Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "simplifycfg"
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SetVector.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/GlobalVariable.h"
     29 #include "llvm/IR/IRBuilder.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/LLVMContext.h"
     33 #include "llvm/IR/MDBuilder.h"
     34 #include "llvm/IR/Metadata.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Operator.h"
     37 #include "llvm/IR/Type.h"
     38 #include "llvm/Support/CFG.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/ConstantRange.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/NoFolder.h"
     43 #include "llvm/Support/PatternMatch.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     46 #include <algorithm>
     47 #include <map>
     48 #include <set>
     49 using namespace llvm;
     50 using namespace PatternMatch;
     51 
     52 static cl::opt<unsigned>
     53 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
     54    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
     55 
     56 static cl::opt<bool>
     57 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     58        cl::desc("Duplicate return instructions into unconditional branches"));
     59 
     60 static cl::opt<bool>
     61 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
     62        cl::desc("Sink common instructions down to the end block"));
     63 
     64 static cl::opt<bool>
     65 HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
     66        cl::desc("Hoist conditional stores if an unconditional store preceeds"));
     67 
     68 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
     69 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
     70 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
     71 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
     72 
     73 namespace {
     74   /// ValueEqualityComparisonCase - Represents a case of a switch.
     75   struct ValueEqualityComparisonCase {
     76     ConstantInt *Value;
     77     BasicBlock *Dest;
     78 
     79     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
     80       : Value(Value), Dest(Dest) {}
     81 
     82     bool operator<(ValueEqualityComparisonCase RHS) const {
     83       // Comparing pointers is ok as we only rely on the order for uniquing.
     84       return Value < RHS.Value;
     85     }
     86 
     87     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
     88   };
     89 
     90 class SimplifyCFGOpt {
     91   const TargetTransformInfo &TTI;
     92   const DataLayout *const TD;
     93   Value *isValueEqualityComparison(TerminatorInst *TI);
     94   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
     95                                std::vector<ValueEqualityComparisonCase> &Cases);
     96   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
     97                                                      BasicBlock *Pred,
     98                                                      IRBuilder<> &Builder);
     99   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    100                                            IRBuilder<> &Builder);
    101 
    102   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
    103   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
    104   bool SimplifyUnreachable(UnreachableInst *UI);
    105   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
    106   bool SimplifyIndirectBr(IndirectBrInst *IBI);
    107   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
    108   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
    109 
    110 public:
    111   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
    112       : TTI(TTI), TD(TD) {}
    113   bool run(BasicBlock *BB);
    114 };
    115 }
    116 
    117 /// SafeToMergeTerminators - Return true if it is safe to merge these two
    118 /// terminator instructions together.
    119 ///
    120 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
    121   if (SI1 == SI2) return false;  // Can't merge with self!
    122 
    123   // It is not safe to merge these two switch instructions if they have a common
    124   // successor, and if that successor has a PHI node, and if *that* PHI node has
    125   // conflicting incoming values from the two switch blocks.
    126   BasicBlock *SI1BB = SI1->getParent();
    127   BasicBlock *SI2BB = SI2->getParent();
    128   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    129 
    130   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    131     if (SI1Succs.count(*I))
    132       for (BasicBlock::iterator BBI = (*I)->begin();
    133            isa<PHINode>(BBI); ++BBI) {
    134         PHINode *PN = cast<PHINode>(BBI);
    135         if (PN->getIncomingValueForBlock(SI1BB) !=
    136             PN->getIncomingValueForBlock(SI2BB))
    137           return false;
    138       }
    139 
    140   return true;
    141 }
    142 
    143 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
    144 /// to merge these two terminator instructions together, where SI1 is an
    145 /// unconditional branch. PhiNodes will store all PHI nodes in common
    146 /// successors.
    147 ///
    148 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
    149                                           BranchInst *SI2,
    150                                           Instruction *Cond,
    151                                           SmallVectorImpl<PHINode*> &PhiNodes) {
    152   if (SI1 == SI2) return false;  // Can't merge with self!
    153   assert(SI1->isUnconditional() && SI2->isConditional());
    154 
    155   // We fold the unconditional branch if we can easily update all PHI nodes in
    156   // common successors:
    157   // 1> We have a constant incoming value for the conditional branch;
    158   // 2> We have "Cond" as the incoming value for the unconditional branch;
    159   // 3> SI2->getCondition() and Cond have same operands.
    160   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
    161   if (!Ci2) return false;
    162   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
    163         Cond->getOperand(1) == Ci2->getOperand(1)) &&
    164       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
    165         Cond->getOperand(1) == Ci2->getOperand(0)))
    166     return false;
    167 
    168   BasicBlock *SI1BB = SI1->getParent();
    169   BasicBlock *SI2BB = SI2->getParent();
    170   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    171   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    172     if (SI1Succs.count(*I))
    173       for (BasicBlock::iterator BBI = (*I)->begin();
    174            isa<PHINode>(BBI); ++BBI) {
    175         PHINode *PN = cast<PHINode>(BBI);
    176         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
    177             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
    178           return false;
    179         PhiNodes.push_back(PN);
    180       }
    181   return true;
    182 }
    183 
    184 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
    185 /// now be entries in it from the 'NewPred' block.  The values that will be
    186 /// flowing into the PHI nodes will be the same as those coming in from
    187 /// ExistPred, an existing predecessor of Succ.
    188 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    189                                   BasicBlock *ExistPred) {
    190   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
    191 
    192   PHINode *PN;
    193   for (BasicBlock::iterator I = Succ->begin();
    194        (PN = dyn_cast<PHINode>(I)); ++I)
    195     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    196 }
    197 
    198 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
    199 /// given instruction, which is assumed to be safe to speculate. 1 means
    200 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
    201 static unsigned ComputeSpeculationCost(const User *I) {
    202   assert(isSafeToSpeculativelyExecute(I) &&
    203          "Instruction is not safe to speculatively execute!");
    204   switch (Operator::getOpcode(I)) {
    205   default:
    206     // In doubt, be conservative.
    207     return UINT_MAX;
    208   case Instruction::GetElementPtr:
    209     // GEPs are cheap if all indices are constant.
    210     if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    211       return UINT_MAX;
    212     return 1;
    213   case Instruction::Load:
    214   case Instruction::Add:
    215   case Instruction::Sub:
    216   case Instruction::And:
    217   case Instruction::Or:
    218   case Instruction::Xor:
    219   case Instruction::Shl:
    220   case Instruction::LShr:
    221   case Instruction::AShr:
    222   case Instruction::ICmp:
    223   case Instruction::Trunc:
    224   case Instruction::ZExt:
    225   case Instruction::SExt:
    226     return 1; // These are all cheap.
    227 
    228   case Instruction::Call:
    229   case Instruction::Select:
    230     return 2;
    231   }
    232 }
    233 
    234 /// DominatesMergePoint - If we have a merge point of an "if condition" as
    235 /// accepted above, return true if the specified value dominates the block.  We
    236 /// don't handle the true generality of domination here, just a special case
    237 /// which works well enough for us.
    238 ///
    239 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    240 /// see if V (which must be an instruction) and its recursive operands
    241 /// that do not dominate BB have a combined cost lower than CostRemaining and
    242 /// are non-trapping.  If both are true, the instruction is inserted into the
    243 /// set and true is returned.
    244 ///
    245 /// The cost for most non-trapping instructions is defined as 1 except for
    246 /// Select whose cost is 2.
    247 ///
    248 /// After this function returns, CostRemaining is decreased by the cost of
    249 /// V plus its non-dominating operands.  If that cost is greater than
    250 /// CostRemaining, false is returned and CostRemaining is undefined.
    251 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    252                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
    253                                 unsigned &CostRemaining) {
    254   Instruction *I = dyn_cast<Instruction>(V);
    255   if (!I) {
    256     // Non-instructions all dominate instructions, but not all constantexprs
    257     // can be executed unconditionally.
    258     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    259       if (C->canTrap())
    260         return false;
    261     return true;
    262   }
    263   BasicBlock *PBB = I->getParent();
    264 
    265   // We don't want to allow weird loops that might have the "if condition" in
    266   // the bottom of this block.
    267   if (PBB == BB) return false;
    268 
    269   // If this instruction is defined in a block that contains an unconditional
    270   // branch to BB, then it must be in the 'conditional' part of the "if
    271   // statement".  If not, it definitely dominates the region.
    272   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    273   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
    274     return true;
    275 
    276   // If we aren't allowing aggressive promotion anymore, then don't consider
    277   // instructions in the 'if region'.
    278   if (AggressiveInsts == 0) return false;
    279 
    280   // If we have seen this instruction before, don't count it again.
    281   if (AggressiveInsts->count(I)) return true;
    282 
    283   // Okay, it looks like the instruction IS in the "condition".  Check to
    284   // see if it's a cheap instruction to unconditionally compute, and if it
    285   // only uses stuff defined outside of the condition.  If so, hoist it out.
    286   if (!isSafeToSpeculativelyExecute(I))
    287     return false;
    288 
    289   unsigned Cost = ComputeSpeculationCost(I);
    290 
    291   if (Cost > CostRemaining)
    292     return false;
    293 
    294   CostRemaining -= Cost;
    295 
    296   // Okay, we can only really hoist these out if their operands do
    297   // not take us over the cost threshold.
    298   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    299     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
    300       return false;
    301   // Okay, it's safe to do this!  Remember this instruction.
    302   AggressiveInsts->insert(I);
    303   return true;
    304 }
    305 
    306 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
    307 /// and PointerNullValue. Return NULL if value is not a constant int.
    308 static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
    309   // Normal constant int.
    310   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    311   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
    312     return CI;
    313 
    314   // This is some kind of pointer constant. Turn it into a pointer-sized
    315   // ConstantInt if possible.
    316   IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
    317 
    318   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    319   if (isa<ConstantPointerNull>(V))
    320     return ConstantInt::get(PtrTy, 0);
    321 
    322   // IntToPtr const int.
    323   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    324     if (CE->getOpcode() == Instruction::IntToPtr)
    325       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    326         // The constant is very likely to have the right type already.
    327         if (CI->getType() == PtrTy)
    328           return CI;
    329         else
    330           return cast<ConstantInt>
    331             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    332       }
    333   return 0;
    334 }
    335 
    336 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
    337 /// collection of icmp eq/ne instructions that compare a value against a
    338 /// constant, return the value being compared, and stick the constant into the
    339 /// Values vector.
    340 static Value *
    341 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
    342                        const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
    343   Instruction *I = dyn_cast<Instruction>(V);
    344   if (I == 0) return 0;
    345 
    346   // If this is an icmp against a constant, handle this as one of the cases.
    347   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
    348     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
    349       Value *RHSVal;
    350       ConstantInt *RHSC;
    351 
    352       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
    353         // (x & ~2^x) == y --> x == y || x == y|2^x
    354         // This undoes a transformation done by instcombine to fuse 2 compares.
    355         if (match(ICI->getOperand(0),
    356                   m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
    357           APInt Not = ~RHSC->getValue();
    358           if (Not.isPowerOf2()) {
    359             Vals.push_back(C);
    360             Vals.push_back(
    361                 ConstantInt::get(C->getContext(), C->getValue() | Not));
    362             UsedICmps++;
    363             return RHSVal;
    364           }
    365         }
    366 
    367         UsedICmps++;
    368         Vals.push_back(C);
    369         return I->getOperand(0);
    370       }
    371 
    372       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
    373       // the set.
    374       ConstantRange Span =
    375         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
    376 
    377       // Shift the range if the compare is fed by an add. This is the range
    378       // compare idiom as emitted by instcombine.
    379       bool hasAdd =
    380           match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
    381       if (hasAdd)
    382         Span = Span.subtract(RHSC->getValue());
    383 
    384       // If this is an and/!= check then we want to optimize "x ugt 2" into
    385       // x != 0 && x != 1.
    386       if (!isEQ)
    387         Span = Span.inverse();
    388 
    389       // If there are a ton of values, we don't want to make a ginormous switch.
    390       if (Span.getSetSize().ugt(8) || Span.isEmptySet())
    391         return 0;
    392 
    393       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    394         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
    395       UsedICmps++;
    396       return hasAdd ? RHSVal : I->getOperand(0);
    397     }
    398     return 0;
    399   }
    400 
    401   // Otherwise, we can only handle an | or &, depending on isEQ.
    402   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
    403     return 0;
    404 
    405   unsigned NumValsBeforeLHS = Vals.size();
    406   unsigned UsedICmpsBeforeLHS = UsedICmps;
    407   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
    408                                           isEQ, UsedICmps)) {
    409     unsigned NumVals = Vals.size();
    410     unsigned UsedICmpsBeforeRHS = UsedICmps;
    411     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    412                                             isEQ, UsedICmps)) {
    413       if (LHS == RHS)
    414         return LHS;
    415       Vals.resize(NumVals);
    416       UsedICmps = UsedICmpsBeforeRHS;
    417     }
    418 
    419     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
    420     // set it and return success.
    421     if (Extra == 0 || Extra == I->getOperand(1)) {
    422       Extra = I->getOperand(1);
    423       return LHS;
    424     }
    425 
    426     Vals.resize(NumValsBeforeLHS);
    427     UsedICmps = UsedICmpsBeforeLHS;
    428     return 0;
    429   }
    430 
    431   // If the LHS can't be folded in, but Extra is available and RHS can, try to
    432   // use LHS as Extra.
    433   if (Extra == 0 || Extra == I->getOperand(0)) {
    434     Value *OldExtra = Extra;
    435     Extra = I->getOperand(0);
    436     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    437                                             isEQ, UsedICmps))
    438       return RHS;
    439     assert(Vals.size() == NumValsBeforeLHS);
    440     Extra = OldExtra;
    441   }
    442 
    443   return 0;
    444 }
    445 
    446 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    447   Instruction *Cond = 0;
    448   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    449     Cond = dyn_cast<Instruction>(SI->getCondition());
    450   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    451     if (BI->isConditional())
    452       Cond = dyn_cast<Instruction>(BI->getCondition());
    453   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    454     Cond = dyn_cast<Instruction>(IBI->getAddress());
    455   }
    456 
    457   TI->eraseFromParent();
    458   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
    459 }
    460 
    461 /// isValueEqualityComparison - Return true if the specified terminator checks
    462 /// to see if a value is equal to constant integer value.
    463 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    464   Value *CV = 0;
    465   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    466     // Do not permit merging of large switch instructions into their
    467     // predecessors unless there is only one predecessor.
    468     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
    469                                              pred_end(SI->getParent())) <= 128)
    470       CV = SI->getCondition();
    471   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    472     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    473       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
    474         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD))
    475           CV = ICI->getOperand(0);
    476 
    477   // Unwrap any lossless ptrtoint cast.
    478   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
    479     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
    480       CV = PTII->getOperand(0);
    481   return CV;
    482 }
    483 
    484 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
    485 /// decode all of the 'cases' that it represents and return the 'default' block.
    486 BasicBlock *SimplifyCFGOpt::
    487 GetValueEqualityComparisonCases(TerminatorInst *TI,
    488                                 std::vector<ValueEqualityComparisonCase>
    489                                                                        &Cases) {
    490   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    491     Cases.reserve(SI->getNumCases());
    492     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    493       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
    494                                                   i.getCaseSuccessor()));
    495     return SI->getDefaultDest();
    496   }
    497 
    498   BranchInst *BI = cast<BranchInst>(TI);
    499   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    500   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
    501   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
    502                                                              TD),
    503                                               Succ));
    504   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    505 }
    506 
    507 
    508 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
    509 /// in the list that match the specified block.
    510 static void EliminateBlockCases(BasicBlock *BB,
    511                               std::vector<ValueEqualityComparisonCase> &Cases) {
    512   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
    513 }
    514 
    515 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
    516 /// well.
    517 static bool
    518 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
    519               std::vector<ValueEqualityComparisonCase > &C2) {
    520   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
    521 
    522   // Make V1 be smaller than V2.
    523   if (V1->size() > V2->size())
    524     std::swap(V1, V2);
    525 
    526   if (V1->size() == 0) return false;
    527   if (V1->size() == 1) {
    528     // Just scan V2.
    529     ConstantInt *TheVal = (*V1)[0].Value;
    530     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    531       if (TheVal == (*V2)[i].Value)
    532         return true;
    533   }
    534 
    535   // Otherwise, just sort both lists and compare element by element.
    536   array_pod_sort(V1->begin(), V1->end());
    537   array_pod_sort(V2->begin(), V2->end());
    538   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    539   while (i1 != e1 && i2 != e2) {
    540     if ((*V1)[i1].Value == (*V2)[i2].Value)
    541       return true;
    542     if ((*V1)[i1].Value < (*V2)[i2].Value)
    543       ++i1;
    544     else
    545       ++i2;
    546   }
    547   return false;
    548 }
    549 
    550 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
    551 /// terminator instruction and its block is known to only have a single
    552 /// predecessor block, check to see if that predecessor is also a value
    553 /// comparison with the same value, and if that comparison determines the
    554 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
    555 /// form of jump threading.
    556 bool SimplifyCFGOpt::
    557 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    558                                               BasicBlock *Pred,
    559                                               IRBuilder<> &Builder) {
    560   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    561   if (!PredVal) return false;  // Not a value comparison in predecessor.
    562 
    563   Value *ThisVal = isValueEqualityComparison(TI);
    564   assert(ThisVal && "This isn't a value comparison!!");
    565   if (ThisVal != PredVal) return false;  // Different predicates.
    566 
    567   // TODO: Preserve branch weight metadata, similarly to how
    568   // FoldValueComparisonIntoPredecessors preserves it.
    569 
    570   // Find out information about when control will move from Pred to TI's block.
    571   std::vector<ValueEqualityComparisonCase> PredCases;
    572   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
    573                                                         PredCases);
    574   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
    575 
    576   // Find information about how control leaves this block.
    577   std::vector<ValueEqualityComparisonCase> ThisCases;
    578   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    579   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
    580 
    581   // If TI's block is the default block from Pred's comparison, potentially
    582   // simplify TI based on this knowledge.
    583   if (PredDef == TI->getParent()) {
    584     // If we are here, we know that the value is none of those cases listed in
    585     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    586     // can simplify TI.
    587     if (!ValuesOverlap(PredCases, ThisCases))
    588       return false;
    589 
    590     if (isa<BranchInst>(TI)) {
    591       // Okay, one of the successors of this condbr is dead.  Convert it to a
    592       // uncond br.
    593       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    594       // Insert the new branch.
    595       Instruction *NI = Builder.CreateBr(ThisDef);
    596       (void) NI;
    597 
    598       // Remove PHI node entries for the dead edge.
    599       ThisCases[0].Dest->removePredecessor(TI->getParent());
    600 
    601       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    602            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    603 
    604       EraseTerminatorInstAndDCECond(TI);
    605       return true;
    606     }
    607 
    608     SwitchInst *SI = cast<SwitchInst>(TI);
    609     // Okay, TI has cases that are statically dead, prune them away.
    610     SmallPtrSet<Constant*, 16> DeadCases;
    611     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    612       DeadCases.insert(PredCases[i].Value);
    613 
    614     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    615                  << "Through successor TI: " << *TI);
    616 
    617     // Collect branch weights into a vector.
    618     SmallVector<uint32_t, 8> Weights;
    619     MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
    620     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
    621     if (HasWeight)
    622       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    623            ++MD_i) {
    624         ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
    625         assert(CI);
    626         Weights.push_back(CI->getValue().getZExtValue());
    627       }
    628     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
    629       --i;
    630       if (DeadCases.count(i.getCaseValue())) {
    631         if (HasWeight) {
    632           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
    633           Weights.pop_back();
    634         }
    635         i.getCaseSuccessor()->removePredecessor(TI->getParent());
    636         SI->removeCase(i);
    637       }
    638     }
    639     if (HasWeight && Weights.size() >= 2)
    640       SI->setMetadata(LLVMContext::MD_prof,
    641                       MDBuilder(SI->getParent()->getContext()).
    642                       createBranchWeights(Weights));
    643 
    644     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    645     return true;
    646   }
    647 
    648   // Otherwise, TI's block must correspond to some matched value.  Find out
    649   // which value (or set of values) this is.
    650   ConstantInt *TIV = 0;
    651   BasicBlock *TIBB = TI->getParent();
    652   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    653     if (PredCases[i].Dest == TIBB) {
    654       if (TIV != 0)
    655         return false;  // Cannot handle multiple values coming to this block.
    656       TIV = PredCases[i].Value;
    657     }
    658   assert(TIV && "No edge from pred to succ?");
    659 
    660   // Okay, we found the one constant that our value can be if we get into TI's
    661   // BB.  Find out which successor will unconditionally be branched to.
    662   BasicBlock *TheRealDest = 0;
    663   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    664     if (ThisCases[i].Value == TIV) {
    665       TheRealDest = ThisCases[i].Dest;
    666       break;
    667     }
    668 
    669   // If not handled by any explicit cases, it is handled by the default case.
    670   if (TheRealDest == 0) TheRealDest = ThisDef;
    671 
    672   // Remove PHI node entries for dead edges.
    673   BasicBlock *CheckEdge = TheRealDest;
    674   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
    675     if (*SI != CheckEdge)
    676       (*SI)->removePredecessor(TIBB);
    677     else
    678       CheckEdge = 0;
    679 
    680   // Insert the new branch.
    681   Instruction *NI = Builder.CreateBr(TheRealDest);
    682   (void) NI;
    683 
    684   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    685             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    686 
    687   EraseTerminatorInstAndDCECond(TI);
    688   return true;
    689 }
    690 
    691 namespace {
    692   /// ConstantIntOrdering - This class implements a stable ordering of constant
    693   /// integers that does not depend on their address.  This is important for
    694   /// applications that sort ConstantInt's to ensure uniqueness.
    695   struct ConstantIntOrdering {
    696     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    697       return LHS->getValue().ult(RHS->getValue());
    698     }
    699   };
    700 }
    701 
    702 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
    703   const ConstantInt *LHS = *(const ConstantInt*const*)P1;
    704   const ConstantInt *RHS = *(const ConstantInt*const*)P2;
    705   if (LHS->getValue().ult(RHS->getValue()))
    706     return 1;
    707   if (LHS->getValue() == RHS->getValue())
    708     return 0;
    709   return -1;
    710 }
    711 
    712 static inline bool HasBranchWeights(const Instruction* I) {
    713   MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
    714   if (ProfMD && ProfMD->getOperand(0))
    715     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
    716       return MDS->getString().equals("branch_weights");
    717 
    718   return false;
    719 }
    720 
    721 /// Get Weights of a given TerminatorInst, the default weight is at the front
    722 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
    723 /// metadata.
    724 static void GetBranchWeights(TerminatorInst *TI,
    725                              SmallVectorImpl<uint64_t> &Weights) {
    726   MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
    727   assert(MD);
    728   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    729     ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
    730     assert(CI);
    731     Weights.push_back(CI->getValue().getZExtValue());
    732   }
    733 
    734   // If TI is a conditional eq, the default case is the false case,
    735   // and the corresponding branch-weight data is at index 2. We swap the
    736   // default weight to be the first entry.
    737   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
    738     assert(Weights.size() == 2);
    739     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    740     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    741       std::swap(Weights.front(), Weights.back());
    742   }
    743 }
    744 
    745 /// Sees if any of the weights are too big for a uint32_t, and halves all the
    746 /// weights if any are.
    747 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
    748   bool Halve = false;
    749   for (unsigned i = 0; i < Weights.size(); ++i)
    750     if (Weights[i] > UINT_MAX) {
    751       Halve = true;
    752       break;
    753     }
    754 
    755   if (! Halve)
    756     return;
    757 
    758   for (unsigned i = 0; i < Weights.size(); ++i)
    759     Weights[i] /= 2;
    760 }
    761 
    762 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
    763 /// equality comparison instruction (either a switch or a branch on "X == c").
    764 /// See if any of the predecessors of the terminator block are value comparisons
    765 /// on the same value.  If so, and if safe to do so, fold them together.
    766 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    767                                                          IRBuilder<> &Builder) {
    768   BasicBlock *BB = TI->getParent();
    769   Value *CV = isValueEqualityComparison(TI);  // CondVal
    770   assert(CV && "Not a comparison?");
    771   bool Changed = false;
    772 
    773   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    774   while (!Preds.empty()) {
    775     BasicBlock *Pred = Preds.pop_back_val();
    776 
    777     // See if the predecessor is a comparison with the same value.
    778     TerminatorInst *PTI = Pred->getTerminator();
    779     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
    780 
    781     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    782       // Figure out which 'cases' to copy from SI to PSI.
    783       std::vector<ValueEqualityComparisonCase> BBCases;
    784       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    785 
    786       std::vector<ValueEqualityComparisonCase> PredCases;
    787       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    788 
    789       // Based on whether the default edge from PTI goes to BB or not, fill in
    790       // PredCases and PredDefault with the new switch cases we would like to
    791       // build.
    792       SmallVector<BasicBlock*, 8> NewSuccessors;
    793 
    794       // Update the branch weight metadata along the way
    795       SmallVector<uint64_t, 8> Weights;
    796       bool PredHasWeights = HasBranchWeights(PTI);
    797       bool SuccHasWeights = HasBranchWeights(TI);
    798 
    799       if (PredHasWeights) {
    800         GetBranchWeights(PTI, Weights);
    801         // branch-weight metadata is inconsistent here.
    802         if (Weights.size() != 1 + PredCases.size())
    803           PredHasWeights = SuccHasWeights = false;
    804       } else if (SuccHasWeights)
    805         // If there are no predecessor weights but there are successor weights,
    806         // populate Weights with 1, which will later be scaled to the sum of
    807         // successor's weights
    808         Weights.assign(1 + PredCases.size(), 1);
    809 
    810       SmallVector<uint64_t, 8> SuccWeights;
    811       if (SuccHasWeights) {
    812         GetBranchWeights(TI, SuccWeights);
    813         // branch-weight metadata is inconsistent here.
    814         if (SuccWeights.size() != 1 + BBCases.size())
    815           PredHasWeights = SuccHasWeights = false;
    816       } else if (PredHasWeights)
    817         SuccWeights.assign(1 + BBCases.size(), 1);
    818 
    819       if (PredDefault == BB) {
    820         // If this is the default destination from PTI, only the edges in TI
    821         // that don't occur in PTI, or that branch to BB will be activated.
    822         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    823         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    824           if (PredCases[i].Dest != BB)
    825             PTIHandled.insert(PredCases[i].Value);
    826           else {
    827             // The default destination is BB, we don't need explicit targets.
    828             std::swap(PredCases[i], PredCases.back());
    829 
    830             if (PredHasWeights || SuccHasWeights) {
    831               // Increase weight for the default case.
    832               Weights[0] += Weights[i+1];
    833               std::swap(Weights[i+1], Weights.back());
    834               Weights.pop_back();
    835             }
    836 
    837             PredCases.pop_back();
    838             --i; --e;
    839           }
    840 
    841         // Reconstruct the new switch statement we will be building.
    842         if (PredDefault != BBDefault) {
    843           PredDefault->removePredecessor(Pred);
    844           PredDefault = BBDefault;
    845           NewSuccessors.push_back(BBDefault);
    846         }
    847 
    848         unsigned CasesFromPred = Weights.size();
    849         uint64_t ValidTotalSuccWeight = 0;
    850         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    851           if (!PTIHandled.count(BBCases[i].Value) &&
    852               BBCases[i].Dest != BBDefault) {
    853             PredCases.push_back(BBCases[i]);
    854             NewSuccessors.push_back(BBCases[i].Dest);
    855             if (SuccHasWeights || PredHasWeights) {
    856               // The default weight is at index 0, so weight for the ith case
    857               // should be at index i+1. Scale the cases from successor by
    858               // PredDefaultWeight (Weights[0]).
    859               Weights.push_back(Weights[0] * SuccWeights[i+1]);
    860               ValidTotalSuccWeight += SuccWeights[i+1];
    861             }
    862           }
    863 
    864         if (SuccHasWeights || PredHasWeights) {
    865           ValidTotalSuccWeight += SuccWeights[0];
    866           // Scale the cases from predecessor by ValidTotalSuccWeight.
    867           for (unsigned i = 1; i < CasesFromPred; ++i)
    868             Weights[i] *= ValidTotalSuccWeight;
    869           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
    870           Weights[0] *= SuccWeights[0];
    871         }
    872       } else {
    873         // If this is not the default destination from PSI, only the edges
    874         // in SI that occur in PSI with a destination of BB will be
    875         // activated.
    876         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    877         std::map<ConstantInt*, uint64_t> WeightsForHandled;
    878         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    879           if (PredCases[i].Dest == BB) {
    880             PTIHandled.insert(PredCases[i].Value);
    881 
    882             if (PredHasWeights || SuccHasWeights) {
    883               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
    884               std::swap(Weights[i+1], Weights.back());
    885               Weights.pop_back();
    886             }
    887 
    888             std::swap(PredCases[i], PredCases.back());
    889             PredCases.pop_back();
    890             --i; --e;
    891           }
    892 
    893         // Okay, now we know which constants were sent to BB from the
    894         // predecessor.  Figure out where they will all go now.
    895         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    896           if (PTIHandled.count(BBCases[i].Value)) {
    897             // If this is one we are capable of getting...
    898             if (PredHasWeights || SuccHasWeights)
    899               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
    900             PredCases.push_back(BBCases[i]);
    901             NewSuccessors.push_back(BBCases[i].Dest);
    902             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
    903           }
    904 
    905         // If there are any constants vectored to BB that TI doesn't handle,
    906         // they must go to the default destination of TI.
    907         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
    908                                     PTIHandled.begin(),
    909                E = PTIHandled.end(); I != E; ++I) {
    910           if (PredHasWeights || SuccHasWeights)
    911             Weights.push_back(WeightsForHandled[*I]);
    912           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
    913           NewSuccessors.push_back(BBDefault);
    914         }
    915       }
    916 
    917       // Okay, at this point, we know which new successor Pred will get.  Make
    918       // sure we update the number of entries in the PHI nodes for these
    919       // successors.
    920       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
    921         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
    922 
    923       Builder.SetInsertPoint(PTI);
    924       // Convert pointer to int before we switch.
    925       if (CV->getType()->isPointerTy()) {
    926         assert(TD && "Cannot switch on pointer without DataLayout");
    927         CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
    928                                     "magicptr");
    929       }
    930 
    931       // Now that the successors are updated, create the new Switch instruction.
    932       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
    933                                                PredCases.size());
    934       NewSI->setDebugLoc(PTI->getDebugLoc());
    935       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    936         NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
    937 
    938       if (PredHasWeights || SuccHasWeights) {
    939         // Halve the weights if any of them cannot fit in an uint32_t
    940         FitWeights(Weights);
    941 
    942         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
    943 
    944         NewSI->setMetadata(LLVMContext::MD_prof,
    945                            MDBuilder(BB->getContext()).
    946                            createBranchWeights(MDWeights));
    947       }
    948 
    949       EraseTerminatorInstAndDCECond(PTI);
    950 
    951       // Okay, last check.  If BB is still a successor of PSI, then we must
    952       // have an infinite loop case.  If so, add an infinitely looping block
    953       // to handle the case to preserve the behavior of the code.
    954       BasicBlock *InfLoopBlock = 0;
    955       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
    956         if (NewSI->getSuccessor(i) == BB) {
    957           if (InfLoopBlock == 0) {
    958             // Insert it at the end of the function, because it's either code,
    959             // or it won't matter if it's hot. :)
    960             InfLoopBlock = BasicBlock::Create(BB->getContext(),
    961                                               "infloop", BB->getParent());
    962             BranchInst::Create(InfLoopBlock, InfLoopBlock);
    963           }
    964           NewSI->setSuccessor(i, InfLoopBlock);
    965         }
    966 
    967       Changed = true;
    968     }
    969   }
    970   return Changed;
    971 }
    972 
    973 // isSafeToHoistInvoke - If we would need to insert a select that uses the
    974 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
    975 // would need to do this), we can't hoist the invoke, as there is nowhere
    976 // to put the select in this case.
    977 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
    978                                 Instruction *I1, Instruction *I2) {
    979   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    980     PHINode *PN;
    981     for (BasicBlock::iterator BBI = SI->begin();
    982          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    983       Value *BB1V = PN->getIncomingValueForBlock(BB1);
    984       Value *BB2V = PN->getIncomingValueForBlock(BB2);
    985       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
    986         return false;
    987       }
    988     }
    989   }
    990   return true;
    991 }
    992 
    993 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
    994 /// BB2, hoist any common code in the two blocks up into the branch block.  The
    995 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
    996 static bool HoistThenElseCodeToIf(BranchInst *BI) {
    997   // This does very trivial matching, with limited scanning, to find identical
    998   // instructions in the two blocks.  In particular, we don't want to get into
    999   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
   1000   // such, we currently just scan for obviously identical instructions in an
   1001   // identical order.
   1002   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
   1003   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
   1004 
   1005   BasicBlock::iterator BB1_Itr = BB1->begin();
   1006   BasicBlock::iterator BB2_Itr = BB2->begin();
   1007 
   1008   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
   1009   // Skip debug info if it is not identical.
   1010   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1011   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1012   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1013     while (isa<DbgInfoIntrinsic>(I1))
   1014       I1 = BB1_Itr++;
   1015     while (isa<DbgInfoIntrinsic>(I2))
   1016       I2 = BB2_Itr++;
   1017   }
   1018   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
   1019       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
   1020     return false;
   1021 
   1022   BasicBlock *BIParent = BI->getParent();
   1023 
   1024   bool Changed = false;
   1025   do {
   1026     // If we are hoisting the terminator instruction, don't move one (making a
   1027     // broken BB), instead clone it, and remove BI.
   1028     if (isa<TerminatorInst>(I1))
   1029       goto HoistTerminator;
   1030 
   1031     // For a normal instruction, we just move one to right before the branch,
   1032     // then replace all uses of the other with the first.  Finally, we remove
   1033     // the now redundant second instruction.
   1034     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
   1035     if (!I2->use_empty())
   1036       I2->replaceAllUsesWith(I1);
   1037     I1->intersectOptionalDataWith(I2);
   1038     I2->eraseFromParent();
   1039     Changed = true;
   1040 
   1041     I1 = BB1_Itr++;
   1042     I2 = BB2_Itr++;
   1043     // Skip debug info if it is not identical.
   1044     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1045     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1046     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1047       while (isa<DbgInfoIntrinsic>(I1))
   1048         I1 = BB1_Itr++;
   1049       while (isa<DbgInfoIntrinsic>(I2))
   1050         I2 = BB2_Itr++;
   1051     }
   1052   } while (I1->isIdenticalToWhenDefined(I2));
   1053 
   1054   return true;
   1055 
   1056 HoistTerminator:
   1057   // It may not be possible to hoist an invoke.
   1058   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
   1059     return Changed;
   1060 
   1061   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1062     PHINode *PN;
   1063     for (BasicBlock::iterator BBI = SI->begin();
   1064          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1065       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1066       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1067       if (BB1V == BB2V)
   1068         continue;
   1069 
   1070       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
   1071         return Changed;
   1072       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
   1073         return Changed;
   1074     }
   1075   }
   1076 
   1077   // Okay, it is safe to hoist the terminator.
   1078   Instruction *NT = I1->clone();
   1079   BIParent->getInstList().insert(BI, NT);
   1080   if (!NT->getType()->isVoidTy()) {
   1081     I1->replaceAllUsesWith(NT);
   1082     I2->replaceAllUsesWith(NT);
   1083     NT->takeName(I1);
   1084   }
   1085 
   1086   IRBuilder<true, NoFolder> Builder(NT);
   1087   // Hoisting one of the terminators from our successor is a great thing.
   1088   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
   1089   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
   1090   // nodes, so we insert select instruction to compute the final result.
   1091   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
   1092   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1093     PHINode *PN;
   1094     for (BasicBlock::iterator BBI = SI->begin();
   1095          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1096       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1097       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1098       if (BB1V == BB2V) continue;
   1099 
   1100       // These values do not agree.  Insert a select instruction before NT
   1101       // that determines the right value.
   1102       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
   1103       if (SI == 0)
   1104         SI = cast<SelectInst>
   1105           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
   1106                                 BB1V->getName()+"."+BB2V->getName()));
   1107 
   1108       // Make the PHI node use the select for all incoming values for BB1/BB2
   1109       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1110         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
   1111           PN->setIncomingValue(i, SI);
   1112     }
   1113   }
   1114 
   1115   // Update any PHI nodes in our new successors.
   1116   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
   1117     AddPredecessorToBlock(*SI, BIParent, BB1);
   1118 
   1119   EraseTerminatorInstAndDCECond(BI);
   1120   return true;
   1121 }
   1122 
   1123 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
   1124 /// check whether BBEnd has only two predecessors and the other predecessor
   1125 /// ends with an unconditional branch. If it is true, sink any common code
   1126 /// in the two predecessors to BBEnd.
   1127 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
   1128   assert(BI1->isUnconditional());
   1129   BasicBlock *BB1 = BI1->getParent();
   1130   BasicBlock *BBEnd = BI1->getSuccessor(0);
   1131 
   1132   // Check that BBEnd has two predecessors and the other predecessor ends with
   1133   // an unconditional branch.
   1134   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
   1135   BasicBlock *Pred0 = *PI++;
   1136   if (PI == PE) // Only one predecessor.
   1137     return false;
   1138   BasicBlock *Pred1 = *PI++;
   1139   if (PI != PE) // More than two predecessors.
   1140     return false;
   1141   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
   1142   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
   1143   if (!BI2 || !BI2->isUnconditional())
   1144     return false;
   1145 
   1146   // Gather the PHI nodes in BBEnd.
   1147   std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
   1148   Instruction *FirstNonPhiInBBEnd = 0;
   1149   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
   1150        I != E; ++I) {
   1151     if (PHINode *PN = dyn_cast<PHINode>(I)) {
   1152       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1153       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1154       MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
   1155     } else {
   1156       FirstNonPhiInBBEnd = &*I;
   1157       break;
   1158     }
   1159   }
   1160   if (!FirstNonPhiInBBEnd)
   1161     return false;
   1162 
   1163 
   1164   // This does very trivial matching, with limited scanning, to find identical
   1165   // instructions in the two blocks.  We scan backward for obviously identical
   1166   // instructions in an identical order.
   1167   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
   1168       RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
   1169       RE2 = BB2->getInstList().rend();
   1170   // Skip debug info.
   1171   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1172   if (RI1 == RE1)
   1173     return false;
   1174   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1175   if (RI2 == RE2)
   1176     return false;
   1177   // Skip the unconditional branches.
   1178   ++RI1;
   1179   ++RI2;
   1180 
   1181   bool Changed = false;
   1182   while (RI1 != RE1 && RI2 != RE2) {
   1183     // Skip debug info.
   1184     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1185     if (RI1 == RE1)
   1186       return Changed;
   1187     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1188     if (RI2 == RE2)
   1189       return Changed;
   1190 
   1191     Instruction *I1 = &*RI1, *I2 = &*RI2;
   1192     // I1 and I2 should have a single use in the same PHI node, and they
   1193     // perform the same operation.
   1194     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   1195     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
   1196         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
   1197         isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
   1198         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
   1199         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
   1200         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
   1201         !I1->hasOneUse() || !I2->hasOneUse() ||
   1202         MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
   1203         MapValueFromBB1ToBB2[I1].first != I2)
   1204       return Changed;
   1205 
   1206     // Check whether we should swap the operands of ICmpInst.
   1207     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
   1208     bool SwapOpnds = false;
   1209     if (ICmp1 && ICmp2 &&
   1210         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
   1211         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
   1212         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
   1213          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
   1214       ICmp2->swapOperands();
   1215       SwapOpnds = true;
   1216     }
   1217     if (!I1->isSameOperationAs(I2)) {
   1218       if (SwapOpnds)
   1219         ICmp2->swapOperands();
   1220       return Changed;
   1221     }
   1222 
   1223     // The operands should be either the same or they need to be generated
   1224     // with a PHI node after sinking. We only handle the case where there is
   1225     // a single pair of different operands.
   1226     Value *DifferentOp1 = 0, *DifferentOp2 = 0;
   1227     unsigned Op1Idx = 0;
   1228     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
   1229       if (I1->getOperand(I) == I2->getOperand(I))
   1230         continue;
   1231       // Early exit if we have more-than one pair of different operands or
   1232       // the different operand is already in MapValueFromBB1ToBB2.
   1233       // Early exit if we need a PHI node to replace a constant.
   1234       if (DifferentOp1 ||
   1235           MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
   1236           MapValueFromBB1ToBB2.end() ||
   1237           isa<Constant>(I1->getOperand(I)) ||
   1238           isa<Constant>(I2->getOperand(I))) {
   1239         // If we can't sink the instructions, undo the swapping.
   1240         if (SwapOpnds)
   1241           ICmp2->swapOperands();
   1242         return Changed;
   1243       }
   1244       DifferentOp1 = I1->getOperand(I);
   1245       Op1Idx = I;
   1246       DifferentOp2 = I2->getOperand(I);
   1247     }
   1248 
   1249     // We insert the pair of different operands to MapValueFromBB1ToBB2 and
   1250     // remove (I1, I2) from MapValueFromBB1ToBB2.
   1251     if (DifferentOp1) {
   1252       PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
   1253                                        DifferentOp1->getName() + ".sink",
   1254                                        BBEnd->begin());
   1255       MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
   1256       // I1 should use NewPN instead of DifferentOp1.
   1257       I1->setOperand(Op1Idx, NewPN);
   1258       NewPN->addIncoming(DifferentOp1, BB1);
   1259       NewPN->addIncoming(DifferentOp2, BB2);
   1260       DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
   1261     }
   1262     PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
   1263     MapValueFromBB1ToBB2.erase(I1);
   1264 
   1265     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
   1266     DEBUG(dbgs() << "                         " << *I2 << "\n";);
   1267     // We need to update RE1 and RE2 if we are going to sink the first
   1268     // instruction in the basic block down.
   1269     bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
   1270     // Sink the instruction.
   1271     BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
   1272     if (!OldPN->use_empty())
   1273       OldPN->replaceAllUsesWith(I1);
   1274     OldPN->eraseFromParent();
   1275 
   1276     if (!I2->use_empty())
   1277       I2->replaceAllUsesWith(I1);
   1278     I1->intersectOptionalDataWith(I2);
   1279     I2->eraseFromParent();
   1280 
   1281     if (UpdateRE1)
   1282       RE1 = BB1->getInstList().rend();
   1283     if (UpdateRE2)
   1284       RE2 = BB2->getInstList().rend();
   1285     FirstNonPhiInBBEnd = I1;
   1286     NumSinkCommons++;
   1287     Changed = true;
   1288   }
   1289   return Changed;
   1290 }
   1291 
   1292 /// \brief Determine if we can hoist sink a sole store instruction out of a
   1293 /// conditional block.
   1294 ///
   1295 /// We are looking for code like the following:
   1296 ///   BrBB:
   1297 ///     store i32 %add, i32* %arrayidx2
   1298 ///     ... // No other stores or function calls (we could be calling a memory
   1299 ///     ... // function).
   1300 ///     %cmp = icmp ult %x, %y
   1301 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1302 ///   ThenBB:
   1303 ///     store i32 %add5, i32* %arrayidx2
   1304 ///     br label EndBB
   1305 ///   EndBB:
   1306 ///     ...
   1307 ///   We are going to transform this into:
   1308 ///   BrBB:
   1309 ///     store i32 %add, i32* %arrayidx2
   1310 ///     ... //
   1311 ///     %cmp = icmp ult %x, %y
   1312 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
   1313 ///     store i32 %add.add5, i32* %arrayidx2
   1314 ///     ...
   1315 ///
   1316 /// \return The pointer to the value of the previous store if the store can be
   1317 ///         hoisted into the predecessor block. 0 otherwise.
   1318 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
   1319                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
   1320   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
   1321   if (!StoreToHoist)
   1322     return 0;
   1323 
   1324   // Volatile or atomic.
   1325   if (!StoreToHoist->isSimple())
   1326     return 0;
   1327 
   1328   Value *StorePtr = StoreToHoist->getPointerOperand();
   1329 
   1330   // Look for a store to the same pointer in BrBB.
   1331   unsigned MaxNumInstToLookAt = 10;
   1332   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
   1333        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
   1334     Instruction *CurI = &*RI;
   1335 
   1336     // Could be calling an instruction that effects memory like free().
   1337     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
   1338       return 0;
   1339 
   1340     StoreInst *SI = dyn_cast<StoreInst>(CurI);
   1341     // Found the previous store make sure it stores to the same location.
   1342     if (SI && SI->getPointerOperand() == StorePtr)
   1343       // Found the previous store, return its value operand.
   1344       return SI->getValueOperand();
   1345     else if (SI)
   1346       return 0; // Unknown store.
   1347   }
   1348 
   1349   return 0;
   1350 }
   1351 
   1352 /// \brief Speculate a conditional basic block flattening the CFG.
   1353 ///
   1354 /// Note that this is a very risky transform currently. Speculating
   1355 /// instructions like this is most often not desirable. Instead, there is an MI
   1356 /// pass which can do it with full awareness of the resource constraints.
   1357 /// However, some cases are "obvious" and we should do directly. An example of
   1358 /// this is speculating a single, reasonably cheap instruction.
   1359 ///
   1360 /// There is only one distinct advantage to flattening the CFG at the IR level:
   1361 /// it makes very common but simplistic optimizations such as are common in
   1362 /// instcombine and the DAG combiner more powerful by removing CFG edges and
   1363 /// modeling their effects with easier to reason about SSA value graphs.
   1364 ///
   1365 ///
   1366 /// An illustration of this transform is turning this IR:
   1367 /// \code
   1368 ///   BB:
   1369 ///     %cmp = icmp ult %x, %y
   1370 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1371 ///   ThenBB:
   1372 ///     %sub = sub %x, %y
   1373 ///     br label BB2
   1374 ///   EndBB:
   1375 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
   1376 ///     ...
   1377 /// \endcode
   1378 ///
   1379 /// Into this IR:
   1380 /// \code
   1381 ///   BB:
   1382 ///     %cmp = icmp ult %x, %y
   1383 ///     %sub = sub %x, %y
   1384 ///     %cond = select i1 %cmp, 0, %sub
   1385 ///     ...
   1386 /// \endcode
   1387 ///
   1388 /// \returns true if the conditional block is removed.
   1389 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) {
   1390   // Be conservative for now. FP select instruction can often be expensive.
   1391   Value *BrCond = BI->getCondition();
   1392   if (isa<FCmpInst>(BrCond))
   1393     return false;
   1394 
   1395   BasicBlock *BB = BI->getParent();
   1396   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
   1397 
   1398   // If ThenBB is actually on the false edge of the conditional branch, remember
   1399   // to swap the select operands later.
   1400   bool Invert = false;
   1401   if (ThenBB != BI->getSuccessor(0)) {
   1402     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
   1403     Invert = true;
   1404   }
   1405   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
   1406 
   1407   // Keep a count of how many times instructions are used within CondBB when
   1408   // they are candidates for sinking into CondBB. Specifically:
   1409   // - They are defined in BB, and
   1410   // - They have no side effects, and
   1411   // - All of their uses are in CondBB.
   1412   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
   1413 
   1414   unsigned SpeculationCost = 0;
   1415   Value *SpeculatedStoreValue = 0;
   1416   StoreInst *SpeculatedStore = 0;
   1417   for (BasicBlock::iterator BBI = ThenBB->begin(),
   1418                             BBE = llvm::prior(ThenBB->end());
   1419        BBI != BBE; ++BBI) {
   1420     Instruction *I = BBI;
   1421     // Skip debug info.
   1422     if (isa<DbgInfoIntrinsic>(I))
   1423       continue;
   1424 
   1425     // Only speculatively execution a single instruction (not counting the
   1426     // terminator) for now.
   1427     ++SpeculationCost;
   1428     if (SpeculationCost > 1)
   1429       return false;
   1430 
   1431     // Don't hoist the instruction if it's unsafe or expensive.
   1432     if (!isSafeToSpeculativelyExecute(I) &&
   1433         !(HoistCondStores &&
   1434           (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
   1435                                                          EndBB))))
   1436       return false;
   1437     if (!SpeculatedStoreValue &&
   1438         ComputeSpeculationCost(I) > PHINodeFoldingThreshold)
   1439       return false;
   1440 
   1441     // Store the store speculation candidate.
   1442     if (SpeculatedStoreValue)
   1443       SpeculatedStore = cast<StoreInst>(I);
   1444 
   1445     // Do not hoist the instruction if any of its operands are defined but not
   1446     // used in BB. The transformation will prevent the operand from
   1447     // being sunk into the use block.
   1448     for (User::op_iterator i = I->op_begin(), e = I->op_end();
   1449          i != e; ++i) {
   1450       Instruction *OpI = dyn_cast<Instruction>(*i);
   1451       if (!OpI || OpI->getParent() != BB ||
   1452           OpI->mayHaveSideEffects())
   1453         continue; // Not a candidate for sinking.
   1454 
   1455       ++SinkCandidateUseCounts[OpI];
   1456     }
   1457   }
   1458 
   1459   // Consider any sink candidates which are only used in CondBB as costs for
   1460   // speculation. Note, while we iterate over a DenseMap here, we are summing
   1461   // and so iteration order isn't significant.
   1462   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
   1463            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
   1464        I != E; ++I)
   1465     if (I->first->getNumUses() == I->second) {
   1466       ++SpeculationCost;
   1467       if (SpeculationCost > 1)
   1468         return false;
   1469     }
   1470 
   1471   // Check that the PHI nodes can be converted to selects.
   1472   bool HaveRewritablePHIs = false;
   1473   for (BasicBlock::iterator I = EndBB->begin();
   1474        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1475     Value *OrigV = PN->getIncomingValueForBlock(BB);
   1476     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
   1477 
   1478     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
   1479     // Skip PHIs which are trivial.
   1480     if (ThenV == OrigV)
   1481       continue;
   1482 
   1483     HaveRewritablePHIs = true;
   1484     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
   1485     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
   1486     if (!OrigCE && !ThenCE)
   1487       continue; // Known safe and cheap.
   1488 
   1489     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
   1490         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
   1491       return false;
   1492     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0;
   1493     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0;
   1494     if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
   1495       return false;
   1496 
   1497     // Account for the cost of an unfolded ConstantExpr which could end up
   1498     // getting expanded into Instructions.
   1499     // FIXME: This doesn't account for how many operations are combined in the
   1500     // constant expression.
   1501     ++SpeculationCost;
   1502     if (SpeculationCost > 1)
   1503       return false;
   1504   }
   1505 
   1506   // If there are no PHIs to process, bail early. This helps ensure idempotence
   1507   // as well.
   1508   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
   1509     return false;
   1510 
   1511   // If we get here, we can hoist the instruction and if-convert.
   1512   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
   1513 
   1514   // Insert a select of the value of the speculated store.
   1515   if (SpeculatedStoreValue) {
   1516     IRBuilder<true, NoFolder> Builder(BI);
   1517     Value *TrueV = SpeculatedStore->getValueOperand();
   1518     Value *FalseV = SpeculatedStoreValue;
   1519     if (Invert)
   1520       std::swap(TrueV, FalseV);
   1521     Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
   1522                                     "." + FalseV->getName());
   1523     SpeculatedStore->setOperand(0, S);
   1524   }
   1525 
   1526   // Hoist the instructions.
   1527   BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
   1528                            llvm::prior(ThenBB->end()));
   1529 
   1530   // Insert selects and rewrite the PHI operands.
   1531   IRBuilder<true, NoFolder> Builder(BI);
   1532   for (BasicBlock::iterator I = EndBB->begin();
   1533        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1534     unsigned OrigI = PN->getBasicBlockIndex(BB);
   1535     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
   1536     Value *OrigV = PN->getIncomingValue(OrigI);
   1537     Value *ThenV = PN->getIncomingValue(ThenI);
   1538 
   1539     // Skip PHIs which are trivial.
   1540     if (OrigV == ThenV)
   1541       continue;
   1542 
   1543     // Create a select whose true value is the speculatively executed value and
   1544     // false value is the preexisting value. Swap them if the branch
   1545     // destinations were inverted.
   1546     Value *TrueV = ThenV, *FalseV = OrigV;
   1547     if (Invert)
   1548       std::swap(TrueV, FalseV);
   1549     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
   1550                                     TrueV->getName() + "." + FalseV->getName());
   1551     PN->setIncomingValue(OrigI, V);
   1552     PN->setIncomingValue(ThenI, V);
   1553   }
   1554 
   1555   ++NumSpeculations;
   1556   return true;
   1557 }
   1558 
   1559 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
   1560 /// across this block.
   1561 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1562   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1563   unsigned Size = 0;
   1564 
   1565   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1566     if (isa<DbgInfoIntrinsic>(BBI))
   1567       continue;
   1568     if (Size > 10) return false;  // Don't clone large BB's.
   1569     ++Size;
   1570 
   1571     // We can only support instructions that do not define values that are
   1572     // live outside of the current basic block.
   1573     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
   1574          UI != E; ++UI) {
   1575       Instruction *U = cast<Instruction>(*UI);
   1576       if (U->getParent() != BB || isa<PHINode>(U)) return false;
   1577     }
   1578 
   1579     // Looks ok, continue checking.
   1580   }
   1581 
   1582   return true;
   1583 }
   1584 
   1585 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
   1586 /// that is defined in the same block as the branch and if any PHI entries are
   1587 /// constants, thread edges corresponding to that entry to be branches to their
   1588 /// ultimate destination.
   1589 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
   1590   BasicBlock *BB = BI->getParent();
   1591   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1592   // NOTE: we currently cannot transform this case if the PHI node is used
   1593   // outside of the block.
   1594   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1595     return false;
   1596 
   1597   // Degenerate case of a single entry PHI.
   1598   if (PN->getNumIncomingValues() == 1) {
   1599     FoldSingleEntryPHINodes(PN->getParent());
   1600     return true;
   1601   }
   1602 
   1603   // Now we know that this block has multiple preds and two succs.
   1604   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
   1605 
   1606   // Okay, this is a simple enough basic block.  See if any phi values are
   1607   // constants.
   1608   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1609     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1610     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
   1611 
   1612     // Okay, we now know that all edges from PredBB should be revectored to
   1613     // branch to RealDest.
   1614     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1615     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1616 
   1617     if (RealDest == BB) continue;  // Skip self loops.
   1618     // Skip if the predecessor's terminator is an indirect branch.
   1619     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
   1620 
   1621     // The dest block might have PHI nodes, other predecessors and other
   1622     // difficult cases.  Instead of being smart about this, just insert a new
   1623     // block that jumps to the destination block, effectively splitting
   1624     // the edge we are about to create.
   1625     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
   1626                                             RealDest->getName()+".critedge",
   1627                                             RealDest->getParent(), RealDest);
   1628     BranchInst::Create(RealDest, EdgeBB);
   1629 
   1630     // Update PHI nodes.
   1631     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1632 
   1633     // BB may have instructions that are being threaded over.  Clone these
   1634     // instructions into EdgeBB.  We know that there will be no uses of the
   1635     // cloned instructions outside of EdgeBB.
   1636     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1637     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
   1638     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1639       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1640         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1641         continue;
   1642       }
   1643       // Clone the instruction.
   1644       Instruction *N = BBI->clone();
   1645       if (BBI->hasName()) N->setName(BBI->getName()+".c");
   1646 
   1647       // Update operands due to translation.
   1648       for (User::op_iterator i = N->op_begin(), e = N->op_end();
   1649            i != e; ++i) {
   1650         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
   1651         if (PI != TranslateMap.end())
   1652           *i = PI->second;
   1653       }
   1654 
   1655       // Check for trivial simplification.
   1656       if (Value *V = SimplifyInstruction(N, TD)) {
   1657         TranslateMap[BBI] = V;
   1658         delete N;   // Instruction folded away, don't need actual inst
   1659       } else {
   1660         // Insert the new instruction into its new home.
   1661         EdgeBB->getInstList().insert(InsertPt, N);
   1662         if (!BBI->use_empty())
   1663           TranslateMap[BBI] = N;
   1664       }
   1665     }
   1666 
   1667     // Loop over all of the edges from PredBB to BB, changing them to branch
   1668     // to EdgeBB instead.
   1669     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1670     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1671       if (PredBBTI->getSuccessor(i) == BB) {
   1672         BB->removePredecessor(PredBB);
   1673         PredBBTI->setSuccessor(i, EdgeBB);
   1674       }
   1675 
   1676     // Recurse, simplifying any other constants.
   1677     return FoldCondBranchOnPHI(BI, TD) | true;
   1678   }
   1679 
   1680   return false;
   1681 }
   1682 
   1683 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
   1684 /// PHI node, see if we can eliminate it.
   1685 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
   1686   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1687   // statement", which has a very simple dominance structure.  Basically, we
   1688   // are trying to find the condition that is being branched on, which
   1689   // subsequently causes this merge to happen.  We really want control
   1690   // dependence information for this check, but simplifycfg can't keep it up
   1691   // to date, and this catches most of the cases we care about anyway.
   1692   BasicBlock *BB = PN->getParent();
   1693   BasicBlock *IfTrue, *IfFalse;
   1694   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1695   if (!IfCond ||
   1696       // Don't bother if the branch will be constant folded trivially.
   1697       isa<ConstantInt>(IfCond))
   1698     return false;
   1699 
   1700   // Okay, we found that we can merge this two-entry phi node into a select.
   1701   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1702   // At some point this becomes non-profitable (particularly if the target
   1703   // doesn't support cmov's).  Only do this transformation if there are two or
   1704   // fewer PHI nodes in this block.
   1705   unsigned NumPhis = 0;
   1706   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1707     if (NumPhis > 2)
   1708       return false;
   1709 
   1710   // Loop over the PHI's seeing if we can promote them all to select
   1711   // instructions.  While we are at it, keep track of the instructions
   1712   // that need to be moved to the dominating block.
   1713   SmallPtrSet<Instruction*, 4> AggressiveInsts;
   1714   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1715            MaxCostVal1 = PHINodeFoldingThreshold;
   1716 
   1717   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1718     PHINode *PN = cast<PHINode>(II++);
   1719     if (Value *V = SimplifyInstruction(PN, TD)) {
   1720       PN->replaceAllUsesWith(V);
   1721       PN->eraseFromParent();
   1722       continue;
   1723     }
   1724 
   1725     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1726                              MaxCostVal0) ||
   1727         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1728                              MaxCostVal1))
   1729       return false;
   1730   }
   1731 
   1732   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
   1733   // we ran out of PHIs then we simplified them all.
   1734   PN = dyn_cast<PHINode>(BB->begin());
   1735   if (PN == 0) return true;
   1736 
   1737   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1738   // often be turned into switches and other things.
   1739   if (PN->getType()->isIntegerTy(1) &&
   1740       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1741        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1742        isa<BinaryOperator>(IfCond)))
   1743     return false;
   1744 
   1745   // If we all PHI nodes are promotable, check to make sure that all
   1746   // instructions in the predecessor blocks can be promoted as well.  If
   1747   // not, we won't be able to get rid of the control flow, so it's not
   1748   // worth promoting to select instructions.
   1749   BasicBlock *DomBlock = 0;
   1750   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1751   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1752   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1753     IfBlock1 = 0;
   1754   } else {
   1755     DomBlock = *pred_begin(IfBlock1);
   1756     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
   1757       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1758         // This is not an aggressive instruction that we can promote.
   1759         // Because of this, we won't be able to get rid of the control
   1760         // flow, so the xform is not worth it.
   1761         return false;
   1762       }
   1763   }
   1764 
   1765   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   1766     IfBlock2 = 0;
   1767   } else {
   1768     DomBlock = *pred_begin(IfBlock2);
   1769     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
   1770       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1771         // This is not an aggressive instruction that we can promote.
   1772         // Because of this, we won't be able to get rid of the control
   1773         // flow, so the xform is not worth it.
   1774         return false;
   1775       }
   1776   }
   1777 
   1778   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   1779                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   1780 
   1781   // If we can still promote the PHI nodes after this gauntlet of tests,
   1782   // do all of the PHI's now.
   1783   Instruction *InsertPt = DomBlock->getTerminator();
   1784   IRBuilder<true, NoFolder> Builder(InsertPt);
   1785 
   1786   // Move all 'aggressive' instructions, which are defined in the
   1787   // conditional parts of the if's up to the dominating block.
   1788   if (IfBlock1)
   1789     DomBlock->getInstList().splice(InsertPt,
   1790                                    IfBlock1->getInstList(), IfBlock1->begin(),
   1791                                    IfBlock1->getTerminator());
   1792   if (IfBlock2)
   1793     DomBlock->getInstList().splice(InsertPt,
   1794                                    IfBlock2->getInstList(), IfBlock2->begin(),
   1795                                    IfBlock2->getTerminator());
   1796 
   1797   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   1798     // Change the PHI node into a select instruction.
   1799     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   1800     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   1801 
   1802     SelectInst *NV =
   1803       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
   1804     PN->replaceAllUsesWith(NV);
   1805     NV->takeName(PN);
   1806     PN->eraseFromParent();
   1807   }
   1808 
   1809   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   1810   // has been flattened.  Change DomBlock to jump directly to our new block to
   1811   // avoid other simplifycfg's kicking in on the diamond.
   1812   TerminatorInst *OldTI = DomBlock->getTerminator();
   1813   Builder.SetInsertPoint(OldTI);
   1814   Builder.CreateBr(BB);
   1815   OldTI->eraseFromParent();
   1816   return true;
   1817 }
   1818 
   1819 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
   1820 /// to two returning blocks, try to merge them together into one return,
   1821 /// introducing a select if the return values disagree.
   1822 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   1823                                            IRBuilder<> &Builder) {
   1824   assert(BI->isConditional() && "Must be a conditional branch");
   1825   BasicBlock *TrueSucc = BI->getSuccessor(0);
   1826   BasicBlock *FalseSucc = BI->getSuccessor(1);
   1827   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   1828   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   1829 
   1830   // Check to ensure both blocks are empty (just a return) or optionally empty
   1831   // with PHI nodes.  If there are other instructions, merging would cause extra
   1832   // computation on one path or the other.
   1833   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   1834     return false;
   1835   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   1836     return false;
   1837 
   1838   Builder.SetInsertPoint(BI);
   1839   // Okay, we found a branch that is going to two return nodes.  If
   1840   // there is no return value for this function, just change the
   1841   // branch into a return.
   1842   if (FalseRet->getNumOperands() == 0) {
   1843     TrueSucc->removePredecessor(BI->getParent());
   1844     FalseSucc->removePredecessor(BI->getParent());
   1845     Builder.CreateRetVoid();
   1846     EraseTerminatorInstAndDCECond(BI);
   1847     return true;
   1848   }
   1849 
   1850   // