Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if V8_TARGET_ARCH_IA32
     31 
     32 #include "codegen.h"
     33 #include "deoptimizer.h"
     34 #include "full-codegen.h"
     35 #include "safepoint-table.h"
     36 
     37 namespace v8 {
     38 namespace internal {
     39 
     40 const int Deoptimizer::table_entry_size_ = 10;
     41 
     42 
     43 int Deoptimizer::patch_size() {
     44   return Assembler::kCallInstructionLength;
     45 }
     46 
     47 
     48 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
     49   Isolate* isolate = code->GetIsolate();
     50   HandleScope scope(isolate);
     51 
     52   // Compute the size of relocation information needed for the code
     53   // patching in Deoptimizer::DeoptimizeFunction.
     54   int min_reloc_size = 0;
     55   int prev_pc_offset = 0;
     56   DeoptimizationInputData* deopt_data =
     57       DeoptimizationInputData::cast(code->deoptimization_data());
     58   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
     59     int pc_offset = deopt_data->Pc(i)->value();
     60     if (pc_offset == -1) continue;
     61     ASSERT_GE(pc_offset, prev_pc_offset);
     62     int pc_delta = pc_offset - prev_pc_offset;
     63     // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
     64     // if encodable with small pc delta encoding and up to 6 bytes
     65     // otherwise.
     66     if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
     67       min_reloc_size += 2;
     68     } else {
     69       min_reloc_size += 6;
     70     }
     71     prev_pc_offset = pc_offset;
     72   }
     73 
     74   // If the relocation information is not big enough we create a new
     75   // relocation info object that is padded with comments to make it
     76   // big enough for lazy doptimization.
     77   int reloc_length = code->relocation_info()->length();
     78   if (min_reloc_size > reloc_length) {
     79     int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
     80     // Padding needed.
     81     int min_padding = min_reloc_size - reloc_length;
     82     // Number of comments needed to take up at least that much space.
     83     int additional_comments =
     84         (min_padding + comment_reloc_size - 1) / comment_reloc_size;
     85     // Actual padding size.
     86     int padding = additional_comments * comment_reloc_size;
     87     // Allocate new relocation info and copy old relocation to the end
     88     // of the new relocation info array because relocation info is
     89     // written and read backwards.
     90     Factory* factory = isolate->factory();
     91     Handle<ByteArray> new_reloc =
     92         factory->NewByteArray(reloc_length + padding, TENURED);
     93     OS::MemCopy(new_reloc->GetDataStartAddress() + padding,
     94                 code->relocation_info()->GetDataStartAddress(),
     95                 reloc_length);
     96     // Create a relocation writer to write the comments in the padding
     97     // space. Use position 0 for everything to ensure short encoding.
     98     RelocInfoWriter reloc_info_writer(
     99         new_reloc->GetDataStartAddress() + padding, 0);
    100     intptr_t comment_string
    101         = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
    102     RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL);
    103     for (int i = 0; i < additional_comments; ++i) {
    104 #ifdef DEBUG
    105       byte* pos_before = reloc_info_writer.pos();
    106 #endif
    107       reloc_info_writer.Write(&rinfo);
    108       ASSERT(RelocInfo::kMinRelocCommentSize ==
    109              pos_before - reloc_info_writer.pos());
    110     }
    111     // Replace relocation information on the code object.
    112     code->set_relocation_info(*new_reloc);
    113   }
    114 }
    115 
    116 
    117 void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
    118   Address code_start_address = code->instruction_start();
    119   // We will overwrite the code's relocation info in-place. Relocation info
    120   // is written backward. The relocation info is the payload of a byte
    121   // array.  Later on we will slide this to the start of the byte array and
    122   // create a filler object in the remaining space.
    123   ByteArray* reloc_info = code->relocation_info();
    124   Address reloc_end_address = reloc_info->address() + reloc_info->Size();
    125   RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
    126 
    127   // For each LLazyBailout instruction insert a call to the corresponding
    128   // deoptimization entry.
    129 
    130   // Since the call is a relative encoding, write new
    131   // reloc info.  We do not need any of the existing reloc info because the
    132   // existing code will not be used again (we zap it in debug builds).
    133   //
    134   // Emit call to lazy deoptimization at all lazy deopt points.
    135   DeoptimizationInputData* deopt_data =
    136       DeoptimizationInputData::cast(code->deoptimization_data());
    137 #ifdef DEBUG
    138   Address prev_call_address = NULL;
    139 #endif
    140   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
    141     if (deopt_data->Pc(i)->value() == -1) continue;
    142     // Patch lazy deoptimization entry.
