Home | History | Annotate | Download | only in Scalar
      1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates commutative expressions in an order that is designed
     11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
     12 //
     13 // For example: 4 + (x + 5) -> x + (4 + 5)
     14 //
     15 // In the implementation of this algorithm, constants are assigned rank = 0,
     16 // function arguments are rank = 1, and other values are assigned ranks
     17 // corresponding to the reverse post order traversal of current function
     18 // (starting at 2), which effectively gives values in deep loops higher rank
     19 // than values not in loops.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #define DEBUG_TYPE "reassociate"
     24 #include "llvm/Transforms/Scalar.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/PostOrderIterator.h"
     27 #include "llvm/ADT/STLExtras.h"
     28 #include "llvm/ADT/SetVector.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/Assembly/Writer.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/DerivedTypes.h"
     33 #include "llvm/IR/Function.h"
     34 #include "llvm/IR/IRBuilder.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/CFG.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ValueHandle.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include <algorithm>
     44 using namespace llvm;
     45 
     46 STATISTIC(NumChanged, "Number of insts reassociated");
     47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
     48 STATISTIC(NumFactor , "Number of multiplies factored");
     49 
     50 namespace {
     51   struct ValueEntry {
     52     unsigned Rank;
     53     Value *Op;
     54     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
     55   };
     56   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
     57     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
     58   }
     59 }
     60 
     61 #ifndef NDEBUG
     62 /// PrintOps - Print out the expression identified in the Ops list.
     63 ///
     64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
     65   Module *M = I->getParent()->getParent()->getParent();
     66   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
     67        << *Ops[0].Op->getType() << '\t';
     68   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     69     dbgs() << "[ ";
     70     WriteAsOperand(dbgs(), Ops[i].Op, false, M);
     71     dbgs() << ", #" << Ops[i].Rank << "] ";
     72   }
     73 }
     74 #endif
     75 
     76 namespace {
     77   /// \brief Utility class representing a base and exponent pair which form one
     78   /// factor of some product.
     79   struct Factor {
     80     Value *Base;
     81     unsigned Power;
     82 
     83     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
     84 
     85     /// \brief Sort factors by their Base.
     86     struct BaseSorter {
     87       bool operator()(const Factor &LHS, const Factor &RHS) {
     88         return LHS.Base < RHS.Base;
     89       }
     90     };
     91 
     92     /// \brief Compare factors for equal bases.
     93     struct BaseEqual {
     94       bool operator()(const Factor &LHS, const Factor &RHS) {
     95         return LHS.Base == RHS.Base;
     96       }
     97     };
     98 
     99     /// \brief Sort factors in descending order by their power.
    100     struct PowerDescendingSorter {
    101       bool operator()(const Factor &LHS, const Factor &RHS) {
    102         return LHS.Power > RHS.Power;
    103       }
    104     };
    105 
    106     /// \brief Compare factors for equal powers.
    107     struct PowerEqual {
    108       bool operator()(const Factor &LHS, const Factor &RHS) {
    109         return LHS.Power == RHS.Power;
    110       }
    111     };
    112   };
    113 
    114   /// Utility class representing a non-constant Xor-operand. We classify
    115   /// non-constant Xor-Operands into two categories:
    116   ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
    117   ///  C2)
    118   ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
    119   ///          constant.
    120   ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
    121   ///          operand as "E | 0"
    122   class XorOpnd {
    123   public:
    124     XorOpnd(Value *V);
    125 
    126     bool isInvalid() const { return SymbolicPart == 0; }
    127     bool isOrExpr() const { return isOr; }
    128     Value *getValue() const { return OrigVal; }
    129     Value *getSymbolicPart() const { return SymbolicPart; }
    130     unsigned getSymbolicRank() const { return SymbolicRank; }
    131     const APInt &getConstPart() const { return ConstPart; }
    132 
    133     void Invalidate() { SymbolicPart = OrigVal = 0; }
    134     void setSymbolicRank(unsigned R) { SymbolicRank = R; }
    135 
    136     // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
    137     // The purpose is twofold:
    138     // 1) Cluster together the operands sharing the same symbolic-value.
    139     // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
    140     //   could potentially shorten crital path, and expose more loop-invariants.
    141     //   Note that values' rank are basically defined in RPO order (FIXME).
    142     //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
    143     //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
    144     //   "z" in the order of X-Y-Z is better than any other orders.
    145     struct PtrSortFunctor {
    146       bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
    147         return LHS->getSymbolicRank() < RHS->getSymbolicRank();
    148       }
    149     };
    150   private:
    151     Value *OrigVal;
    152     Value *SymbolicPart;
    153     APInt ConstPart;
    154     unsigned SymbolicRank;
    155     bool isOr;
    156   };
    157 }
    158 
    159 namespace {
    160   class Reassociate : public FunctionPass {
    161     DenseMap<BasicBlock*, unsigned> RankMap;
    162     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
    163     SetVector<AssertingVH<Instruction> > RedoInsts;
    164     bool MadeChange;
    165   public:
    166     static char ID; // Pass identification, replacement for typeid
    167     Reassociate() : FunctionPass(ID) {
    168       initializeReassociatePass(*PassRegistry::getPassRegistry());
    169     }
    170 
    171     bool runOnFunction(Function &F);
    172 
    173     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    174       AU.setPreservesCFG();
    175     }
    176   private:
    177     void BuildRankMap(Function &F);
    178     unsigned getRank(Value *V);
    179     void ReassociateExpression(BinaryOperator *I);
    180     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    181     Value *OptimizeExpression(BinaryOperator *I,
    182                               SmallVectorImpl<ValueEntry> &Ops);
    183     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    184     Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    185     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
    186                         Value *&Res);
    187     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
    188                         APInt &ConstOpnd, Value *&Res);
    189     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
    190                                 SmallVectorImpl<Factor> &Factors);
    191     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
    192                                    SmallVectorImpl<Factor> &Factors);
    193     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    194     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
    195     void EraseInst(Instruction *I);
    196     void OptimizeInst(Instruction *I);
    197   };
    198 }
    199 
    200 XorOpnd::XorOpnd(Value *V) {
    201   assert(!isa<ConstantInt>(V) && "No ConstantInt");
    202   OrigVal = V;
    203   Instruction *I = dyn_cast<Instruction>(V);
    204   SymbolicRank = 0;
    205 
    206   if (I && (I->getOpcode() == Instruction::Or ||
    207             I->getOpcode() == Instruction::And)) {
    208     Value *V0 = I->getOperand(0);
    209     Value *V1 = I->getOperand(1);
    210     if (isa<ConstantInt>(V0))
    211       std::swap(V0, V1);
    212 
    213     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
    214       ConstPart = C->getValue();
    215       SymbolicPart = V0;
    216       isOr = (I->getOpcode() == Instruction::Or);
    217       return;
    218     }
    219   }
    220 
    221   // view the operand as "V | 0"
    222   SymbolicPart = V;
    223   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
    224   isOr = true;
    225 }
    226 
    227 char Reassociate::ID = 0;
    228 INITIALIZE_PASS(Reassociate, "reassociate",
    229                 "Reassociate expressions", false, false)
    230 
    231 // Public interface to the Reassociate pass
    232 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
    233 
    234 /// isReassociableOp - Return true if V is an instruction of the specified
    235 /// opcode and if it only has one use.
    236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
    237   if (V->hasOneUse() && isa<Instruction>(V) &&
    238       cast<Instruction>(V)->getOpcode() == Opcode)
    239     return cast<BinaryOperator>(V);
    240   return 0;
    241 }
    242 
    243 static bool isUnmovableInstruction(Instruction *I) {
    244   switch (I->getOpcode()) {
    245   case Instruction::PHI:
    246   case Instruction::LandingPad:
    247   case Instruction::Alloca:
    248   case Instruction::Load:
    249   case Instruction::Invoke:
    250   case Instruction::UDiv:
    251   case Instruction::SDiv:
    252   case Instruction::FDiv:
    253   case Instruction::URem:
    254   case Instruction::SRem:
    255   case Instruction::FRem:
    256     return true;
    257   case Instruction::Call:
    258     return !isa<DbgInfoIntrinsic>(I);
    259   default:
    260     return false;
    261   }
    262 }
    263 
    264 void Reassociate::BuildRankMap(Function &F) {
    265   unsigned i = 2;
    266 
    267   // Assign distinct ranks to function arguments
    268   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    269     ValueRankMap[&*I] = ++i;
    270 
    271   ReversePostOrderTraversal<Function*> RPOT(&F);
    272   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
    273          E = RPOT.end(); I != E; ++I) {
    274     BasicBlock *BB = *I;
    275     unsigned BBRank = RankMap[BB] = ++i << 16;
    276 
    277     // Walk the basic block, adding precomputed ranks for any instructions that
    278     // we cannot move.  This ensures that the ranks for these instructions are
    279     // all different in the block.
    280     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    281       if (isUnmovableInstruction(I))
    282         ValueRankMap[&*I] = ++BBRank;
    283   }
    284 }
    285 
    286 unsigned Reassociate::getRank(Value *V) {
    287   Instruction *I = dyn_cast<Instruction>(V);
    288   if (I == 0) {
    289     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    290     return 0;  // Otherwise it's a global or constant, rank 0.
