1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/Dominators.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Assembly/Writer.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/Support/CFG.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 35 template class llvm::LoopBase<BasicBlock, Loop>; 36 template class llvm::LoopInfoBase<BasicBlock, Loop>; 37 38 // Always verify loopinfo if expensive checking is enabled. 39 #ifdef XDEBUG 40 static bool VerifyLoopInfo = true; 41 #else 42 static bool VerifyLoopInfo = false; 43 #endif 44 static cl::opt<bool,true> 45 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 46 cl::desc("Verify loop info (time consuming)")); 47 48 char LoopInfo::ID = 0; 49 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true) 50 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 51 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true) 52 53 // Loop identifier metadata name. 54 static const char *const LoopMDName = "llvm.loop"; 55 56 //===----------------------------------------------------------------------===// 57 // Loop implementation 58 // 59 60 /// isLoopInvariant - Return true if the specified value is loop invariant 61 /// 62 bool Loop::isLoopInvariant(Value *V) const { 63 if (Instruction *I = dyn_cast<Instruction>(V)) 64 return !contains(I); 65 return true; // All non-instructions are loop invariant 66 } 67 68 /// hasLoopInvariantOperands - Return true if all the operands of the 69 /// specified instruction are loop invariant. 70 bool Loop::hasLoopInvariantOperands(Instruction *I) const { 71 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 72 if (!isLoopInvariant(I->getOperand(i))) 73 return false; 74 75 return true; 76 } 77 78 /// makeLoopInvariant - If the given value is an instruciton inside of the 79 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 80 /// Return true if the value after any hoisting is loop invariant. This 81 /// function can be used as a slightly more aggressive replacement for 82 /// isLoopInvariant. 83 /// 84 /// If InsertPt is specified, it is the point to hoist instructions to. 85 /// If null, the terminator of the loop preheader is used. 86 /// 87 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 88 Instruction *InsertPt) const { 89 if (Instruction *I = dyn_cast<Instruction>(V)) 90 return makeLoopInvariant(I, Changed, InsertPt); 91 return true; // All non-instructions are loop-invariant. 92 } 93 94 /// makeLoopInvariant - If the given instruction is inside of the 95 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 96 /// Return true if the instruction after any hoisting is loop invariant. This 97 /// function can be used as a slightly more aggressive replacement for 98 /// isLoopInvariant. 99 /// 100 /// If InsertPt is specified, it is the point to hoist instructions to. 101 /// If null, the terminator of the loop preheader is used. 102 /// 103 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 104 Instruction *InsertPt) const { 105 // Test if the value is already loop-invariant. 106 if (isLoopInvariant(I)) 107 return true; 108 if (!isSafeToSpeculativelyExecute(I)) 109 return false; 110 if (I->mayReadFromMemory()) 111 return false; 112 // The landingpad instruction is immobile. 113 if (isa<LandingPadInst>(I)) 114 return false; 115 // Determine the insertion point, unless one was given. 116 if (!InsertPt) { 117 BasicBlock *Preheader = getLoopPreheader(); 118 // Without a preheader, hoisting is not feasible. 119 if (!Preheader) 120 return false; 121 InsertPt = Preheader->getTerminator(); 122 } 123 // Don't hoist instructions with loop-variant operands. 124 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 125 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) 126 return false; 127 128 // Hoist. 129 I->moveBefore(InsertPt); 130 Changed = true; 131 return true; 132 } 133 134 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 135 /// induction variable: an integer recurrence that starts at 0 and increments 136 /// by one each time through the loop. If so, return the phi node that 137 /// corresponds to it. 138 /// 139 /// The IndVarSimplify pass transforms loops to have a canonical induction 140 /// variable. 141 /// 142 PHINode *Loop::getCanonicalInductionVariable() const { 143 BasicBlock *H = getHeader(); 144 145 BasicBlock *Incoming = 0, *Backedge = 0; 146 pred_iterator PI = pred_begin(H); 147 assert(PI != pred_end(H) && 148 "Loop must have at least one backedge!"); 149 Backedge = *PI++; 150 if (PI == pred_end(H)) return 0; // dead loop 151 Incoming = *PI++; 152 if (PI != pred_end(H)) return 0; // multiple backedges? 153 154 if (contains(Incoming)) { 155 if (contains(Backedge)) 156 return 0; 157 std::swap(Incoming, Backedge); 158 } else if (!contains(Backedge)) 159 return 0; 160 161 // Loop over all of the PHI nodes, looking for a canonical indvar. 