Home | History | Annotate | Download | only in Analysis
      1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  Note that the
     12 // loops identified may actually be several natural loops that share the same
     13 // header node... not just a single natural loop.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/Analysis/Dominators.h"
     21 #include "llvm/Analysis/LoopInfoImpl.h"
     22 #include "llvm/Analysis/LoopIterator.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/Assembly/Writer.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Metadata.h"
     28 #include "llvm/Support/CFG.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/Debug.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
     35 template class llvm::LoopBase<BasicBlock, Loop>;
     36 template class llvm::LoopInfoBase<BasicBlock, Loop>;
     37 
     38 // Always verify loopinfo if expensive checking is enabled.
     39 #ifdef XDEBUG
     40 static bool VerifyLoopInfo = true;
     41 #else
     42 static bool VerifyLoopInfo = false;
     43 #endif
     44 static cl::opt<bool,true>
     45 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
     46                 cl::desc("Verify loop info (time consuming)"));
     47 
     48 char LoopInfo::ID = 0;
     49 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
     50 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     51 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
     52 
     53 // Loop identifier metadata name.
     54 static const char *const LoopMDName = "llvm.loop";
     55 
     56 //===----------------------------------------------------------------------===//
     57 // Loop implementation
     58 //
     59 
     60 /// isLoopInvariant - Return true if the specified value is loop invariant
     61 ///
     62 bool Loop::isLoopInvariant(Value *V) const {
     63   if (Instruction *I = dyn_cast<Instruction>(V))
     64     return !contains(I);
     65   return true;  // All non-instructions are loop invariant
     66 }
     67 
     68 /// hasLoopInvariantOperands - Return true if all the operands of the
     69 /// specified instruction are loop invariant.
     70 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
     71   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
     72     if (!isLoopInvariant(I->getOperand(i)))
     73       return false;
     74 
     75   return true;
     76 }
     77 
     78 /// makeLoopInvariant - If the given value is an instruciton inside of the
     79 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     80 /// Return true if the value after any hoisting is loop invariant. This
     81 /// function can be used as a slightly more aggressive replacement for
     82 /// isLoopInvariant.
     83 ///
     84 /// If InsertPt is specified, it is the point to hoist instructions to.
     85 /// If null, the terminator of the loop preheader is used.
     86 ///
     87 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
     88                              Instruction *InsertPt) const {
     89   if (Instruction *I = dyn_cast<Instruction>(V))
     90     return makeLoopInvariant(I, Changed, InsertPt);
     91   return true;  // All non-instructions are loop-invariant.
     92 }
     93 
     94 /// makeLoopInvariant - If the given instruction is inside of the
     95 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     96 /// Return true if the instruction after any hoisting is loop invariant. This
     97 /// function can be used as a slightly more aggressive replacement for
     98 /// isLoopInvariant.
     99 ///
    100 /// If InsertPt is specified, it is the point to hoist instructions to.
    101 /// If null, the terminator of the loop preheader is used.
    102 ///
    103 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
    104                              Instruction *InsertPt) const {
    105   // Test if the value is already loop-invariant.
    106   if (isLoopInvariant(I))
    107     return true;
    108   if (!isSafeToSpeculativelyExecute(I))
    109     return false;
    110   if (I->mayReadFromMemory())
    111     return false;
    112   // The landingpad instruction is immobile.
    113   if (isa<LandingPadInst>(I))
    114     return false;
    115   // Determine the insertion point, unless one was given.
    116   if (!InsertPt) {
    117     BasicBlock *Preheader = getLoopPreheader();
    118     // Without a preheader, hoisting is not feasible.
    119     if (!Preheader)
    120       return false;
    121     InsertPt = Preheader->getTerminator();
    122   }
    123   // Don't hoist instructions with loop-variant operands.
    124   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    125     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
    126       return false;
    127 
    128   // Hoist.
    129   I->moveBefore(InsertPt);
    130   Changed = true;
    131   return true;
    132 }
    133 
    134 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    135 /// induction variable: an integer recurrence that starts at 0 and increments
    136 /// by one each time through the loop.  If so, return the phi node that
    137 /// corresponds to it.
    138 ///
    139 /// The IndVarSimplify pass transforms loops to have a canonical induction
    140 /// variable.
    141 ///
    142 PHINode *Loop::getCanonicalInductionVariable() const {
    143   BasicBlock *H = getHeader();
    144 
    145   BasicBlock *Incoming = 0, *Backedge = 0;
    146   pred_iterator PI = pred_begin(H);
    147   assert(PI != pred_end(H) &&
    148          "Loop must have at least one backedge!");
    149   Backedge = *PI++;
    150   if (PI == pred_end(H)) return 0;  // dead loop
    151   Incoming = *PI++;
    152   if (PI != pred_end(H)) return 0;  // multiple backedges?
    153 
    154   if (contains(Incoming)) {
    155     if (contains(Backedge))
    156       return 0;
    157     std::swap(Incoming, Backedge);
    158   } else if (!contains(Backedge))
    159     return 0;
    160 
    161   // Loop over all of the PHI nodes, looking for a canonical indvar.
    162   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
    163     PHINode *PN = cast<PHINode>(I);
    164     if (ConstantInt *CI =
    165         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
    166       if (CI->isNullValue())
    167         if (Instruction *Inc =
    168             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
    169           if (Inc->getOpcode() == Instruction::Add &&
    170                 Inc->getOperand(0) == PN)
    171             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
    172               if (CI->equalsInt(1))
    173                 return PN;
    174   }
    175   return 0;
    176 }
    177 
    178 /// isLCSSAForm - Return true if the Loop is in LCSSA form
    179 bool Loop::isLCSSAForm(DominatorTree &DT) const {
    180   // Sort the blocks vector so that we can use binary search to do quick
    181   // lookups.
    182   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
    183 
    184   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
    185     BasicBlock *BB = *BI;
    186     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
    187       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
    188            ++UI) {
    189         User *U = *UI;
    190         BasicBlock *UserBB = cast<Instruction>(U)->getParent();
    191         if (PHINode *P = dyn_cast<PHINode>(U))
    192           UserBB = P->getIncomingBlock(UI);
    193 
    194         // Check the current block, as a fast-path, before checking whether
    195         // the use is anywhere in the loop.  Most values are used in the same
    196         // block they are defined in.  Also, blocks not reachable from the
    197         // entry are special; uses in them don't need to go through PHIs.
    198         if (UserBB != BB &&
    199             !LoopBBs.count(UserBB) &&
    200             DT.isReachableFromEntry(UserBB))
    201           return false;
    202       }
    203   }
    204 
    205   return true;
    206 }
    207 
    208 /// isLoopSimplifyForm - Return true if the Loop is in the form that
    209 /// the LoopSimplify form transforms loops to, which is sometimes called
    210 /// normal form.
    211 bool Loop::isLoopSimplifyForm() const {
    212   // Normal-form loops have a preheader, a single backedge, and all of their
    213   // exits have all their predecessors inside the loop.
    214   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
    215 }
    216 
    217 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    218 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
    219 bool Loop::isSafeToClone() const {
    220   // Return false if any loop blocks contain indirectbrs, or there are any calls
    221   // to noduplicate functions.
    222   for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
    223     if (isa<IndirectBrInst>((*I)->getTerminator())) {
    224       return false;
    225     } else if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
    226       if (II->hasFnAttr(Attribute::NoDuplicate))
    227         return false;
    228     }
    229 
    230     for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
    231       if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
    232         if (CI->hasFnAttr(Attribute::NoDuplicate))
    233           return false;
    234       }
    235     }
    236   }
    237   return true;
    238 }
    239 
    240 MDNode *Loop::getLoopID() const {
    241   MDNode *LoopID = 0;
    242   if (isLoopSimplifyForm()) {
    243     LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
    244   } else {
    245     // Go through each predecessor of the loop header and check the
    246     // terminator for the metadata.
    247     BasicBlock *H = getHeader();
    248     for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
    249       TerminatorInst *TI = (*I)->getTerminator();
    250       MDNode *MD = 0;
    251 
    252       // Check if this terminator branches to the loop header.
