Home | History | Annotate | Download | only in ARM
      1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the pass that transforms the ARM machine instructions into
     11 // relocatable machine code.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "jit"
     16 #include "ARM.h"
     17 #include "ARMBaseInstrInfo.h"
     18 #include "ARMConstantPoolValue.h"
     19 #include "ARMRelocations.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMTargetMachine.h"
     22 #include "MCTargetDesc/ARMAddressingModes.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/CodeGen/JITCodeEmitter.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFunctionPass.h"
     27 #include "llvm/CodeGen/MachineInstr.h"
     28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     29 #include "llvm/CodeGen/MachineModuleInfo.h"
     30 #include "llvm/CodeGen/Passes.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/DerivedTypes.h"
     33 #include "llvm/IR/Function.h"
     34 #include "llvm/PassManager.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #ifndef NDEBUG
     39 #include <iomanip>
     40 #endif
     41 using namespace llvm;
     42 
     43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
     44 
     45 namespace {
     46 
     47   class ARMCodeEmitter : public MachineFunctionPass {
     48     ARMJITInfo                *JTI;
     49     const ARMBaseInstrInfo    *II;
     50     const DataLayout          *TD;
     51     const ARMSubtarget        *Subtarget;
     52     TargetMachine             &TM;
     53     JITCodeEmitter            &MCE;
     54     MachineModuleInfo *MMI;
     55     const std::vector<MachineConstantPoolEntry> *MCPEs;
     56     const std::vector<MachineJumpTableEntry> *MJTEs;
     57     bool IsPIC;
     58     bool IsThumb;
     59 
     60     void getAnalysisUsage(AnalysisUsage &AU) const {
     61       AU.addRequired<MachineModuleInfo>();
     62       MachineFunctionPass::getAnalysisUsage(AU);
     63     }
     64 
     65     static char ID;
     66   public:
     67     ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
     68       : MachineFunctionPass(ID), JTI(0),
     69         II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
     70         TD(tm.getDataLayout()), TM(tm),
     71         MCE(mce), MCPEs(0), MJTEs(0),
     72         IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
     73 
     74     /// getBinaryCodeForInstr - This function, generated by the
     75     /// CodeEmitterGenerator using TableGen, produces the binary encoding for
     76     /// machine instructions.
     77     uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
     78 
     79     bool runOnMachineFunction(MachineFunction &MF);
     80 
     81     virtual const char *getPassName() const {
     82       return "ARM Machine Code Emitter";
     83     }
     84 
     85     void emitInstruction(const MachineInstr &MI);
     86 
     87   private:
     88 
     89     void emitWordLE(unsigned Binary);
     90     void emitDWordLE(uint64_t Binary);
     91     void emitConstantToMemory(unsigned CPI, const Constant *CV);
     92     void emitConstPoolInstruction(const MachineInstr &MI);
     93     void emitMOVi32immInstruction(const MachineInstr &MI);
     94     void emitMOVi2piecesInstruction(const MachineInstr &MI);
     95     void emitLEApcrelInstruction(const MachineInstr &MI);
     96     void emitLEApcrelJTInstruction(const MachineInstr &MI);
     97     void emitPseudoMoveInstruction(const MachineInstr &MI);
     98     void addPCLabel(unsigned LabelID);
     99     void emitPseudoInstruction(const MachineInstr &MI);
    100     unsigned getMachineSoRegOpValue(const MachineInstr &MI,
    101                                     const MCInstrDesc &MCID,
    102                                     const MachineOperand &MO,
    103                                     unsigned OpIdx);
    104 
    105     unsigned getMachineSoImmOpValue(unsigned SoImm);
    106     unsigned getAddrModeSBit(const MachineInstr &MI,
    107                              const MCInstrDesc &MCID) const;
    108 
    109     void emitDataProcessingInstruction(const MachineInstr &MI,
    110                                        unsigned ImplicitRd = 0,
    111                                        unsigned ImplicitRn = 0);
    112 
    113     void emitLoadStoreInstruction(const MachineInstr &MI,
    114                                   unsigned ImplicitRd = 0,
    115                                   unsigned ImplicitRn = 0);
    116 
    117     void emitMiscLoadStoreInstruction(const MachineInstr &MI,
    118                                       unsigned ImplicitRn = 0);
    119 
    120     void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
    121 
    122     void emitMulFrmInstruction(const MachineInstr &MI);
    123 
    124     void emitExtendInstruction(const MachineInstr &MI);
    125 
    126     void emitMiscArithInstruction(const MachineInstr &MI);
    127 
    128     void emitSaturateInstruction(const MachineInstr &MI);
    129 
    130     void emitBranchInstruction(const MachineInstr &MI);
    131 
    132     void emitInlineJumpTable(unsigned JTIndex);
    133 
    134     void emitMiscBranchInstruction(const MachineInstr &MI);
    135 
    136     void emitVFPArithInstruction(const MachineInstr &MI);
    137 
    138     void emitVFPConversionInstruction(const MachineInstr &MI);
    139 
    140     void emitVFPLoadStoreInstruction(const MachineInstr &MI);
    141 
    142     void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
    143 
    144     void emitMiscInstruction(const MachineInstr &MI);
    145 
    146     void emitNEONLaneInstruction(const MachineInstr &MI);
    147     void emitNEONDupInstruction(const MachineInstr &MI);
    148     void emitNEON1RegModImmInstruction(const MachineInstr &MI);
    149     void emitNEON2RegInstruction(const MachineInstr &MI);
    150     void emitNEON3RegInstruction(const MachineInstr &MI);
    151 
    152     /// getMachineOpValue - Return binary encoding of operand. If the machine
    153     /// operand requires relocation, record the relocation and return zero.
    154     unsigned getMachineOpValue(const MachineInstr &MI,
    155                                const MachineOperand &MO) const;
    156     unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
    157       return getMachineOpValue(MI, MI.getOperand(OpIdx));
    158     }
    159 
    160     // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
    161     //  TableGen'erated getBinaryCodeForInstr() function to encode any
    162     //  operand values, instead querying getMachineOpValue() directly for
    163     //  each operand it needs to encode. Thus, any of the new encoder
    164     //  helper functions can simply return 0 as the values the return
    165     //  are already handled elsewhere. They are placeholders to allow this
    166     //  encoder to continue to function until the MC encoder is sufficiently
    167     //  far along that this one can be eliminated entirely.
    168     unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
    169       const { return 0; }
    170     unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
    171       const { return 0; }
    172     unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
    173       const { return 0; }
    174     unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val)
    175       const { return 0; }
    176     unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
    177       const {
    178       if (IsThumb) {
    179         Val &= 0x0FFFFFFF;
    180         Val |= 0xE0000000;
    181       }
    182       return Val;
    183     }
    184     unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    185       const { return 0; }
    186     unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    187       const { return 0; }
    188     unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
    189       const { return 0; }
    190     unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
    191       const { return 0; }
    192     unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
    193       const { return 0; }
    194     unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
    195       const { return 0; }
    196     unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
    197       const { return 0; }
    198     unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
    199       const { return 0; }
    200     unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
    201       unsigned Op) const { return 0; }
    202     unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
    203       const { return 0; }
    204     unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
    205       const { return 0; }
    206     unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
    207       const { return 0; }
    208     unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
    209       const { return 0; }
    210     unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
    211       const { return 0; }
    212     unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
    213       const { return 0; }
    214     unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
    215       const { return 0; }
    216     unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
    217       const { return 0; }
    218     unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
    219       const { return 0; }
    220     unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
    221       const { return 0; }
    222     unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
    223       const { return 0; }
    224     unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
    225       const { return 0; }
    226     unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
    227       const { return 0; }
    228     unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
    229       const { return 0; }
    230     unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
    231       const { return 0; }
    232     unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
    233       const { return 0; }
    234     unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
    235       const { return 0; }
    236     unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
    237       const { return 0; }
    238     unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    239       const { return 0; }
    240     unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
    241       const { return 0; }
    242     unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
    243                                                  unsigned Op)
    244       const { return 0; }
    245     unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
    246       const { return 0; }
    247     unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
    248       const { return 0; }
    249     unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
    250                                             unsigned Op) const { return 0; }
    251     unsigned getSsatBitPosValue(const MachineInstr &MI,
    252                                 unsigned Op) const { return 0; }
    253     uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
    254       const {return 0; }
    255     uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
    256       const { return 0; }
    257 
    258     unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
    259       const {
    260       // {17-13} = reg
    261       // {12}    = (U)nsigned (add == '1', sub == '0')
    262       // {11-0}  = imm12
    263       const MachineOperand &MO  = MI.getOperand(Op);
    264       const MachineOperand &MO1 = MI.getOperand(Op + 1);
    265       if (!MO.isReg()) {
    266         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
    267         return 0;
    268       }
    269       unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
    270       int32_t Imm12 = MO1.getImm();
    271       uint32_t Binary;
    272       Binary = Imm12 & 0xfff;
    273       if (Imm12 >= 0)
    274         Binary |= (1 << 12);
    275       Binary |= (Reg << 13);
    276       return Binary;
    277     }
    278 
    279     unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
    280       const {
    281       const MCInstrDesc &MCID = MI.getDesc();
    282       const MachineOperand &MO = MI.getOperand(Op);
    283 
    284       unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
    285                        ARM::reloc_arm_movw : ARM::reloc_arm_movt);
    286 
    287       if (!MO.isImm()) {
    288         emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
    289         return 0;
    290       }
    291       unsigned Imm16 = static_cast<unsigned>(MO.getImm());
    292       return Imm16;
    293     }
    294 
    295     uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
    296       const { return 0;}
    297     uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
    298       const { return 0;}
    299     uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
    300       const { return 0;}
    301     uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
    302       const { return 0;}
    303     uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
    304       const { return 0; }
    305     uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
    306       const { return 0; }
    307     uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
    308       const { return 0; }
    309     uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
    310       const { return 0; }
    311     uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
    312       const { return 0; }
    313     uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
    314       // {12-9}  = reg
    315       // {8}     = (U)nsigned (add == '1', sub == '0')
    316       // {7-0}   = imm8
    317       uint32_t Binary = 0;
    318       const MachineOperand &MO  = MI.getOperand(Op);
    319       const MachineOperand &MO1 = MI.getOperand(Op + 1);
    320       if (!MO.isReg()) {
    321         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
    322         return 0;
    323       }
    324       unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
    325       int32_t Imm12 = MO1.getImm();
    326 
    327       // Special value for #-0
    328       if (Imm12 == INT32_MIN)
    329         Imm12 = 0;
    330 
    331       // Immediate is always encoded as positive. The 'U' bit controls add vs
    332       // sub.
    333       bool isAdd = true;
    334       if (Imm12 < 0) {
    335         Imm12 = -Imm12;
    336         isAdd = false;
    337       }
    338 
    339       // If immediate offset is omitted, default to +0.
    340       Binary |= 1 << 8;
    341       return Binary;
    342     }
    343     unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
    344       const { return 0; }
    345 
    346     unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
    347       const { return 0; }
    348 
    349     unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
    350       const { return 0; }
    351     unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
    352       const { return 0; }
    353     unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
    354       const { return 0; }
    355     unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
    356       const { return 0; }
    357 
    358     /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    359     /// machine operand requires relocation, record the relocation and return
    360     /// zero.
    361     unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
    362                             unsigned Reloc);
    363 
    364     /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    365     ///
    366     unsigned getShiftOp(unsigned Imm) const ;
    367 
    368     /// Routines that handle operands which add machine relocations which are
    369     /// fixed up by the relocation stage.
    370     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
    371                            bool MayNeedFarStub,  bool Indirect,
    372                            intptr_t ACPV = 0) const;
    373     void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
    374     void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
    375     void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
    376     void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
    377                                intptr_t JTBase = 0) const;
    378     unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
    379     unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
    380     unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
    381     unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
    382     unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
    383     unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
    384   };
    385 }
    386 
    387 char ARMCodeEmitter::ID = 0;
    388 
    389 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
    390 /// code to the specified MCE object.
    391 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
    392                                                 JITCodeEmitter &JCE) {
    393   return new ARMCodeEmitter(TM, JCE);
    394 }
    395 
    396 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
    397   TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
    398 
    399   assert((Target.getRelocationModel() != Reloc::Default ||
    400           Target.getRelocationModel() != Reloc::Static) &&
    401          "JIT relocation model must be set to static or default!");
    402 
    403   JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
    404   II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
    405   TD = Target.getDataLayout();
    406 
    407   Subtarget = &TM.getSubtarget<ARMSubtarget>();
    408   MCPEs = &MF.getConstantPool()->getConstants();
    409   MJTEs = 0;
    410   if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
    411   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
    412   IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
    413   JTI->Initialize(MF, IsPIC);
    414   MMI = &getAnalysis<MachineModuleInfo>();
    415   MCE.setModuleInfo(MMI);
    416 
    417   do {
    418     DEBUG(errs() << "JITTing function '"
    419           << MF.getName() << "'\n");
    420     MCE.startFunction(MF);
    421     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
    422          MBB != E; ++MBB) {
    423       MCE.StartMachineBasicBlock(MBB);
    424       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
    425            I != E; ++I)
    426         emitInstruction(*I);
    427     }
    428   } while (MCE.finishFunction(MF));
    429 
    430   return false;
    431 }
    432 
    433 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    434 ///
    435 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
    436   switch (ARM_AM::getAM2ShiftOpc(Imm)) {
    437   default: llvm_unreachable("Unknown shift opc!");
    438   case ARM_AM::asr: return 2;
    439   case ARM_AM::lsl: return 0;
    440   case ARM_AM::lsr: return 1;
    441   case ARM_AM::ror:
    442   case ARM_AM::rrx: return 3;
    443   }
    444 }
    445 
    446 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    447 /// machine operand requires relocation, record the relocation and return zero.
    448 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
    449                                         const MachineOperand &MO,
    450                                         unsigned Reloc) {
    451   assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
    452       && "Relocation to this function should be for movt or movw");
    453 
    454   if (MO.isImm())
    455     return static_cast<unsigned>(MO.getImm());
    456   else if (MO.isGlobal())
    457     emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
    458   else if (MO.isSymbol())
    459     emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
    460   else if (MO.isMBB())
    461     emitMachineBasicBlock(MO.getMBB(), Reloc);
    462   else {
    463 #ifndef NDEBUG
    464     errs() << MO;
    465 #endif
    466     llvm_unreachable("Unsupported operand type for movw/movt");
    467   }
    468   return 0;
    469 }
    470 
    471 /// getMachineOpValue - Return binary encoding of operand. If the machine
    472 /// operand requires relocation, record the relocation and return zero.
    473 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
    474                                            const MachineOperand &MO) const {
    475   if (MO.isReg())
    476     return II->getRegisterInfo().getEncodingValue(MO.getReg());
    477   else if (MO.isImm())
    478     return static_cast<unsigned>(MO.getImm());
    479   else if (MO.isFPImm())
    480     return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
    481                       .bitcastToAPInt().getHiBits(32).getLimitedValue());
    482   else if (MO.isGlobal())
    483     emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
    484   else if (MO.isSymbol())
    485     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
    486   else if (MO.isCPI()) {
    487     const MCInstrDesc &MCID = MI.getDesc();
    488     // For VFP load, the immediate offset is multiplied by 4.
    489     unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
    490       ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
    491     emitConstPoolAddress(MO.getIndex(), Reloc);
    492   } else if (MO.isJTI())
    493     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
    494   else if (MO.isMBB())
    495     emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
    496   else
    497     llvm_unreachable("Unable to encode MachineOperand!");
    498   return 0;
    499 }
    500 
    501 /// emitGlobalAddress - Emit the specified address to the code stream.
    502 ///
    503 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
    504                                        bool MayNeedFarStub, bool Indirect,
    505                                        intptr_t ACPV) const {
    506   MachineRelocation MR = Indirect
    507     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
    508                                            const_cast<GlobalValue *>(GV),
    509                                            ACPV, MayNeedFarStub)
    510     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
    511                                const_cast<GlobalValue *>(GV), ACPV,
    512                                MayNeedFarStub);
    513   MCE.addRelocation(MR);
    514 }
    515 
    516 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
    517 /// be emitted to the current location in the function, and allow it to be PC
    518 /// relative.
    519 void ARMCodeEmitter::
    520 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
    521   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
    522                                                  Reloc, ES));
    523 }
    524 
    525 /// emitConstPoolAddress - Arrange for the address of an constant pool
    526 /// to be emitted to the current location in the function, and allow it to be PC
    527 /// relative.
    528 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
    529   // Tell JIT emitter we'll resolve the address.
    530   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
    531                                                     Reloc, CPI, 0, true));
    532 }
    533 
    534 /// emitJumpTableAddress - Arrange for the address of a jump table to
    535 /// be emitted to the current location in the function, and allow it to be PC
    536 /// relative.
    537 void ARMCodeEmitter::
    538 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
    539   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
    540                                                     Reloc, JTIndex, 0, true));
    541 }
    542 
    543 /// emitMachineBasicBlock - Emit the specified address basic block.