    291   }
    292 
    293   if (unsigned Rank = ValueRankMap[I])
    294     return Rank;    // Rank already known?
    295 
    296   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
    297   // we can reassociate expressions for code motion!  Since we do not recurse
    298   // for PHI nodes, we cannot have infinite recursion here, because there
    299   // cannot be loops in the value graph that do not go through PHI nodes.
    300   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
    301   for (unsigned i = 0, e = I->getNumOperands();
    302        i != e && Rank != MaxRank; ++i)
    303     Rank = std::max(Rank, getRank(I->getOperand(i)));
    304 
    305   // If this is a not or neg instruction, do not count it for rank.  This
    306   // assures us that X and ~X will have the same rank.
    307   if (!I->getType()->isIntegerTy() ||
    308       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
    309     ++Rank;
    310 
    311   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
    312   //     << Rank << "\n");
    313 
    314   return ValueRankMap[I] = Rank;
    315 }
    316 
    317 /// LowerNegateToMultiply - Replace 0-X with X*-1.
    318 ///
    319 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
    320   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
    321 
    322   BinaryOperator *Res =
    323     BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
    324   Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
    325   Res->takeName(Neg);
    326   Neg->replaceAllUsesWith(Res);
    327   Res->setDebugLoc(Neg->getDebugLoc());
    328   return Res;
    329 }
    330 
    331 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
    332 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
    333 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
    334 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
    335 /// even x in Bitwidth-bit arithmetic.
    336 static unsigned CarmichaelShift(unsigned Bitwidth) {
    337   if (Bitwidth < 3)
    338     return Bitwidth - 1;
    339   return Bitwidth - 2;
    340 }
    341 
    342 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
    343 /// reducing the combined weight using any special properties of the operation.
    344 /// The existing weight LHS represents the computation X op X op ... op X where
    345 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
    346 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
    347 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
    348 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
    349 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
    350   // If we were working with infinite precision arithmetic then the combined
    351   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
    352   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
    353   // for nilpotent operations and addition, but not for idempotent operations
    354   // and multiplication), so it is important to correctly reduce the combined
    355   // weight back into range if wrapping would be wrong.
    356 
    357   // If RHS is zero then the weight didn't change.
    358   if (RHS.isMinValue())
    359     return;
    360   // If LHS is zero then the combined weight is RHS.
    361   if (LHS.isMinValue()) {
    362     LHS = RHS;
    363     return;
    364   }
    365   // From this point on we know that neither LHS nor RHS is zero.
    366 
    367   if (Instruction::isIdempotent(Opcode)) {
    368     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    369     // weight of 1.  Keeping weights at zero or one also means that wrapping is
    370     // not a problem.
    371     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    372     return; // Return a weight of 1.
    373   }
    374   if (Instruction::isNilpotent(Opcode)) {
    375     // Nilpotent means X op X === 0, so reduce weights modulo 2.
    376     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    377     LHS = 0; // 1 + 1 === 0 modulo 2.
    378     return;
    379   }
    380   if (Opcode == Instruction::Add) {
    381     // TODO: Reduce the weight by exploiting nsw/nuw?
    382     LHS += RHS;
    383     return;
    384   }
    385 
    386   assert(Opcode == Instruction::Mul && "Unknown associative operation!");
    387   unsigned Bitwidth = LHS.getBitWidth();
    388   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
    389   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
    390   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
    391   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
    392   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
    393   // which by a happy accident means that they can always be represented using
    394   // Bitwidth bits.
    395   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
    396   // the Carmichael number).
    397   if (Bitwidth > 3) {
    398     /// CM - The value of Carmichael's lambda function.
    399     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    400     // Any weight W >= Threshold can be replaced with W - CM.
    401     APInt Threshold = CM + Bitwidth;
    402     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    403     // For Bitwidth 4 or more the following sum does not overflow.
    404     LHS += RHS;
    405     while (LHS.uge(Threshold))
    406       LHS -= CM;
    407   } else {
    408     // To avoid problems with overflow do everything the same as above but using
    409     // a larger type.
    410     unsigned CM = 1U << CarmichaelShift(Bitwidth);
    411     unsigned Threshold = CM + Bitwidth;
    412     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
    413            "Weights not reduced!");
    414     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    415     while (Total >= Threshold)
    416       Total -= CM;
    417     LHS = Total;
    418   }
    419 }
    420 
    421 typedef std::pair<Value*, APInt> RepeatedValue;
    422 
    423 /// LinearizeExprTree - Given an associative binary expression, return the leaf
    424 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
    425 /// original expression is the same as
    426 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
    427 /// op
    428 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
    429 /// op
    430 ///   ...
    431 /// op
    432 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
    433 ///
    434 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
    435 ///
    436 /// This routine may modify the function, in which case it returns 'true'.  The
    437 /// changes it makes may well be destructive, changing the value computed by 'I'
    438 /// to something completely different.  Thus if the routine returns 'true' then
    439 /// you MUST either replace I with a new expression computed from the Ops array,
    440 /// or use RewriteExprTree to put the values back in.
    441 ///
    442 /// A leaf node is either not a binary operation of the same kind as the root
    443 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
    444 /// opcode), or is the same kind of binary operator but has a use which either
    445 /// does not belong to the expression, or does belong to the expression but is
    446 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
    447 /// of the expression, while for non-leaf nodes (except for the root 'I') every
    448 /// use is a non-leaf node of the expression.
    449 ///
    450 /// For example:
    451 ///           expression graph        node names
    452 ///
    453 ///                     +        |        I
    454 ///                    / \       |
    455 ///                   +   +      |      A,  B
    456 ///                  / \ / \     |
    457 ///                 *   +   *    |    C,  D,  E
    458 ///                / \ / \ / \   |
    459 ///                   +   *      |      F,  G
    460 ///
    461 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
    462 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
    463 ///
    464 /// The expression is maximal: if some instruction is a binary operator of the
    465 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
    466 /// then the instruction also belongs to the expression, is not a leaf node of
    467 /// it, and its operands also belong to the expression (but may be leaf nodes).
    468 ///
    469 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
    470 /// order to ensure that every non-root node in the expression has *exactly one*
    471 /// use by a non-leaf node of the expression.  This destruction means that the
    472 /// caller MUST either replace 'I' with a new expression or use something like
    473 /// RewriteExprTree to put the values back in if the routine indicates that it
    474 /// made a change by returning 'true'.
    475 ///
    476 /// In the above example either the right operand of A or the left operand of B
    477 /// will be replaced by undef.  If it is B's operand then this gives:
    478 ///
    479 ///                     +        |        I
    480 ///                    / \       |
    481 ///                   +   +      |      A,  B - operand of B replaced with undef
    482 ///                  / \   \     |
    483 ///                 *   +   *    |    C,  D,  E
    484 ///                / \ / \ / \   |
    485 ///                   +   *      |      F,  G
    486 ///
    487 /// Note that such undef operands can only be reached by passing through 'I'.
    488 /// For example, if you visit operands recursively starting from a leaf node
    489 /// then you will never see such an undef operand unless you get back to 'I',
    490 /// which requires passing through a phi node.
    491 ///
    492 /// Note that this routine may also mutate binary operators of the wrong type
    493 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
    494 /// of the expression) if it can turn them into binary operators of the right
    495 /// type and thus make the expression bigger.
    496 
    497 static bool LinearizeExprTree(BinaryOperator *I,
    498                               SmallVectorImpl<RepeatedValue> &Ops) {
    499   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
    500   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
    501   unsigned Opcode = I->getOpcode();
    502   assert(Instruction::isAssociative(Opcode) &&
    503          Instruction::isCommutative(Opcode) &&
    504          "Expected an associative and commutative operation!");
    505 
    506   // Visit all operands of the expression, keeping track of their weight (the
    507   // number of paths from the expression root to the operand, or if you like
    508   // the number of times that operand occurs in the linearized expression).
    509   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
    510   // while A has weight two.
    511 
    512   // Worklist of non-leaf nodes (their operands are in the expression too) along
    513   // with their weights, representing a certain number of paths to the operator.
    514   // If an operator occurs in the worklist multiple times then we found multiple
    515   // ways to get to it.
    516   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
    517   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
    518   bool MadeChange = false;
    519 
    520   // Leaves of the expression are values that either aren't the right kind of
    521   // operation (eg: a constant, or a multiply in an add tree), or are, but have
    522   // some uses that are not inside the expression.  For example, in I = X + X,
    523   // X = A + B, the value X has two uses (by I) that are in the expression.  If
    524   // X has any other uses, for example in a return instruction, then we consider
    525   // X to be a leaf, and won't analyze it further.  When we first visit a value,
    526   // if it has more than one use then at first we conservatively consider it to
    527   // be a leaf.  Later, as the expression is explored, we may discover some more
    528   // uses of the value from inside the expression.  If all uses turn out to be
    529   // from within the expression (and the value is a binary operator of the right
    530   // kind) then the value is no longer considered to be a leaf, and its operands
    531   // are explored.
    532 
    533   // Leaves - Keeps track of the set of putative leaves as well as the number of
    534   // paths to each leaf seen so far.
    535   typedef DenseMap<Value*, APInt> LeafMap;
    536   LeafMap Leaves; // Leaf -> Total weight so far.
    537   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
    538 
    539 #ifndef NDEBUG
    540   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
    541 #endif
    542   while (!Worklist.empty()) {
    543     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
    544     I = P.first; // We examine the operands of this binary operator.
    545 
    546     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
    547       Value *Op = I->getOperand(OpIdx);
    548       APInt Weight = P.second; // Number of paths to this operand.
    549       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
    550       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
    551 
    552       // If this is a binary operation of the right kind with only one use then
    553       // add its operands to the expression.
    554       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    555         assert(Visited.insert(Op) && "Not first visit!");
    556         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
    557         Worklist.push_back(std::make_pair(BO, Weight));
    558         continue;
    559       }
    560 
    561       // Appears to be a leaf.  Is the operand already in the set of leaves?
    562       LeafMap::iterator It = Leaves.find(Op);
    563       if (It == Leaves.end()) {
    564         // Not in the leaf map.  Must be the first time we saw this operand.
    565         assert(Visited.insert(Op) && "Not first visit!");
    566         if (!Op->hasOneUse()) {
    567           // This value has uses not accounted for by the expression, so it is
    568           // not safe to modify.  Mark it as being a leaf.
    569           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
    570           LeafOrder.push_back(Op);
    571           Leaves[Op] = Weight;
    572           continue;
    573         }
    574         // No uses outside the expression, try morphing it.
    575       } else if (It != Leaves.end()) {
    576         // Already in the leaf map.
    577         assert(Visited.count(Op) && "In leaf map but not visited!");
    578 
    579         // Update the number of paths to the leaf.
    580         IncorporateWeight(It->second, Weight, Opcode);
    581 
    582 #if 0   // TODO: Re-enable once PR13021 is fixed.
    583         // The leaf already has one use from inside the expression.  As we want
    584         // exactly one such use, drop this new use of the leaf.
    585         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
    586         I->setOperand(OpIdx, UndefValue::get(I->getType()));
    587         MadeChange = true;
    588 
    589         // If the leaf is a binary operation of the right kind and we now see
    590         // that its multiple original uses were in fact all by nodes belonging
    591         // to the expression, then no longer consider it to be a leaf and add
    592         // its operands to the expression.
    593         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    594           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
    595           Worklist.push_back(std::make_pair(BO, It->second));
    596           Leaves.erase(It);
    597           continue;
    598         }
    599 #endif
    600 
    601         // If we still have uses that are not accounted for by the expression
    602         // then it is not safe to modify the value.
    603         if (!Op->hasOneUse())
    604           continue;
    605 
    606         // No uses outside the expression, try morphing it.
    607         Weight = It->second;
    608         Leaves.erase(It); // Since the value may be morphed below.
    609       }
    610 
    611       // At this point we have a value which, first of all, is not a binary
    612       // expression of the right kind, and secondly, is only used inside the
    613       // expression.  This means that it can safely be modified.  See if we
    614       // can usefully morph it into an expression of the right kind.
    615       assert((!isa<Instruction>(Op) ||
    616               cast<Instruction>(Op)->getOpcode() != Opcode) &&
    617              "Should have been handled above!");
    618       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
    619 
    620       // If this is a multiply expression, turn any internal negations into
    621       // multiplies by -1 so they can be reassociated.
    622       BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
    623       if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
    624         DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
    625         BO = LowerNegateToMultiply(BO);
    626         DEBUG(dbgs() << *BO << 'n');
    627         Worklist.push_back(std::make_pair(BO, Weight));
    628         MadeChange = true;
    629         continue;
    630       }
    631 
    632       // Failed to morph into an expression of the right type.  This really is
    633       // a leaf.
    634       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
    635       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
    636       LeafOrder.push_back(Op);
    637       Leaves[Op] = Weight;
    638     }
    639   }
    640 
    641   // The leaves, repeated according to their weights, represent the linearized
    642   // form of the expression.
    643   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    644     Value *V = LeafOrder[i];
    645     LeafMap::iterator It = Leaves.find(V);
    646     if (It == Leaves.end())
    647       // Node initially thought to be a leaf wasn't.
    648       continue;
    649     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    650     APInt Weight = It->second;
    651     if (Weight.isMinValue())
    652       // Leaf already output or weight reduction eliminated it.
    653       continue;
    654     // Ensure the leaf is only output once.
    655     It->second = 0;
    656     Ops.push_back(std::make_pair(V, Weight));
    657   }
    658 
    659   // For nilpotent operations or addition there may be no operands, for example
    660   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
    661   // in both cases the weight reduces to 0 causing the value to be skipped.
    662   if (Ops.empty()) {
    663     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
    664     assert(Identity && "Associative operation without identity!");
    665     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
    666   }
    667 
    668   return MadeChange;
    669 }
    670 
    671 // RewriteExprTree - Now that the operands for this expression tree are
    672 // linearized and optimized, emit them in-order.
    673 void Reassociate::RewriteExprTree(BinaryOperator *I,
    674                                   SmallVectorImpl<ValueEntry> &Ops) {
    675   assert(Ops.size() > 1 && "Single values should be used directly!");
    676 
    677   // Since our optimizations should never increase the number of operations, the
    678   // new expression can usually be written reusing the existing binary operators
    679   // from the original expression tree, without creating any new instructions,
    680   // though the rewritten expression may have a completely different topology.
    681   // We take care to not change anything if the new expression will be the same
    682   // as the original.  If more than trivial changes (like commuting operands)
    683   // were made then we are obliged to clear out any optional subclass data like
    684   // nsw flags.
    685 
    686   /// NodesToRewrite - Nodes from the original expression available for writing
    687   /// the new expression into.
    688   SmallVector<BinaryOperator*, 8> NodesToRewrite;
    689   unsigned Opcode = I->getOpcode();
    690   BinaryOperator *Op = I;
    691 
    692   /// NotRewritable - The operands being written will be the leaves of the new
    693   /// expression and must not be used as inner nodes (via NodesToRewrite) by
    694   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
    695   /// (if they were they would have been incorporated into the expression and so
    696   /// would not be leaves), so most of the time there is no danger of this.  But
    697   /// in rare cases a leaf may become reassociable if an optimization kills uses
    698   /// of it, or it may momentarily become reassociable during rewriting (below)
    699   /// due it being removed as an operand of one of its uses.  Ensure that misuse
    700   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
    701   /// leaves and refusing to reuse any of them as inner nodes.
    702   SmallPtrSet<Value*, 8> NotRewritable;
    703   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    704     NotRewritable.insert(Ops[i].Op);
    705 
    706   // ExpressionChanged - Non-null if the rewritten expression differs from the
    707   // original in some non-trivial way, requiring the clearing of optional flags.
    708   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
    709   BinaryOperator *ExpressionChanged = 0;
    710   for (unsigned i = 0; ; ++i) {
    711     // The last operation (which comes earliest in the IR) is special as both
    712     // operands will come from Ops, rather than just one with the other being
    713     // a subexpression.
    714     if (i+2 == Ops.size()) {
    715       Value *NewLHS = Ops[i].Op;
    716       Value *NewRHS = Ops[i+1].Op;
    717       Value *OldLHS = Op->getOperand(0);
    718       Value *OldRHS = Op->getOperand(1);
    719 
    720       if (NewLHS == OldLHS && NewRHS == OldRHS)
    721         // Nothing changed, leave it alone.
    722         break;
    723 
    724       if (NewLHS == OldRHS && NewRHS == OldLHS) {
    725         // The order of the operands was reversed.  Swap them.
    726         DEBUG(dbgs() << "RA: " << *Op << '\n');
    727         Op->swapOperands();
    728         DEBUG(dbgs() << "TO: " << *Op << '\n');
    729         MadeChange = true;
    730         ++NumChanged;
    731         break;
    732       }
    733 
    734       // The new operation differs non-trivially from the original. Overwrite
    735       // the old operands with the new ones.
    736       DEBUG(dbgs() << "RA: " << *Op << '\n');
    737       if (NewLHS != OldLHS) {
    738         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
    739         if (BO && !NotRewritable.count(BO))
    740           NodesToRewrite.push_back(BO);
    741         Op->setOperand(0, NewLHS);
    742       }
    743       if (NewRHS != OldRHS) {
    744         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
    745         if (BO && !NotRewritable.count(BO))
    746           NodesToRewrite.push_back(BO);
    747         Op->setOperand(1, NewRHS);
    748       }
    749       DEBUG(dbgs() << "TO: " << *Op << '\n');
    750 
    751       ExpressionChanged = Op;
    752       MadeChange = true;
    753       ++NumChanged;
    754 
    755       break;
    756     }
    757 
    758     // Not the last operation.  The left-hand side will be a sub-expression
    759     // while the right-hand side will be the current element of Ops.
    760     Value *NewRHS = Ops[i].Op;
    761     if (NewRHS != Op->getOperand(1)) {
    762       DEBUG(dbgs() << "RA: " << *Op << '\n');
    763       if (NewRHS == Op->getOperand(0)) {
    764         // The new right-hand side was already present as the left operand.  If
    765         // we are lucky then swapping the operands will sort out both of them.
    766         Op->swapOperands();
    767       } else {
    768         // Overwrite with the new right-hand side.
    769         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
    770         if (BO && !NotRewritable.count(BO))
    771           NodesToRewrite.push_back(BO);
    772         Op->setOperand(1, NewRHS);
    773         ExpressionChanged = Op;
    774       }
    775       DEBUG(dbgs() << "TO: " << *Op << '\n');
    776       MadeChange = true;
    777       ++NumChanged;
    778     }
    779 
    780     // Now deal with the left-hand side.  If this is already an operation node
    781     // from the original expression then just rewrite the rest of the expression
    782     // into it.
    783     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
    784     if (BO && !NotRewritable.count(BO)) {
    785       Op = BO;
    786       continue;
    787     }
    788 
    789     // Otherwise, grab a spare node from the original expression and use that as
    790     // the left-hand side.  If there are no nodes left then the optimizers made
    791     // an expression with more nodes than the original!  This usually means that
    792     // they did something stupid but it might mean that the problem was just too
    793     // hard (finding the mimimal number of multiplications needed to realize a
    794     // multiplication expression is NP-complete).  Whatever the reason, smart or
    795     // stupid, create a new node if there are none left.
    796     BinaryOperator *NewOp;
    797     if (NodesToRewrite.empty()) {
    798       Constant *Undef = UndefValue::get(I->getType());
    799       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
    800                                      Undef, Undef, "", I);
    801     } else {
    802       NewOp = NodesToRewrite.pop_back_val();
    803     }
    804 
    805     DEBUG(dbgs() << "RA: " << *Op << '\n');
    806     Op->setOperand(0, NewOp);
    807     DEBUG(dbgs() << "TO: " << *Op << '\n');
    808     ExpressionChanged = Op;
    809     MadeChange = true;
    810     ++NumChanged;
    811     Op = NewOp;
    812   }
    813 
    814   // If the expression changed non-trivially then clear out all subclass data
    815   // starting from the operator specified in ExpressionChanged, and compactify
    816   // the operators to just before the expression root to guarantee that the
    817   // expression tree is dominated by all of Ops.
    818   if (ExpressionChanged)
    819     do {
    820       ExpressionChanged->clearSubclassOptionalData();
    821       if (ExpressionChanged == I)
    822         break;
    823       ExpressionChanged->moveBefore(I);
    824       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
    825     } while (1);
    826 
    827   // Throw away any left over nodes from the original expression.
    828   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    829     RedoInsts.insert(NodesToRewrite[i]);
    830 }
    831 
    832 /// NegateValue - Insert instructions before the instruction pointed to by BI,
    833 /// that computes the negative version of the value specified.  The negative
    834 /// version of the value is returned, and BI is left pointing at the instruction
    835 /// that should be processed next by the reassociation pass.
    836 static Value *NegateValue(Value *V, Instruction *BI) {
    837   if (Constant *C = dyn_cast<Constant>(V))
    838     return ConstantExpr::getNeg(C);
    839 
    840   // We are trying to expose opportunity for reassociation.  One of the things
    841   // that we want to do to achieve this is to push a negation as deep into an
    842   // expression chain as possible, to expose the add instructions.  In practice,
    843   // this means that we turn this:
    844   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
    845   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
    846   // the constants.  We assume that instcombine will clean up the mess later if
    847   // we introduce tons of unnecessary negation instructions.
    848   //
    849   if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
    850     // Push the negates through the add.
    851     I->setOperand(0, NegateValue(I->getOperand(0), BI));
    852     I->setOperand(1, NegateValue(I->getOperand(1), BI));
    853 
    854     // We must move the add instruction here, because the neg instructions do
    855     // not dominate the old add instruction in general.  By moving it, we are
    856     // assured that the neg instructions we just inserted dominate the
    857     // instruction we are about to insert after them.
    858     //
    859     I->moveBefore(BI);
    860     I->setName(I->getName()+".neg");
    861     return I;
    862   }
    863 
    864   // Okay, we need to materialize a negated version of V with an instruction.
    865   // Scan the use lists of V to see if we have one already.
    866   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    867     User *U = *UI;
    868     if (!BinaryOperator::isNeg(U)) continue;
    869 
    870     // We found one!  Now we have to make sure that the definition dominates
    871     // this use.  We do this by moving it to the entry block (if it is a
    872     // non-instruction value) or right after the definition.  These negates will
    873     // be zapped by reassociate later, so we don't need much finesse here.
    874     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
    875 
    876     // Verify that the negate is in this function, V might be a constant expr.
    877     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
    878       continue;
    879 
    880     BasicBlock::iterator InsertPt;
    881     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
    882       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
    883         InsertPt = II->getNormalDest()->begin();
    884       } else {
    885         InsertPt = InstInput;
    886         ++InsertPt;
    887       }
    888       while (isa<PHINode>(InsertPt)) ++InsertPt;
    889     } else {
    890       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    891     }
    892     TheNeg->moveBefore(InsertPt);
    893     return TheNeg;
    894   }
    895 
    896   // Insert a 'neg' instruction that subtracts the value from zero to get the
    897   // negation.
    898   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
    899 }
    900 
    901 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
    902 /// X-Y into (X + -Y).
    903 static bool ShouldBreakUpSubtract(Instruction *Sub) {
    904   // If this is a negation, we can't split it up!
    905   if (BinaryOperator::isNeg(Sub))
    906     return false;
    907 
    908   // Don't bother to break this up unless either the LHS is an associable add or
    909   // subtract or if this is only used by one.
    910   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
    911       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
    912     return true;
    913   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
    914       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
    915     return true;
    916   if (Sub->hasOneUse() &&
    917       (isReassociableOp(Sub->use_back(), Instruction::Add) ||
    918        isReassociableOp(Sub->use_back(), Instruction::Sub)))
    919     return true;
    920 
    921   return false;
    922 }
    923 
    924 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
    925 /// only used by an add, transform this into (X+(0-Y)) to promote better
    926 /// reassociation.
    927 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
    928   // Convert a subtract into an add and a neg instruction. This allows sub
    929   // instructions to be commuted with other add instructions.
    930   //
    931   // Calculate the negative value of Operand 1 of the sub instruction,
    932   // and set it as the RHS of the add instruction we just made.
    933   //
    934   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
    935   BinaryOperator *New =
    936     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
    937   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
    938   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
    939   New->takeName(Sub);
    940 
    941   // Everyone now refers to the add instruction.
    942   Sub->replaceAllUsesWith(New);
    943   New->setDebugLoc(Sub->getDebugLoc());
    944 
    945   DEBUG(dbgs() << "Negated: " << *New << '\n');
    946   return New;
    947 }
    948 
    949 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
    950 /// by one, change this into a multiply by a constant to assist with further
    951 /// reassociation.
    952 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
    953   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
    954   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
    955 
    956   BinaryOperator *Mul =
    957     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
    958   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
    959   Mul->takeName(Shl);
    960   Shl->replaceAllUsesWith(Mul);
    961   Mul->setDebugLoc(Shl->getDebugLoc());
    962   return Mul;
    963 }
    964 
    965 /// FindInOperandList - Scan backwards and forwards among values with the same
    966 /// rank as element i to see if X exists.  If X does not exist, return i.  This
    967 /// is useful when scanning for 'x' when we see '-x' because they both get the
    968 /// same rank.
    969 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
    970                                   Value *X) {
    971   unsigned XRank = Ops[i].Rank;
    972   unsigned e = Ops.size();
    973   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
    974     if (Ops[j].Op == X)
    975       return j;
    976   // Scan backwards.
    977   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
    978     if (Ops[j].Op == X)
    979       return j;
    980   return i;
    981 }
    982 
    983 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
    984 /// and returning the result.  Insert the tree before I.
    985 static Value *EmitAddTreeOfValues(Instruction *I,
    986                                   SmallVectorImpl<WeakVH> &Ops){
    987   if (Ops.size() == 1) return Ops.back();
    988 
    989   Value *V1 = Ops.back();
    990   Ops.pop_back();
    991   Value *V2 = EmitAddTreeOfValues(I, Ops);
    992   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
    993 }
    994 
    995 /// RemoveFactorFromExpression - If V is an expression tree that is a
    996 /// multiplication sequence, and if this sequence contains a multiply by Factor,
    997 /// remove Factor from the tree and return the new tree.
    998 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
    999   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
   1000   if (!BO) return 0;
   1001 
   1002   SmallVector<RepeatedValue, 8> Tree;
   1003   MadeChange |= LinearizeExprTree(BO, Tree);
   1004   SmallVector<ValueEntry, 8> Factors;
   1005   Factors.reserve(Tree.size());
   1006   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1007     RepeatedValue E = Tree[i];
   1008     Factors.append(E.second.getZExtValue(),
   1009                    ValueEntry(getRank(E.first), E.first));
   1010   }
   1011 
   1012   bool FoundFactor = false;
   1013   bool NeedsNegate = false;
   1014   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1015     if (Factors[i].Op == Factor) {
   1016       FoundFactor = true;
   1017       Factors.erase(Factors.begin()+i);
   1018       break;
   1019     }
   1020 
   1021     // If this is a negative version of this factor, remove it.
   1022     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
   1023       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
   1024         if (FC1->getValue() == -FC2->getValue()) {
   1025           FoundFactor = NeedsNegate = true;
   1026           Factors.erase(Factors.begin()+i);
   1027           break;
   1028         }
   1029   }
   1030 
   1031   if (!FoundFactor) {
   1032     // Make sure to restore the operands to the expression tree.
   1033     RewriteExprTree(BO, Factors);
   1034     return 0;
   1035   }
   1036 
   1037   BasicBlock::iterator InsertPt = BO; ++InsertPt;
   1038 
   1039   // If this was just a single multiply, remove the multiply and return the only
   1040   // remaining operand.
   1041   if (Factors.size() == 1) {
   1042     RedoInsts.insert(BO);
   1043     V = Factors[0].Op;
   1044   } else {
   1045     RewriteExprTree(BO, Factors);
   1046     V = BO;
   1047   }
   1048 
   1049   if (NeedsNegate)
   1050     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
   1051 
   1052   return V;
   1053 }
   1054 
   1055 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
   1056 /// add its operands as factors, otherwise add V to the list of factors.
   1057 ///
   1058 /// Ops is the top-level list of add operands we're trying to factor.
   1059 static void FindSingleUseMultiplyFactors(Value *V,
   1060                                          SmallVectorImpl<Value*> &Factors,
   1061                                        const SmallVectorImpl<ValueEntry> &Ops) {
   1062   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
   1063   if (!BO) {
   1064     Factors.push_back(V);
   1065     return;
   1066   }
   1067 
   1068   // Otherwise, add the LHS and RHS to the list of factors.
   1069   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
   1070   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
   1071 }
   1072 
   1073 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
   1074 /// instruction.  This optimizes based on identities.  If it can be reduced to
   1075 /// a single Value, it is returned, otherwise the Ops list is mutated as
   1076 /// necessary.
   1077 static Value *OptimizeAndOrXor(unsigned Opcode,
   1078                                SmallVectorImpl<ValueEntry> &Ops) {
   1079   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
   1080   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
   1081   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1082     // First, check for X and ~X in the operand list.
   1083     assert(i < Ops.size());
   1084     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
   1085       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
   1086       unsigned FoundX = FindInOperandList(Ops, i, X);
   1087       if (FoundX != i) {
   1088         if (Opcode == Instruction::And)   // ...&X&~X = 0
   1089           return Constant::getNullValue(X->getType());
   1090 
   1091         if (Opcode == Instruction::Or)    // ...|X|~X = -1
   1092           return Constant::getAllOnesValue(X->getType());
   1093       }
   1094     }
   1095 
   1096     // Next, check for duplicate pairs of values, which we assume are next to
   1097     // each other, due to our sorting criteria.
   1098     assert(i < Ops.size());
   1099     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
   1100       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
   1101         // Drop duplicate values for And and Or.
   1102         Ops.erase(Ops.begin()+i);
   1103         --i; --e;
   1104         ++NumAnnihil;
   1105         continue;
   1106       }
   1107 
   1108       // Drop pairs of values for Xor.
   1109       assert(Opcode == Instruction::Xor);
   1110       if (e == 2)
   1111         return Constant::getNullValue(Ops[0].Op->getType());
   1112 
   1113       // Y ^ X^X -> Y
   1114       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
   1115       i -= 1; e -= 2;
   1116       ++NumAnnihil;
   1117     }
   1118   }
   1119   return 0;
   1120 }
   1121 
   1122 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
   1123 /// instruction with the given two operands, and return the resulting
   1124 /// instruction. There are two special cases: 1) if the constant operand is 0,
   1125 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
   1126 /// be returned.
   1127 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
   1128                              const APInt &ConstOpnd) {
   1129   if (ConstOpnd != 0) {
   1130     if (!ConstOpnd.isAllOnesValue()) {
   1131       LLVMContext &Ctx = Opnd->getType()->getContext();
   1132       Instruction *I;
   1133       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
   1134                                     "and.ra", InsertBefore);
   1135       I->setDebugLoc(InsertBefore->getDebugLoc());
   1136       return I;
   1137     }
   1138     return Opnd;
   1139   }
   1140   return 0;
   1141 }
   1142 
   1143 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
   1144 // into "R ^ C", where C would be 0, and R is a symbolic value.
   1145 //
   1146 // If it was successful, true is returned, and the "R" and "C" is returned
   1147 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
   1148 // and both "Res" and "ConstOpnd" remain unchanged.
   1149 //
   1150 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
   1151                                  APInt &ConstOpnd, Value *&Res) {
   1152   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
   1153   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
   1154   //                       = (x & ~c1) ^ (c1 ^ c2)
   1155   // It is useful only when c1 == c2.
   1156   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
   1157     if (!Opnd1->getValue()->hasOneUse())
   1158       return false;
   1159 
   1160     const APInt &C1 = Opnd1->getConstPart();
   1161     if (C1 != ConstOpnd)
   1162       return false;
   1163 
   1164     Value *X = Opnd1->getSymbolicPart();
   1165     Res = createAndInstr(I, X, ~C1);
   1166     // ConstOpnd was C2, now C1 ^ C2.
   1167     ConstOpnd ^= C1;
   1168 
   1169     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1170       RedoInsts.insert(T);
   1171     return true;
   1172   }
   1173   return false;
   1174 }
   1175 
   1176 
   1177 // Helper function of OptimizeXor(). It tries to simplify
   1178 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
   1179 // symbolic value.
   1180 //
   1181 // If it was successful, true is returned, and the "R" and "C" is returned
   1182 // via "Res" and "ConstOpnd", respectively (If the entire expression is
   1183 // evaluated to a constant, the Res is set to NULL); otherwise, false is
   1184 // returned, and both "Res" and "ConstOpnd" remain unchanged.
   1185 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
   1186                                  APInt &ConstOpnd, Value *&Res) {
   1187   Value *X = Opnd1->getSymbolicPart();
   1188   if (X != Opnd2->getSymbolicPart())
   1189     return false;
   1190 
   1191   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
   1192   int DeadInstNum = 1;
   1193   if (Opnd1->getValue()->hasOneUse())
   1194     DeadInstNum++;
   1195   if (Opnd2->getValue()->hasOneUse())
   1196     DeadInstNum++;
   1197 
   1198   // Xor-Rule 2:
   1199   //  (x | c1) ^ (x & c2)
   1200   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
   1201   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
   1202   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
   1203   //
   1204   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
   1205     if (Opnd2->isOrExpr())
   1206       std::swap(Opnd1, Opnd2);
   1207 
   1208     const APInt &C1 = Opnd1->getConstPart();
   1209     const APInt &C2 = Opnd2->getConstPart();
   1210     APInt C3((~C1) ^ C2);
   1211 
   1212     // Do not increase code size!
   1213     if (C3 != 0 && !C3.isAllOnesValue()) {
   1214       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1215       if (NewInstNum > DeadInstNum)
   1216         return false;
   1217     }
   1218 
   1219     Res = createAndInstr(I, X, C3);
   1220     ConstOpnd ^= C1;
   1221 
   1222   } else if (Opnd1->isOrExpr()) {
   1223     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
   1224     //
   1225     const APInt &C1 = Opnd1->getConstPart();
   1226     const APInt &C2 = Opnd2->getConstPart();
   1227     APInt C3 = C1 ^ C2;
   1228 
   1229     // Do not increase code size
   1230     if (C3 != 0 && !C3.isAllOnesValue()) {
   1231       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1232       if (NewInstNum > DeadInstNum)
   1233         return false;
   1234     }
   1235 
   1236     Res = createAndInstr(I, X, C3);
   1237     ConstOpnd ^= C3;
   1238   } else {
   1239     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
   1240     //
   1241     const APInt &C1 = Opnd1->getConstPart();
   1242     const APInt &C2 = Opnd2->getConstPart();
   1243     APInt C3 = C1 ^ C2;
   1244     Res = createAndInstr(I, X, C3);
   1245   }
   1246 
   1247   // Put the original operands in the Redo list; hope they will be deleted
   1248   // as dead code.
   1249   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1250     RedoInsts.insert(T);
   1251   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
   1252     RedoInsts.insert(T);
   1253 
   1254   return true;
   1255 }
   1256 
   1257 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
   1258 /// to a single Value, it is returned, otherwise the Ops list is mutated as
   1259 /// necessary.
   1260 Value *Reassociate::OptimizeXor(Instruction *I,
   1261                                 SmallVectorImpl<ValueEntry> &Ops) {
   1262   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
   1263     return V;
   1264 
   1265   if (Ops.size() == 1)
   1266     return 0;
   1267 
   1268   SmallVector<XorOpnd, 8> Opnds;
   1269   SmallVector<XorOpnd*, 8> OpndPtrs;
   1270   Type *Ty = Ops[0].Op->getType();
   1271   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
   1272 
   1273   // Step 1: Convert ValueEntry to XorOpnd
   1274   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1275     Value *V = Ops[i].Op;
   1276     if (!isa<ConstantInt>(V)) {
   1277       XorOpnd O(V);
   1278       O.setSymbolicRank(getRank(O.getSymbolicPart()));
   1279       Opnds.push_back(O);
   1280     } else
   1281       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
   1282   }
   1283 
   1284   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
   1285   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
   1286   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
   1287   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
   1288   //  when new elements are added to the vector.
   1289   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
   1290     OpndPtrs.push_back(&Opnds[i]);
   1291 
   1292   // Step 2: Sort the Xor-Operands in a way such that the operands containing
   1293   //  the same symbolic value cluster together. For instance, the input operand
   1294   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
   1295   //  ("x | 123", "x & 789", "y & 456").
   1296   std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
   1297 
   1298   // Step 3: Combine adjacent operands
   1299   XorOpnd *PrevOpnd = 0;
   1300   bool Changed = false;
   1301   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
   1302     XorOpnd *CurrOpnd = OpndPtrs[i];
   1303     // The combined value
   1304     Value *CV;
   1305 
   1306     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
   1307     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
   1308       Changed = true;
   1309       if (CV)
   1310         *CurrOpnd = XorOpnd(CV);
   1311       else {
   1312         CurrOpnd->Invalidate();
   1313         continue;
   1314       }
   1315     }
   1316 
   1317     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
   1318       PrevOpnd = CurrOpnd;
   1319       continue;
   1320     }
   1321 
   1322     // step 3.2: When previous and current operands share the same symbolic
   1323     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
   1324     //
   1325     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
   1326       // Remove previous operand
   1327       PrevOpnd->Invalidate();
   1328       if (CV) {
   1329         *CurrOpnd = XorOpnd(CV);
   1330         PrevOpnd = CurrOpnd;
   1331       } else {
   1332         CurrOpnd->Invalidate();
   1333         PrevOpnd = 0;
   1334       }
   1335       Changed = true;
   1336     }
   1337   }
   1338 
   1339   // Step 4: Reassemble the Ops
   1340   if (Changed) {
   1341     Ops.clear();
   1342     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
   1343       XorOpnd &O = Opnds[i];
   1344       if (O.isInvalid())
   1345         continue;
   1346       ValueEntry VE(getRank(O.getValue()), O.getValue());
   1347       Ops.push_back(VE);
   1348     }
   1349     if (ConstOpnd != 0) {
   1350       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
   1351       ValueEntry VE(getRank(C), C);
   1352       Ops.push_back(VE);
   1353     }
   1354     int Sz = Ops.size();
   1355     if (Sz == 1)
   1356       return Ops.back().Op;
   1357     else if (Sz == 0) {
   1358       assert(ConstOpnd == 0);
   1359       return ConstantInt::get(Ty->getContext(), ConstOpnd);
   1360     }
   1361   }
   1362 
   1363   return 0;
   1364 }
   1365 
   1366 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
   1367 /// optimizes based on identities.  If it can be reduced to a single Value, it
   1368 /// is returned, otherwise the Ops list is mutated as necessary.
   1369 Value *Reassociate::OptimizeAdd(Instruction *I,
   1370                                 SmallVectorImpl<ValueEntry> &Ops) {
   1371   // Scan the operand lists looking for X and -X pairs.  If we find any, we
   1372   // can simplify the expression. X+-X == 0.  While we're at it, scan for any
   1373   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
   1374   //
   1375   // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
   1376   //
   1377   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1378     Value *TheOp = Ops[i].Op;
   1379     // Check to see if we've seen this operand before.  If so, we factor all
   1380     // instances of the operand together.  Due to our sorting criteria, we know
   1381     // that these need to be next to each other in the vector.
   1382     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
   1383       // Rescan the list, remove all instances of this operand from the expr.
   1384       unsigned NumFound = 0;
   1385       do {
   1386         Ops.erase(Ops.begin()+i);
   1387         ++NumFound;
   1388       } while (i != Ops.size() && Ops[i].Op == TheOp);
   1389 
   1390       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
   1391       ++NumFactor;
   1392 
   1393       // Insert a new multiply.
   1394       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
   1395       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
   1396 
   1397       // Now that we have inserted a multiply, optimize it. This allows us to
   1398       // handle cases that require multiple factoring steps, such as this:
   1399       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
   1400       RedoInsts.insert(cast<Instruction>(Mul));
   1401 
   1402       // If every add operand was a duplicate, return the multiply.
   1403       if (Ops.empty())
   1404         return Mul;
   1405 
   1406       // Otherwise, we had some input that didn't have the dupe, such as
   1407       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
   1408       // things being added by this operation.
   1409       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
   1410 
   1411       --i;
   1412       e = Ops.size();
   1413       continue;
   1414     }
   1415 
   1416     // Check for X and -X in the operand list.
   1417     if (!BinaryOperator::isNeg(TheOp))
   1418       continue;
   1419 
   1420     Value *X = BinaryOperator::getNegArgument(TheOp);
   1421     unsigned FoundX = FindInOperandList(Ops, i, X);
   1422     if (FoundX == i)
   1423       continue;
   1424 
   1425     // Remove X and -X from the operand list.
   1426     if (Ops.size() == 2)
   1427       return Constant::getNullValue(X->getType());
   1428 
   1429     Ops.erase(Ops.begin()+i);
   1430     if (i < FoundX)
   1431       --FoundX;
   1432     else
   1433       --i;   // Need to back up an extra one.
   1434     Ops.erase(Ops.begin()+FoundX);
   1435     ++NumAnnihil;
   1436     --i;     // Revisit element.
   1437     e -= 2;  // Removed two elements.
   1438   }
   1439 
   1440   // Scan the operand list, checking to see if there are any common factors
   1441   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
   1442   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
   1443   // To efficiently find this, we count the number of times a factor occurs
   1444   // for any ADD operands that are MULs.
   1445   DenseMap<Value*, unsigned> FactorOccurrences;
   1446 
   1447   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
   1448   // where they are actually the same multiply.
   1449   unsigned MaxOcc = 0;
   1450   Value *MaxOccVal = 0;
   1451   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1452     BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
   1453     if (!BOp)
   1454       continue;
   1455 
   1456     // Compute all of the factors of this added value.
   1457     SmallVector<Value*, 8> Factors;
   1458     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
   1459     assert(Factors.size() > 1 && "Bad linearize!");
   1460 
   1461     // Add one to FactorOccurrences for each unique factor in this op.
   1462     SmallPtrSet<Value*, 8> Duplicates;
   1463     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1464       Value *Factor = Factors[i];
   1465       if (!Duplicates.insert(Factor)) continue;
   1466 
   1467       unsigned Occ = ++FactorOccurrences[Factor];
   1468       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
   1469 
   1470       // If Factor is a negative constant, add the negated value as a factor
   1471       // because we can percolate the negate out.  Watch for minint, which
   1472       // cannot be positivified.
   1473       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
   1474         if (CI->isNegative() && !CI->isMinValue(true)) {
   1475           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
   1476           assert(!Duplicates.count(Factor) &&
   1477                  "Shouldn't have two constant factors, missed a canonicalize");
   1478 
   1479           unsigned Occ = ++FactorOccurrences[Factor];
   1480           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
   1481         }
   1482     }
   1483   }
   1484 
   1485   // If any factor occurred more than one time, we can pull it out.
   1486   if (MaxOcc > 1) {
   1487     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
   1488     ++NumFactor;
   1489 
   1490     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
   1491     // this, we could otherwise run into situations where removing a factor
   1492     // from an expression will drop a use of maxocc, and this can cause
   1493     // RemoveFactorFromExpression on successive values to behave differently.
   1494     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
   1495     SmallVector<WeakVH, 4> NewMulOps;
   1496     for (unsigned i = 0; i != Ops.size(); ++i) {
   1497       // Only try to remove factors from expressions we're allowed to.
   1498       BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
   1499       if (!BOp)
   1500         continue;
   1501 
   1502       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
   1503         // The factorized operand may occur several times.  Convert them all in
   1504         // one fell swoop.
   1505         for (unsigned j = Ops.size(); j != i;) {
   1506           --j;
   1507           if (Ops[j].Op == Ops[i].Op) {
   1508             NewMulOps.push_back(V);
   1509             Ops.erase(Ops.begin()+j);
   1510           }
   1511         }
   1512         --i;
   1513       }
   1514     }
   1515 
   1516     // No need for extra uses anymore.
   1517     delete DummyInst;
   1518 
   1519     unsigned NumAddedValues = NewMulOps.size();
   1520     Value *V = EmitAddTreeOfValues(I, NewMulOps);
   1521 
   1522     // Now that we have inserted the add tree, optimize it. This allows us to
   1523     // handle cases that require multiple factoring steps, such as this:
   1524     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
   1525     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
   1526     (void)NumAddedValues;
   1527     if (Instruction *VI = dyn_cast<Instruction>(V))
   1528       RedoInsts.insert(VI);
   1529 
   1530     // Create the multiply.
   1531     Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
   1532 
   1533     // Rerun associate on the multiply in case the inner expression turned into
   1534     // a multiply.  We want to make sure that we keep things in canonical form.
   1535     RedoInsts.insert(V2);
   1536 
   1537     // If every add operand included the factor (e.g. "A*B + A*C"), then the
   1538     // entire result expression is just the multiply "A*(B+C)".
   1539     if (Ops.empty())
   1540       return V2;
   1541 
   1542     // Otherwise, we had some input that didn't have the factor, such as
   1543     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
   1544     // things being added by this operation.
   1545     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
   1546   }
   1547 
   1548   return 0;
   1549 }
   1550 
   1551 namespace {
   1552   /// \brief Predicate tests whether a ValueEntry's op is in a map.
   1553   struct IsValueInMap {
   1554     const DenseMap<Value *, unsigned> &Map;
   1555 
   1556     IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
   1557 
   1558     bool operator()(const ValueEntry &Entry) {
   1559       return Map.find(Entry.Op) != Map.end();
   1560     }
   1561   };
   1562 }
   1563 
   1564 /// \brief Build up a vector of value/power pairs factoring a product.
   1565 ///
   1566 /// Given a series of multiplication operands, build a vector of factors and
   1567 /// the powers each is raised to when forming the final product. Sort them in
   1568 /// the order of descending power.
   1569 ///
   1570 ///      (x*x)          -> [(x, 2)]
   1571 ///     ((x*x)*x)       -> [(x, 3)]
   1572 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
   1573 ///
   1574 /// \returns Whether any factors have a power greater than one.
   1575 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
   1576                                          SmallVectorImpl<Factor> &Factors) {
   1577   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
   1578   // Compute the sum of powers of simplifiable factors.
   1579   unsigned FactorPowerSum = 0;
   1580   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
   1581     Value *Op = Ops[Idx-1].Op;
   1582 
   1583     // Count the number of occurrences of this value.
   1584     unsigned Count = 1;
   1585     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
   1586       ++Count;
   1587     // Track for simplification all factors which occur 2 or more times.
   1588     if (Count > 1)
   1589       FactorPowerSum += Count;
   1590   }
   1591 
   1592   // We can only simplify factors if the sum of the powers of our simplifiable
   1593   // factors is 4 or higher. When that is the case, we will *always* have
   1594   // a simplification. This is an important invariant to prevent cyclicly
   1595   // trying to simplify already minimal formations.
   1596   if (FactorPowerSum < 4)
   1597     return false;
   1598 
   1599   // Now gather the simplifiable factors, removing them from Ops.
   1600   FactorPowerSum = 0;
   1601   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
   1602     Value *Op = Ops[Idx-1].Op;
   1603 
   1604     // Count the number of occurrences of this value.
   1605     unsigned Count = 1;
   1606     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
   1607       ++Count;
   1608     if (Count == 1)
   1609       continue;
   1610     // Move an even number of occurrences to Factors.
   1611     Count &= ~1U;
   1612     Idx -= Count;
   1613     FactorPowerSum += Count;
   1614     Factors.push_back(Factor(Op, Count));
   1615     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
   1616   }
   1617 
   1618   // None of the adjustments above should have reduced the sum of factor powers
   1619   // below our mininum of '4'.
   1620   assert(FactorPowerSum >= 4);
   1621 
   1622   std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
   1623   return true;
   1624 }
   1625 
   1626 /// \brief Build a tree of multiplies, computing the product of Ops.
   1627 static Value *buildMultiplyTree(IRBuilder<> &Builder,
   1628                                 SmallVectorImpl<Value*> &Ops) {
   1629   if (Ops.size() == 1)
   1630     return Ops.back();
   1631 
   1632   Value *LHS = Ops.pop_back_val();
   1633   do {
   1634     LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
   1635   } while (!Ops.empty());
   1636 
   1637   return LHS;
   1638 }
   1639 
   1640 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
   1641 ///
   1642 /// Given a vector of values raised to various powers, where no two values are
   1643 /// equal and the powers are sorted in decreasing order, compute the minimal
   1644 /// DAG of multiplies to compute the final product, and return that product
   1645 /// value.
   1646 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
   1647                                             SmallVectorImpl<Factor> &Factors) {
   1648   assert(Factors[0].Power);
   1649   SmallVector<Value *, 4> OuterProduct;
   1650   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
   1651        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
   1652     if (Factors[Idx].Power != Factors[LastIdx].Power) {
   1653       LastIdx = Idx;
   1654       continue;
   1655     }
   1656 
   1657     // We want to multiply across all the factors with the same power so that
   1658     // we can raise them to that power as a single entity. Build a mini tree
   1659     // for that.
   1660     SmallVector<Value *, 4> InnerProduct;
   1661     InnerProduct.push_back(Factors[LastIdx].Base);
   1662     do {
   1663       InnerProduct.push_back(Factors[Idx].Base);
   1664       ++Idx;
   1665     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
   1666 
   1667     // Reset the base value of the first factor to the new expression tree.
   1668     // We'll remove all the factors with the same power in a second pass.
   1669     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
   1670     if (Instruction *MI = dyn_cast<Instruction>(M))
   1671       RedoInsts.insert(MI);
   1672 
   1673     LastIdx = Idx;
   1674   }
   1675   // Unique factors with equal powers -- we've folded them into the first one's
   1676   // base.
   1677   Factors.erase(std::unique(Factors.begin(), Factors.end(),
   1678                             Factor::PowerEqual()),
   1679                 Factors.end());
   1680 
   1681   // Iteratively collect the base of each factor with an add power into the
   1682   // outer product, and halve each power in preparation for squaring the
   1683   // expression.
   1684   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
   1685     if (Factors[Idx].Power & 1)
   1686       OuterProduct.push_back(Factors[Idx].Base);
   1687     Factors[Idx].Power >>= 1;
   1688   }
   1689   if (Factors[0].Power) {
   1690     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
   1691     OuterProduct.push_back(SquareRoot);
   1692     OuterProduct.push_back(SquareRoot);
   1693   }
   1694   if (OuterProduct.size() == 1)
   1695     return OuterProduct.front();
   1696 
   1697   Value *V = buildMultiplyTree(Builder, OuterProduct);
   1698   return V;
   1699 }
   1700 
   1701 Value *Reassociate::OptimizeMul(BinaryOperator *I,
   1702                                 SmallVectorImpl<ValueEntry> &Ops) {
   1703   // We can only optimize the multiplies when there is a chain of more than
   1704   // three, such that a balanced tree might require fewer total multiplies.
   1705   if (Ops.size() < 4)
   1706     return 0;
   1707 
   1708   // Try to turn linear trees of multiplies without other uses of the
   1709   // intermediate stages into minimal multiply DAGs with perfect sub-expression
   1710   // re-use.
   1711   SmallVector<Factor, 4> Factors;
   1712   if (!collectMultiplyFactors(Ops, Factors))
   1713     return 0; // All distinct factors, so nothing left for us to do.
   1714 
   1715   IRBuilder<> Builder(I);
   1716   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
   1717   if (Ops.empty())
   1718     return V;
   1719 
   1720   ValueEntry NewEntry = ValueEntry(getRank(V), V);
   1721   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
   1722   return 0;
   1723 }
   1724 
   1725 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
   1726                                        SmallVectorImpl<ValueEntry> &Ops) {
   1727   // Now that we have the linearized expression tree, try to optimize it.
   1728   // Start by folding any constants that we found.
   1729   Constant *Cst = 0;
   1730   unsigned Opcode = I->getOpcode();
   1731   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
   1732     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
   1733     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
   1734   }
   1735   // If there was nothing but constants then we are done.
   1736   if (Ops.empty())
   1737     return Cst;
   1738 
   1739   // Put the combined constant back at the end of the operand list, except if
   1740   // there is no point.  For example, an add of 0 gets dropped here, while a
   1741   // multiplication by zero turns the whole expression into zero.
   1742   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
   1743     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
   1744       return Cst;
   1745     Ops.push_back(ValueEntry(0, Cst));
   1746   }
   1747 
   1748   if (Ops.size() == 1) return Ops[0].Op;
   1749 
   1750   // Handle destructive annihilation due to identities between elements in the
   1751   // argument list here.
   1752   unsigned NumOps = Ops.size();
   1753   switch (Opcode) {
   1754   default: break;
   1755   case Instruction::And:
   1756   case Instruction::Or:
   1757     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
   1758       return Result;
   1759     break;
   1760 
   1761   case Instruction::Xor:
   1762     if (Value *Result = OptimizeXor(I, Ops))
   1763       return Result;
   1764     break;
   1765 
   1766   case Instruction::Add:
   1767     if (Value *Result = OptimizeAdd(I, Ops))
   1768       return Result;
   1769     break;
   1770 
   1771   case Instruction::Mul:
   1772     if (Value *Result = OptimizeMul(I, Ops))
   1773       return Result;
   1774     break;
   1775   }
   1776 
   1777   if (Ops.size() != NumOps)
   1778     return OptimizeExpression(I, Ops);
   1779   return 0;
   1780 }
   1781 
   1782 /// EraseInst - Zap the given instruction, adding interesting operands to the
   1783 /// work list.
