Home | History | Annotate | Download | only in win
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "media/audio/win/audio_low_latency_input_win.h"
      6 
      7 #include "base/logging.h"
      8 #include "base/memory/scoped_ptr.h"
      9 #include "base/strings/utf_string_conversions.h"
     10 #include "media/audio/audio_util.h"
     11 #include "media/audio/win/audio_manager_win.h"
     12 #include "media/audio/win/avrt_wrapper_win.h"
     13 
     14 using base::win::ScopedComPtr;
     15 using base::win::ScopedCOMInitializer;
     16 
     17 namespace media {
     18 
     19 WASAPIAudioInputStream::WASAPIAudioInputStream(
     20     AudioManagerWin* manager, const AudioParameters& params,
     21     const std::string& device_id)
     22     : manager_(manager),
     23       capture_thread_(NULL),
     24       opened_(false),
     25       started_(false),
     26       endpoint_buffer_size_frames_(0),
     27       device_id_(device_id),
     28       sink_(NULL) {
     29   DCHECK(manager_);
     30 
     31   // Load the Avrt DLL if not already loaded. Required to support MMCSS.
     32   bool avrt_init = avrt::Initialize();
     33   DCHECK(avrt_init) << "Failed to load the Avrt.dll";
     34 
     35   // Set up the desired capture format specified by the client.
     36   format_.nSamplesPerSec = params.sample_rate();
     37   format_.wFormatTag = WAVE_FORMAT_PCM;
     38   format_.wBitsPerSample = params.bits_per_sample();
     39   format_.nChannels = params.channels();
     40   format_.nBlockAlign = (format_.wBitsPerSample / 8) * format_.nChannels;
     41   format_.nAvgBytesPerSec = format_.nSamplesPerSec * format_.nBlockAlign;
     42   format_.cbSize = 0;
     43 
     44   // Size in bytes of each audio frame.
     45   frame_size_ = format_.nBlockAlign;
     46   // Store size of audio packets which we expect to get from the audio
     47   // endpoint device in each capture event.
     48   packet_size_frames_ = params.GetBytesPerBuffer() / format_.nBlockAlign;
     49   packet_size_bytes_ = params.GetBytesPerBuffer();
     50   DVLOG(1) << "Number of bytes per audio frame  : " << frame_size_;
     51   DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_;
     52 
     53   // All events are auto-reset events and non-signaled initially.
     54 
     55   // Create the event which the audio engine will signal each time
     56   // a buffer becomes ready to be processed by the client.
     57   audio_samples_ready_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
     58   DCHECK(audio_samples_ready_event_.IsValid());
     59 
     60   // Create the event which will be set in Stop() when capturing shall stop.
     61   stop_capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
     62   DCHECK(stop_capture_event_.IsValid());
     63 
     64   ms_to_frame_count_ = static_cast<double>(params.sample_rate()) / 1000.0;
     65 
     66   LARGE_INTEGER performance_frequency;
     67   if (QueryPerformanceFrequency(&performance_frequency)) {
     68     perf_count_to_100ns_units_ =
     69         (10000000.0 / static_cast<double>(performance_frequency.QuadPart));
     70   } else {
     71     LOG(ERROR) <<  "High-resolution performance counters are not supported.";
     72     perf_count_to_100ns_units_ = 0.0;
     73   }
     74 }
     75 
     76 WASAPIAudioInputStream::~WASAPIAudioInputStream() {}
     77 
     78 bool WASAPIAudioInputStream::Open() {
     79   DCHECK(CalledOnValidThread());
     80   // Verify that we are not already opened.
     81   if (opened_)
     82     return false;
     83 
     84   // Obtain a reference to the IMMDevice interface of the capturing
     85   // device with the specified unique identifier or role which was
     86   // set at construction.
     87   HRESULT hr = SetCaptureDevice();
     88   if (FAILED(hr))
     89     return false;
     90 
     91   // Obtain an IAudioClient interface which enables us to create and initialize
     92   // an audio stream between an audio application and the audio engine.