    544 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
    545                                            unsigned Reloc,
    546                                            intptr_t JTBase) const {
    547   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
    548                                              Reloc, BB, JTBase));
    549 }
    550 
    551 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
    552   DEBUG(errs() << "  0x";
    553         errs().write_hex(Binary) << "\n");
    554   MCE.emitWordLE(Binary);
    555 }
    556 
    557 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
    558   DEBUG(errs() << "  0x";
    559         errs().write_hex(Binary) << "\n");
    560   MCE.emitDWordLE(Binary);
    561 }
    562 
    563 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
    564   DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
    565 
    566   MCE.processDebugLoc(MI.getDebugLoc(), true);
    567 
    568   ++NumEmitted;  // Keep track of the # of mi's emitted
    569   switch (MI.getDesc().TSFlags & ARMII::FormMask) {
    570   default: {
    571     llvm_unreachable("Unhandled instruction encoding format!");
    572   }
    573   case ARMII::MiscFrm:
    574     if (MI.getOpcode() == ARM::LEApcrelJT) {
    575       // Materialize jumptable address.
    576       emitLEApcrelJTInstruction(MI);
    577       break;
    578     }
    579     llvm_unreachable("Unhandled instruction encoding!");
    580   case ARMII::Pseudo:
    581     emitPseudoInstruction(MI);
    582     break;
    583   case ARMII::DPFrm:
    584   case ARMII::DPSoRegFrm:
    585     emitDataProcessingInstruction(MI);
    586     break;
    587   case ARMII::LdFrm:
    588   case ARMII::StFrm:
    589     emitLoadStoreInstruction(MI);
    590     break;
    591   case ARMII::LdMiscFrm:
    592   case ARMII::StMiscFrm:
    593     emitMiscLoadStoreInstruction(MI);
    594     break;
    595   case ARMII::LdStMulFrm:
    596     emitLoadStoreMultipleInstruction(MI);
    597     break;
    598   case ARMII::MulFrm:
    599     emitMulFrmInstruction(MI);
    600     break;
    601   case ARMII::ExtFrm:
    602     emitExtendInstruction(MI);
    603     break;
    604   case ARMII::ArithMiscFrm:
    605     emitMiscArithInstruction(MI);
    606     break;
    607   case ARMII::SatFrm:
    608     emitSaturateInstruction(MI);
    609     break;
    610   case ARMII::BrFrm:
    611     emitBranchInstruction(MI);
    612     break;
    613   case ARMII::BrMiscFrm:
    614     emitMiscBranchInstruction(MI);
    615     break;
    616   // VFP instructions.
    617   case ARMII::VFPUnaryFrm:
    618   case ARMII::VFPBinaryFrm:
    619     emitVFPArithInstruction(MI);
    620     break;
    621   case ARMII::VFPConv1Frm:
    622   case ARMII::VFPConv2Frm:
    623   case ARMII::VFPConv3Frm:
    624   case ARMII::VFPConv4Frm:
    625   case ARMII::VFPConv5Frm:
    626     emitVFPConversionInstruction(MI);
    627     break;
    628   case ARMII::VFPLdStFrm:
    629     emitVFPLoadStoreInstruction(MI);
    630     break;
    631   case ARMII::VFPLdStMulFrm:
    632     emitVFPLoadStoreMultipleInstruction(MI);
    633     break;
    634   case ARMII::VFPMiscFrm:
    635     emitMiscInstruction(MI);
    636     break;
    637   // NEON instructions.
    638   case ARMII::NGetLnFrm:
    639   case ARMII::NSetLnFrm:
    640     emitNEONLaneInstruction(MI);
    641     break;
    642   case ARMII::NDupFrm:
    643     emitNEONDupInstruction(MI);
    644     break;
    645   case ARMII::N1RegModImmFrm:
    646     emitNEON1RegModImmInstruction(MI);
    647     break;
    648   case ARMII::N2RegFrm:
    649     emitNEON2RegInstruction(MI);
    650     break;
    651   case ARMII::N3RegFrm:
    652     emitNEON3RegInstruction(MI);
    653     break;
    654   }
    655   MCE.processDebugLoc(MI.getDebugLoc(), false);
    656 }
    657 
    658 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
    659   DEBUG({
    660       errs() << "  ** Constant pool #" << CPI << " @ "
    661              << (void*)MCE.getCurrentPCValue() << " ";
    662       if (const Function *F = dyn_cast<Function>(C))
    663         errs() << F->getName();
    664       else
    665         errs() << *C;
    666       errs() << '\n';
    667     });
    668 
    669   switch (C->getValueID()) {
    670   default: {
    671     llvm_unreachable("Unable to handle this constantpool entry!");
    672     break;
    673   }
    674   case Value::GlobalVariableVal: {
    675     emitGlobalAddress(static_cast<const GlobalValue*>(C),
    676                       ARM::reloc_arm_absolute, isa<Function>(C), false);
    677     emitWordLE(0);
    678     break;
    679   }
    680   case Value::ConstantIntVal: {
    681     const ConstantInt *CI = static_cast<const ConstantInt*>(C);
    682     uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
    683     emitWordLE(Val);
    684     break;
    685   }
    686   case Value::ConstantFPVal: {
    687     const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
    688     if (CFP->getType()->isFloatTy())
    689       emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    690     else if (CFP->getType()->isDoubleTy())
    691       emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    692     else {
    693       llvm_unreachable("Unable to handle this constantpool entry!");
    694     }
    695     break;
    696   }
    697   case Value::ConstantArrayVal: {
    698     const ConstantArray *CA = static_cast<const ConstantArray*>(C);
    699     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    700       emitConstantToMemory(CPI, CA->getOperand(i));
    701     break;
    702   }
    703   }
    704 
    705   return;
    706 }
    707 
    708 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
    709   unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
    710   unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
    711   const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
    712 
    713   // Remember the CONSTPOOL_ENTRY address for later relocation.
    714   JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
    715 
    716   // Emit constpool island entry. In most cases, the actual values will be
    717   // resolved and relocated after code emission.
    718   if (MCPE.isMachineConstantPoolEntry()) {
    719     ARMConstantPoolValue *ACPV =
    720       static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
    721 
    722     DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
    723           << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
    724 
    725     assert(ACPV->isGlobalValue() && "unsupported constant pool value");
    726     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
    727     if (GV) {
    728       Reloc::Model RelocM = TM.getRelocationModel();
    729       emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
    730                         isa<Function>(GV),
    731                         Subtarget->GVIsIndirectSymbol(GV, RelocM),
    732                         (intptr_t)ACPV);
    733     } else  {
    734       const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
    735       emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
    736     }
    737     emitWordLE(0);
    738   } else {
    739     emitConstantToMemory(CPI, MCPE.Val.ConstVal);
    740   }
    741 }
    742 
    743 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
    744   const MachineOperand &MO0 = MI.getOperand(0);
    745   const MachineOperand &MO1 = MI.getOperand(1);
    746 
    747   // Emit the 'movw' instruction.
    748   unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
    749 
    750   unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
    751 
    752   // Set the conditional execution predicate.
    753   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    754 
    755   // Encode Rd.
    756   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    757 
    758   // Encode imm16 as imm4:imm12
    759   Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
    760   Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
    761   emitWordLE(Binary);
    762 
    763   unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
    764   // Emit the 'movt' instruction.
    765   Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
    766 
    767   // Set the conditional execution predicate.
    768   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    769 
    770   // Encode Rd.
    771   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    772 
    773   // Encode imm16 as imm4:imm1, same as movw above.
    774   Binary |= Hi16 & 0xFFF;
    775   Binary |= ((Hi16 >> 12) & 0xF) << 16;
    776   emitWordLE(Binary);
    777 }
    778 
    779 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
    780   const MachineOperand &MO0 = MI.getOperand(0);
    781   const MachineOperand &MO1 = MI.getOperand(1);
    782   assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
    783                                                   "Not a valid so_imm value!");
    784   unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
    785   unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
    786 
    787   // Emit the 'mov' instruction.
    788   unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
    789 
    790   // Set the conditional execution predicate.
    791   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    792 
    793   // Encode Rd.
    794   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    795 
    796   // Encode so_imm.
    797   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    798   Binary |= 1 << ARMII::I_BitShift;
    799   Binary |= getMachineSoImmOpValue(V1);
    800   emitWordLE(Binary);
    801 
    802   // Now the 'orr' instruction.
    803   Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
    804 
    805   // Set the conditional execution predicate.
    806   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    807 
    808   // Encode Rd.
    809   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    810 
    811   // Encode Rn.
    812   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
    813 
    814   // Encode so_imm.