162 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 163 PHINode *PN = cast<PHINode>(I); 164 if (ConstantInt *CI = 165 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 166 if (CI->isNullValue()) 167 if (Instruction *Inc = 168 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 169 if (Inc->getOpcode() == Instruction::Add && 170 Inc->getOperand(0) == PN) 171 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 172 if (CI->equalsInt(1)) 173 return PN; 174 } 175 return 0; 176 } 177 178 /// isLCSSAForm - Return true if the Loop is in LCSSA form 179 bool Loop::isLCSSAForm(DominatorTree &DT) const { 180 // Sort the blocks vector so that we can use binary search to do quick 181 // lookups. 182 SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end()); 183 184 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { 185 BasicBlock *BB = *BI; 186 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) 187 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 188 ++UI) { 189 User *U = *UI; 190 BasicBlock *UserBB = cast<Instruction>(U)->getParent(); 191 if (PHINode *P = dyn_cast<PHINode>(U)) 192 UserBB = P->getIncomingBlock(UI); 193 194 // Check the current block, as a fast-path, before checking whether 195 // the use is anywhere in the loop. Most values are used in the same 196 // block they are defined in. Also, blocks not reachable from the 197 // entry are special; uses in them don't need to go through PHIs. 198 if (UserBB != BB && 199 !LoopBBs.count(UserBB) && 200 DT.isReachableFromEntry(UserBB)) 201 return false; 202 } 203 } 204 205 return true; 206 } 207 208 /// isLoopSimplifyForm - Return true if the Loop is in the form that 209 /// the LoopSimplify form transforms loops to, which is sometimes called 210 /// normal form. 211 bool Loop::isLoopSimplifyForm() const { 212 // Normal-form loops have a preheader, a single backedge, and all of their 213 // exits have all their predecessors inside the loop. 214 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 215 } 216 217 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 218 /// Routines that reform the loop CFG and split edges often fail on indirectbr. 219 bool Loop::isSafeToClone() const { 220 // Return false if any loop blocks contain indirectbrs, or there are any calls 221 // to noduplicate functions. 222 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) { 223 if (isa<IndirectBrInst>((*I)->getTerminator())) { 224 return false; 225 } else if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) { 226 if (II->hasFnAttr(Attribute::NoDuplicate)) 227 return false; 228 } 229 230 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { 231 if (const CallInst *CI = dyn_cast<CallInst>(BI)) { 232 if (CI->hasFnAttr(Attribute::NoDuplicate)) 233 return false; 234 } 235 } 236 } 237 return true; 238 } 239 240 MDNode *Loop::getLoopID() const { 241 MDNode *LoopID = 0; 242 if (isLoopSimplifyForm()) { 243 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName); 244 } else { 245 // Go through each predecessor of the loop header and check the 246 // terminator for the metadata. 247 BasicBlock *H = getHeader(); 248 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 249 TerminatorInst *TI = (*I)->getTerminator(); 250 MDNode *MD = 0; 251 252 // Check if this terminator branches to the loop header. 253 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 254 if (TI->getSuccessor(i) == H) { 255 MD = TI->getMetadata(LoopMDName); 256 break; 257 } 258 } 259 if (!MD) 260 return 0; 261 262 if (!LoopID) 263 LoopID = MD; 264 else if (MD != LoopID) 265 return 0; 266 } 267 } 268 if (!LoopID || LoopID->getNumOperands() == 0 || 269 LoopID->getOperand(0) != LoopID) 270 return 0; 271 return LoopID; 272 } 273 274 void Loop::setLoopID(MDNode *LoopID) const { 275 assert(LoopID && "Loop ID should not be null"); 276 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 277 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 278 279 if (isLoopSimplifyForm()) { 280 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID); 281 return; 282 } 283 284 BasicBlock *H = getHeader(); 285 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 286 TerminatorInst *TI = (*I)->getTerminator(); 287 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 288 if (TI->getSuccessor(i) == H) 289 TI->setMetadata(LoopMDName, LoopID); 290 } 291 } 292 } 293 294 bool Loop::isAnnotatedParallel() const { 295 MDNode *desiredLoopIdMetadata = getLoopID(); 296 297 if (!desiredLoopIdMetadata) 298 return false; 299 300 // The loop branch contains the parallel loop metadata. In order to ensure 301 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 302 // dependencies (thus converted the loop back to a sequential loop), check 303 // that all the memory instructions in the loop contain parallelism metadata 304 // that point to the same unique "loop id metadata" the loop branch does. 305 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) { 306 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end(); 307 II != EE; II++) { 308 309 if (!II->mayReadOrWriteMemory()) 310 continue; 311 312 if (!II->getMetadata("llvm.mem.parallel_loop_access")) 313 return false; 314 315 // The memory instruction can refer to the loop identifier metadata 316 // directly or indirectly through another list metadata (in case of 317 // nested parallel loops). The loop identifier metadata refers to 318 // itself so we can check both cases with the same routine. 319 MDNode *loopIdMD = 320 dyn_cast<MDNode>(II->getMetadata("llvm.mem.parallel_loop_access")); 321 bool loopIdMDFound = false; 322 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) { 323 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) { 324 loopIdMDFound = true; 325 break; 326 } 327 } 328 329 if (!loopIdMDFound) 330 return false; 331 } 332 } 333 return true; 334 } 335 336 337 /// hasDedicatedExits - Return true if no exit block for the loop 338 /// has a predecessor that is outside the loop. 339 bool Loop::hasDedicatedExits() const { 340 // Sort the blocks vector so that we can use binary search to do quick 341 // lookups. 342 SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); 343 // Each predecessor of each exit block of a normal loop is contained 344 // within the loop. 345 SmallVector<BasicBlock *, 4> ExitBlocks; 346 getExitBlocks(ExitBlocks); 347 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 348 for (pred_iterator PI = pred_begin(ExitBlocks[i]), 349 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) 350 if (!LoopBBs.count(*PI)) 351 return false; 352 // All the requirements are met. 353 return true; 354 } 355 356 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 357 /// These are the blocks _outside of the current loop_ which are branched to. 358 /// This assumes that loop exits are in canonical form. 359 /// 360 void 361 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 362 assert(hasDedicatedExits() && 363 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 364 365 // Sort the blocks vector so that we can use binary search to do quick 366 // lookups. 367 SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end()); 368 std::sort(LoopBBs.begin(), LoopBBs.end()); 369 370 SmallVector<BasicBlock *, 32> switchExitBlocks; 371 372 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { 373 374 BasicBlock *current = *BI; 375 switchExitBlocks.clear(); 376 377 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { 378 // If block is inside the loop then it is not a exit block. 379 if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) 380 continue; 381 382 pred_iterator PI = pred_begin(*I); 383 BasicBlock *firstPred = *PI; 384 385 // If current basic block is this exit block's first predecessor 386 // then only insert exit block in to the output ExitBlocks vector. 387 // This ensures that same exit block is not inserted twice into 388 // ExitBlocks vector. 389 if (current != firstPred) 390 continue; 391 392 // If a terminator has more then two successors, for example SwitchInst, 393 // then it is possible that there are multiple edges from current block 394 // to one exit block. 395 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { 396 ExitBlocks.push_back(*I); 397 continue; 398 } 399 400 // In case of multiple edges from current block to exit block, collect 401 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 402 // duplicate edges. 403 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 404 == switchExitBlocks.end()) { 405 switchExitBlocks.push_back(*I); 406 ExitBlocks.push_back(*I); 407 } 408 } 409 } 410 } 411 412 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 413 /// block, return that block. Otherwise return null. 414 BasicBlock *Loop::getUniqueExitBlock() const { 415 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 416 getUniqueExitBlocks(UniqueExitBlocks); 417 if (UniqueExitBlocks.size() == 1) 418 return UniqueExitBlocks[0]; 419 return 0; 420 } 421 422 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 423 void Loop::dump() const { 424 print(dbgs()); 425 } 426 #endif 427 428 //===----------------------------------------------------------------------===// 429 // UnloopUpdater implementation 430 // 431 432 namespace { 433 /// Find the new parent loop for all blocks within the "unloop" whose last 434 /// backedges has just been removed. 435 class UnloopUpdater { 436 Loop *Unloop; 437 LoopInfo *LI; 438 439 LoopBlocksDFS DFS; 440 441 // Map unloop's immediate subloops to their nearest reachable parents. Nested 442 // loops within these subloops will not change parents. However, an immediate 443 // subloop's new parent will be the nearest loop reachable from either its own 444 // exits *or* any of its nested loop's exits. 445 DenseMap<Loop*, Loop*> SubloopParents; 446 447 // Flag the presence of an irreducible backedge whose destination is a block 448 // directly contained by the original unloop. 449 bool FoundIB; 450 451 public: 452 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 453 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 454 455 void updateBlockParents(); 456 457 void removeBlocksFromAncestors(); 458 459 void updateSubloopParents(); 460 461 protected: 462 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 463 }; 464 } // end anonymous namespace 465 466 /// updateBlockParents - Update the parent loop for all blocks that are directly 467 /// contained within the original "unloop". 468 void UnloopUpdater::updateBlockParents() { 469 if (Unloop->getNumBlocks()) { 470 // Perform a post order CFG traversal of all blocks within this loop, 471 // propagating the nearest loop from sucessors to predecessors. 472 LoopBlocksTraversal Traversal(DFS, LI); 473 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 474 POE = Traversal.end(); POI != POE; ++POI) { 475 476 Loop *L = LI->getLoopFor(*POI); 477 Loop *NL = getNearestLoop(*POI, L); 478 479 if (NL != L) { 480 // For reducible loops, NL is now an ancestor of Unloop. 481 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 482 "uninitialized successor"); 483 LI->changeLoopFor(*POI, NL); 484 } 485 else { 486 // Or the current block is part of a subloop, in which case its parent 487 // is unchanged. 488 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 489 } 490 } 491 } 492 // Each irreducible loop within the unloop induces a round of iteration using 493 // the DFS result cached by Traversal. 494 bool Changed = FoundIB; 495 for (unsigned NIters = 0; Changed; ++NIters) { 496 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 497 498 // Iterate over the postorder list of blocks, propagating the nearest loop 499 // from successors to predecessors as before. 500 Changed = false; 501 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 502 POE = DFS.endPostorder(); POI != POE; ++POI) { 503 504 Loop *L = LI->getLoopFor(*POI); 505 Loop *NL = getNearestLoop(*POI, L); 506 if (NL != L) { 507 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 508 "uninitialized successor"); 509 LI->changeLoopFor(*POI, NL); 510 Changed = true; 511 } 512 } 513 } 514 } 515 516 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below 517 /// their new parents. 518 void UnloopUpdater::removeBlocksFromAncestors() { 519 // Remove all unloop's blocks (including those in nested subloops) from 520 // ancestors below the new parent loop. 521 for (Loop::block_iterator BI = Unloop->block_begin(), 522 BE = Unloop->block_end(); BI != BE; ++BI) { 523 Loop *OuterParent = LI->getLoopFor(*BI); 524 if (Unloop->contains(OuterParent)) { 525 while (OuterParent->getParentLoop() != Unloop) 526 OuterParent = OuterParent->getParentLoop(); 527 OuterParent = SubloopParents[OuterParent]; 528 } 529 // Remove blocks from former Ancestors except Unloop itself which will be 530 // deleted. 531 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; 532 OldParent = OldParent->getParentLoop()) { 533 assert(OldParent && "new loop is not an ancestor of the original"); 534 OldParent->removeBlockFromLoop(*BI); 535 } 536 } 537 } 538 539 /// updateSubloopParents - Update the parent loop for all subloops directly 540 /// nested within unloop. 541 void UnloopUpdater::updateSubloopParents() { 542 while (!Unloop->empty()) { 543 Loop *Subloop = *llvm::prior(Unloop->end()); 544 Unloop->removeChildLoop(llvm::prior(Unloop->end())); 545 546 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 547 if (Loop *Parent = SubloopParents[Subloop]) 548 Parent->addChildLoop(Subloop); 549 else 550 LI->addTopLevelLoop(Subloop); 551 } 552 } 553 554 /// getNearestLoop - Return the nearest parent loop among this block's 555 /// successors. If a successor is a subloop header, consider its parent to be 556 /// the nearest parent of the subloop's exits. 557 /// 558 /// For subloop blocks, simply update SubloopParents and return NULL. 559 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 560 561 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 562 // is considered uninitialized. 563 Loop *NearLoop = BBLoop; 564 565 Loop *Subloop = 0; 566 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 567 Subloop = NearLoop; 568 // Find the subloop ancestor that is directly contained within Unloop. 569 while (Subloop->getParentLoop() != Unloop) { 570 Subloop = Subloop->getParentLoop(); 571 assert(Subloop && "subloop is not an ancestor of the original loop"); 572 } 573 // Get the current nearest parent of the Subloop exits, initially Unloop. 574 NearLoop = 575 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; 576 } 577 578 succ_iterator I = succ_begin(BB), E = succ_end(BB); 579 if (I == E) { 580 assert(!Subloop && "subloop blocks must have a successor"); 581 NearLoop = 0; // unloop blocks may now exit the function. 582 } 583 for (; I != E; ++I) { 584 if (*I == BB) 585 continue; // self loops are uninteresting 586 587 Loop *L = LI->getLoopFor(*I); 588 if (L == Unloop) { 589 // This successor has not been processed. This path must lead to an 590 // irreducible backedge. 591 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 592 FoundIB = true; 593 } 594 if (L != Unloop && Unloop->contains(L)) { 595 // Successor is in a subloop. 596 if (Subloop) 597 continue; // Branching within subloops. Ignore it. 598 599 // BB branches from the original into a subloop header. 600 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 601 602 // Get the current nearest parent of the Subloop's exits. 603 L = SubloopParents[L]; 604 // L could be Unloop if the only exit was an irreducible backedge. 605 } 606 if (L == Unloop) { 607 continue; 608 } 609 // Handle critical edges from Unloop into a sibling loop. 610 if (L && !L->contains(Unloop)) { 611 L = L->getParentLoop(); 612 } 613 // Remember the nearest parent loop among successors or subloop exits. 614 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 615 NearLoop = L; 616 } 617 if (Subloop) { 618 SubloopParents[Subloop] = NearLoop; 619 return BBLoop; 620 } 621 return NearLoop; 622 } 623 624 //===----------------------------------------------------------------------===// 625 // LoopInfo implementation 626 // 627 bool LoopInfo::runOnFunction(Function &) { 628 releaseMemory(); 629 LI.Analyze(getAnalysis<DominatorTree>().getBase()); 630 return false; 631 } 632 633 /// updateUnloop - The last backedge has been removed from a loop--now the 634 /// "unloop". Find a new parent for the blocks contained within unloop and 635 /// update the loop tree. We don't necessarily have valid dominators at this 636 /// point, but LoopInfo is still valid except for the removal of this loop. 637 /// 638 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without 639 /// checking first is illegal. 640 void LoopInfo::updateUnloop(Loop *Unloop) { 641 642 // First handle the special case of no parent loop to simplify the algorithm. 643 if (!Unloop->getParentLoop()) { 644 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 645 for (Loop::block_iterator I = Unloop->block_begin(), 646 E = Unloop->block_end(); I != E; ++I) { 647 648 // Don't reparent blocks in subloops. 649 if (getLoopFor(*I) != Unloop) 650 continue; 651 652 // Blocks no longer have a parent but are still referenced by Unloop until 653 // the Unloop object is deleted. 654 LI.changeLoopFor(*I, 0); 655 } 656 657 // Remove the loop from the top-level LoopInfo object. 658 for (LoopInfo::iterator I = LI.begin();; ++I) { 659 assert(I != LI.end() && "Couldn't find loop"); 660 if (*I == Unloop) { 661 LI.removeLoop(I); 662 break; 663 } 664 } 665 666 // Move all of the subloops to the top-level. 667 while (!Unloop->empty()) 668 LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end()))); 669 670 return; 671 } 672 673 // Update the parent loop for all blocks within the loop. Blocks within 674 // subloops will not change parents. 675 UnloopUpdater Updater(Unloop, this); 676 Updater.updateBlockParents(); 677 678 // Remove blocks from former ancestor loops. 679 Updater.removeBlocksFromAncestors(); 680 681 // Add direct subloops as children in their new parent loop. 682 Updater.updateSubloopParents(); 683 684 // Remove unloop from its parent loop. 685 Loop *ParentLoop = Unloop->getParentLoop(); 686 for (Loop::iterator I = ParentLoop->begin();; ++I) { 687 assert(I != ParentLoop->end() && "Couldn't find loop"); 688 if (*I == Unloop) { 689 ParentLoop->removeChildLoop(I); 690 break; 691 } 692 } 693 } 694 695 void LoopInfo::verifyAnalysis() const { 696 // LoopInfo is a FunctionPass, but verifying every loop in the function 697 // each time verifyAnalysis is called is very expensive. The 698 // -verify-loop-info option can enable this. In order to perform some 699 // checking by default, LoopPass has been taught to call verifyLoop 700 // manually during loop pass sequences. 701 702 if (!VerifyLoopInfo) return; 703 704 DenseSet<const Loop*> Loops; 705 for (iterator I = begin(), E = end(); I != E; ++I) { 706 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); 707 (*I)->verifyLoopNest(&Loops); 708 } 709 710 // Verify that blocks are mapped to valid loops. 711 for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(), 712 E = LI.BBMap.end(); I != E; ++I) { 713 assert(Loops.count(I->second) && "orphaned loop"); 714 assert(I->second->contains(I->first) && "orphaned block"); 715 } 716 } 717 718 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { 719 AU.setPreservesAll(); 720 AU.addRequired<DominatorTree>(); 721 } 722 723 void LoopInfo::print(raw_ostream &OS, const Module*) const { 724 LI.print(OS); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // LoopBlocksDFS implementation 729 // 730 731 /// Traverse the loop blocks and store the DFS result. 732 /// Useful for clients that just want the final DFS result and don't need to 733 /// visit blocks during the initial traversal. 734 void LoopBlocksDFS::perform(LoopInfo *LI) { 735 LoopBlocksTraversal Traversal(*this, LI); 736 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 737 POE = Traversal.end(); POI != POE; ++POI) ; 738 } 739