    253       for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
    254         if (TI->getSuccessor(i) == H) {
    255           MD = TI->getMetadata(LoopMDName);
    256           break;
    257         }
    258       }
    259       if (!MD)
    260         return 0;
    261 
    262       if (!LoopID)
    263         LoopID = MD;
    264       else if (MD != LoopID)
    265         return 0;
    266     }
    267   }
    268   if (!LoopID || LoopID->getNumOperands() == 0 ||
    269       LoopID->getOperand(0) != LoopID)
    270     return 0;
    271   return LoopID;
    272 }
    273 
    274 void Loop::setLoopID(MDNode *LoopID) const {
    275   assert(LoopID && "Loop ID should not be null");
    276   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
    277   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
    278 
    279   if (isLoopSimplifyForm()) {
    280     getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
    281     return;
    282   }
    283 
    284   BasicBlock *H = getHeader();
    285   for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
    286     TerminatorInst *TI = (*I)->getTerminator();
    287     for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
    288       if (TI->getSuccessor(i) == H)
    289         TI->setMetadata(LoopMDName, LoopID);
    290     }
    291   }
    292 }
    293 
    294 bool Loop::isAnnotatedParallel() const {
    295   MDNode *desiredLoopIdMetadata = getLoopID();
    296 
    297   if (!desiredLoopIdMetadata)
    298       return false;
    299 
    300   // The loop branch contains the parallel loop metadata. In order to ensure
    301   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
    302   // dependencies (thus converted the loop back to a sequential loop), check
    303   // that all the memory instructions in the loop contain parallelism metadata
    304   // that point to the same unique "loop id metadata" the loop branch does.
    305   for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
    306     for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
    307          II != EE; II++) {
    308 
    309       if (!II->mayReadOrWriteMemory())
    310         continue;
    311 
    312       if (!II->getMetadata("llvm.mem.parallel_loop_access"))
    313         return false;
    314 
    315       // The memory instruction can refer to the loop identifier metadata
    316       // directly or indirectly through another list metadata (in case of
    317       // nested parallel loops). The loop identifier metadata refers to
    318       // itself so we can check both cases with the same routine.
    319       MDNode *loopIdMD =
    320           dyn_cast<MDNode>(II->getMetadata("llvm.mem.parallel_loop_access"));
    321       bool loopIdMDFound = false;
    322       for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
    323         if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
    324           loopIdMDFound = true;
    325           break;
    326         }
    327       }
    328 
    329       if (!loopIdMDFound)
    330         return false;
    331     }
    332   }
    333   return true;
    334 }
    335 
    336 
    337 /// hasDedicatedExits - Return true if no exit block for the loop
    338 /// has a predecessor that is outside the loop.
    339 bool Loop::hasDedicatedExits() const {
    340   // Sort the blocks vector so that we can use binary search to do quick
    341   // lookups.
    342   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
    343   // Each predecessor of each exit block of a normal loop is contained
    344   // within the loop.
    345   SmallVector<BasicBlock *, 4> ExitBlocks;
    346   getExitBlocks(ExitBlocks);
    347   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    348     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
    349          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
    350       if (!LoopBBs.count(*PI))
    351         return false;
    352   // All the requirements are met.
    353   return true;
    354 }
    355 
    356 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    357 /// These are the blocks _outside of the current loop_ which are branched to.
    358 /// This assumes that loop exits are in canonical form.
    359 ///
    360 void
    361 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
    362   assert(hasDedicatedExits() &&
    363          "getUniqueExitBlocks assumes the loop has canonical form exits!");
    364 
    365   // Sort the blocks vector so that we can use binary search to do quick
    366   // lookups.
    367   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
    368   std::sort(LoopBBs.begin(), LoopBBs.end());
    369 
    370   SmallVector<BasicBlock *, 32> switchExitBlocks;
    371 
    372   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
    373 
    374     BasicBlock *current = *BI;
    375     switchExitBlocks.clear();
    376 
    377     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
    378       // If block is inside the loop then it is not a exit block.
    379       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    380         continue;
    381 
    382       pred_iterator PI = pred_begin(*I);
    383       BasicBlock *firstPred = *PI;
    384 
    385       // If current basic block is this exit block's first predecessor
    386       // then only insert exit block in to the output ExitBlocks vector.
    387       // This ensures that same exit block is not inserted twice into
    388       // ExitBlocks vector.
    389       if (current != firstPred)
    390         continue;
    391 
    392       // If a terminator has more then two successors, for example SwitchInst,
    393       // then it is possible that there are multiple edges from current block
    394       // to one exit block.
    395       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
    396         ExitBlocks.push_back(*I);
    397         continue;
    398       }
    399 
    400       // In case of multiple edges from current block to exit block, collect
    401       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
    402       // duplicate edges.
    403       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
    404           == switchExitBlocks.end()) {
    405         switchExitBlocks.push_back(*I);
    406         ExitBlocks.push_back(*I);
    407       }
    408     }
    409   }
    410 }
    411 
    412 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    413 /// block, return that block. Otherwise return null.
    414 BasicBlock *Loop::getUniqueExitBlock() const {
    415   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
    416   getUniqueExitBlocks(UniqueExitBlocks);
    417   if (UniqueExitBlocks.size() == 1)
    418     return UniqueExitBlocks[0];
    419   return 0;
    420 }
    421 
    422 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    423 void Loop::dump() const {
    424   print(dbgs());
    425 }
    426 #endif
    427 
    428 //===----------------------------------------------------------------------===//
    429 // UnloopUpdater implementation
    430 //
    431 
    432 namespace {
    433 /// Find the new parent loop for all blocks within the "unloop" whose last
    434 /// backedges has just been removed.
    435 class UnloopUpdater {
    436   Loop *Unloop;
    437   LoopInfo *LI;
    438 
    439   LoopBlocksDFS DFS;
    440 
    441   // Map unloop's immediate subloops to their nearest reachable parents. Nested
    442   // loops within these subloops will not change parents. However, an immediate
    443   // subloop's new parent will be the nearest loop reachable from either its own
    444   // exits *or* any of its nested loop's exits.
    445   DenseMap<Loop*, Loop*> SubloopParents;
    446 
    447   // Flag the presence of an irreducible backedge whose destination is a block
    448   // directly contained by the original unloop.
    449   bool FoundIB;
    450 
    451 public:
    452   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
    453     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
    454 
    455   void updateBlockParents();
    456 
    457   void removeBlocksFromAncestors();
    458 
    459   void updateSubloopParents();
    460 
    461 protected:
    462   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
    463 };
    464 } // end anonymous namespace
    465 
    466 /// updateBlockParents - Update the parent loop for all blocks that are directly
    467 /// contained within the original "unloop".
    468 void UnloopUpdater::updateBlockParents() {
    469   if (Unloop->getNumBlocks()) {
    470     // Perform a post order CFG traversal of all blocks within this loop,
    471     // propagating the nearest loop from sucessors to predecessors.
    472     LoopBlocksTraversal Traversal(DFS, LI);
    473     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    474            POE = Traversal.end(); POI != POE; ++POI) {
    475 
    476       Loop *L = LI->getLoopFor(*POI);
    477       Loop *NL = getNearestLoop(*POI, L);
    478 
    479       if (NL != L) {
    480         // For reducible loops, NL is now an ancestor of Unloop.
    481         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
    482                "uninitialized successor");
    483         LI->changeLoopFor(*POI, NL);
    484       }
    485       else {
    486         // Or the current block is part of a subloop, in which case its parent
    487         // is unchanged.
    488         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
    489       }
    490     }
    491   }
    492   // Each irreducible loop within the unloop induces a round of iteration using
    493   // the DFS result cached by Traversal.
    494   bool Changed = FoundIB;
    495   for (unsigned NIters = 0; Changed; ++NIters) {
    496     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
    497 
    498     // Iterate over the postorder list of blocks, propagating the nearest loop
    499     // from successors to predecessors as before.
    500     Changed = false;
    501     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
    502            POE = DFS.endPostorder(); POI != POE; ++POI) {
    503 
    504       Loop *L = LI->getLoopFor(*POI);
    505       Loop *NL = getNearestLoop(*POI, L);
    506       if (NL != L) {
    507         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
    508                "uninitialized successor");
    509         LI->changeLoopFor(*POI, NL);
    510         Changed = true;
    511       }
    512     }
    513   }
    514 }
    515 
    516 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
    517 /// their new parents.
    518 void UnloopUpdater::removeBlocksFromAncestors() {
    519   // Remove all unloop's blocks (including those in nested subloops) from
    520   // ancestors below the new parent loop.
    521   for (Loop::block_iterator BI = Unloop->block_begin(),
    522          BE = Unloop->block_end(); BI != BE; ++BI) {
    523     Loop *OuterParent = LI->getLoopFor(*BI);
    524     if (Unloop->contains(OuterParent)) {
    525       while (OuterParent->getParentLoop() != Unloop)
    526         OuterParent = OuterParent->getParentLoop();
    527       OuterParent = SubloopParents[OuterParent];
    528     }
    529     // Remove blocks from former Ancestors except Unloop itself which will be
    530     // deleted.
    531     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
    532          OldParent = OldParent->getParentLoop()) {
    533       assert(OldParent && "new loop is not an ancestor of the original");
    534       OldParent->removeBlockFromLoop(*BI);
    535     }
    536   }
    537 }
    538 
    539 /// updateSubloopParents - Update the parent loop for all subloops directly
    540 /// nested within unloop.
    541 void UnloopUpdater::updateSubloopParents() {
    542   while (!Unloop->empty()) {
    543     Loop *Subloop = *llvm::prior(Unloop->end());
    544     Unloop->removeChildLoop(llvm::prior(Unloop->end()));
    545 
    546     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
    547     if (Loop *Parent = SubloopParents[Subloop])
    548       Parent->addChildLoop(Subloop);
    549     else
    550       LI->addTopLevelLoop(Subloop);
    551   }
    552 }
    553 
    554 /// getNearestLoop - Return the nearest parent loop among this block's
    555 /// successors. If a successor is a subloop header, consider its parent to be
    556 /// the nearest parent of the subloop's exits.
    557 ///
    558 /// For subloop blocks, simply update SubloopParents and return NULL.
    559 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
    560 
    561   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
    562   // is considered uninitialized.
    563   Loop *NearLoop = BBLoop;
    564 
    565   Loop *Subloop = 0;
    566   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
    567     Subloop = NearLoop;
    568     // Find the subloop ancestor that is directly contained within Unloop.
    569     while (Subloop->getParentLoop() != Unloop) {
    570       Subloop = Subloop->getParentLoop();
    571       assert(Subloop && "subloop is not an ancestor of the original loop");
    572     }
    573     // Get the current nearest parent of the Subloop exits, initially Unloop.
    574     NearLoop =
    575       SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
    576   }
    577 
    578   succ_iterator I = succ_begin(BB), E = succ_end(BB);
    579   if (I == E) {
    580     assert(!Subloop && "subloop blocks must have a successor");
    581     NearLoop = 0; // unloop blocks may now exit the function.
    582   }
    583   for (; I != E; ++I) {
    584     if (*I == BB)
    585       continue; // self loops are uninteresting
    586 
    587     Loop *L = LI->getLoopFor(*I);
    588     if (L == Unloop) {
    589       // This successor has not been processed. This path must lead to an
    590       // irreducible backedge.
    591       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
    592       FoundIB = true;
    593     }
    594     if (L != Unloop && Unloop->contains(L)) {
    595       // Successor is in a subloop.
    596       if (Subloop)
    597         continue; // Branching within subloops. Ignore it.
    598 
    599       // BB branches from the original into a subloop header.
    600       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
    601 
    602       // Get the current nearest parent of the Subloop's exits.
    603       L = SubloopParents[L];
    604       // L could be Unloop if the only exit was an irreducible backedge.
    605     }
    606     if (L == Unloop) {
    607       continue;
    608     }
    609     // Handle critical edges from Unloop into a sibling loop.
    610     if (L && !L->contains(Unloop)) {
    611       L = L->getParentLoop();
    612     }
    613     // Remember the nearest parent loop among successors or subloop exits.
    614     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
    615       NearLoop = L;
    616   }
    617   if (Subloop) {
    618     SubloopParents[Subloop] = NearLoop;
    619     return BBLoop;
    620   }
    621   return NearLoop;
    622 }
    623 
    624 //===----------------------------------------------------------------------===//
    625 // LoopInfo implementation
    626 //
    627 bool LoopInfo::runOnFunction(Function &) {
    628   releaseMemory();
    629   LI.Analyze(getAnalysis<DominatorTree>().getBase());
    630   return false;
    631 }
    632 
    633 /// updateUnloop - The last backedge has been removed from a loop--now the
    634 /// "unloop". Find a new parent for the blocks contained within unloop and
    635 /// update the loop tree. We don't necessarily have valid dominators at this
    636 /// point, but LoopInfo is still valid except for the removal of this loop.