     93   hr = ActivateCaptureDevice();
     94   if (FAILED(hr))
     95     return false;
     96 
     97   // Retrieve the stream format which the audio engine uses for its internal
     98   // processing/mixing of shared-mode streams. This function call is for
     99   // diagnostic purposes only and only in debug mode.
    100 #ifndef NDEBUG
    101   hr = GetAudioEngineStreamFormat();
    102 #endif
    103 
    104   // Verify that the selected audio endpoint supports the specified format
    105   // set during construction.
    106   if (!DesiredFormatIsSupported()) {
    107     return false;
    108   }
    109 
    110   // Initialize the audio stream between the client and the device using
    111   // shared mode and a lowest possible glitch-free latency.
    112   hr = InitializeAudioEngine();
    113 
    114   opened_ = SUCCEEDED(hr);
    115   return opened_;
    116 }
    117 
    118 void WASAPIAudioInputStream::Start(AudioInputCallback* callback) {
    119   DCHECK(CalledOnValidThread());
    120   DCHECK(callback);
    121   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    122   if (!opened_)
    123     return;
    124 
    125   if (started_)
    126     return;
    127 
    128   sink_ = callback;
    129 
    130   // Starts periodic AGC microphone measurements if the AGC has been enabled
    131   // using SetAutomaticGainControl().
    132   StartAgc();
    133 
    134   // Create and start the thread that will drive the capturing by waiting for
    135   // capture events.
    136   capture_thread_ =
    137       new base::DelegateSimpleThread(this, "wasapi_capture_thread");
    138   capture_thread_->Start();
    139 
    140   // Start streaming data between the endpoint buffer and the audio engine.
    141   HRESULT hr = audio_client_->Start();
    142   DLOG_IF(ERROR, FAILED(hr)) << "Failed to start input streaming.";
    143 
    144   started_ = SUCCEEDED(hr);
    145 }
    146 
    147 void WASAPIAudioInputStream::Stop() {
    148   DCHECK(CalledOnValidThread());
    149   DVLOG(1) << "WASAPIAudioInputStream::Stop()";
    150   if (!started_)
    151     return;
    152 
    153   // Stops periodic AGC microphone measurements.
    154   StopAgc();
    155 
    156   // Shut down the capture thread.
    157   if (stop_capture_event_.IsValid()) {
    158     SetEvent(stop_capture_event_.Get());
    159   }
    160 
    161   // Stop the input audio streaming.
    162   HRESULT hr = audio_client_->Stop();
    163   if (FAILED(hr)) {
    164     LOG(ERROR) << "Failed to stop input streaming.";
    165   }
    166 
    167   // Wait until the thread completes and perform cleanup.
    168   if (capture_thread_) {
    169     SetEvent(stop_capture_event_.Get());
    170     capture_thread_->Join();
    171     capture_thread_ = NULL;
    172   }
    173 
    174   started_ = false;
    175 }
    176 
    177 void WASAPIAudioInputStream::Close() {
    178   DVLOG(1) << "WASAPIAudioInputStream::Close()";
    179   // It is valid to call Close() before calling open or Start().
    180   // It is also valid to call Close() after Start() has been called.
    181   Stop();
    182   if (sink_) {
    183     sink_->OnClose(this);
    184     sink_ = NULL;
    185   }
    186 
    187   // Inform the audio manager that we have been closed. This will cause our
    188   // destruction.
    189   manager_->ReleaseInputStream(this);
    190 }
    191 
    192 double WASAPIAudioInputStream::GetMaxVolume() {
    193   // Verify that Open() has been called succesfully, to ensure that an audio
    194   // session exists and that an ISimpleAudioVolume interface has been created.
