator is a sub.  If we can fold one of
    332 /// the following xforms:
    333 ///
    334 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
    335 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    336 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    337 ///
    338 /// return (A +/- B).
    339 ///
    340 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
    341                                         ConstantInt *Mask, bool isSub,
    342                                         Instruction &I) {
    343   Instruction *LHSI = dyn_cast<Instruction>(LHS);
    344   if (!LHSI || LHSI->getNumOperands() != 2 ||
    345       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
    346 
    347   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
    348 
    349   switch (LHSI->getOpcode()) {
    350   default: return 0;
    351   case Instruction::And:
    352     if (ConstantExpr::getAnd(N, Mask) == Mask) {
    353       // If the AndRHS is a power of two minus one (0+1+), this is simple.
    354       if ((Mask->getValue().countLeadingZeros() +
    355            Mask->getValue().countPopulation()) ==
    356           Mask->getValue().getBitWidth())
    357         break;
    358 
    359       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
    360       // part, we don't need any explicit masks to take them out of A.  If that
    361       // is all N is, ignore it.
    362       uint32_t MB = 0, ME = 0;
    363       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
    364         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
    365         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
    366         if (MaskedValueIsZero(RHS, Mask))
    367           break;
    368       }
    369     }
    370     return 0;
    371   case Instruction::Or:
    372   case Instruction::Xor:
    373     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    374     if ((Mask->getValue().countLeadingZeros() +
    375          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
    376         && ConstantExpr::getAnd(N, Mask)->isNullValue())
    377       break;
    378     return 0;
    379   }
    380 
    381   if (isSub)
    382     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
    383   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
    384 }
    385 
    386 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
    387 /// One of A and B is considered the mask, the other the value. This is
    388 /// described as the "AMask" or "BMask" part of the enum. If the enum
    389 /// contains only "Mask", then both A and B can be considered masks.
    390 /// If A is the mask, then it was proven, that (A & C) == C. This
    391 /// is trivial if C == A, or C == 0. If both A and C are constants, this
    392 /// proof is also easy.
    393 /// For the following explanations we assume that A is the mask.
    394 /// The part "AllOnes" declares, that the comparison is true only
    395 /// if (A & B) == A, or all bits of A are set in B.
    396 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
    397 /// The part "AllZeroes" declares, that the comparison is true only
    398 /// if (A & B) == 0, or all bits of A are cleared in B.
    399 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
    400 /// The part "Mixed" declares, that (A & B) == C and C might or might not
    401 /// contain any number of one bits and zero bits.
    402 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
    403 /// The Part "Not" means, that in above descriptions "==" should be replaced
    404 /// by "!=".
    405 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
    406 /// If the mask A contains a single bit, then the following is equivalent:
    407 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    408 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    409 enum MaskedICmpType {
    410   FoldMskICmp_AMask_AllOnes           =     1,
    411   FoldMskICmp_AMask_NotAllOnes        =     2,
    412   FoldMskICmp_BMask_AllOnes           =     4,
    413   FoldMskICmp_BMask_NotAllOnes        =     8,
    414   FoldMskICmp_Mask_AllZeroes          =    16,
    415   FoldMskICmp_Mask_NotAllZeroes       =    32,
    416   FoldMskICmp_AMask_Mixed             =    64,
    417   FoldMskICmp_AMask_NotMixed          =   128,
    418   FoldMskICmp_BMask_Mixed             =   256,
    419   FoldMskICmp_BMask_NotMixed          =   512
    420 };
    421 
    422 /// return the set of pattern classes (from MaskedICmpType)
    423 /// that (icmp SCC (A & B), C) satisfies
    424 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
    425                                     ICmpInst::Predicate SCC)
    426 {
    427   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    428   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    429   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    430   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
    431   bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
    432                     ACst->getValue().isPowerOf2());
    433   bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
    434                     BCst->getValue().isPowerOf2());
    435   unsigned result = 0;
    436   if (CCst != 0 && CCst->isZero()) {
    437     // if C is zero, then both A and B qualify as mask
    438     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
    439                           FoldMskICmp_Mask_AllZeroes |
    440                           FoldMskICmp_AMask_Mixed |
    441                           FoldMskICmp_BMask_Mixed)
    442                        : (FoldMskICmp_Mask_NotAllZeroes |
    443                           FoldMskICmp_Mask_NotAllZeroes |
    444                           FoldMskICmp_AMask_NotMixed |
    445                           FoldMskICmp_BMask_NotMixed));
    446     if (icmp_abit)
    447       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
    448                             FoldMskICmp_AMask_NotMixed)
    449                          : (FoldMskICmp_AMask_AllOnes |
    450                             FoldMskICmp_AMask_Mixed));
    451     if (icmp_bbit)
    452       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
    453                             FoldMskICmp_BMask_NotMixed)
    454                          : (FoldMskICmp_BMask_AllOnes |
    455                             FoldMskICmp_BMask_Mixed));
    456     return result;
    457   }
    458   if (A == C) {
    459     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
    460                           FoldMskICmp_AMask_Mixed)
    461                        : (FoldMskICmp_AMask_NotAllOnes |
    462                           FoldMskICmp_AMask_NotMixed));
    463     if (icmp_abit)
    464       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    465                             FoldMskICmp_AMask_NotMixed)
    466                          : (FoldMskICmp_Mask_AllZeroes |
    467                             FoldMskICmp_AMask_Mixed));
    468   } else if (ACst != 0 && CCst != 0 &&
    469              ConstantExpr::getAnd(ACst, CCst) == CCst) {
    470     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
    471                        : FoldMskICmp_AMask_NotMixed);
    472   }
    473   if (B == C) {
    474     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
    475                           FoldMskICmp_BMask_Mixed)
    476                        : (FoldMskICmp_BMask_NotAllOnes |
    477                           FoldMskICmp_BMask_NotMixed));
    478     if (icmp_bbit)
    479       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    480                             FoldMskICmp_BMask_NotMixed)
    481                          : (FoldMskICmp_Mask_AllZeroes |
    482                             FoldMskICmp_BMask_Mixed));
    483   } else if (BCst != 0 && CCst != 0 &&
    484              ConstantExpr::getAnd(BCst, CCst) == CCst) {
    485     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
    486                        : FoldMskICmp_BMask_NotMixed);
    487   }
    488   return result;
    489 }
    490 
    491 /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
    492 /// if possible. The returned predicate is either == or !=. Returns false if
    493 /// decomposition fails.
    494 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
    495                                  Value *&X, Value *&Y, Value *&Z) {
    496   // X < 0 is equivalent to (X & SignBit) != 0.
    497   if (I->getPredicate() == ICmpInst::ICMP_SLT)
    498     if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
    499       if (C->isZero()) {
    500         X = I->getOperand(0);
    501         Y = ConstantInt::get(I->getContext(),
    502                              APInt::getSignBit(C->getBitWidth()));
    503         Pred = ICmpInst::ICMP_NE;
    504         Z = C;
    505         return true;
    506       }
    507 
    508   // X > -1 is equivalent to (X & SignBit) == 0.
    509   if (I->getPredicate() == ICmpInst::ICMP_SGT)
    510     if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
    511       if (C->isAllOnesValue()) {
    512         X = I->getOperand(0);
    513         Y = ConstantInt::get(I->getContext(),
    514                              APInt::getSignBit(C->getBitWidth()));
    515         Pred = ICmpInst::ICMP_EQ;
    516         Z = ConstantInt::getNullValue(C->getType());
    517         return true;
    518       }
    519 
    520   return false;
    521 }
    522 
    523 /// foldLogOpOfMaskedICmpsHelper:
    524 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    525 /// return the set of pattern classes (from MaskedICmpType)
    526 /// that both LHS and RHS satisfy
    527 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
    528                                              Value*& B, Value*& C,
    529                                              Value*& D, Value*& E,
    530                                              ICmpInst *LHS, ICmpInst *RHS,
    531                                              ICmpInst::Predicate &LHSCC,
    532                                              ICmpInst::Predicate &RHSCC) {
    533   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
    534   // vectors are not (yet?) supported
    535   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
    536 
    537   // Here comes the tricky part:
    538   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    539   // and L11 & L12 == L21 & L22. The same goes for RHS.
    540   // Now we must find those components L** and R**, that are equal, so
    541   // that we can extract the parameters A, B, C, D, and E for the canonical
    542   // above.