   1784 void Reassociate::EraseInst(Instruction *I) {
   1785   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
   1786   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   1787   // Erase the dead instruction.
   1788   ValueRankMap.erase(I);
   1789   RedoInsts.remove(I);
   1790   I->eraseFromParent();
   1791   // Optimize its operands.
   1792   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
   1793   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1794     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
   1795       // If this is a node in an expression tree, climb to the expression root
   1796       // and add that since that's where optimization actually happens.
   1797       unsigned Opcode = Op->getOpcode();
   1798       while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
   1799              Visited.insert(Op))
   1800         Op = Op->use_back();
   1801       RedoInsts.insert(Op);
   1802     }
   1803 }
   1804 
   1805 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
   1806 /// instructions is not allowed.
   1807 void Reassociate::OptimizeInst(Instruction *I) {
   1808   // Only consider operations that we understand.
   1809   if (!isa<BinaryOperator>(I))
   1810     return;
   1811 
   1812   if (I->getOpcode() == Instruction::Shl &&
   1813       isa<ConstantInt>(I->getOperand(1)))
   1814     // If an operand of this shift is a reassociable multiply, or if the shift
   1815     // is used by a reassociable multiply or add, turn into a multiply.
   1816     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
   1817         (I->hasOneUse() &&
   1818          (isReassociableOp(I->use_back(), Instruction::Mul) ||
   1819           isReassociableOp(I->use_back(), Instruction::Add)))) {
   1820       Instruction *NI = ConvertShiftToMul(I);
   1821       RedoInsts.insert(I);
   1822       MadeChange = true;
   1823       I = NI;
   1824     }
   1825 
   1826   // Floating point binary operators are not associative, but we can still
   1827   // commute (some) of them, to canonicalize the order of their operands.
   1828   // This can potentially expose more CSE opportunities, and makes writing
   1829   // other transformations simpler.
   1830   if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
   1831     // FAdd and FMul can be commuted.
   1832     if (I->getOpcode() != Instruction::FMul &&
   1833         I->getOpcode() != Instruction::FAdd)
   1834       return;
   1835 
   1836     Value *LHS = I->getOperand(0);
   1837     Value *RHS = I->getOperand(1);
   1838     unsigned LHSRank = getRank(LHS);
   1839     unsigned RHSRank = getRank(RHS);
   1840 
   1841     // Sort the operands by rank.
   1842     if (RHSRank < LHSRank) {
   1843       I->setOperand(0, RHS);
   1844       I->setOperand(1, LHS);
   1845     }
   1846 
   1847     return;
   1848   }
   1849 
   1850   // Do not reassociate boolean (i1) expressions.  We want to preserve the
   1851   // original order of evaluation for short-circuited comparisons that
   1852   // SimplifyCFG has folded to AND/OR expressions.  If the expression
   1853   // is not further optimized, it is likely to be transformed back to a
   1854   // short-circuited form for code gen, and the source order may have been
   1855   // optimized for the most likely conditions.
   1856   if (I->getType()->isIntegerTy(1))
   1857     return;
   1858 
   1859   // If this is a subtract instruction which is not already in negate form,
   1860   // see if we can convert it to X+-Y.
   1861   if (I->getOpcode() == Instruction::Sub) {
   1862     if (ShouldBreakUpSubtract(I)) {
   1863       Instruction *NI = BreakUpSubtract(I);
   1864       RedoInsts.insert(I);
   1865       MadeChange = true;
   1866       I = NI;
   1867     } else if (BinaryOperator::isNeg(I)) {
   1868       // Otherwise, this is a negation.  See if the operand is a multiply tree
   1869       // and if this is not an inner node of a multiply tree.
   1870       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
   1871           (!I->hasOneUse() ||
   1872            !isReassociableOp(I->use_back(), Instruction::Mul))) {
   1873         Instruction *NI = LowerNegateToMultiply(I);
   1874         RedoInsts.insert(I);
   1875         MadeChange = true;
   1876         I = NI;
   1877       }
   1878     }
   1879   }
   1880 
   1881   // If this instruction is an associative binary operator, process it.
   1882   if (!I->isAssociative()) return;
   1883   BinaryOperator *BO = cast<BinaryOperator>(I);
   1884 
   1885   // If this is an interior node of a reassociable tree, ignore it until we
   1886   // get to the root of the tree, to avoid N^2 analysis.
   1887   unsigned Opcode = BO->getOpcode();
   1888   if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
   1889     return;
   1890 
   1891   // If this is an add tree that is used by a sub instruction, ignore it
   1892   // until we process the subtract.
   1893   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
   1894       cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
   1895     return;
   1896 
   1897   ReassociateExpression(BO);
   1898 }
   1899 
   1900 void Reassociate::ReassociateExpression(BinaryOperator *I) {
   1901 
   1902   // First, walk the expression tree, linearizing the tree, collecting the
   1903   // operand information.
   1904   SmallVector<RepeatedValue, 8> Tree;
   1905   MadeChange |= LinearizeExprTree(I, Tree);
   1906   SmallVector<ValueEntry, 8> Ops;
   1907   Ops.reserve(Tree.size());
   1908   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1909     RepeatedValue E = Tree[i];
   1910     Ops.append(E.second.getZExtValue(),
   1911                ValueEntry(getRank(E.first), E.first));
   1912   }
   1913 
   1914   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1915 
   1916   // Now that we have linearized the tree to a list and have gathered all of
   1917   // the operands and their ranks, sort the operands by their rank.  Use a
   1918   // stable_sort so that values with equal ranks will have their relative
   1919   // positions maintained (and so the compiler is deterministic).  Note that
   1920   // this sorts so that the highest ranking values end up at the beginning of
   1921   // the vector.
   1922   std::stable_sort(Ops.begin(), Ops.end());
   1923 
   1924   // OptimizeExpression - Now that we have the expression tree in a convenient
   1925   // sorted form, optimize it globally if possible.
   1926   if (Value *V = OptimizeExpression(I, Ops)) {
   1927     if (V == I)
   1928       // Self-referential expression in unreachable code.
   1929       return;
   1930     // This expression tree simplified to something that isn't a tree,
   1931     // eliminate it.
   1932     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
   1933     I->replaceAllUsesWith(V);
   1934     if (Instruction *VI = dyn_cast<Instruction>(V))
   1935       VI->setDebugLoc(I->getDebugLoc());
   1936     RedoInsts.insert(I);
   1937     ++NumAnnihil;
   1938     return;
   1939   }
   1940 
   1941   // We want to sink immediates as deeply as possible except in the case where
   1942   // this is a multiply tree used only by an add, and the immediate is a -1.
   1943   // In this case we reassociate to put the negation on the outside so that we
   1944   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
   1945   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
   1946       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
   1947       isa<ConstantInt>(Ops.back().Op) &&
   1948       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
   1949     ValueEntry Tmp = Ops.pop_back_val();
   1950     Ops.insert(Ops.begin(), Tmp);
   1951   }
   1952 
   1953   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1954 
   1955   if (Ops.size() == 1) {
   1956     if (Ops[0].Op == I)
   1957       // Self-referential expression in unreachable code.
   1958       return;
   1959 
   1960     // This expression tree simplified to something that isn't a tree,
   1961     // eliminate it.
   1962     I->replaceAllUsesWith(Ops[0].Op);
   1963     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
   1964       OI->setDebugLoc(I->getDebugLoc());
   1965     RedoInsts.insert(I);
   1966     return;
   1967   }
   1968 
   1969   // Now that we ordered and optimized the expressions, splat them back into
   1970   // the expression tree, removing any unneeded nodes.
   1971   RewriteExprTree(I, Ops);
   1972 }
   1973 
   1974 bool Reassociate::runOnFunction(Function &F) {
   1975   // Calculate the rank map for F
   1976   BuildRankMap(F);
   1977 
   1978   MadeChange = false;
   1979   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
   1980     // Optimize every instruction in the basic block.
   1981     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
   1982       if (isInstructionTriviallyDead(II)) {
   1983         EraseInst(II++);
   1984       } else {
   1985         OptimizeInst(II);
   1986         assert(II->getParent() == BI && "Moved to a different block!");
   1987         ++II;
   1988       }
   1989 
   1990     // If this produced extra instructions to optimize, handle them now.
   1991     while (!RedoInsts.empty()) {
   1992       Instruction *I = RedoInsts.pop_back_val();
   1993       if (isInstructionTriviallyDead(I))
   1994         EraseInst(I);
   1995       else
   1996         OptimizeInst(I);
   1997     }
   1998   }
   1999 
   2000   // We are done with the rank map.
   2001   RankMap.clear();
   2002   ValueRankMap.clear();
   2003 
   2004   return MadeChange;
   2005 }
   2006