    815   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    816   Binary |= 1 << ARMII::I_BitShift;
    817   Binary |= getMachineSoImmOpValue(V2);
    818   emitWordLE(Binary);
    819 }
    820 
    821 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
    822   // It's basically add r, pc, (LCPI - $+8)
    823   const MCInstrDesc &MCID = MI.getDesc();
    824 
    825   unsigned Binary = 0;
    826 
    827   // Set the conditional execution predicate
    828   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    829 
    830   // Encode S bit if MI modifies CPSR.
    831   Binary |= getAddrModeSBit(MI, MCID);
    832 
    833   // Encode Rd.
    834   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    835 
    836   // Encode Rn which is PC.
    837   Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
    838 
    839   // Encode the displacement which is a so_imm.
    840   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    841   Binary |= 1 << ARMII::I_BitShift;
    842   emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
    843 
    844   emitWordLE(Binary);
    845 }
    846 
    847 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
    848   // It's basically add r, pc, (LJTI - $+8)
    849 
    850   const MCInstrDesc &MCID = MI.getDesc();
    851 
    852   // Emit the 'add' instruction.
    853   unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
    854 
    855   // Set the conditional execution predicate
    856   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    857 
    858   // Encode S bit if MI modifies CPSR.
    859   Binary |= getAddrModeSBit(MI, MCID);
    860 
    861   // Encode Rd.
    862   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    863 
    864   // Encode Rn which is PC.
    865   Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
    866 
    867   // Encode the displacement.
    868   Binary |= 1 << ARMII::I_BitShift;
    869   emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
    870 
    871   emitWordLE(Binary);
    872 }
    873 
    874 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
    875   unsigned Opcode = MI.getDesc().Opcode;
    876 
    877   // Part of binary is determined by TableGn.
    878   unsigned Binary = getBinaryCodeForInstr(MI);
    879 
    880   // Set the conditional execution predicate
    881   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    882 
    883   // Encode S bit if MI modifies CPSR.
    884   if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
    885     Binary |= 1 << ARMII::S_BitShift;
    886 
    887   // Encode register def if there is one.
    888   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    889 
    890   // Encode the shift operation.
    891   switch (Opcode) {
    892   default: break;
    893   case ARM::RRX:
    894     // rrx
    895     Binary |= 0x6 << 4;
    896     break;
    897   case ARM::MOVsrl_flag:
    898     // lsr #1
    899     Binary |= (0x2 << 4) | (1 << 7);
    900     break;
    901   case ARM::MOVsra_flag:
    902     // asr #1
    903     Binary |= (0x4 << 4) | (1 << 7);
    904     break;
    905   }
    906 
    907   // Encode register Rm.
    908   Binary |= getMachineOpValue(MI, 1);
    909 
    910   emitWordLE(Binary);
    911 }
    912 
    913 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
    914   DEBUG(errs() << "  ** LPC" << LabelID << " @ "
    915         << (void*)MCE.getCurrentPCValue() << '\n');
    916   JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
    917 }
    918 
    919 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
    920   unsigned Opcode = MI.getDesc().Opcode;
    921   switch (Opcode) {
    922   default:
    923     llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
    924   case ARM::B:
    925     emitBranchInstruction(MI);
    926     break;
    927   case ARM::BR_JTr:
    928   case ARM::BR_JTm:
    929   case ARM::BR_JTadd:
    930     emitMiscBranchInstruction(MI);
    931     break;
    932   case ARM::BX_CALL:
    933   case ARM::BMOVPCRX_CALL: {
    934     // First emit mov lr, pc
    935     unsigned Binary = 0x01a0e00f;
    936     Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    937     emitWordLE(Binary);
    938 
    939     // and then emit the branch.
    940     emitMiscBranchInstruction(MI);
    941     break;
    942   }
    943   case TargetOpcode::INLINEASM: {
    944     // We allow inline assembler nodes with empty bodies - they can
    945     // implicitly define registers, which is ok for JIT.
    946     if (MI.getOperand(0).getSymbolName()[0]) {
    947       report_fatal_error("JIT does not support inline asm!");
    948     }
    949     break;
    950   }
    951   case TargetOpcode::PROLOG_LABEL:
    952   case TargetOpcode::EH_LABEL:
    953     MCE.emitLabel(MI.getOperand(0).getMCSymbol());
    954     break;
    955   case TargetOpcode::IMPLICIT_DEF:
    956   case TargetOpcode::KILL:
    957     // Do nothing.
    958     break;
    959   case ARM::CONSTPOOL_ENTRY:
    960     emitConstPoolInstruction(MI);
    961     break;
    962   case ARM::LDMIA_RET:
    963     emitLoadStoreMultipleInstruction(MI);
    964     break;
    965   case ARM::PICADD: {
    966     // Remember of the address of the PC label for relocation later.
    967     addPCLabel(MI.getOperand(2).getImm());
    968     // PICADD is just an add instruction that implicitly read pc.
    969     emitDataProcessingInstruction(MI, 0, ARM::PC);
    970     break;
    971   }
    972   case ARM::PICLDR:
    973   case ARM::PICLDRB:
    974   case ARM::PICSTR:
    975   case ARM::PICSTRB: {
    976     // Remember of the address of the PC label for relocation later.
    977     addPCLabel(MI.getOperand(2).getImm());
    978     // These are just load / store instructions that implicitly read pc.
    979     emitLoadStoreInstruction(MI, 0, ARM::PC);
    980     break;
    981   }
    982   case ARM::PICLDRH:
    983   case ARM::PICLDRSH:
    984   case ARM::PICLDRSB:
    985   case ARM::PICSTRH: {
    986     // Remember of the address of the PC label for relocation later.
    987     addPCLabel(MI.getOperand(2).getImm());
    988     // These are just load / store instructions that implicitly read pc.
    989     emitMiscLoadStoreInstruction(MI, ARM::PC);
    990     break;
    991   }
    992 
    993   case ARM::MOVi32imm:
    994     // Two instructions to materialize a constant.
    995     if (Subtarget->hasV6T2Ops())
    996       emitMOVi32immInstruction(MI);
    997     else
    998       emitMOVi2piecesInstruction(MI);
    999     break;
   1000   case ARM::LEApcrel:
   1001     // Materialize constantpool index address.
   1002     emitLEApcrelInstruction(MI);
   1003     break;
   1004   case ARM::LEApcrelJT:
   1005     // Materialize jumptable address.
   1006     emitLEApcrelJTInstruction(MI);
   1007     break;
   1008   case ARM::RRX:
   1009   case ARM::MOVsrl_flag:
   1010   case ARM::MOVsra_flag:
   1011     emitPseudoMoveInstruction(MI);
   1012     break;
   1013   }
   1014 }
   1015 
   1016 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
   1017                                                 const MCInstrDesc &MCID,
   1018                                                 const MachineOperand &MO,
   1019                                                 unsigned OpIdx) {
   1020   unsigned Binary = getMachineOpValue(MI, MO);
   1021 
   1022   const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
   1023   const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
   1024   ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
   1025 
   1026   // Encode the shift opcode.
   1027   unsigned SBits = 0;
   1028   unsigned Rs = MO1.getReg();
   1029   if (Rs) {
   1030     // Set shift operand (bit[7:4]).
   1031     // LSL - 0001
   1032     // LSR - 0011
   1033     // ASR - 0101
   1034     // ROR - 0111
   1035     // RRX - 0110 and bit[11:8] clear.
   1036     switch (SOpc) {
   1037     default: llvm_unreachable("Unknown shift opc!");
   1038     case ARM_AM::lsl: SBits = 0x1; break;
   1039     case ARM_AM::lsr: SBits = 0x3; break;
   1040     case ARM_AM::asr: SBits = 0x5; break;
   1041     case ARM_AM::ror: SBits = 0x7; break;
   1042     case ARM_AM::rrx: SBits = 0x6; break;
   1043     }
   1044   } else {
   1045     // Set shift operand (bit[6:4]).
   1046     // LSL - 000
   1047     // LSR - 010
   1048     // ASR - 100
   1049     // ROR - 110
   1050     switch (SOpc) {
   1051     default: llvm_unreachable("Unknown shift opc!");
   1052     case ARM_AM::lsl: SBits = 0x0; break;
   1053     case ARM_AM::lsr: SBits = 0x2; break;
   1054     case ARM_AM::asr: SBits = 0x4; break;
   1055     case ARM_AM::ror: SBits = 0x6; break;
   1056     }
   1057   }
   1058   Binary |= SBits << 4;
   1059   if (SOpc == ARM_AM::rrx)
   1060     return Binary;
   1061 
   1062   // Encode the shift operation Rs or shift_imm (except rrx).
   1063   if (Rs) {
   1064     // Encode Rs bit[11:8].
   1065     assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
   1066     return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
   1067   }
   1068 
   1069   // Encode shift_imm bit[11:7].