    543   Value *L1 = LHS->getOperand(0);
    544   Value *L2 = LHS->getOperand(1);
    545   Value *L11,*L12,*L21,*L22;
    546   // Check whether the icmp can be decomposed into a bit test.
    547   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
    548     L21 = L22 = L1 = 0;
    549   } else {
    550     // Look for ANDs in the LHS icmp.
    551     if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    552       if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
    553         L21 = L22 = 0;
    554     } else {
    555       if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
    556         return 0;
    557       std::swap(L1, L2);
    558       L21 = L22 = 0;
    559     }
    560   }
    561 
    562   // Bail if LHS was a icmp that can't be decomposed into an equality.
    563   if (!ICmpInst::isEquality(LHSCC))
    564     return 0;
    565 
    566   Value *R1 = RHS->getOperand(0);
    567   Value *R2 = RHS->getOperand(1);
    568   Value *R11,*R12;
    569   bool ok = false;
    570   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
    571     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    572       A = R11; D = R12;
    573     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    574       A = R12; D = R11;
    575     } else {
    576       return 0;
    577     }
    578     E = R2; R1 = 0; ok = true;
    579   } else if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    580     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    581       A = R11; D = R12; E = R2; ok = true;
    582     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    583       A = R12; D = R11; E = R2; ok = true;
    584     }
    585   }
    586 
    587   // Bail if RHS was a icmp that can't be decomposed into an equality.
    588   if (!ICmpInst::isEquality(RHSCC))
    589     return 0;
    590 
    591   // Look for ANDs in on the right side of the RHS icmp.
    592   if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    593     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    594       A = R11; D = R12; E = R1; ok = true;
    595     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    596       A = R12; D = R11; E = R1; ok = true;
    597     } else {
    598       return 0;
    599     }
    600   }
    601   if (!ok)
    602     return 0;
    603 
    604   if (L11 == A) {
    605     B = L12; C = L2;
    606   } else if (L12 == A) {
    607     B = L11; C = L2;
    608   } else if (L21 == A) {
    609     B = L22; C = L1;
    610   } else if (L22 == A) {
    611     B = L21; C = L1;
    612   }
    613 
    614   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
    615   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
    616   return left_type & right_type;
    617 }
    618 /// foldLogOpOfMaskedICmps:
    619 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    620 /// into a single (icmp(A & X) ==/!= Y)
    621 static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
    622                                      ICmpInst::Predicate NEWCC,
    623                                      llvm::InstCombiner::BuilderTy* Builder) {
    624   Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
    625   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    626   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
    627                                                LHSCC, RHSCC);
    628   if (mask == 0) return 0;
    629   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
    630          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
    631 
    632   if (NEWCC == ICmpInst::ICMP_NE)
    633     mask >>= 1; // treat "Not"-states as normal states
    634 
    635   if (mask & FoldMskICmp_Mask_AllZeroes) {
    636     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    637     // -> (icmp eq (A & (B|D)), 0)
    638     Value* newOr = Builder->CreateOr(B, D);
    639     Value* newAnd = Builder->CreateAnd(A, newOr);
    640     // we can't use C as zero, because we might actually handle
    641     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    642     // with B and D, having a single bit set
    643     Value* zero = Constant::getNullValue(A->getType());
    644     return Builder->CreateICmp(NEWCC, newAnd, zero);
    645   }
    646   if (mask & FoldMskICmp_BMask_AllOnes) {
    647     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    648     // -> (icmp eq (A & (B|D)), (B|D))
    649     Value* newOr = Builder->CreateOr(B, D);
    650     Value* newAnd = Builder->CreateAnd(A, newOr);
    651     return Builder->CreateICmp(NEWCC, newAnd, newOr);
    652   }
    653   if (mask & FoldMskICmp_AMask_AllOnes) {
    654     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    655     // -> (icmp eq (A & (B&D)), A)
    656     Value* newAnd1 = Builder->CreateAnd(B, D);
    657     Value* newAnd = Builder->CreateAnd(A, newAnd1);
    658     return Builder->CreateICmp(NEWCC, newAnd, A);
    659   }
    660   if (mask & FoldMskICmp_BMask_Mixed) {
    661     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    662     // We already know that B & C == C && D & E == E.
    663     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    664     // C and E, which are shared by both the mask B and the mask D, don't
    665     // contradict, then we can transform to
    666     // -> (icmp eq (A & (B|D)), (C|E))
    667     // Currently, we only handle the case of B, C, D, and E being constant.
    668     ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    669     if (BCst == 0) return 0;
    670     ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    671     if (DCst == 0) return 0;
    672     // we can't simply use C and E, because we might actually handle
    673     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    674     // with B and D, having a single bit set
    675 
    676     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    677     if (CCst == 0) return 0;
    678     if (LHSCC != NEWCC)
    679       CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
    680     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    681     if (ECst == 0) return 0;
    682     if (RHSCC != NEWCC)
    683       ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
    684     ConstantInt* MCst = dyn_cast<ConstantInt>(
    685       ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
    686                            ConstantExpr::getXor(CCst, ECst)) );
    687     // if there is a conflict we should actually return a false for the
    688     // whole construct
    689     if (!MCst->isZero())
    690       return 0;
    691     Value *newOr1 = Builder->CreateOr(B, D);
    692     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
    693     Value *newAnd = Builder->CreateAnd(A, newOr1);
    694     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
    695   }
    696   return 0;
    697 }
    698 
    699 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
    700 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
    701   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    702 
    703   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    704   if (PredicatesFoldable(LHSCC, RHSCC)) {
    705     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    706         LHS->getOperand(1) == RHS->getOperand(0))
    707       LHS->swapOperands();
    708     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    709         LHS->getOperand(1) == RHS->getOperand(1)) {
    710       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    711       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    712       bool isSigned = LHS->isSigned() || RHS->isSigned();
    713       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
    714     }
    715   }
    716 
    717   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    718   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
    719     return V;
    720 
    721   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    722   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
    723   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
    724   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
    725   if (LHSCst == 0 || RHSCst == 0) return 0;
    726 
    727   if (LHSCst == RHSCst && LHSCC == RHSCC) {
    728     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    729     // where C is a power of 2
    730     if (LHSCC == ICmpInst::ICMP_ULT &&
    731         LHSCst->getValue().isPowerOf2()) {
    732       Value *NewOr = Builder->CreateOr(Val, Val2);
    733       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    734     }
    735 
    736     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    737     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
    738       Value *NewOr = Builder->CreateOr(Val, Val2);
    739       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    740     }
    741   }
    742 
    743   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    744   // where CMAX is the all ones value for the truncated type,
    745   // iff the lower bits of C2 and CA are zero.
    746   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
    747       LHS->hasOneUse() && RHS->hasOneUse()) {
    748     Value *V;
    749     ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
    750 
    751     // (trunc x) == C1 & (and x, CA) == C2
    752     // (and x, CA) == C2 & (trunc x) == C1
    753     if (match(Val2, m_Trunc(m_Value(V))) &&
    754         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    755       SmallCst = RHSCst;
    756       BigCst = LHSCst;
    757     } else if (match(Val, m_Trunc(m_Value(V))) &&
    758                match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    759       SmallCst = LHSCst;
    760       BigCst = RHSCst;
    761     }
    762 
    763     if (SmallCst && BigCst) {
    764       unsigned BigBitSize = BigCst->getType()->getBitWidth();
    765       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
    766 
    767       // Check that the low bits are zero.
    768       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    769       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
    770         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
    771         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
    772         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
    773         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
    774       }
    775     }
    776   }
    777 
    778   // From here on, we only handle:
    779   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    780   if (Val != Val2) return 0;
    781 
    782   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
    783   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
    784       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
    785       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
    786       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
    787     return 0;
    788 
    789   // Make a constant range that's the intersection of the two icmp ranges.
    790   // If the intersection is empty, we know that the result is false.
    791   ConstantRange LHSRange =
    792     ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
    793   ConstantRange RHSRange =
    794     ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
    795 
    796   if (LHSRange.intersectWith(RHSRange).isEmptySet())
    797     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    798 
    799   // We can't fold (ugt x, C) & (sgt x, C2).
    800   if (!PredicatesFoldable(LHSCC, RHSCC))
    801     return 0;
    802 
    803   // Ensure that the larger constant is on the RHS.