    195   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    196   if (!opened_)
    197     return 0.0;
    198 
    199   // The effective volume value is always in the range 0.0 to 1.0, hence
    200   // we can return a fixed value (=1.0) here.
    201   return 1.0;
    202 }
    203 
    204 void WASAPIAudioInputStream::SetVolume(double volume) {
    205   DVLOG(1) << "SetVolume(volume=" << volume << ")";
    206   DCHECK(CalledOnValidThread());
    207   DCHECK_GE(volume, 0.0);
    208   DCHECK_LE(volume, 1.0);
    209 
    210   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    211   if (!opened_)
    212     return;
    213 
    214   // Set a new master volume level. Valid volume levels are in the range
    215   // 0.0 to 1.0. Ignore volume-change events.
    216   HRESULT hr = simple_audio_volume_->SetMasterVolume(static_cast<float>(volume),
    217       NULL);
    218   DLOG_IF(WARNING, FAILED(hr)) << "Failed to set new input master volume.";
    219 
    220   // Update the AGC volume level based on the last setting above. Note that,
    221   // the volume-level resolution is not infinite and it is therefore not
    222   // possible to assume that the volume provided as input parameter can be
    223   // used directly. Instead, a new query to the audio hardware is required.
    224   // This method does nothing if AGC is disabled.
    225   UpdateAgcVolume();
    226 }
    227 
    228 double WASAPIAudioInputStream::GetVolume() {
    229   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    230   if (!opened_)
    231     return 0.0;
    232 
    233   // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
    234   float level = 0.0f;
    235   HRESULT hr = simple_audio_volume_->GetMasterVolume(&level);
    236   DLOG_IF(WARNING, FAILED(hr)) << "Failed to get input master volume.";
    237 
    238   return static_cast<double>(level);
    239 }
    240 
    241 // static
    242 int WASAPIAudioInputStream::HardwareSampleRate(
    243     const std::string& device_id) {
    244   base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
    245   HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format);
    246   if (FAILED(hr))
    247     return 0;
    248 
    249   return static_cast<int>(audio_engine_mix_format->nSamplesPerSec);
    250 }
    251 
    252 // static
    253 uint32 WASAPIAudioInputStream::HardwareChannelCount(
    254     const std::string& device_id) {
    255   base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
    256   HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format);
    257   if (FAILED(hr))
    258     return 0;
    259 
    260   return static_cast<uint32>(audio_engine_mix_format->nChannels);
    261 }
    262 
    263 // static
    264 HRESULT WASAPIAudioInputStream::GetMixFormat(const std::string& device_id,
    265                                              WAVEFORMATEX** device_format) {
    266   // It is assumed that this static method is called from a COM thread, i.e.,
    267   // CoInitializeEx() is not called here to avoid STA/MTA conflicts.
    268   ScopedComPtr<IMMDeviceEnumerator> enumerator;
    269   HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator), NULL,
    270                                          CLSCTX_INPROC_SERVER);
    271   if (FAILED(hr))
    272     return hr;
    273 
    274   ScopedComPtr<IMMDevice> endpoint_device;
    275   if (device_id == AudioManagerBase::kDefaultDeviceId) {
    276     // Retrieve the default capture audio endpoint.
    277     hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
    278                                              endpoint_device.Receive());
    279   } else {
    280     // Retrieve a capture endpoint device that is specified by an endpoint
    281     // device-identification string.
    282     hr = enumerator->GetDevice(UTF8ToUTF16(device_id).c_str(),
    283                                endpoint_device.Receive());
    284   }
    285   if (FAILED(hr))
    286     return hr;
    287 
    288   ScopedComPtr<IAudioClient> audio_client;
    289   hr = endpoint_device->Activate(__uuidof(IAudioClient),
    290                                  CLSCTX_INPROC_SERVER,
    291                                  NULL,
    292                                  audio_client.ReceiveVoid());
    293   return SUCCEEDED(hr) ? audio_client->GetMixFormat(device_format) : hr;
    294 }
    295 
    296 void WASAPIAudioInputStream::Run() {
    297   ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
    298 
    299   // Increase the thread priority.
    300   capture_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
    301 
    302   // Enable MMCSS to ensure that this thread receives prioritized access to
    303   // CPU resources.
    304   DWORD task_index = 0;
    305   HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
    306                                                       &task_index);
    307   bool mmcss_is_ok =
    308       (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
    309   if (!mmcss_is_ok) {
    310     // Failed to enable MMCSS on this thread. It is not fatal but can lead
    311     // to reduced QoS at high load.
    312     DWORD err = GetLastError();
    313     LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
    314   }
    315 
    316   // Allocate a buffer with a size that enables us to take care of cases like:
    317   // 1) The recorded buffer size is smaller, or does not match exactly with,
    318   //    the selected packet size used in each callback.
    319   // 2) The selected buffer size is larger than the recorded buffer size in
    320   //    each event.
    321   size_t buffer_frame_index = 0;
    322   size_t capture_buffer_size = std::max(
    323       2 * endpoint_buffer_size_frames_ * frame_size_,
    324       2 * packet_size_frames_ * frame_size_);
    325   scoped_ptr<uint8[]> capture_buffer(new uint8[capture_buffer_size]);
    326 
    327   LARGE_INTEGER now_count;
    328   bool recording = true;
    329   bool error = false;
    330   double volume = GetVolume();
    331   HANDLE wait_array[2] = {stop_capture_event_, audio_samples_ready_event_};
    332 
    333   while (recording && !error) {
    334     HRESULT hr = S_FALSE;
    335 
    336     // Wait for a close-down event or a new capture event.
    337     DWORD wait_result = WaitForMultipleObjects(2, wait_array, FALSE, INFINITE);
    338     switch (wait_result) {
    339       case WAIT_FAILED:
    340         error = true;
    341         break;
    342       case WAIT_OBJECT_0 + 0:
    343         // |stop_capture_event_| has been set.
    344         recording = false;
    345         break;
    346       case WAIT_OBJECT_0 + 1:
    347         {
    348           // |audio_samples_ready_event_| has been set.
    349           BYTE* data_ptr = NULL;
    350           UINT32 num_frames_to_read = 0;
    351           DWORD flags = 0;
    352           UINT64 device_position = 0;
    353           UINT64 first_audio_frame_timestamp = 0;
    354 
    355           // Retrieve the amount of data in the capture endpoint buffer,
    356           // replace it with silence if required, create callbacks for each
    357           // packet and store non-delivered data for the next event.
    358           hr = audio_capture_client_->GetBuffer(&data_ptr,
    359                                                 &num_frames_to_read,
    360                                                 &flags,
    361                                                 &device_position,
    362                                                 &first_audio_frame_timestamp);
    363           if (FAILED(hr)) {
    364             DLOG(ERROR) << "Failed to get data from the capture buffer";
    365             continue;
    366           }
    367 
    368           if (num_frames_to_read != 0) {
    369             size_t pos = buffer_frame_index * frame_size_;
    370             size_t num_bytes = num_frames_to_read * frame_size_;
    371             DCHECK_GE(capture_buffer_size, pos + num_bytes);
    372 
    373             if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
    374               // Clear out the local buffer since silence is reported.
    375               memset(&capture_buffer[pos], 0, num_bytes);
    376             } else {
    377               // Copy captured data from audio engine buffer to local buffer.
    378               memcpy(&capture_buffer[pos], data_ptr, num_bytes);
    379             }
    380 
    381             buffer_frame_index += num_frames_to_read;
    382           }
    383 
    384           hr = audio_capture_client_->ReleaseBuffer(num_frames_to_read);
    385           DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
    386 
    387           // Derive a delay estimate for the captured audio packet.
    388           // The value contains two parts (A+B), where A is the delay of the
    389           // first audio frame in the packet and B is the extra delay
    390           // contained in any stored data. Unit is in audio frames.
    391           QueryPerformanceCounter(&now_count);
    392           double audio_delay_frames =
    393               ((perf_count_to_100ns_units_ * now_count.QuadPart -
    394                 first_audio_frame_timestamp) / 10000.0) * ms_to_frame_count_ +
    395                 buffer_frame_index - num_frames_to_read;
    396 
    397           // Get a cached AGC volume level which is updated once every second
    398           // on the audio manager thread. Note that, |volume| is also updated
    399           // each time SetVolume() is called through IPC by the render-side AGC.
    400           GetAgcVolume(&volume);
    401 
    402           // Deliver captured data to the registered consumer using a packet
    403           // size which was specified at construction.
    404           uint32 delay_frames = static_cast<uint32>(audio_delay_frames + 0.5);
    405           while (buffer_frame_index >= packet_size_frames_) {
    406             uint8* audio_data =
    407                 reinterpret_cast<uint8*>(capture_buffer.get());
    408 
    409             // Deliver data packet, delay estimation and volume level to
    410             // the user.
    411             sink_->OnData(this,
    412                           audio_data,
    413                           packet_size_bytes_,
    414                           delay_frames * frame_size_,
    415                           volume);
    416 
    417             // Store parts of the recorded data which can't be delivered
    418             // using the current packet size. The stored section will be used
    419             // either in the next while-loop iteration or in the next
    420             // capture event.
    421             memmove(&capture_buffer[0],
    422                     &capture_buffer[packet_size_bytes_],
    423                     (buffer_frame_index - packet_size_frames_) * frame_size_);
    424 
    425             buffer_frame_index -= packet_size_frames_;
    426             delay_frames -= packet_size_frames_;
    427           }
    428         }
    429         break;
    430       default:
    431         error = true;
    432         break;
    433     }
    434   }
    435 
    436   if (recording && error) {
    437     // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
    438     // stopping the audio client, joining the thread etc.?
    439     NOTREACHED() << "WASAPI capturing failed with error code "
    440                  << GetLastError();
    441   }
    442 
    443   // Disable MMCSS.
    444   if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
    445     PLOG(WARNING) << "Failed to disable MMCSS";
    446   }
    447 }
    448 
    449 void WASAPIAudioInputStream::HandleError(HRESULT err) {
    450   NOTREACHED() << "Error code: " << err;
    451   if (sink_)
    452     sink_->OnError(this);
    453 }
    454 
    455 HRESULT WASAPIAudioInputStream::SetCaptureDevice() {
    456   ScopedComPtr<IMMDeviceEnumerator> enumerator;
    457   HRESULT hr =  CoCreateInstance(__uuidof(MMDeviceEnumerator),
    458                                  NULL,
    459                                  CLSCTX_INPROC_SERVER,
    460                                  __uuidof(IMMDeviceEnumerator),
    461                                  enumerator.ReceiveVoid());
    462   if (SUCCEEDED(hr)) {
    463     // Retrieve the IMMDevice by using the specified role or the specified
    464     // unique endpoint device-identification string.
    465     // TODO(henrika): possibly add support for the eCommunications as well.
    466     if (device_id_ == AudioManagerBase::kDefaultDeviceId) {
    467       // Retrieve the default capture audio endpoint for the specified role.
    468       // Note that, in Windows Vista, the MMDevice API supports device roles
    469       // but the system-supplied user interface programs do not.
    470       hr = enumerator->GetDefaultAudioEndpoint(eCapture,
    471                                                eConsole,
    472                                                endpoint_device_.Receive());
    473     } else {
    474       // Retrieve a capture endpoint device that is specified by an endpoint
    475       // device-identification string.
    476       hr = enumerator->GetDevice(UTF8ToUTF16(device_id_).c_str(),
    477                                  endpoint_device_.Receive());
    478     }
    479 
    480     if (FAILED(hr))
    481       return hr;
    482 
    483     // Verify that the audio endpoint device is active, i.e., the audio
    484     // adapter that connects to the endpoint device is present and enabled.
    485     DWORD state = DEVICE_STATE_DISABLED;
    486     hr = endpoint_device_->GetState(&state);
    487     if (SUCCEEDED(hr)) {
    488       if (!(state & DEVICE_STATE_ACTIVE)) {
    489         DLOG(ERROR) << "Selected capture device is not active.";
    490         hr = E_ACCESSDENIED;
    491       }
    492     }
    493   }
    494 
    495   return hr;
    496 }
    497 
    498 HRESULT WASAPIAudioInputStream::ActivateCaptureDevice() {
    499   // Creates and activates an IAudioClient COM object given the selected
    500   // capture endpoint device.
    501   HRESULT hr = endpoint_device_->Activate(__uuidof(IAudioClient),
    502                                           CLSCTX_INPROC_SERVER,
    503                                           NULL,
    504                                           audio_client_.ReceiveVoid());
    505   return hr;
    506 }
    507 
    508 HRESULT WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
    509   HRESULT hr = S_OK;
    510 #ifndef NDEBUG
    511   // The GetMixFormat() method retrieves the stream format that the
    512   // audio engine uses for its internal processing of shared-mode streams.
    513   // The method always uses a WAVEFORMATEXTENSIBLE structure, instead
    514   // of a stand-alone WAVEFORMATEX structure, to specify the format.
    515   // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of
    516   // channels to speakers and the number of bits of precision in each sample.
    517   base::win::ScopedCoMem<WAVEFORMATEXTENSIBLE> format_ex;
    518   hr = audio_client_->GetMixFormat(
    519       reinterpret_cast<WAVEFORMATEX**>(&format_ex));
    520 
    521   // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH
    522   // for details on the WAVE file format.
    523   WAVEFORMATEX format = format_ex->Format;
    524   DVLOG(2) << "WAVEFORMATEX:";
    525   DVLOG(2) << "  wFormatTags    : 0x" << std::hex << format.wFormatTag;
    526   DVLOG(2) << "  nChannels      : " << format.nChannels;
    527   DVLOG(2) << "  nSamplesPerSec : " << format.nSamplesPerSec;
    528   DVLOG(2) << "  nAvgBytesPerSec: " << format.nAvgBytesPerSec;
    529   DVLOG(2) << "  nBlockAlign    : " << format.nBlockAlign;
    530   DVLOG(2) << "  wBitsPerSample : " << format.wBitsPerSample;
    531   DVLOG(2) << "  cbSize         : " << format.cbSize;
    532 
    533   DVLOG(2) << "WAVEFORMATEXTENSIBLE:";
    534   DVLOG(2) << " wValidBitsPerSample: " <<
    535       format_ex->Samples.wValidBitsPerSample;
    536   DVLOG(2) << " dwChannelMask      : 0x" << std::hex <<
    537       format_ex->dwChannelMask;
    538   if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_PCM)
    539     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_PCM";
    540   else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)
    541     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT";
    542   else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_WAVEFORMATEX)
    543     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX";
    544 #endif
    545   return hr;
    546 }
    547 
    548 bool WASAPIAudioInputStream::DesiredFormatIsSupported() {
    549   // An application that uses WASAPI to manage shared-mode streams can rely
    550   // on the audio engine to perform only limited format conversions. The audio
    551   // engine can convert between a standard PCM sample size used by the
    552   // application and the floating-point samples that the engine uses for its
    553   // internal processing. However, the format for an application stream
    554   // typically must have the same number of channels and the same sample
    555   // rate as the stream format used by the device.
    556   // Many audio devices support both PCM and non-PCM stream formats. However,
    557   // the audio engine can mix only PCM streams.