   1070   return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
   1071 }
   1072 
   1073 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
   1074   int SoImmVal = ARM_AM::getSOImmVal(SoImm);
   1075   assert(SoImmVal != -1 && "Not a valid so_imm value!");
   1076 
   1077   // Encode rotate_imm.
   1078   unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
   1079     << ARMII::SoRotImmShift;
   1080 
   1081   // Encode immed_8.
   1082   Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
   1083   return Binary;
   1084 }
   1085 
   1086 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
   1087                                          const MCInstrDesc &MCID) const {
   1088   for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
   1089     const MachineOperand &MO = MI.getOperand(i-1);
   1090     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
   1091       return 1 << ARMII::S_BitShift;
   1092   }
   1093   return 0;
   1094 }
   1095 
   1096 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
   1097                                                    unsigned ImplicitRd,
   1098                                                    unsigned ImplicitRn) {
   1099   const MCInstrDesc &MCID = MI.getDesc();
   1100 
   1101   // Part of binary is determined by TableGn.
   1102   unsigned Binary = getBinaryCodeForInstr(MI);
   1103 
   1104   if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
   1105       emitWordLE(Binary);
   1106       return;
   1107   }
   1108 
   1109   // Set the conditional execution predicate
   1110   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1111 
   1112   // Encode S bit if MI modifies CPSR.
   1113   Binary |= getAddrModeSBit(MI, MCID);
   1114 
   1115   // Encode register def if there is one.
   1116   unsigned NumDefs = MCID.getNumDefs();
   1117   unsigned OpIdx = 0;
   1118   if (NumDefs)
   1119     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1120   else if (ImplicitRd)
   1121     // Special handling for implicit use (e.g. PC).
   1122     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
   1123 
   1124   if (MCID.Opcode == ARM::MOVi16) {
   1125       // Get immediate from MI.
   1126       unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
   1127                       ARM::reloc_arm_movw);
   1128       // Encode imm which is the same as in emitMOVi32immInstruction().
   1129       Binary |= Lo16 & 0xFFF;
   1130       Binary |= ((Lo16 >> 12) & 0xF) << 16;
   1131       emitWordLE(Binary);
   1132       return;
   1133   } else if(MCID.Opcode == ARM::MOVTi16) {
   1134       unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
   1135                        ARM::reloc_arm_movt) >> 16);
   1136       Binary |= Hi16 & 0xFFF;
   1137       Binary |= ((Hi16 >> 12) & 0xF) << 16;
   1138       emitWordLE(Binary);
   1139       return;
   1140   } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
   1141       uint32_t v = ~MI.getOperand(2).getImm();
   1142       int32_t lsb = countTrailingZeros(v);
   1143       int32_t msb = (32 - countLeadingZeros(v)) - 1;
   1144       // Instr{20-16} = msb, Instr{11-7} = lsb
   1145       Binary |= (msb & 0x1F) << 16;
   1146       Binary |= (lsb & 0x1F) << 7;
   1147       emitWordLE(Binary);
   1148       return;
   1149   } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
   1150       // Encode Rn in Instr{0-3}
   1151       Binary |= getMachineOpValue(MI, OpIdx++);
   1152 
   1153       uint32_t lsb = MI.getOperand(OpIdx++).getImm();
   1154       uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
   1155 
   1156       // Instr{20-16} = widthm1, Instr{11-7} = lsb
   1157       Binary |= (widthm1 & 0x1F) << 16;
   1158       Binary |= (lsb & 0x1F) << 7;
   1159       emitWordLE(Binary);
   1160       return;
   1161   }
   1162 
   1163   // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
   1164   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1165     ++OpIdx;
   1166 
   1167   // Encode first non-shifter register operand if there is one.
   1168   bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
   1169   if (!isUnary) {
   1170     if (ImplicitRn)
   1171       // Special handling for implicit use (e.g. PC).
   1172       Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1173     else {
   1174       Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
   1175       ++OpIdx;
   1176     }
   1177   }
   1178 
   1179   // Encode shifter operand.
   1180   const MachineOperand &MO = MI.getOperand(OpIdx);
   1181   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
   1182     // Encode SoReg.
   1183     emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
   1184     return;
   1185   }
   1186 
   1187   if (MO.isReg()) {
   1188     // Encode register Rm.
   1189     emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
   1190     return;
   1191   }
   1192 
   1193   // Encode so_imm.
   1194   Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
   1195 
   1196   emitWordLE(Binary);
   1197 }
   1198 
   1199 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
   1200                                               unsigned ImplicitRd,
   1201                                               unsigned ImplicitRn) {
   1202   const MCInstrDesc &MCID = MI.getDesc();
   1203   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1204   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1205 
   1206   // Part of binary is determined by TableGn.
   1207   unsigned Binary = getBinaryCodeForInstr(MI);
   1208 
   1209   // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
   1210   if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
   1211       MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
   1212       MI.getOpcode() == ARM::STRBi12) {
   1213     emitWordLE(Binary);
   1214     return;
   1215   }
   1216 
   1217   if (MI.getOpcode() == ARM::BR_JTm)
   1218     Binary = 0x710F000;
   1219   else if (MI.getOpcode() == ARM::BR_JTr)
   1220     Binary = 0x1A0F000;
   1221 
   1222   // Set the conditional execution predicate
   1223   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1224 
   1225   unsigned OpIdx = 0;
   1226 
   1227   // Operand 0 of a pre- and post-indexed store is the address base
   1228   // writeback. Skip it.
   1229   bool Skipped = false;
   1230   if (IsPrePost && Form == ARMII::StFrm) {
   1231     ++OpIdx;
   1232     Skipped = true;
   1233   }
   1234 
   1235   // Set first operand
   1236   if (ImplicitRd)
   1237     // Special handling for implicit use (e.g. PC).
   1238     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
   1239   else
   1240     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1241 
   1242   // Set second operand
   1243   if (ImplicitRn)
   1244     // Special handling for implicit use (e.g. PC).
   1245     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1246   else
   1247     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1248 
   1249   // If this is a two-address operand, skip it. e.g. LDR_PRE.
   1250   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1251     ++OpIdx;
   1252 
   1253   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1254   unsigned AM2Opc = (ImplicitRn == ARM::PC)
   1255     ? 0 : MI.getOperand(OpIdx+1).getImm();
   1256 
   1257   // Set bit U(23) according to sign of immed value (positive or negative).
   1258   Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
   1259              ARMII::U_BitShift);
   1260   if (!MO2.getReg()) { // is immediate
   1261     if (ARM_AM::getAM2Offset(AM2Opc))
   1262       // Set the value of offset_12 field
   1263       Binary |= ARM_AM::getAM2Offset(AM2Opc);
   1264     emitWordLE(Binary);
   1265     return;
   1266   }
   1267 
   1268   // Set bit I(25), because this is not in immediate encoding.
   1269   Binary |= 1 << ARMII::I_BitShift;
   1270   assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
   1271   // Set bit[3:0] to the corresponding Rm register
   1272   Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
   1273 
   1274   // If this instr is in scaled register offset/index instruction, set
   1275   // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
   1276   if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
   1277     Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
   1278     Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
   1279   }
   1280 
   1281   emitWordLE(Binary);
   1282 }
   1283 
   1284 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
   1285                                                   unsigned ImplicitRn) {
   1286   const MCInstrDesc &MCID = MI.getDesc();
   1287   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1288   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1289 
   1290   // Part of binary is determined by TableGn.
   1291   unsigned Binary = getBinaryCodeForInstr(MI);
   1292 
   1293   // Set the conditional execution predicate
   1294   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1295 
   1296   unsigned OpIdx = 0;
   1297 
   1298   // Operand 0 of a pre- and post-indexed store is the address base
   1299   // writeback. Skip it.
   1300   bool Skipped = false;
   1301   if (IsPrePost && Form == ARMII::StMiscFrm) {
   1302     ++OpIdx;
   1303     Skipped = true;
   1304   }
   1305 
   1306   // Set first operand
   1307   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1308 
   1309   // Skip LDRD and STRD's second operand.
   1310   if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
   1311     ++OpIdx;
   1312 
   1313   // Set second operand
   1314   if (ImplicitRn)
   1315     // Special handling for implicit use (e.g. PC).
   1316     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1317   else
   1318     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1319 
   1320   // If this is a two-address operand, skip it. e.g. LDRH_POST.
   1321   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1322     ++OpIdx;
   1323 
   1324   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1325   unsigned AM3Opc = (ImplicitRn == ARM::PC)
   1326     ? 0 : MI.getOperand(OpIdx+1).getImm();
   1327 
   1328   // Set bit U(23) according to sign of immed value (positive or negative)
   1329   Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
   1330              ARMII::U_BitShift);
   1331 
   1332   // If this instr is in register offset/index encoding, set bit[3:0]
   1333   // to the corresponding Rm register.