    804   bool ShouldSwap;
    805   if (CmpInst::isSigned(LHSCC) ||
    806       (ICmpInst::isEquality(LHSCC) &&
    807        CmpInst::isSigned(RHSCC)))
    808     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
    809   else
    810     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
    811 
    812   if (ShouldSwap) {
    813     std::swap(LHS, RHS);
    814     std::swap(LHSCst, RHSCst);
    815     std::swap(LHSCC, RHSCC);
    816   }
    817 
    818   // At this point, we know we have two icmp instructions
    819   // comparing a value against two constants and and'ing the result
    820   // together.  Because of the above check, we know that we only have
    821   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
    822   // (from the icmp folding check above), that the two constants
    823   // are not equal and that the larger constant is on the RHS
    824   assert(LHSCst != RHSCst && "Compares not folded above?");
    825 
    826   switch (LHSCC) {
    827   default: llvm_unreachable("Unknown integer condition code!");
    828   case ICmpInst::ICMP_EQ:
    829     switch (RHSCC) {
    830     default: llvm_unreachable("Unknown integer condition code!");
    831     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
    832     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
    833     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
    834       return LHS;
    835     }
    836   case ICmpInst::ICMP_NE:
    837     switch (RHSCC) {
    838     default: llvm_unreachable("Unknown integer condition code!");
    839     case ICmpInst::ICMP_ULT:
    840       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
    841         return Builder->CreateICmpULT(Val, LHSCst);
    842       break;                        // (X != 13 & X u< 15) -> no change
    843     case ICmpInst::ICMP_SLT:
    844       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
    845         return Builder->CreateICmpSLT(Val, LHSCst);
    846       break;                        // (X != 13 & X s< 15) -> no change
    847     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
    848     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
    849     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
    850       return RHS;
    851     case ICmpInst::ICMP_NE:
    852       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
    853         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
    854         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
    855         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
    856       }
    857       break;                        // (X != 13 & X != 15) -> no change
    858     }
    859     break;
    860   case ICmpInst::ICMP_ULT:
    861     switch (RHSCC) {
    862     default: llvm_unreachable("Unknown integer condition code!");
    863     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
    864     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
    865       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    866     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
    867       break;
    868     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
    869     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
    870       return LHS;
    871     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
    872       break;
    873     }
    874     break;
    875   case ICmpInst::ICMP_SLT:
    876     switch (RHSCC) {
    877     default: llvm_unreachable("Unknown integer condition code!");
    878     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
    879       break;
    880     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
    881     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
    882       return LHS;
    883     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
    884       break;
    885     }
    886     break;
    887   case ICmpInst::ICMP_UGT:
    888     switch (RHSCC) {
    889     default: llvm_unreachable("Unknown integer condition code!");
    890     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
    891     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
    892       return RHS;
    893     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
    894       break;
    895     case ICmpInst::ICMP_NE:
    896       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
    897         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    898       break;                        // (X u> 13 & X != 15) -> no change
    899     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
    900       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
    901     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
    902       break;
    903     }
    904     break;
    905   case ICmpInst::ICMP_SGT:
    906     switch (RHSCC) {
    907     default: llvm_unreachable("Unknown integer condition code!");
    908     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
    909     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
    910       return RHS;
    911     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
    912       break;
    913     case ICmpInst::ICMP_NE:
    914       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
    915         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    916       break;                        // (X s> 13 & X != 15) -> no change
    917     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
    918       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
    919     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
    920       break;
    921     }
    922     break;
    923   }
    924 
    925   return 0;
    926 }
    927 
    928 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
    929 /// instcombine, this returns a Value which should already be inserted into the
    930 /// function.
    931 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
    932   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
    933       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
    934     if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
    935       return 0;
    936 
    937     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
    938     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
    939       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
    940         // If either of the constants are nans, then the whole thing returns
    941         // false.
    942         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
    943           return Builder->getFalse();
    944         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    945       }
    946 
    947     // Handle vector zeros.  This occurs because the canonical form of
    948     // "fcmp ord x,x" is "fcmp ord x, 0".
    949     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
    950         isa<ConstantAggregateZero>(RHS->getOperand(1)))
    951       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    952     return 0;
    953   }
    954 
    955   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
    956   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
    957   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
    958 
    959 
    960   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
    961     // Swap RHS operands to match LHS.
    962     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
    963     std::swap(Op1LHS, Op1RHS);
    964   }
    965 
    966   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
    967     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
    968     if (Op0CC == Op1CC)
    969       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
    970     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
    971       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    972     if (Op0CC == FCmpInst::FCMP_TRUE)
    973       return RHS;
    974     if (Op1CC == FCmpInst::FCMP_TRUE)
    975       return LHS;
    976 
    977     bool Op0Ordered;
    978     bool Op1Ordered;
    979     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
    980     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
    981     // uno && ord -> false
    982     if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
    983         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    984     if (Op1Pred == 0) {
    985       std::swap(LHS, RHS);
    986       std::swap(Op0Pred, Op1Pred);
    987       std::swap(Op0Ordered, Op1Ordered);
    988     }
    989     if (Op0Pred == 0) {
    990       // uno && ueq -> uno && (uno || eq) -> uno
    991       // ord && olt -> ord && (ord && lt) -> olt
    992       if (!Op0Ordered && (Op0Ordered == Op1Ordered))
    993         return LHS;
    994       if (Op0Ordered && (Op0Ordered == Op1Ordered))
    995         return RHS;
    996 
    997       // uno && oeq -> uno && (ord && eq) -> false
    998       if (!Op0Ordered)
    999         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1000       // ord && ueq -> ord && (uno || eq) -> oeq
   1001       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
   1002     }
   1003   }
   1004 
   1005   return 0;
   1006 }
   1007 
   1008 
   1009 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1010   bool Changed = SimplifyAssociativeOrCommutative(I);
   1011   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1012 
   1013   if (Value *V = SimplifyAndInst(Op0, Op1, TD))
   1014     return ReplaceInstUsesWith(I, V);
   1015 
   1016   // (A|B)&(A|C) -> A|(B&C) etc
   1017   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1018     return ReplaceInstUsesWith(I, V);
   1019 
   1020   // See if we can simplify any instructions used by the instruction whose sole
   1021   // purpose is to compute bits we don't care about.
   1022   if (SimplifyDemandedInstructionBits(I))
   1023     return &I;
   1024 
   1025   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1026     const APInt &AndRHSMask = AndRHS->getValue();
   1027 
   1028     // Optimize a variety of ((val OP C1) & C2) combinations...
   1029     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1030       Value *Op0LHS = Op0I->getOperand(0);
   1031       Value *Op0RHS = Op0I->getOperand(1);
   1032       switch (Op0I->getOpcode()) {
   1033       default: break;
   1034       case Instruction::Xor:
   1035       case Instruction::Or: {
   1036         // If the mask is only needed on one incoming arm, push it up.
   1037         if (!Op0I->hasOneUse()) break;
   1038 
   1039         APInt NotAndRHS(~AndRHSMask);
   1040         if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
   1041           // Not masking anything out for the LHS, move to RHS.
   1042           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
   1043                                              Op0RHS->getName()+".masked");
   1044           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
   1045         }
   1046         if (!isa<Constant>(Op0RHS) &&
   1047             MaskedValueIsZero(Op0RHS, NotAndRHS)) {
   1048           // Not masking anything out for the RHS, move to LHS.
   1049           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
   1050                                              Op0LHS->getName()+".masked");
   1051           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
   1052         }
   1053 
   1054         break;
   1055       }
   1056       case Instruction::Add:
   1057         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
   1058         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1059         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1060         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
   1061           return BinaryOperator::CreateAnd(V, AndRHS);
   1062         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
   1063           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
   1064         break;
   1065 
   1066       case Instruction::Sub:
   1067         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
   1068         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1069         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1070         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
   1071           return BinaryOperator::CreateAnd(V, AndRHS);
   1072 
   1073         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
   1074         // has 1's for all bits that the subtraction with A might affect.