    143     Address call_address = code_start_address + deopt_data->Pc(i)->value();
    144     CodePatcher patcher(call_address, patch_size());
    145     Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
    146     patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
    147     // We use RUNTIME_ENTRY for deoptimization bailouts.
    148     RelocInfo rinfo(call_address + 1,  // 1 after the call opcode.
    149                     RelocInfo::RUNTIME_ENTRY,
    150                     reinterpret_cast<intptr_t>(deopt_entry),
    151                     NULL);
    152     reloc_info_writer.Write(&rinfo);
    153     ASSERT_GE(reloc_info_writer.pos(),
    154               reloc_info->address() + ByteArray::kHeaderSize);
    155     ASSERT(prev_call_address == NULL ||
    156            call_address >= prev_call_address + patch_size());
    157     ASSERT(call_address + patch_size() <= code->instruction_end());
    158 #ifdef DEBUG
    159     prev_call_address = call_address;
    160 #endif
    161   }
    162 
    163   // Move the relocation info to the beginning of the byte array.
    164   int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
    165   OS::MemMove(
    166       code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
    167 
    168   // The relocation info is in place, update the size.
    169   reloc_info->set_length(new_reloc_size);
    170 
    171   // Handle the junk part after the new relocation info. We will create
    172   // a non-live object in the extra space at the end of the former reloc info.
    173   Address junk_address = reloc_info->address() + reloc_info->Size();
    174   ASSERT(junk_address <= reloc_end_address);
    175   isolate->heap()->CreateFillerObjectAt(junk_address,
    176                                         reloc_end_address - junk_address);
    177 }
    178 
    179 
    180 static const byte kJnsInstruction = 0x79;
    181 static const byte kJnsOffset = 0x11;
    182 static const byte kCallInstruction = 0xe8;
    183 static const byte kNopByteOne = 0x66;
    184 static const byte kNopByteTwo = 0x90;
    185 
    186 // The back edge bookkeeping code matches the pattern:
    187 //
    188 //     sub <profiling_counter>, <delta>
    189 //     jns ok
    190 //     call <interrupt stub>
    191 //   ok:
    192 //
    193 // The patched back edge looks like this:
    194 //
    195 //     sub <profiling_counter>, <delta>  ;; Not changed
    196 //     nop
    197 //     nop
    198 //     call <on-stack replacment>
    199 //   ok:
    200 
    201 void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code,
    202                                        Address pc_after,
    203                                        Code* interrupt_code,
    204                                        Code* replacement_code) {
    205   ASSERT(!InterruptCodeIsPatched(unoptimized_code,
    206                                  pc_after,
    207                                  interrupt_code,
    208                                  replacement_code));
    209   // Turn the jump into nops.
    210   Address call_target_address = pc_after - kIntSize;
    211   *(call_target_address - 3) = kNopByteOne;
    212   *(call_target_address - 2) = kNopByteTwo;
    213   // Replace the call address.
    214   Assembler::set_target_address_at(call_target_address,
    215                                    replacement_code->entry());
    216 
    217   unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
    218       unoptimized_code, call_target_address, replacement_code);
    219 }
    220 
    221 
    222 void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code,
    223                                         Address pc_after,
    224                                         Code* interrupt_code,
    225                                         Code* replacement_code) {
    226   ASSERT(InterruptCodeIsPatched(unoptimized_code,
    227                                 pc_after,
    228                                 interrupt_code,
    229                                 replacement_code));
    230   // Restore the original jump.
    231   Address call_target_address = pc_after - kIntSize;
    232   *(call_target_address - 3) = kJnsInstruction;
    233   *(call_target_address - 2) = kJnsOffset;
    234   // Restore the original call address.
    235   Assembler::set_target_address_at(call_target_address,
    236                                    interrupt_code->entry());
    237 
    238   interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
    239       unoptimized_code, call_target_address, interrupt_code);
    240 }
    241 
    242 
    243 #ifdef DEBUG
    244 bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code,
    245                                          Address pc_after,
    246                                          Code* interrupt_code,
    247                                          Code* replacement_code) {
    248   Address call_target_address = pc_after - kIntSize;
    249   ASSERT_EQ(kCallInstruction, *(call_target_address - 1));
    250   if (*(call_target_address - 3) == kNopByteOne) {
    251     ASSERT_EQ(replacement_code->entry(),
    252              Assembler::target_address_at(call_target_address));
    253     ASSERT_EQ(kNopByteTwo,      *(call_target_address - 2));
    254     return true;
    255   } else {
    256     ASSERT_EQ(interrupt_code->entry(),
    257               Assembler::target_address_at(call_target_address));
    258     ASSERT_EQ(kJnsInstruction,  *(call_target_address - 3));
    259     ASSERT_EQ(kJnsOffset,       *(call_target_address - 2));
    260     return false;
    261   }
    262 }
    263 #endif  // DEBUG
    264 
    265 
    266 static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) {
    267   ByteArray* translations = data->TranslationByteArray();
    268   int length = data->DeoptCount();
    269   for (int i = 0; i < length; i++) {
    270     if (data->AstId(i) == ast_id) {
    271       TranslationIterator it(translations,  data->TranslationIndex(i)->value());
    272       int value = it.Next();
    273       ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
    274       // Read the number of frames.
    275       value = it.Next();
    276       if (value == 1) return i;
    277     }
    278   }
    279   UNREACHABLE();
    280   return -1;
    281 }
    282 
    283 
    284 void Deoptimizer::DoComputeOsrOutputFrame() {
    285   DeoptimizationInputData* data = DeoptimizationInputData::cast(
    286       compiled_code_->deoptimization_data());
    287   unsigned ast_id = data->OsrAstId()->value();
    288   // TODO(kasperl): This should not be the bailout_id_. It should be
    289   // the ast id. Confusing.
    290   ASSERT(bailout_id_ == ast_id);
    291 
    292   int bailout_id = LookupBailoutId(data, BailoutId(ast_id));
    293   unsigned translation_index = data->TranslationIndex(bailout_id)->value();
    294   ByteArray* translations = data->TranslationByteArray();
    295 
    296   TranslationIterator iterator(translations, translation_index);
    297   Translation::Opcode opcode =
    298       static_cast<Translation::Opcode>(iterator.Next());
    299   ASSERT(Translation::BEGIN == opcode);
    300   USE(opcode);
    301   int count = iterator.Next();
    302   iterator.Next();  // Drop JS frames count.
    303   ASSERT(count == 1);
    304   USE(count);
    305 
    306   opcode = static_cast<Translation::Opcode>(iterator.Next());
    307   USE(opcode);
    308   ASSERT(Translation::JS_FRAME == opcode);
    309   unsigned node_id = iterator.Next();
    310   USE(node_id);
    311   ASSERT(node_id == ast_id);
    312   int closure_id = iterator.Next();
    313   USE(closure_id);
    314   ASSERT_EQ(Translation::kSelfLiteralId, closure_id);
    315   unsigned height = iterator.Next();
    316   unsigned height_in_bytes = height * kPointerSize;
    317   USE(height_in_bytes);
    318 
    319   unsigned fixed_size = ComputeFixedSize(function_);
    320   unsigned input_frame_size = input_->GetFrameSize();
    321   ASSERT(fixed_size + height_in_bytes == input_frame_size);
    322 
    323   unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize;
    324   unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
    325   unsigned outgoing_size = outgoing_height * kPointerSize;
    326   unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
    327   ASSERT(outgoing_size == 0);  // OSR does not happen in the middle of a call.
    328 
    329   if (FLAG_trace_osr) {
    330     PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
    331            reinterpret_cast<intptr_t>(function_));
    332     PrintFunctionName();
    333     PrintF(" => node=%u, frame=%d->%d, ebp:esp=0x%08x:0x%08x]\n",
    334            ast_id,
    335            input_frame_size,
    336            output_frame_size,
    337            input_->GetRegister(ebp.code()),
    338            input_->GetRegister(esp.code()));
    339   }
    340 
    341   // There's only one output frame in the OSR case.
    342   output_count_ = 1;
    343   output_ = new FrameDescription*[1];
    344   output_[0] = new(output_frame_size) FrameDescription(
    345       output_frame_size, function_);
    346   output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT);
    347 
    348   // Clear the incoming parameters in the optimized frame to avoid
    349   // confusing the garbage collector.
    350   unsigned output_offset = output_frame_size - kPointerSize;
    351   int parameter_count = function_->shared()->formal_parameter_count() + 1;
    352   for (int i = 0; i < parameter_count; ++i) {
    353     output_[0]->SetFrameSlot(output_offset, 0);
    354     output_offset -= kPointerSize;
    355   }
    356 
    357   // Translate the incoming parameters. This may overwrite some of the
    358   // incoming argument slots we've just cleared.
    359   int input_offset = input_frame_size - kPointerSize;
    360   bool ok = true;
    361   int limit = input_offset - (parameter_count * kPointerSize);
    362   while (ok && input_offset > limit) {
    363     ok = DoOsrTranslateCommand(&iterator, &input_offset);
    364   }
    365 
    366   // There are no translation commands for the caller's pc and fp, the
    367   // context, and the function.  Set them up explicitly.
    368   for (int i =  StandardFrameConstants::kCallerPCOffset;
    369        ok && i >=  StandardFrameConstants::kMarkerOffset;
    370        i -= kPointerSize) {
    371     uint32_t input_value = input_->GetFrameSlot(input_offset);
    372     if (FLAG_trace_osr) {
    373       const char* name = "UNKNOWN";
    374       switch (i) {
    375         case StandardFrameConstants::kCallerPCOffset:
    376           name = "caller's pc";
    377           break;
    378         case StandardFrameConstants::kCallerFPOffset:
    379           name = "fp";
    380           break;
    381         case StandardFrameConstants::kContextOffset:
    382           name = "context";
    383           break;
    384         case StandardFrameConstants::kMarkerOffset:
    385           name = "function";
    386           break;
    387       }
    388       PrintF("    [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n",
    389              output_offset,
    390              input_value,
    391              input_offset,
    392              name);
    393     }
    394     output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
    395     input_offset -= kPointerSize;
    396     output_offset -= kPointerSize;
    397   }
    398 
    399   // All OSR stack frames are dynamically aligned to an 8-byte boundary.
    400   int frame_pointer = input_->GetRegister(ebp.code());
    401   if ((frame_pointer & kPointerSize) != 0) {
    402     frame_pointer -= kPointerSize;
    403     has_alignment_padding_ = 1;
    404   }
    405 
    406   int32_t alignment_state = (has_alignment_padding_ == 1) ?
    407     kAlignmentPaddingPushed :
    408     kNoAlignmentPadding;
    409   if (FLAG_trace_osr) {
    410     PrintF("    [sp + %d] <- 0x%08x ; (alignment state)\n",
    411            output_offset,
    412            alignment_state);
    413   }
    414   output_[0]->SetFrameSlot(output_offset, alignment_state);
    415   output_offset -= kPointerSize;
    416 
    417   // Translate the rest of the frame.
    418   while (ok && input_offset >= 0) {
    419     ok = DoOsrTranslateCommand(&iterator, &input_offset);
    420   }
    421 
    422   // If translation of any command failed, continue using the input frame.
    423   if (!ok) {
    424     delete output_[0];
    425     output_[0] = input_;
    426     output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
    427   } else {
    428     // Set up the frame pointer and the context pointer.
    429     output_[0]->SetRegister(ebp.code(), frame_pointer);
    430     output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code()));
    431 
    432     unsigned pc_offset = data->OsrPcOffset()->value();
    433     uint32_t pc = reinterpret_cast<uint32_t>(
    434         compiled_code_->entry() + pc_offset);
    435     output_[0]->SetPc(pc);
    436   }
    437   Code* continuation =
    438       function_->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR);
    439   output_[0]->SetContinuation(
    440       reinterpret_cast<uint32_t>(continuation->entry()));
    441 
    442   if (FLAG_trace_osr) {
    443     PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
    444            ok ? "finished" : "aborted",
    445            reinterpret_cast<intptr_t>(function_));
    446     PrintFunctionName();
    447     PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
    448   }
    449 }
    450 
    451 
    452 void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
    453   // Set the register values. The values are not important as there are no
    454   // callee saved registers in JavaScript frames, so all registers are
    455   // spilled. Registers ebp and esp are set to the correct values though.
    456 
    457   for (int i = 0; i < Register::kNumRegisters; i++) {
    458     input_->SetRegister(i, i * 4);
    459   }
    460   input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
    461   input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
    462   for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) {
    463     input_->SetDoubleRegister(i, 0.0);
    464   }
    465 
    466   // Fill the frame content from the actual data on the frame.
    467   for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
    468     input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
    469   }
    470 }
    471 
    472 
    473 void Deoptimizer::SetPlatformCompiledStubRegisters(
    474     FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) {
    475   intptr_t handler =
    476       reinterpret_cast<intptr_t>(descriptor->deoptimization_handler_);
    477   int params = descriptor->register_param_count_;
    478   if (descriptor->stack_parameter_count_ != NULL) {
    479     params++;
    480   }
    481   output_frame->SetRegister(eax.code(), params);
    482   output_frame->SetRegister(ebx.code(), handler);
    483 }
    484 
    485 
    486 void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
    487   for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
    488     double double_value = input_->GetDoubleRegister(i);
    489     output_frame->SetDoubleRegister(i, double_value);
    490   }
    491 }
    492 
    493 
    494 bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
    495   int parameter_count = function->shared()->formal_parameter_count() + 1;
    496   unsigned input_frame_size = input_->GetFrameSize();
    497   unsigned alignment_state_offset =
    498       input_frame_size - parameter_count * kPointerSize -
    499       StandardFrameConstants::kFixedFrameSize -
    500       kPointerSize;
    501   ASSERT(JavaScriptFrameConstants::kDynamicAlignmentStateOffset ==
    502       JavaScriptFrameConstants::kLocal0Offset);
    503   int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset);
    504   return (alignment_state == kAlignmentPaddingPushed);
    505 }
    506 
    507 
    508 #define __ masm()->
    509 
    510 void Deoptimizer::EntryGenerator::Generate() {
    511   GeneratePrologue();
    512 
    513   // Save all general purpose registers before messing with them.
    514   const int kNumberOfRegisters = Register::kNumRegisters;
    515 
    516   const int kDoubleRegsSize = kDoubleSize *
    517                               XMMRegister::kNumAllocatableRegisters;
    518   __ sub(esp, Immediate(kDoubleRegsSize));
    519   if (CpuFeatures::IsSupported(SSE2)) {
    520     CpuFeatureScope scope(masm(), SSE2);
    521     for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
    522       XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
    523       int offset = i * kDoubleSize;
    524       __ movdbl(Operand(esp, offset), xmm_reg);
    525     }
    526   }
    527 
    528   __ pushad();
    529 
    530   const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
    531                                       kDoubleRegsSize;
    532 
    533   // Get the bailout id from the stack.
    534   __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
    535 
    536   // Get the address of the location in the code object
    537   // and compute the fp-to-sp delta in register edx.
    538   __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
    539   __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
    540 
    541   __ sub(edx, ebp);
    542   __ neg(edx);
    543 
    544   // Allocate a new deoptimizer object.
    545   __ PrepareCallCFunction(6, eax);
    546   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
    547   __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
    548   __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
    549   __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
    550   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
    551   __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
    552   __ mov(Operand(esp, 5 * kPointerSize),
    553          Immediate(ExternalReference::isolate_address(isolate())));
    554   {
    555     AllowExternalCallThatCantCauseGC scope(masm());
    556     __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
    557   }
    558 
    559   // Preserve deoptimizer object in register eax and get the input
    560   // frame descriptor pointer.
    561   __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
    562 
    563   // Fill in the input registers.
    564   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    565     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    566     __ pop(Operand(ebx, offset));
    567   }
    568 
    569   int double_regs_offset = FrameDescription::double_registers_offset();
    570   if (CpuFeatures::IsSupported(SSE2)) {
    571     CpuFeatureScope scope(masm(), SSE2);
    572     // Fill in the double input registers.
    573     for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
    574       int dst_offset = i * kDoubleSize + double_regs_offset;
    575       int src_offset = i * kDoubleSize;
    576       __ movdbl(xmm0, Operand(esp, src_offset));
    577       __ movdbl(Operand(ebx, dst_offset), xmm0);
    578     }
    579   }
    580 
    581   // Clear FPU all exceptions.
    582   // TODO(ulan): Find out why the TOP register is not zero here in some cases,
    583   // and check that the generated code never deoptimizes with unbalanced stack.
    584   __ fnclex();
    585 
    586   // Remove the bailout id, return address and the double registers.
    587   __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
    588 
    589   // Compute a pointer to the unwinding limit in register ecx; that is
    590   // the first stack slot not part of the input frame.
    591   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
    592   __ add(ecx, esp);
    593 
    594   // Unwind the stack down to - but not including - the unwinding
    595   // limit and copy the contents of the activation frame to the input
    596   // frame description.
    597   __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
    598   Label pop_loop_header;
    599   __ jmp(&pop_loop_header);
    600   Label pop_loop;
    601   __ bind(&pop_loop);
    602   __ pop(Operand(edx, 0));
    603   __ add(edx, Immediate(sizeof(uint32_t)));
    604   __ bind(&pop_loop_header);
    605   __ cmp(ecx, esp);
    606   __ j(not_equal, &pop_loop);
    607 
    608   // Compute the output frame in the deoptimizer.
    609   __ push(eax);
    610   __ PrepareCallCFunction(1, ebx);
    611   __ mov(Operand(esp, 0 * kPointerSize), eax);
    612   {
    613     AllowExternalCallThatCantCauseGC scope(masm());
    614     __ CallCFunction(
    615         ExternalReference::compute_output_frames_function(isolate()), 1);
    616   }
    617   __ pop(eax);
    618 
    619   if (type() != OSR) {
    620     // If frame was dynamically aligned, pop padding.
    621     Label no_padding;
    622     __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
    623            Immediate(0));
    624     __ j(equal, &no_padding);
    625     __ pop(ecx);
    626     if (FLAG_debug_code) {
    627       __ cmp(ecx, Immediate(kAlignmentZapValue));
    628       __ Assert(equal, kAlignmentMarkerExpected);
    629     }
    630     __ bind(&no_padding);
    631   } else {
    632     // If frame needs dynamic alignment push padding.
    633     Label no_padding;
    634     __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
    635            Immediate(0));
    636     __ j(equal, &no_padding);
    637     __ push(Immediate(kAlignmentZapValue));
    638     __ bind(&no_padding);
    639   }
    640 
    641   // Replace the current frame with the output frames.
    642   Label outer_push_loop, inner_push_loop,
    643       outer_loop_header, inner_loop_header;
    644   // Outer loop state: eax = current FrameDescription**, edx = one past the
    645   // last FrameDescription**.
    646   __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
    647   __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
    648   __ lea(edx, Operand(eax, edx, times_4, 0));
    649   __ jmp(&outer_loop_header);
    650   __ bind(&outer_push_loop);
    651   // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
    652   __ mov(ebx, Operand(eax, 0));
    653   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
    654   __ jmp(&inner_loop_header);
    655   __ bind(&inner_push_loop);
    656   __ sub(ecx, Immediate(sizeof(uint32_t)));
    657   __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
    658   __ bind(&inner_loop_header);
    659   __ test(ecx, ecx);
    660   __ j(not_zero, &inner_push_loop);
    661   __ add(eax, Immediate(kPointerSize));
    662   __ bind(&outer_loop_header);
    663   __ cmp(eax, edx);
    664   __ j(below, &outer_push_loop);
    665 
    666   // In case of OSR or a failed STUB, we have to restore the XMM registers.
    667   if (CpuFeatures::IsSupported(SSE2)) {
    668     CpuFeatureScope scope(masm(), SSE2);
    669     for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
    670       XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
    671       int src_offset = i * kDoubleSize + double_regs_offset;
    672       __ movdbl(xmm_reg, Operand(ebx, src_offset));
    673     }
    674   }
    675 
    676   // Push state, pc, and continuation from the last output frame.
    677   if (type() != OSR) {
    678     __ push(Operand(ebx, FrameDescription::state_offset()));
    679   }
    680   __ push(Operand(ebx, FrameDescription::pc_offset()));
    681   __ push(Operand(ebx, FrameDescription::continuation_offset()));
    682 
    683 
    684   // Push the registers from the last output frame.
    685   for (int i = 0; i < kNumberOfRegisters; i++) {
    686     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    687     __ push(Operand(ebx, offset));
    688   }
    689 
    690   // Restore the registers from the stack.
    691   __ popad();
    692 
    693   // Return to the continuation point.
    694   __ ret(0);
    695 }
    696 
    697 
    698 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
    699   // Create a sequence of deoptimization entries.
    700   Label done;
    701   for (int i = 0; i < count(); i++) {
    702     int start = masm()->pc_offset();
    703     USE(start);
    704     __ push_imm32(i);
    705     __ jmp(&done);
    706     ASSERT(masm()->pc_offset() - start == table_entry_size_);
    707   }
    708   __ bind(&done);
    709 }
    710 
    711 
    712 void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
    713   SetFrameSlot(offset, value);
    714 }
    715 
    716 
    717 void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
    718   SetFrameSlot(offset, value);
    719 }
    720 
    721 
    722 #undef __
    723 
    724 
    725 } }  // namespace v8::internal
    726 
    727 #endif  // V8_TARGET_ARCH_IA32
    728