   1334   if (MO2.getReg()) {
   1335     Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
   1336     emitWordLE(Binary);
   1337     return;
   1338   }
   1339 
   1340   // This instr is in immediate offset/index encoding, set bit 22 to 1.
   1341   Binary |= 1 << ARMII::AM3_I_BitShift;
   1342   if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
   1343     // Set operands
   1344     Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
   1345     Binary |= (ImmOffs & 0xF);                      // immedL
   1346   }
   1347 
   1348   emitWordLE(Binary);
   1349 }
   1350 
   1351 static unsigned getAddrModeUPBits(unsigned Mode) {
   1352   unsigned Binary = 0;
   1353 
   1354   // Set addressing mode by modifying bits U(23) and P(24)
   1355   // IA - Increment after  - bit U = 1 and bit P = 0
   1356   // IB - Increment before - bit U = 1 and bit P = 1
   1357   // DA - Decrement after  - bit U = 0 and bit P = 0
   1358   // DB - Decrement before - bit U = 0 and bit P = 1
   1359   switch (Mode) {
   1360   default: llvm_unreachable("Unknown addressing sub-mode!");
   1361   case ARM_AM::da:                                     break;
   1362   case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
   1363   case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
   1364   case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
   1365   }
   1366 
   1367   return Binary;
   1368 }
   1369 
   1370 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
   1371   const MCInstrDesc &MCID = MI.getDesc();
   1372   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1373 
   1374   // Part of binary is determined by TableGn.
   1375   unsigned Binary = getBinaryCodeForInstr(MI);
   1376 
   1377   if (MCID.getOpcode() == ARM::LDMIA_RET) {
   1378     IsUpdating = true;
   1379     Binary |= 0x8B00000;
   1380   }
   1381 
   1382   // Set the conditional execution predicate
   1383   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1384 
   1385   // Skip operand 0 of an instruction with base register update.
   1386   unsigned OpIdx = 0;
   1387   if (IsUpdating)
   1388     ++OpIdx;
   1389 
   1390   // Set base address operand
   1391   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1392 
   1393   // Set addressing mode by modifying bits U(23) and P(24)
   1394   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
   1395   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
   1396 
   1397   // Set bit W(21)
   1398   if (IsUpdating)
   1399     Binary |= 0x1 << ARMII::W_BitShift;
   1400 
   1401   // Set registers
   1402   for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
   1403     const MachineOperand &MO = MI.getOperand(i);
   1404     if (!MO.isReg() || MO.isImplicit())
   1405       break;
   1406     unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
   1407     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
   1408            RegNum < 16);
   1409     Binary |= 0x1 << RegNum;
   1410   }
   1411 
   1412   emitWordLE(Binary);
   1413 }
   1414 
   1415 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
   1416   const MCInstrDesc &MCID = MI.getDesc();
   1417 
   1418   // Part of binary is determined by TableGn.
   1419   unsigned Binary = getBinaryCodeForInstr(MI);
   1420 
   1421   // Set the conditional execution predicate
   1422   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1423 
   1424   // Encode S bit if MI modifies CPSR.
   1425   Binary |= getAddrModeSBit(MI, MCID);
   1426 
   1427   // 32x32->64bit operations have two destination registers. The number
   1428   // of register definitions will tell us if that's what we're dealing with.
   1429   unsigned OpIdx = 0;
   1430   if (MCID.getNumDefs() == 2)
   1431     Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
   1432 
   1433   // Encode Rd
   1434   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
   1435 
   1436   // Encode Rm
   1437   Binary |= getMachineOpValue(MI, OpIdx++);
   1438 
   1439   // Encode Rs
   1440   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
   1441 
   1442   // Many multiple instructions (e.g. MLA) have three src operands. Encode
   1443   // it as Rn (for multiply, that's in the same offset as RdLo.
   1444   if (MCID.getNumOperands() > OpIdx &&
   1445       !MCID.OpInfo[OpIdx].isPredicate() &&
   1446       !MCID.OpInfo[OpIdx].isOptionalDef())
   1447     Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
   1448 
   1449   emitWordLE(Binary);
   1450 }
   1451 
   1452 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
   1453   const MCInstrDesc &MCID = MI.getDesc();
   1454 
   1455   // Part of binary is determined by TableGn.
   1456   unsigned Binary = getBinaryCodeForInstr(MI);
   1457 
   1458   // Set the conditional execution predicate
   1459   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1460 
   1461   unsigned OpIdx = 0;
   1462 
   1463   // Encode Rd
   1464   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1465 
   1466   const MachineOperand &MO1 = MI.getOperand(OpIdx++);
   1467   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1468   if (MO2.isReg()) {
   1469     // Two register operand form.
   1470     // Encode Rn.
   1471     Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
   1472 
   1473     // Encode Rm.
   1474     Binary |= getMachineOpValue(MI, MO2);
   1475     ++OpIdx;
   1476   } else {
   1477     Binary |= getMachineOpValue(MI, MO1);
   1478   }
   1479 
   1480   // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
   1481   if (MI.getOperand(OpIdx).isImm() &&
   1482       !MCID.OpInfo[OpIdx].isPredicate() &&
   1483       !MCID.OpInfo[OpIdx].isOptionalDef())
   1484     Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
   1485 
   1486   emitWordLE(Binary);
   1487 }
   1488 
   1489 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
   1490   const MCInstrDesc &MCID = MI.getDesc();
   1491 
   1492   // Part of binary is determined by TableGn.
   1493   unsigned Binary = getBinaryCodeForInstr(MI);
   1494 
   1495   // Set the conditional execution predicate
   1496   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1497 
   1498   // PKH instructions are finished at this point
   1499   if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
   1500     emitWordLE(Binary);
   1501     return;
   1502   }
   1503 
   1504   unsigned OpIdx = 0;
   1505 
   1506   // Encode Rd
   1507   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1508 
   1509   const MachineOperand &MO = MI.getOperand(OpIdx++);
   1510   if (OpIdx == MCID.getNumOperands() ||
   1511       MCID.OpInfo[OpIdx].isPredicate() ||
   1512       MCID.OpInfo[OpIdx].isOptionalDef()) {
   1513     // Encode Rm and it's done.
   1514     Binary |= getMachineOpValue(MI, MO);
   1515     emitWordLE(Binary);
   1516     return;
   1517   }
   1518 
   1519   // Encode Rn.
   1520   Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
   1521 
   1522   // Encode Rm.
   1523   Binary |= getMachineOpValue(MI, OpIdx++);
   1524 
   1525   // Encode shift_imm.
   1526   unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
   1527   if (MCID.Opcode == ARM::PKHTB) {
   1528     assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
   1529     if (ShiftAmt == 32)
   1530       ShiftAmt = 0;
   1531   }
   1532   assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
   1533   Binary |= ShiftAmt << ARMII::ShiftShift;
   1534 
   1535   emitWordLE(Binary);
   1536 }
   1537 
   1538 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
   1539   const MCInstrDesc &MCID = MI.getDesc();
   1540 
   1541   // Part of binary is determined by TableGen.
   1542   unsigned Binary = getBinaryCodeForInstr(MI);
   1543 
   1544   // Set the conditional execution predicate
   1545   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1546 
   1547   // Encode Rd
   1548   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
   1549 
   1550   // Encode saturate bit position.
   1551   unsigned Pos = MI.getOperand(1).getImm();
   1552   if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
   1553     Pos -= 1;
   1554   assert((Pos < 16 || (Pos < 32 &&
   1555                        MCID.Opcode != ARM::SSAT16 &&
   1556                        MCID.Opcode != ARM::USAT16)) &&
   1557          "saturate bit position out of range");
   1558   Binary |= Pos << 16;
   1559 
   1560   // Encode Rm
   1561   Binary |= getMachineOpValue(MI, 2);
   1562 
   1563   // Encode shift_imm.
   1564   if (MCID.getNumOperands() == 4) {
   1565     unsigned ShiftOp = MI.getOperand(3).getImm();
   1566     ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
   1567     if (Opc == ARM_AM::asr)
   1568       Binary |= (1 << 6);
   1569     unsigned ShiftAmt = MI.getOperand(3).getImm();
   1570     if (ShiftAmt == 32 && Opc == ARM_AM::asr)
   1571       ShiftAmt = 0;
   1572     assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
   1573     Binary |= ShiftAmt << ARMII::ShiftShift;
   1574   }
   1575 
   1576   emitWordLE(Binary);
   1577 }
   1578 
   1579 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
   1580   const MCInstrDesc &MCID = MI.getDesc();
   1581 
   1582   if (MCID.Opcode == ARM::TPsoft) {
   1583     llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
   1584   }
   1585 
   1586   // Part of binary is determined by TableGn.