   1075         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
   1076           uint32_t BitWidth = AndRHSMask.getBitWidth();
   1077           uint32_t Zeros = AndRHSMask.countLeadingZeros();
   1078           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
   1079 
   1080           if (MaskedValueIsZero(Op0LHS, Mask)) {
   1081             Value *NewNeg = Builder->CreateNeg(Op0RHS);
   1082             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
   1083           }
   1084         }
   1085         break;
   1086 
   1087       case Instruction::Shl:
   1088       case Instruction::LShr:
   1089         // (1 << x) & 1 --> zext(x == 0)
   1090         // (1 >> x) & 1 --> zext(x == 0)
   1091         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
   1092           Value *NewICmp =
   1093             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
   1094           return new ZExtInst(NewICmp, I.getType());
   1095         }
   1096         break;
   1097       }
   1098 
   1099       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1100         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1101           return Res;
   1102     }
   1103 
   1104     // If this is an integer truncation, and if the source is an 'and' with
   1105     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1106     {
   1107       Value *X = 0; ConstantInt *YC = 0;
   1108       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1109         // Change: and (trunc (and X, YC) to T), C2
   1110         // into  : and (trunc X to T), trunc(YC) & C2
   1111         // This will fold the two constants together, which may allow
   1112         // other simplifications.
   1113         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
   1114         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1115         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1116         return BinaryOperator::CreateAnd(NewCast, C3);
   1117       }
   1118     }
   1119 
   1120     // Try to fold constant and into select arguments.
   1121     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1122       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1123         return R;
   1124     if (isa<PHINode>(Op0))
   1125       if (Instruction *NV = FoldOpIntoPhi(I))
   1126         return NV;
   1127   }
   1128 
   1129 
   1130   // (~A & ~B) == (~(A | B)) - De Morgan's Law
   1131   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1132     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1133       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1134         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
   1135                                       I.getName()+".demorgan");
   1136         return BinaryOperator::CreateNot(Or);
   1137       }
   1138 
   1139   {
   1140     Value *A = 0, *B = 0, *C = 0, *D = 0;
   1141     // (A|B) & ~(A&B) -> A^B
   1142     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1143         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1144         ((A == C && B == D) || (A == D && B == C)))
   1145       return BinaryOperator::CreateXor(A, B);
   1146 
   1147     // ~(A&B) & (A|B) -> A^B
   1148     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1149         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1150         ((A == C && B == D) || (A == D && B == C)))
   1151       return BinaryOperator::CreateXor(A, B);
   1152 
   1153     // A&(A^B) => A & ~B
   1154     {
   1155       Value *tmpOp0 = Op0;
   1156       Value *tmpOp1 = Op1;
   1157       if (Op0->hasOneUse() &&
   1158           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   1159         if (A == Op1 || B == Op1 ) {
   1160           tmpOp1 = Op0;
   1161           tmpOp0 = Op1;
   1162           // Simplify below
   1163         }
   1164       }
   1165 
   1166       if (tmpOp1->hasOneUse() &&
   1167           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
   1168         if (B == tmpOp0) {
   1169           std::swap(A, B);
   1170         }
   1171         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
   1172         // A is originally -1 (or a vector of -1 and undefs), then we enter
   1173         // an endless loop. By checking that A is non-constant we ensure that
   1174         // we will never get to the loop.
   1175         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
   1176           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
   1177       }
   1178     }
   1179 
   1180     // (A&((~A)|B)) -> A&B
   1181     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
   1182         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
   1183       return BinaryOperator::CreateAnd(A, Op1);
   1184     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
   1185         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
   1186       return BinaryOperator::CreateAnd(A, Op0);
   1187   }
   1188 
   1189   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
   1190     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
   1191       if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1192         return ReplaceInstUsesWith(I, Res);
   1193 
   1194   // If and'ing two fcmp, try combine them into one.
   1195   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1196     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1197       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1198         return ReplaceInstUsesWith(I, Res);
   1199 
   1200 
   1201   // fold (and (cast A), (cast B)) -> (cast (and A, B))
   1202   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
   1203     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
   1204       Type *SrcTy = Op0C->getOperand(0)->getType();
   1205       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
   1206           SrcTy == Op1C->getOperand(0)->getType() &&
   1207           SrcTy->isIntOrIntVectorTy()) {
   1208         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1209 
   1210         // Only do this if the casts both really cause code to be generated.
   1211         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1212             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1213           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
   1214           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1215         }
   1216 
   1217         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
   1218         // cast is otherwise not optimizable.  This happens for vector sexts.
   1219         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1220           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1221             if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1222               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1223 
   1224         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
   1225         // cast is otherwise not optimizable.  This happens for vector sexts.
   1226         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   1227           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   1228             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1229               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1230       }
   1231     }
   1232 
   1233   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
   1234   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1235     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1236       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1237           SI0->getOperand(1) == SI1->getOperand(1) &&
   1238           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1239         Value *NewOp =
   1240           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
   1241                              SI0->getName());
   1242         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1243                                       SI1->getOperand(1));
   1244       }
   1245   }
   1246 
   1247   {
   1248     Value *X = 0;
   1249     bool OpsSwapped = false;
   1250     // Canonicalize SExt or Not to the LHS
   1251     if (match(Op1, m_SExt(m_Value())) ||
   1252         match(Op1, m_Not(m_Value()))) {
   1253       std::swap(Op0, Op1);
   1254       OpsSwapped = true;
   1255     }
   1256 
   1257     // Fold (and (sext bool to A), B) --> (select bool, B, 0)
   1258     if (match(Op0, m_SExt(m_Value(X))) &&
   1259         X->getType()->getScalarType()->isIntegerTy(1)) {
   1260       Value *Zero = Constant::getNullValue(Op1->getType());
   1261       return SelectInst::Create(X, Op1, Zero);
   1262     }
   1263 
   1264     // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
   1265     if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
   1266         X->getType()->getScalarType()->isIntegerTy(1)) {
   1267       Value *Zero = Constant::getNullValue(Op0->getType());
   1268       return SelectInst::Create(X, Zero, Op1);
   1269     }
   1270 
   1271     if (OpsSwapped)
   1272       std::swap(Op0, Op1);
   1273   }
   1274 
   1275   return Changed ? &I : 0;
   1276 }
   1277 
   1278 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
   1279 /// capable of providing pieces of a bswap.  The subexpression provides pieces
   1280 /// of a bswap if it is proven that each of the non-zero bytes in the output of
   1281 /// the expression came from the corresponding "byte swapped" byte in some other
   1282 /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
   1283 /// we know that the expression deposits the low byte of %X into the high byte
   1284 /// of the bswap result and that all other bytes are zero.  This expression is
   1285 /// accepted, the high byte of ByteValues is set to X to indicate a correct
   1286 /// match.
   1287 ///
   1288 /// This function returns true if the match was unsuccessful and false if so.
   1289 /// On entry to the function the "OverallLeftShift" is a signed integer value
   1290 /// indicating the number of bytes that the subexpression is later shifted.  For
   1291 /// example, if the expression is later right shifted by 16 bits, the
   1292 /// OverallLeftShift value would be -2 on entry.  This is used to specify which
   1293 /// byte of ByteValues is actually being set.
   1294 ///
   1295 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
   1296 /// byte is masked to zero by a user.  For example, in (X & 255), X will be
   1297 /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
   1298 /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
   1299 /// always in the local (OverallLeftShift) coordinate space.
   1300 ///
   1301 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
   1302                               SmallVectorImpl<Value *> &ByteValues) {
   1303   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1304     // If this is an or instruction, it may be an inner node of the bswap.
   1305     if (I->getOpcode() == Instruction::Or) {
   1306       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1307                                ByteValues) ||
   1308              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
   1309                                ByteValues);
   1310     }
   1311 
   1312     // If this is a logical shift by a constant multiple of 8, recurse with
   1313     // OverallLeftShift and ByteMask adjusted.
   1314     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1315       unsigned ShAmt =
   1316         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1317       // Ensure the shift amount is defined and of a byte value.
   1318       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
   1319         return true;
   1320 
   1321       unsigned ByteShift = ShAmt >> 3;
   1322       if (I->getOpcode() == Instruction::Shl) {
   1323         // X << 2 -> collect(X, +2)
   1324         OverallLeftShift += ByteShift;
   1325         ByteMask >>= ByteShift;
   1326       } else {
   1327         // X >>u 2 -> collect(X, -2)
   1328         OverallLeftShift -= ByteShift;
   1329         ByteMask <<= ByteShift;
   1330         ByteMask &= (~0U >> (32-ByteValues.size()));
   1331       }
   1332 
   1333       if (OverallLeftShift >= (int)ByteValues.size()) return true;
   1334       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
   1335 
   1336       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1337                                ByteValues);
   1338     }
   1339 
   1340     // If this is a logical 'and' with a mask that clears bytes, clear the
   1341     // corresponding bytes in ByteMask.