    637 ///
    638 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
    639 /// checking first is illegal.
    640 void LoopInfo::updateUnloop(Loop *Unloop) {
    641 
    642   // First handle the special case of no parent loop to simplify the algorithm.
    643   if (!Unloop->getParentLoop()) {
    644     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
    645     for (Loop::block_iterator I = Unloop->block_begin(),
    646          E = Unloop->block_end(); I != E; ++I) {
    647 
    648       // Don't reparent blocks in subloops.
    649       if (getLoopFor(*I) != Unloop)
    650         continue;
    651 
    652       // Blocks no longer have a parent but are still referenced by Unloop until
    653       // the Unloop object is deleted.
    654       LI.changeLoopFor(*I, 0);
    655     }
    656 
    657     // Remove the loop from the top-level LoopInfo object.
    658     for (LoopInfo::iterator I = LI.begin();; ++I) {
    659       assert(I != LI.end() && "Couldn't find loop");
    660       if (*I == Unloop) {
    661         LI.removeLoop(I);
    662         break;
    663       }
    664     }
    665 
    666     // Move all of the subloops to the top-level.
    667     while (!Unloop->empty())
    668       LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
    669 
    670     return;
    671   }
    672 
    673   // Update the parent loop for all blocks within the loop. Blocks within
    674   // subloops will not change parents.
    675   UnloopUpdater Updater(Unloop, this);
    676   Updater.updateBlockParents();
    677 
    678   // Remove blocks from former ancestor loops.
    679   Updater.removeBlocksFromAncestors();
    680 
    681   // Add direct subloops as children in their new parent loop.
    682   Updater.updateSubloopParents();
    683 
    684   // Remove unloop from its parent loop.
    685   Loop *ParentLoop = Unloop->getParentLoop();
    686   for (Loop::iterator I = ParentLoop->begin();; ++I) {
    687     assert(I != ParentLoop->end() && "Couldn't find loop");
    688     if (*I == Unloop) {
    689       ParentLoop->removeChildLoop(I);
    690       break;
    691     }
    692   }
    693 }
    694 
    695 void LoopInfo::verifyAnalysis() const {
    696   // LoopInfo is a FunctionPass, but verifying every loop in the function
    697   // each time verifyAnalysis is called is very expensive. The
    698   // -verify-loop-info option can enable this. In order to perform some
    699   // checking by default, LoopPass has been taught to call verifyLoop
    700   // manually during loop pass sequences.
    701 
    702   if (!VerifyLoopInfo) return;
    703 
    704   DenseSet<const Loop*> Loops;
    705   for (iterator I = begin(), E = end(); I != E; ++I) {
    706     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
    707     (*I)->verifyLoopNest(&Loops);
    708   }
    709 
    710   // Verify that blocks are mapped to valid loops.
    711   for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
    712          E = LI.BBMap.end(); I != E; ++I) {
    713     assert(Loops.count(I->second) && "orphaned loop");
    714     assert(I->second->contains(I->first) && "orphaned block");
    715   }
    716 }
    717 
    718 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
    719   AU.setPreservesAll();
    720   AU.addRequired<DominatorTree>();
    721 }
    722 
    723 void LoopInfo::print(raw_ostream &OS, const Module*) const {
    724   LI.print(OS);
    725 }
    726 
    727 //===----------------------------------------------------------------------===//
    728 // LoopBlocksDFS implementation
    729 //
    730 
    731 /// Traverse the loop blocks and store the DFS result.
    732 /// Useful for clients that just want the final DFS result and don't need to
    733 /// visit blocks during the initial traversal.
    734 void LoopBlocksDFS::perform(LoopInfo *LI) {
    735   LoopBlocksTraversal Traversal(*this, LI);
    736   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    737          POE = Traversal.end(); POI != POE; ++POI) ;
    738 }
    739