   1587   unsigned Binary = getBinaryCodeForInstr(MI);
   1588 
   1589   if (MCID.Opcode == ARM::B) {
   1590     Binary = 0xEA000000;
   1591   }
   1592 
   1593   // Set the conditional execution predicate
   1594   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1595 
   1596   // Set signed_immed_24 field
   1597   Binary |= getMachineOpValue(MI, 0);
   1598 
   1599   emitWordLE(Binary);
   1600 }
   1601 
   1602 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
   1603   // Remember the base address of the inline jump table.
   1604   uintptr_t JTBase = MCE.getCurrentPCValue();
   1605   JTI->addJumpTableBaseAddr(JTIndex, JTBase);
   1606   DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
   1607                << '\n');
   1608 
   1609   // Now emit the jump table entries.
   1610   const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
   1611   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   1612     if (IsPIC)
   1613       // DestBB address - JT base.
   1614       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
   1615     else
   1616       // Absolute DestBB address.
   1617       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
   1618     emitWordLE(0);
   1619   }
   1620 }
   1621 
   1622 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
   1623   const MCInstrDesc &MCID = MI.getDesc();
   1624 
   1625   // Handle jump tables.
   1626   if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
   1627     // First emit a ldr pc, [] instruction.
   1628     emitDataProcessingInstruction(MI, ARM::PC);
   1629 
   1630     // Then emit the inline jump table.
   1631     unsigned JTIndex =
   1632       (MCID.Opcode == ARM::BR_JTr)
   1633       ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
   1634     emitInlineJumpTable(JTIndex);
   1635     return;
   1636   } else if (MCID.Opcode == ARM::BR_JTm) {
   1637     // First emit a ldr pc, [] instruction.
   1638     emitLoadStoreInstruction(MI, ARM::PC);
   1639 
   1640     // Then emit the inline jump table.
   1641     emitInlineJumpTable(MI.getOperand(3).getIndex());
   1642     return;
   1643   }
   1644 
   1645   // Part of binary is determined by TableGn.
   1646   unsigned Binary = getBinaryCodeForInstr(MI);
   1647 
   1648   // Set the conditional execution predicate
   1649   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1650 
   1651   if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
   1652     // The return register is LR.
   1653     Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
   1654   else
   1655     // otherwise, set the return register
   1656     Binary |= getMachineOpValue(MI, 0);
   1657 
   1658   emitWordLE(Binary);
   1659 }
   1660 
   1661 unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
   1662                                      unsigned OpIdx) const {
   1663   unsigned RegD = MI.getOperand(OpIdx).getReg();
   1664   unsigned Binary = 0;
   1665   bool isSPVFP = ARM::SPRRegClass.contains(RegD);
   1666   RegD = II->getRegisterInfo().getEncodingValue(RegD);
   1667   if (!isSPVFP) {
   1668     Binary |=  (RegD & 0x0F)       << ARMII::RegRdShift;
   1669     Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
   1670   } else {
   1671     Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
   1672     Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
   1673   }
   1674   return Binary;
   1675 }
   1676 
   1677 unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
   1678                                      unsigned OpIdx) const {
   1679   unsigned RegN = MI.getOperand(OpIdx).getReg();
   1680   unsigned Binary = 0;
   1681   bool isSPVFP = ARM::SPRRegClass.contains(RegN);
   1682   RegN = II->getRegisterInfo().getEncodingValue(RegN);
   1683   if (!isSPVFP) {
   1684     Binary |=  (RegN & 0x0F)       << ARMII::RegRnShift;
   1685     Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
   1686   } else {
   1687     Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
   1688     Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
   1689   }
   1690   return Binary;
   1691 }
   1692 
   1693 unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
   1694                                      unsigned OpIdx) const {
   1695   unsigned RegM = MI.getOperand(OpIdx).getReg();
   1696   unsigned Binary = 0;
   1697   bool isSPVFP = ARM::SPRRegClass.contains(RegM);
   1698   RegM = II->getRegisterInfo().getEncodingValue(RegM);
   1699   if (!isSPVFP) {
   1700     Binary |=  (RegM & 0x0F);
   1701     Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
   1702   } else {
   1703     Binary |= ((RegM & 0x1E) >> 1);
   1704     Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
   1705   }
   1706   return Binary;
   1707 }
   1708 
   1709 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
   1710   const MCInstrDesc &MCID = MI.getDesc();
   1711 
   1712   // Part of binary is determined by TableGn.
   1713   unsigned Binary = getBinaryCodeForInstr(MI);
   1714 
   1715   // Set the conditional execution predicate
   1716   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1717 
   1718   unsigned OpIdx = 0;
   1719 
   1720   // Encode Dd / Sd.
   1721   Binary |= encodeVFPRd(MI, OpIdx++);
   1722 
   1723   // If this is a two-address operand, skip it, e.g. FMACD.
   1724   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1725     ++OpIdx;
   1726 
   1727   // Encode Dn / Sn.
   1728   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
   1729     Binary |= encodeVFPRn(MI, OpIdx++);
   1730 
   1731   if (OpIdx == MCID.getNumOperands() ||
   1732       MCID.OpInfo[OpIdx].isPredicate() ||
   1733       MCID.OpInfo[OpIdx].isOptionalDef()) {
   1734     // FCMPEZD etc. has only one operand.
   1735     emitWordLE(Binary);
   1736     return;
   1737   }
   1738 
   1739   // Encode Dm / Sm.
   1740   Binary |= encodeVFPRm(MI, OpIdx);
   1741 
   1742   emitWordLE(Binary);
   1743 }
   1744 
   1745 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
   1746   const MCInstrDesc &MCID = MI.getDesc();
   1747   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1748 
   1749   // Part of binary is determined by TableGn.
   1750   unsigned Binary = getBinaryCodeForInstr(MI);
   1751 
   1752   // Set the conditional execution predicate
   1753   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1754 
   1755   switch (Form) {
   1756   default: break;
   1757   case ARMII::VFPConv1Frm:
   1758   case ARMII::VFPConv2Frm:
   1759   case ARMII::VFPConv3Frm:
   1760     // Encode Dd / Sd.
   1761     Binary |= encodeVFPRd(MI, 0);
   1762     break;
   1763   case ARMII::VFPConv4Frm:
   1764     // Encode Dn / Sn.
   1765     Binary |= encodeVFPRn(MI, 0);
   1766     break;
   1767   case ARMII::VFPConv5Frm:
   1768     // Encode Dm / Sm.
   1769     Binary |= encodeVFPRm(MI, 0);
   1770     break;
   1771   }
   1772 
   1773   switch (Form) {
   1774   default: break;
   1775   case ARMII::VFPConv1Frm:
   1776     // Encode Dm / Sm.
   1777     Binary |= encodeVFPRm(MI, 1);
   1778     break;
   1779   case ARMII::VFPConv2Frm:
   1780   case ARMII::VFPConv3Frm:
   1781     // Encode Dn / Sn.
   1782     Binary |= encodeVFPRn(MI, 1);
   1783     break;
   1784   case ARMII::VFPConv4Frm:
   1785   case ARMII::VFPConv5Frm:
   1786     // Encode Dd / Sd.
   1787     Binary |= encodeVFPRd(MI, 1);
   1788     break;
   1789   }
   1790 
   1791   if (Form == ARMII::VFPConv5Frm)
   1792     // Encode Dn / Sn.
   1793     Binary |= encodeVFPRn(MI, 2);
   1794   else if (Form == ARMII::VFPConv3Frm)
   1795     // Encode Dm / Sm.
   1796     Binary |= encodeVFPRm(MI, 2);
   1797 
   1798   emitWordLE(Binary);
   1799 }
   1800 
   1801 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
   1802   // Part of binary is determined by TableGn.
   1803   unsigned Binary = getBinaryCodeForInstr(MI);
   1804 
   1805   // Set the conditional execution predicate
   1806   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1807 
   1808   if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
   1809       MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
   1810     emitWordLE(Binary);
   1811     return;
   1812   }
   1813 
   1814   unsigned OpIdx = 0;
   1815 
   1816   // Encode Dd / Sd.
   1817   Binary |= encodeVFPRd(MI, OpIdx++);
   1818 
   1819   // Encode address base.
   1820   const MachineOperand &Base = MI.getOperand(OpIdx++);
   1821   Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
   1822 
   1823   // If there is a non-zero immediate offset, encode it.
   1824   if (Base.isReg()) {
   1825     const MachineOperand &Offset = MI.getOperand(OpIdx);
   1826     if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
   1827       if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
   1828         Binary |= 1 << ARMII::U_BitShift;
   1829       Binary |= ImmOffs;
   1830       emitWordLE(Binary);
   1831       return;
   1832     }
   1833   }
   1834 
   1835   // If immediate offset is omitted, default to +0.
   1836   Binary |= 1 << ARMII::U_BitShift;
   1837 
   1838   emitWordLE(Binary);
   1839 }
   1840 
   1841 void
   1842 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
   1843   const MCInstrDesc &MCID = MI.getDesc();
   1844   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1845 
   1846   // Part of binary is determined by TableGn.
   1847   unsigned Binary = getBinaryCodeForInstr(MI);
   1848 
   1849   // Set the conditional execution predicate
   1850   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1851 
   1852   // Skip operand 0 of an instruction with base register update.
   1853   unsigned OpIdx = 0;
   1854   if (IsUpdating)
   1855     ++OpIdx;
   1856 
   1857   // Set base address operand
   1858   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1859 
   1860   // Set addressing mode by modifying bits U(23) and P(24)
   1861   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
   1862   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
   1863 
   1864   // Set bit W(21)
   1865   if (IsUpdating)
   1866     Binary |= 0x1 << ARMII::W_BitShift;
   1867 
   1868   // First register is encoded in Dd.
   1869   Binary |= encodeVFPRd(MI, OpIdx+2);
   1870 
   1871   // Count the number of registers.
   1872   unsigned NumRegs = 1;
   1873   for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
   1874     const MachineOperand &MO = MI.getOperand(i);
   1875     if (!MO.isReg() || MO.isImplicit())
   1876       break;
   1877     ++NumRegs;
   1878   }
   1879   // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
   1880   // Otherwise, it will be 0, in the case of 32-bit registers.
   1881   if(Binary & 0x100)
   1882     Binary |= NumRegs * 2;
   1883   else
   1884     Binary |= NumRegs;
   1885 
   1886   emitWordLE(Binary);
   1887 }
   1888 
   1889 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
   1890   unsigned Opcode = MI.getDesc().Opcode;
   1891   // Part of binary is determined by TableGn.
   1892   unsigned Binary = getBinaryCodeForInstr(MI);
   1893 
   1894   if (Opcode == ARM::FCONSTS) {
   1895     unsigned Imm = getMachineOpValue(MI, 1);
   1896     Binary &= ~(0x780000 >> 19);
   1897     Binary |= (Imm & 0x780000) >> 19;
   1898     Binary &= ~(0x3800000 >> 7);
   1899     Binary |= (Imm & 0x3800000) >> 7;
   1900     Binary = VFPThumb2PostEncoder(MI, Binary);
   1901   }
   1902 
   1903   // Set the conditional execution predicate
   1904   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1905 
   1906   emitWordLE(Binary);
   1907 }
   1908 
   1909 unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
   1910                                       unsigned OpIdx) const {
   1911   unsigned RegD = MI.getOperand(OpIdx).getReg();
   1912   unsigned Binary = 0;
   1913   RegD = II->getRegisterInfo().getEncodingValue(RegD);
   1914   Binary |= (RegD & 0xf) << ARMII::RegRdShift;
   1915   Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
   1916   return Binary;
   1917 }
   1918 
   1919 unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
   1920                                       unsigned OpIdx) const {
   1921   unsigned RegN = MI.getOperand(OpIdx).getReg();
   1922   unsigned Binary = 0;
   1923   RegN = II->getRegisterInfo().getEncodingValue(RegN);
   1924   Binary |= (RegN & 0xf) << ARMII::RegRnShift;
   1925   Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
   1926   return Binary;
   1927 }
   1928 
   1929 unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
   1930                                       unsigned OpIdx) const {
   1931   unsigned RegM = MI.getOperand(OpIdx).getReg();
   1932   unsigned Binary = 0;
   1933   RegM = II->getRegisterInfo().getEncodingValue(RegM);
   1934   Binary |= (RegM & 0xf);
   1935   Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
   1936   return Binary;
   1937 }
   1938 
   1939 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
   1940 /// data-processing instruction to the corresponding Thumb encoding.
   1941 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
   1942   assert((Binary & 0xfe000000) == 0xf2000000 &&
   1943          "not an ARM NEON data-processing instruction");
   1944   unsigned UBit = (Binary >> 24) & 1;
   1945   return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
   1946 }
   1947 
   1948 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
   1949   unsigned Binary = getBinaryCodeForInstr(MI);
   1950 
   1951   unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
   1952   const MCInstrDesc &MCID = MI.getDesc();
   1953   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
   1954     RegTOpIdx = 0;
   1955     RegNOpIdx = 1;
   1956     LnOpIdx = 2;
   1957   } else { // ARMII::NSetLnFrm
   1958     RegTOpIdx = 2;
   1959     RegNOpIdx = 0;
   1960     LnOpIdx = 3;
   1961   }
   1962 
   1963   // Set the conditional execution predicate
   1964   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
   1965 
   1966   unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
   1967   RegT = II->getRegisterInfo().getEncodingValue(RegT);
   1968   Binary |= (RegT << ARMII::RegRdShift);
   1969   Binary |= encodeNEONRn(MI, RegNOpIdx);
   1970 
   1971   unsigned LaneShift;
   1972   if ((Binary & (1 << 22)) != 0)
   1973     LaneShift = 0; // 8-bit elements
   1974   else if ((Binary & (1 << 5)) != 0)
   1975     LaneShift = 1; // 16-bit elements
   1976   else
   1977     LaneShift = 2; // 32-bit elements
   1978 
   1979   unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
   1980   unsigned Opc1 = Lane >> 2;
   1981   unsigned Opc2 = Lane & 3;
   1982   assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
   1983   Binary |= (Opc1 << 21);
   1984   Binary |= (Opc2 << 5);
   1985 
   1986   emitWordLE(Binary);
   1987 }
   1988 
   1989 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
   1990   unsigned Binary = getBinaryCodeForInstr(MI);
   1991 
   1992   // Set the conditional execution predicate
   1993   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
   1994 
   1995   unsigned RegT = MI.getOperand(1).getReg();
   1996   RegT = II->getRegisterInfo().getEncodingValue(RegT);
   1997   Binary |= (RegT << ARMII::RegRdShift);
   1998   Binary |= encodeNEONRn(MI, 0);
   1999   emitWordLE(Binary);
   2000 }
   2001 
   2002 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
   2003   unsigned Binary = getBinaryCodeForInstr(MI);
   2004   // Destination register is encoded in Dd.
   2005   Binary |= encodeNEONRd(MI, 0);
   2006   // Immediate fields: Op, Cmode, I, Imm3, Imm4
   2007   unsigned Imm = MI.getOperand(1).getImm();
   2008   unsigned Op = (Imm >> 12) & 1;
   2009   unsigned Cmode = (Imm >> 8) & 0xf;
   2010   unsigned I = (Imm >> 7) & 1;
   2011   unsigned Imm3 = (Imm >> 4) & 0x7;
   2012   unsigned Imm4 = Imm & 0xf;
   2013   Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
   2014   if (IsThumb)
   2015     Binary = convertNEONDataProcToThumb(Binary);
   2016   emitWordLE(Binary);
   2017 }
   2018 
   2019 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
   2020   const MCInstrDesc &MCID = MI.getDesc();
   2021   unsigned Binary = getBinaryCodeForInstr(MI);
   2022   // Destination register is encoded in Dd; source register in Dm.
   2023   unsigned OpIdx = 0;
   2024   Binary |= encodeNEONRd(MI, OpIdx++);
   2025   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2026     ++OpIdx;
   2027   Binary |= encodeNEONRm(MI, OpIdx);
   2028   if (IsThumb)
   2029     Binary = convertNEONDataProcToThumb(Binary);
   2030   // FIXME: This does not handle VDUPfdf or VDUPfqf.
   2031   emitWordLE(Binary);
   2032 }
   2033 
   2034 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
   2035   const MCInstrDesc &MCID = MI.getDesc();
   2036   unsigned Binary = getBinaryCodeForInstr(MI);
   2037   // Destination register is encoded in Dd; source registers in Dn and Dm.
   2038   unsigned OpIdx = 0;
   2039   Binary |= encodeNEONRd(MI, OpIdx++);
   2040   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2041     ++OpIdx;
   2042   Binary |= encodeNEONRn(MI, OpIdx++);
   2043   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2044     ++OpIdx;
   2045   Binary |= encodeNEONRm(MI, OpIdx);
   2046   if (IsThumb)
   2047     Binary = convertNEONDataProcToThumb(Binary);
   2048   // FIXME: This does not handle VMOVDneon or VMOVQ.
   2049   emitWordLE(Binary);
   2050 }
   2051 
   2052 #include "ARMGenCodeEmitter.inc"
   2053