   1342     if (I->getOpcode() == Instruction::And &&
   1343         isa<ConstantInt>(I->getOperand(1))) {
   1344       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
   1345       unsigned NumBytes = ByteValues.size();
   1346       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
   1347       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1348 
   1349       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
   1350         // If this byte is masked out by a later operation, we don't care what
   1351         // the and mask is.
   1352         if ((ByteMask & (1 << i)) == 0)
   1353           continue;
   1354 
   1355         // If the AndMask is all zeros for this byte, clear the bit.
   1356         APInt MaskB = AndMask & Byte;
   1357         if (MaskB == 0) {
   1358           ByteMask &= ~(1U << i);
   1359           continue;
   1360         }
   1361 
   1362         // If the AndMask is not all ones for this byte, it's not a bytezap.
   1363         if (MaskB != Byte)
   1364           return true;
   1365 
   1366         // Otherwise, this byte is kept.
   1367       }
   1368 
   1369       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1370                                ByteValues);
   1371     }
   1372   }
   1373 
   1374   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1375   // the input value to the bswap.  Some observations: 1) if more than one byte
   1376   // is demanded from this input, then it could not be successfully assembled
   1377   // into a byteswap.  At least one of the two bytes would not be aligned with
   1378   // their ultimate destination.
   1379   if (!isPowerOf2_32(ByteMask)) return true;
   1380   unsigned InputByteNo = countTrailingZeros(ByteMask);
   1381 
   1382   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
   1383   // is demanded, it needs to go into byte 0 of the result.  This means that the
   1384   // byte needs to be shifted until it lands in the right byte bucket.  The
   1385   // shift amount depends on the position: if the byte is coming from the high
   1386   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
   1387   // low part, it must be shifted left.
   1388   unsigned DestByteNo = InputByteNo + OverallLeftShift;
   1389   if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1390     return true;
   1391 
   1392   // If the destination byte value is already defined, the values are or'd
   1393   // together, which isn't a bswap (unless it's an or of the same bits).
   1394   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
   1395     return true;
   1396   ByteValues[DestByteNo] = V;
   1397   return false;
   1398 }
   1399 
   1400 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
   1401 /// If so, insert the new bswap intrinsic and return it.
   1402 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
   1403   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
   1404   if (!ITy || ITy->getBitWidth() % 16 ||
   1405       // ByteMask only allows up to 32-byte values.
   1406       ITy->getBitWidth() > 32*8)
   1407     return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
   1408 
   1409   /// ByteValues - For each byte of the result, we keep track of which value
   1410   /// defines each byte.
   1411   SmallVector<Value*, 8> ByteValues;
   1412   ByteValues.resize(ITy->getBitWidth()/8);
   1413 
   1414   // Try to find all the pieces corresponding to the bswap.
   1415   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
   1416   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
   1417     return 0;
   1418 
   1419   // Check to see if all of the bytes come from the same value.
   1420   Value *V = ByteValues[0];
   1421   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
   1422 
   1423   // Check to make sure that all of the bytes come from the same value.
   1424   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
   1425     if (ByteValues[i] != V)
   1426       return 0;
   1427   Module *M = I.getParent()->getParent()->getParent();
   1428   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
   1429   return CallInst::Create(F, V);
   1430 }
   1431 
   1432 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
   1433 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
   1434 /// we can simplify this expression to "cond ? C : D or B".
   1435 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
   1436                                          Value *C, Value *D) {
   1437   // If A is not a select of -1/0, this cannot match.
   1438   Value *Cond = 0;
   1439   if (!match(A, m_SExt(m_Value(Cond))) ||
   1440       !Cond->getType()->isIntegerTy(1))
   1441     return 0;
   1442 
   1443   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
   1444   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
   1445     return SelectInst::Create(Cond, C, B);
   1446   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
   1447     return SelectInst::Create(Cond, C, B);
   1448 
   1449   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
   1450   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
   1451     return SelectInst::Create(Cond, C, D);
   1452   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
   1453     return SelectInst::Create(Cond, C, D);
   1454   return 0;
   1455 }
   1456 
   1457 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
   1458 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
   1459   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
   1460 
   1461   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1462   if (PredicatesFoldable(LHSCC, RHSCC)) {
   1463     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1464         LHS->getOperand(1) == RHS->getOperand(0))
   1465       LHS->swapOperands();
   1466     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1467         LHS->getOperand(1) == RHS->getOperand(1)) {
   1468       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1469       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1470       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1471       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
   1472     }
   1473   }
   1474 
   1475   // handle (roughly):
   1476   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1477   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
   1478     return V;
   1479 
   1480   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
   1481   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1482   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1483 
   1484   if (LHS->hasOneUse() || RHS->hasOneUse()) {
   1485     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
   1486     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
   1487     Value *A = 0, *B = 0;
   1488     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
   1489       B = Val;
   1490       if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
   1491         A = Val2;
   1492       else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
   1493         A = RHS->getOperand(1);
   1494     }
   1495     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
   1496     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
   1497     else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
   1498       B = Val2;
   1499       if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
   1500         A = Val;
   1501       else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
   1502         A = LHS->getOperand(1);
   1503     }
   1504     if (A && B)
   1505       return Builder->CreateICmp(
   1506           ICmpInst::ICMP_UGE,
   1507           Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
   1508   }
   1509 
   1510   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1511   if (LHSCst == 0 || RHSCst == 0) return 0;
   1512 
   1513   if (LHSCst == RHSCst && LHSCC == RHSCC) {
   1514     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1515     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
   1516       Value *NewOr = Builder->CreateOr(Val, Val2);
   1517       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1518     }
   1519   }
   1520 
   1521   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1522   //   iff C2 + CA == C1.
   1523   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
   1524     ConstantInt *AddCst;
   1525     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
   1526       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
   1527         return Builder->CreateICmpULE(Val, LHSCst);
   1528   }
   1529 
   1530   // From here on, we only handle:
   1531   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1532   if (Val != Val2) return 0;
   1533 
   1534   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
   1535   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
   1536       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
   1537       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
   1538       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
   1539     return 0;
   1540 
   1541   // We can't fold (ugt x, C) | (sgt x, C2).
   1542   if (!PredicatesFoldable(LHSCC, RHSCC))
   1543     return 0;
   1544 
   1545   // Ensure that the larger constant is on the RHS.
   1546   bool ShouldSwap;
   1547   if (CmpInst::isSigned(LHSCC) ||
   1548       (ICmpInst::isEquality(LHSCC) &&
   1549        CmpInst::isSigned(RHSCC)))
   1550     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
   1551   else
   1552     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1553 
   1554   if (ShouldSwap) {
   1555     std::swap(LHS, RHS);
   1556     std::swap(LHSCst, RHSCst);
   1557     std::swap(LHSCC, RHSCC);
   1558   }
   1559 
   1560   // At this point, we know we have two icmp instructions
   1561   // comparing a value against two constants and or'ing the result
   1562   // together.  Because of the above check, we know that we only have
   1563   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1564   // icmp folding check above), that the two constants are not
   1565   // equal.
   1566   assert(LHSCst != RHSCst && "Compares not folded above?");
   1567 
   1568   switch (LHSCC) {
   1569   default: llvm_unreachable("Unknown integer condition code!");
   1570   case ICmpInst::ICMP_EQ:
   1571     switch (RHSCC) {
   1572     default: llvm_unreachable("Unknown integer condition code!");
   1573     case ICmpInst::ICMP_EQ:
   1574       if (LHS->getOperand(0) == RHS->getOperand(0)) {
   1575         // if LHSCst and RHSCst differ only by one bit:
   1576         // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
   1577         assert(LHSCst->getValue().ule(LHSCst->getValue()));
   1578 
   1579         APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
   1580         if (Xor.isPowerOf2()) {
   1581           Value *NegCst = Builder->getInt(~Xor);
   1582           Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
   1583           return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
   1584         }
   1585       }
   1586 
   1587       if (LHSCst == SubOne(RHSCst)) {
   1588         // (X == 13 | X == 14) -> X-13 <u 2
   1589         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1590         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1591         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
   1592         return Builder->CreateICmpULT(Add, AddCST);
   1593       }
   1594 
   1595       break;                         // (X == 13 | X == 15) -> no change
   1596     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
   1597     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
   1598       break;
   1599     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
   1600     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
   1601     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
   1602       return RHS;
   1603     }
   1604     break;
   1605   case ICmpInst::ICMP_NE:
   1606     switch (RHSCC) {
   1607     default: llvm_unreachable("Unknown integer condition code!");
   1608     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
   1609     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
   1610     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
   1611       return LHS;
   1612     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
   1613     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
   1614     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
   1615       return Builder->getTrue();
   1616     }
   1617   case ICmpInst::ICMP_ULT:
   1618     switch (RHSCC) {
   1619     default: llvm_unreachable("Unknown integer condition code!");
   1620     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
   1621       break;
   1622     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
   1623       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1624       // this can cause overflow.