    558   base::win::ScopedCoMem<WAVEFORMATEX> closest_match;
    559   HRESULT hr = audio_client_->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED,
    560                                                 &format_,
    561                                                 &closest_match);
    562   DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported "
    563                                 << "but a closest match exists.";
    564   return (hr == S_OK);
    565 }
    566 
    567 HRESULT WASAPIAudioInputStream::InitializeAudioEngine() {
    568   // Initialize the audio stream between the client and the device.
    569   // We connect indirectly through the audio engine by using shared mode
    570   // and WASAPI is initialized in an event driven mode.
    571   // Note that, |hnsBufferDuration| is set of 0, which ensures that the
    572   // buffer is never smaller than the minimum buffer size needed to ensure
    573   // that glitches do not occur between the periodic processing passes.
    574   // This setting should lead to lowest possible latency.
    575   HRESULT hr = audio_client_->Initialize(AUDCLNT_SHAREMODE_SHARED,
    576                                          AUDCLNT_STREAMFLAGS_EVENTCALLBACK |
    577                                          AUDCLNT_STREAMFLAGS_NOPERSIST,
    578                                          0,  // hnsBufferDuration
    579                                          0,
    580                                          &format_,
    581                                          NULL);
    582   if (FAILED(hr))
    583     return hr;
    584 
    585   // Retrieve the length of the endpoint buffer shared between the client
    586   // and the audio engine. The buffer length determines the maximum amount
    587   // of capture data that the audio engine can read from the endpoint buffer
    588   // during a single processing pass.
    589   // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
    590   hr = audio_client_->GetBufferSize(&endpoint_buffer_size_frames_);
    591   if (FAILED(hr))
    592     return hr;
    593   DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_
    594            << " [frames]";
    595 
    596 #ifndef NDEBUG
    597   // The period between processing passes by the audio engine is fixed for a
    598   // particular audio endpoint device and represents the smallest processing
    599   // quantum for the audio engine. This period plus the stream latency between
    600   // the buffer and endpoint device represents the minimum possible latency
    601   // that an audio application can achieve.
    602   // TODO(henrika): possibly remove this section when all parts are ready.
    603   REFERENCE_TIME device_period_shared_mode = 0;
    604   REFERENCE_TIME device_period_exclusive_mode = 0;
    605   HRESULT hr_dbg = audio_client_->GetDevicePeriod(
    606       &device_period_shared_mode, &device_period_exclusive_mode);
    607   if (SUCCEEDED(hr_dbg)) {
    608     DVLOG(1) << "device period: "
    609              << static_cast<double>(device_period_shared_mode / 10000.0)
    610              << " [ms]";
    611   }
    612 
    613   REFERENCE_TIME latency = 0;
    614   hr_dbg = audio_client_->GetStreamLatency(&latency);
    615   if (SUCCEEDED(hr_dbg)) {
    616     DVLOG(1) << "stream latency: " << static_cast<double>(latency / 10000.0)
    617              << " [ms]";
    618   }
    619 #endif
    620 
    621   // Set the event handle that the audio engine will signal each time
    622   // a buffer becomes ready to be processed by the client.
    623   hr = audio_client_->SetEventHandle(audio_samples_ready_event_.Get());
    624   if (FAILED(hr))
    625     return hr;
    626 
    627   // Get access to the IAudioCaptureClient interface. This interface
    628   // enables us to read input data from the capture endpoint buffer.
    629   hr = audio_client_->GetService(__uuidof(IAudioCaptureClient),
    630                                  audio_capture_client_.ReceiveVoid());
    631   if (FAILED(hr))
    632     return hr;
    633 
    634   // Obtain a reference to the ISimpleAudioVolume interface which enables
    635   // us to control the master volume level of an audio session.
    636   hr = audio_client_->GetService(__uuidof(ISimpleAudioVolume),
    637                                  simple_audio_volume_.ReceiveVoid());
    638   return hr;
    639 }
    640 
    641 }  // namespace media
    642