   1625       if (RHSCst->isMaxValue(false))
   1626         return LHS;
   1627       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
   1628     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
   1629       break;
   1630     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
   1631     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
   1632       return RHS;
   1633     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
   1634       break;
   1635     }
   1636     break;
   1637   case ICmpInst::ICMP_SLT:
   1638     switch (RHSCC) {
   1639     default: llvm_unreachable("Unknown integer condition code!");
   1640     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
   1641       break;
   1642     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
   1643       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1644       // this can cause overflow.
   1645       if (RHSCst->isMaxValue(true))
   1646         return LHS;
   1647       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
   1648     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
   1649       break;
   1650     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
   1651     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
   1652       return RHS;
   1653     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
   1654       break;
   1655     }
   1656     break;
   1657   case ICmpInst::ICMP_UGT:
   1658     switch (RHSCC) {
   1659     default: llvm_unreachable("Unknown integer condition code!");
   1660     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
   1661     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
   1662       return LHS;
   1663     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
   1664       break;
   1665     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
   1666     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
   1667       return Builder->getTrue();
   1668     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
   1669       break;
   1670     }
   1671     break;
   1672   case ICmpInst::ICMP_SGT:
   1673     switch (RHSCC) {
   1674     default: llvm_unreachable("Unknown integer condition code!");
   1675     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
   1676     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
   1677       return LHS;
   1678     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
   1679       break;
   1680     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
   1681     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
   1682       return Builder->getTrue();
   1683     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
   1684       break;
   1685     }
   1686     break;
   1687   }
   1688   return 0;
   1689 }
   1690 
   1691 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
   1692 /// instcombine, this returns a Value which should already be inserted into the
   1693 /// function.
   1694 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   1695   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1696       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1697       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
   1698     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   1699       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   1700         // If either of the constants are nans, then the whole thing returns
   1701         // true.
   1702         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   1703           return Builder->getTrue();
   1704 
   1705         // Otherwise, no need to compare the two constants, compare the
   1706         // rest.
   1707         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1708       }
   1709 
   1710     // Handle vector zeros.  This occurs because the canonical form of
   1711     // "fcmp uno x,x" is "fcmp uno x, 0".
   1712     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   1713         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   1714       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1715 
   1716     return 0;
   1717   }
   1718 
   1719   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   1720   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   1721   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   1722 
   1723   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   1724     // Swap RHS operands to match LHS.
   1725     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   1726     std::swap(Op1LHS, Op1RHS);
   1727   }
   1728   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   1729     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
   1730     if (Op0CC == Op1CC)
   1731       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   1732     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
   1733       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
   1734     if (Op0CC == FCmpInst::FCMP_FALSE)
   1735       return RHS;
   1736     if (Op1CC == FCmpInst::FCMP_FALSE)
   1737       return LHS;
   1738     bool Op0Ordered;
   1739     bool Op1Ordered;
   1740     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1741     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1742     if (Op0Ordered == Op1Ordered) {
   1743       // If both are ordered or unordered, return a new fcmp with
   1744       // or'ed predicates.
   1745       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
   1746     }
   1747   }
   1748   return 0;
   1749 }
   1750 
   1751 /// FoldOrWithConstants - This helper function folds:
   1752 ///
   1753 ///     ((A | B) & C1) | (B & C2)
   1754 ///
   1755 /// into:
   1756 ///
   1757 ///     (A & C1) | B
   1758 ///
   1759 /// when the XOR of the two constants is "all ones" (-1).
   1760 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
   1761                                                Value *A, Value *B, Value *C) {
   1762   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   1763   if (!CI1) return 0;
   1764 
   1765   Value *V1 = 0;
   1766   ConstantInt *CI2 = 0;
   1767   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
   1768 
   1769   APInt Xor = CI1->getValue() ^ CI2->getValue();
   1770   if (!Xor.isAllOnesValue()) return 0;
   1771 
   1772   if (V1 == A || V1 == B) {
   1773     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
   1774     return BinaryOperator::CreateOr(NewOp, V1);
   1775   }
   1776 
   1777   return 0;
   1778 }
   1779 
   1780 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   1781   bool Changed = SimplifyAssociativeOrCommutative(I);
   1782   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1783 
   1784   if (Value *V = SimplifyOrInst(Op0, Op1, TD))
   1785     return ReplaceInstUsesWith(I, V);
   1786 
   1787   // (A&B)|(A&C) -> A&(B|C) etc
   1788   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1789     return ReplaceInstUsesWith(I, V);
   1790 
   1791   // See if we can simplify any instructions used by the instruction whose sole
   1792   // purpose is to compute bits we don't care about.
   1793   if (SimplifyDemandedInstructionBits(I))
   1794     return &I;
   1795 
   1796   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   1797     ConstantInt *C1 = 0; Value *X = 0;
   1798     // (X & C1) | C2 --> (X | C2) & (C1|C2)
   1799     // iff (C1 & C2) == 0.
   1800     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
   1801         (RHS->getValue() & C1->getValue()) != 0 &&
   1802         Op0->hasOneUse()) {
   1803       Value *Or = Builder->CreateOr(X, RHS);
   1804       Or->takeName(Op0);
   1805       return BinaryOperator::CreateAnd(Or,
   1806                              Builder->getInt(RHS->getValue() | C1->getValue()));
   1807     }
   1808 
   1809     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
   1810     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
   1811         Op0->hasOneUse()) {
   1812       Value *Or = Builder->CreateOr(X, RHS);
   1813       Or->takeName(Op0);
   1814       return BinaryOperator::CreateXor(Or,
   1815                             Builder->getInt(C1->getValue() & ~RHS->getValue()));
   1816     }
   1817 
   1818     // Try to fold constant and into select arguments.
   1819     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1820       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1821         return R;
   1822 
   1823     if (isa<PHINode>(Op0))
   1824       if (Instruction *NV = FoldOpIntoPhi(I))
   1825         return NV;
   1826   }
   1827 
   1828   Value *A = 0, *B = 0;
   1829   ConstantInt *C1 = 0, *C2 = 0;
   1830 
   1831   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   1832   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   1833   if (match(Op0, m_Or(m_Value(), m_Value())) ||
   1834       match(Op1, m_Or(m_Value(), m_Value())) ||
   1835       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   1836        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
   1837     if (Instruction *BSwap = MatchBSwap(I))
   1838       return BSwap;
   1839   }
   1840 
   1841   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   1842   if (Op0->hasOneUse() &&
   1843       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1844       MaskedValueIsZero(Op1, C1->getValue())) {
   1845     Value *NOr = Builder->CreateOr(A, Op1);
   1846     NOr->takeName(Op0);
   1847     return BinaryOperator::CreateXor(NOr, C1);
   1848   }
   1849 
   1850   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   1851   if (Op1->hasOneUse() &&
   1852       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1853       MaskedValueIsZero(Op0, C1->getValue())) {
   1854     Value *NOr = Builder->CreateOr(A, Op0);
   1855     NOr->takeName(Op0);
   1856     return BinaryOperator::CreateXor(NOr, C1);
   1857   }
   1858 
   1859   // (A & C)|(B & D)
   1860   Value *C = 0, *D = 0;
   1861   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1862       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1863     Value *V1 = 0, *V2 = 0;
   1864     C1 = dyn_cast<ConstantInt>(C);
   1865     C2 = dyn_cast<ConstantInt>(D);
   1866     if (C1 && C2) {  // (A & C1)|(B & C2)
   1867       // If we have: ((V + N) & C1) | (V & C2)
   1868       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1869       // replace with V+N.
   1870       if (C1->getValue() == ~C2->getValue()) {
   1871         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
   1872             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1873           // Add commutes, try both ways.
   1874           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
   1875             return ReplaceInstUsesWith(I, A);
   1876           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
   1877             return ReplaceInstUsesWith(I, A);
   1878         }
   1879         // Or commutes, try both ways.
   1880         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
   1881             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1882           // Add commutes, try both ways.
   1883           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
   1884             return ReplaceInstUsesWith(I, B);
   1885           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
   1886             return ReplaceInstUsesWith(I, B);
   1887         }
   1888       }
   1889 
   1890       if ((C1->getValue() & C2->getValue()) == 0) {
   1891         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   1892         // iff (C1&C2) == 0 and (N&~C1) == 0
   1893         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   1894             ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
   1895              (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
   1896           return BinaryOperator::CreateAnd(A,
   1897                                 Builder->getInt(C1->getValue()|C2->getValue()));
   1898         // Or commutes, try both ways.
   1899         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   1900             ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
   1901              (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
   1902           return BinaryOperator::CreateAnd(B,
   1903                                 Builder->getInt(C1->getValue()|C2->getValue()));
   1904 
   1905         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   1906         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   1907         ConstantInt *C3 = 0, *C4 = 0;
   1908         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   1909             (C3->getValue() & ~C1->getValue()) == 0 &&
   1910             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   1911             (C4->getValue() & ~C2->getValue()) == 0) {
   1912           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   1913           return BinaryOperator::CreateAnd(V2,
   1914                                 Builder->getInt(C1->getValue()|C2->getValue()));
   1915         }
   1916       }
   1917     }
   1918 
   1919     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
   1920     // Don't do this for vector select idioms, the code generator doesn't handle
   1921     // them well yet.
   1922     if (!I.getType()->isVectorTy()) {
   1923       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
   1924         return Match;
   1925       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
   1926         return Match;
   1927       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
   1928         return Match;
   1929       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
   1930         return Match;
   1931     }
   1932 
   1933     // ((A&~B)|(~A&B)) -> A^B
   1934     if ((match(C, m_Not(m_Specific(D))) &&
   1935          match(B, m_Not(m_Specific(A)))))
   1936       return BinaryOperator::CreateXor(A, D);
   1937     // ((~B&A)|(~A&B)) -> A^B
   1938     if ((match(A, m_Not(m_Specific(D))) &&
   1939          match(B, m_Not(m_Specific(C)))))
   1940       return BinaryOperator::CreateXor(C, D);
   1941     // ((A&~B)|(B&~A)) -> A^B
   1942     if ((match(C, m_Not(m_Specific(B))) &&
   1943          match(D, m_Not(m_Specific(A)))))
   1944       return BinaryOperator::CreateXor(A, B);
   1945     // ((~B&A)|(B&~A)) -> A^B
   1946     if ((match(A, m_Not(m_Specific(B))) &&
   1947          match(D, m_Not(m_Specific(C)))))
   1948       return BinaryOperator::CreateXor(C, B);
   1949 
   1950     // ((A|B)&1)|(B&-2) -> (A&1) | B
   1951     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
   1952         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
   1953       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
   1954       if (Ret) return Ret;
   1955     }
   1956     // (B&-2)|((A|B)&1) -> (A&1) | B
   1957     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
   1958         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
   1959       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
   1960       if (Ret) return Ret;
   1961     }
   1962   }
   1963 
   1964   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
   1965   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1966     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1967       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1968           SI0->getOperand(1) == SI1->getOperand(1) &&
   1969           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1970         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
   1971                                          SI0->getName());
   1972         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1973                                       SI1->getOperand(1));
   1974       }
   1975   }
   1976 
   1977   // (~A | ~B) == (~(A & B)) - De Morgan's Law
   1978   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1979     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1980       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1981         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
   1982                                         I.getName()+".demorgan");
   1983         return BinaryOperator::CreateNot(And);
   1984       }
   1985 
   1986   // Canonicalize xor to the RHS.
   1987   bool SwappedForXor = false;
   1988   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
   1989     std::swap(Op0, Op1);
   1990     SwappedForXor = true;
   1991   }
   1992 
   1993   // A | ( A ^ B) -> A |  B
   1994   // A | (~A ^ B) -> A | ~B
   1995   // (A & B) | (A ^ B)
   1996   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   1997     if (Op0 == A || Op0 == B)
   1998       return BinaryOperator::CreateOr(A, B);
   1999 
   2000     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
   2001         match(Op0, m_And(m_Specific(B), m_Specific(A))))
   2002       return BinaryOperator::CreateOr(A, B);
   2003 
   2004     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   2005       Value *Not = Builder->CreateNot(B, B->getName()+".not");
   2006       return BinaryOperator::CreateOr(Not, Op0);
   2007     }
   2008     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   2009       Value *Not = Builder->CreateNot(A, A->getName()+".not");
   2010       return BinaryOperator::CreateOr(Not, Op0);
   2011     }
   2012   }
   2013 
   2014   // A | ~(A | B) -> A | ~B
   2015   // A | ~(A ^ B) -> A | ~B
   2016   if (match(Op1, m_Not(m_Value(A))))
   2017     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   2018       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   2019           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   2020                                B->getOpcode() == Instruction::Xor)) {
   2021         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   2022                                                  B->getOperand(0);
   2023         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
   2024         return BinaryOperator::CreateOr(Not, Op0);
   2025       }
   2026 
   2027   if (SwappedForXor)
   2028     std::swap(Op0, Op1);
   2029 
   2030   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2031     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2032       if (Value *Res = FoldOrOfICmps(LHS, RHS))
   2033         return ReplaceInstUsesWith(I, Res);
   2034 
   2035   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
   2036   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   2037     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   2038       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2039         return ReplaceInstUsesWith(I, Res);
   2040 
   2041   // fold (or (cast A), (cast B)) -> (cast (or A, B))
   2042   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2043     CastInst *Op1C = dyn_cast<CastInst>(Op1);
   2044     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
   2045       Type *SrcTy = Op0C->getOperand(0)->getType();
   2046       if (SrcTy == Op1C->getOperand(0)->getType() &&
   2047           SrcTy->isIntOrIntVectorTy()) {
   2048         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   2049 
   2050         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
   2051             // Only do this if the casts both really cause code to be
   2052             // generated.
   2053             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   2054             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   2055           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
   2056           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2057         }
   2058 
   2059         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
   2060         // cast is otherwise not optimizable.  This happens for vector sexts.
   2061         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   2062           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   2063             if (Value *Res = FoldOrOfICmps(LHS, RHS))
   2064               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2065 
   2066         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
   2067         // cast is otherwise not optimizable.  This happens for vector sexts.
   2068         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   2069           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   2070             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2071               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2072       }
   2073     }
   2074   }
   2075 
   2076   // or(sext(A), B) -> A ? -1 : B where A is an i1
   2077   // or(A, sext(B)) -> B ? -1 : A where B is an i1
   2078   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2079     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2080   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2081     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2082 
   2083   // Note: If we've gotten to the point of visiting the outer OR, then the
   2084   // inner one couldn't be simplified.  If it was a constant, then it won't
   2085   // be simplified by a later pass either, so we try swapping the inner/outer
   2086   // ORs in the hopes that we'll be able to simplify it this way.
   2087   // (X|C) | V --> (X|V) | C
   2088   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2089       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2090     Value *Inner = Builder->CreateOr(A, Op1);
   2091     Inner->takeName(Op0);
   2092     return BinaryOperator::CreateOr(Inner, C1);
   2093   }
   2094 
   2095   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
   2096   // Since this OR statement hasn't been optimized further yet, we hope
   2097   // that this transformation will allow the new ORs to be optimized.
   2098   {
   2099     Value *X = 0, *Y = 0;
   2100     if (Op0->hasOneUse() && Op1->hasOneUse() &&
   2101         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
   2102         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
   2103       Value *orTrue = Builder->CreateOr(A, C);
   2104       Value *orFalse = Builder->CreateOr(B, D);
   2105       return SelectInst::Create(X, orTrue, orFalse);
   2106     }
   2107   }
   2108 
   2109   return Changed ? &I : 0;
   2110 }
   2111 
   2112 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2113   bool Changed = SimplifyAssociativeOrCommutative(I);
   2114   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2115 
   2116   if (Value *V = SimplifyXorInst(Op0, Op1, TD))
   2117     return ReplaceInstUsesWith(I, V);
   2118 
   2119   // (A&B)^(A&C) -> A&(B^C) etc
   2120   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2121     return ReplaceInstUsesWith(I, V);
   2122 
   2123   // See if we can simplify any instructions used by the instruction whose sole
   2124   // purpose is to compute bits we don't care about.
   2125   if (SimplifyDemandedInstructionBits(I))
   2126     return &I;
   2127 
   2128   // Is this a ~ operation?
   2129   if (Value *NotOp = dyn_castNotVal(&I)) {
   2130     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
   2131       if (Op0I->getOpcode() == Instruction::And ||
   2132           Op0I->getOpcode() == Instruction::Or) {
   2133         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
   2134         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
   2135         if (dyn_castNotVal(Op0I->getOperand(1)))
   2136           Op0I->swapOperands();
   2137         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
   2138           Value *NotY =
   2139             Builder->CreateNot(Op0I->getOperand(1),
   2140                                Op0I->getOperand(1)->getName()+".not");
   2141           if (Op0I->getOpcode() == Instruction::And)
   2142             return BinaryOperator::CreateOr(Op0NotVal, NotY);
   2143           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
   2144         }
   2145 
   2146         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
   2147         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
   2148         if (isFreeToInvert(Op0I->getOperand(0)) &&
   2149             isFreeToInvert(Op0I->getOperand(1))) {
   2150           Value *NotX =
   2151             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
   2152           Value *NotY =
   2153             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
   2154           if (Op0I->getOpcode() == Instruction::And)
   2155             return BinaryOperator::CreateOr(NotX, NotY);
   2156           return BinaryOperator::CreateAnd(NotX, NotY);
   2157         }
   2158 
   2159       } else if (Op0I->getOpcode() == Instruction::AShr) {
   2160         // ~(~X >>s Y) --> (X >>s Y)
   2161         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
   2162           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
   2163       }
   2164     }
   2165   }
   2166 
   2167 
   2168   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2169     if (RHS->isOne() && Op0->hasOneUse())
   2170       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
   2171       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
   2172         return CmpInst::Create(CI->getOpcode(),
   2173                                CI->getInversePredicate(),
   2174                                CI->getOperand(0), CI->getOperand(1));
   2175 
   2176     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
   2177     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2178       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
   2179         if (CI->hasOneUse() && Op0C->hasOneUse()) {
   2180           Instruction::CastOps Opcode = Op0C->getOpcode();
   2181           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
   2182               (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
   2183                                             Op0C->getDestTy()))) {
   2184             CI->setPredicate(CI->getInversePredicate());
   2185             return CastInst::Create(Opcode, CI, Op0C->getType());
   2186           }
   2187         }
   2188       }
   2189     }
   2190 
   2191     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2192       // ~(c-X) == X-c-1 == X+(-c-1)
   2193       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
   2194         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
   2195           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
   2196           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
   2197                                       ConstantInt::get(I.getType(), 1));
   2198           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
   2199         }
   2200 
   2201       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2202         if (Op0I->getOpcode() == Instruction::Add) {
   2203           // ~(X-c) --> (-c-1)-X
   2204           if (RHS->isAllOnesValue()) {
   2205             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
   2206             return BinaryOperator::CreateSub(
   2207                            ConstantExpr::getSub(NegOp0CI,
   2208                                       ConstantInt::get(I.getType(), 1)),
   2209                                       Op0I->getOperand(0));
   2210           } else if (RHS->getValue().isSignBit()) {
   2211             // (X + C) ^ signbit -> (X + C + signbit)
   2212             Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
   2213             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
   2214 
   2215           }
   2216         } else if (Op0I->getOpcode() == Instruction::Or) {
   2217           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
   2218           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
   2219             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
   2220             // Anything in both C1 and C2 is known to be zero, remove it from
   2221             // NewRHS.
   2222             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
   2223             NewRHS = ConstantExpr::getAnd(NewRHS,
   2224                                        ConstantExpr::getNot(CommonBits));
   2225             Worklist.Add(Op0I);
   2226             I.setOperand(0, Op0I->getOperand(0));
   2227             I.setOperand(1, NewRHS);
   2228             return &I;
   2229           }
   2230         } else if (Op0I->getOpcode() == Instruction::LShr) {
   2231           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
   2232           // E1 = "X ^ C1"
   2233           BinaryOperator *E1;
   2234           ConstantInt *C1;
   2235           if (Op0I->hasOneUse() &&
   2236               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
   2237               E1->getOpcode() == Instruction::Xor &&
   2238               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
   2239             // fold (C1 >> C2) ^ C3
   2240             ConstantInt *C2 = Op0CI, *C3 = RHS;
   2241             APInt FoldConst = C1->getValue().lshr(C2->getValue());
   2242             FoldConst ^= C3->getValue();
   2243             // Prepare the two operands.
   2244             Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
   2245             Opnd0->takeName(Op0I);
   2246             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
   2247             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
   2248 
   2249             return BinaryOperator::CreateXor(Opnd0, FoldVal);
   2250           }
   2251         }
   2252       }
   2253     }
   2254 
   2255     // Try to fold constant and into select arguments.
   2256     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2257       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2258         return R;
   2259     if (isa<PHINode>(Op0))
   2260       if (Instruction *NV = FoldOpIntoPhi(I))
   2261         return NV;
   2262   }
   2263 
   2264   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
   2265   if (Op1I) {
   2266     Value *A, *B;
   2267     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2268       if (A == Op0) {              // B^(B|A) == (A|B)^B
   2269         Op1I->swapOperands();
   2270         I.swapOperands();
   2271         std::swap(Op0, Op1);
   2272       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
   2273         I.swapOperands();     // Simplified below.
   2274         std::swap(Op0, Op1);
   2275       }
   2276     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
   2277                Op1I->hasOneUse()){
   2278       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2279         Op1I->swapOperands();
   2280         std::swap(A, B);
   2281       }
   2282       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2283         I.swapOperands();     // Simplified below.
   2284         std::swap(Op0, Op1);
   2285       }
   2286     }
   2287   }
   2288 
   2289   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
   2290   if (Op0I) {
   2291     Value *A, *B;
   2292     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2293         Op0I->hasOneUse()) {
   2294       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2295         std::swap(A, B);
   2296       if (B == Op1)                                  // (A|B)^B == A & ~B
   2297         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
   2298     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2299                Op0I->hasOneUse()){
   2300       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2301         std::swap(A, B);
   2302       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2303           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
   2304         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
   2305       }
   2306     }
   2307   }
   2308 
   2309   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
   2310   if (Op0I && Op1I && Op0I->isShift() &&
   2311       Op0I->getOpcode() == Op1I->getOpcode() &&
   2312       Op0I->getOperand(1) == Op1I->getOperand(1) &&
   2313       (Op0I->hasOneUse() || Op1I->hasOneUse())) {
   2314     Value *NewOp =
   2315       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
   2316                          Op0I->getName());
   2317     return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
   2318                                   Op1I->getOperand(1));
   2319   }
   2320 
   2321   if (Op0I && Op1I) {
   2322     Value *A, *B, *C, *D;
   2323     // (A & B)^(A | B) -> A ^ B
   2324     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2325         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
   2326       if ((A == C && B == D) || (A == D && B == C))
   2327         return BinaryOperator::CreateXor(A, B);
   2328     }
   2329     // (A | B)^(A & B) -> A ^ B
   2330     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2331         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
   2332       if ((A == C && B == D) || (A == D && B == C))
   2333         return BinaryOperator::CreateXor(A, B);
   2334     }
   2335   }
   2336 
   2337   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2338   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2339     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2340       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2341         if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2342             LHS->getOperand(1) == RHS->getOperand(0))
   2343           LHS->swapOperands();
   2344         if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2345             LHS->getOperand(1) == RHS->getOperand(1)) {
   2346           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2347           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2348           bool isSigned = LHS->isSigned() || RHS->isSigned();
   2349           return ReplaceInstUsesWith(I,
   2350                                getNewICmpValue(isSigned, Code, Op0, Op1,
   2351                                                Builder));
   2352         }
   2353       }
   2354 
   2355   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
   2356   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2357     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
   2358       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
   2359         Type *SrcTy = Op0C->getOperand(0)->getType();
   2360         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
   2361             // Only do this if the casts both really cause code to be generated.
   2362             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
   2363                                I.getType()) &&
   2364             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
   2365                                I.getType())) {
   2366           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
   2367                                             Op1C->getOperand(0), I.getName());
   2368           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2369         }
   2370       }
   2371   }
   2372 
   2373   return Changed ? &I : 0;
   2374 }
   2375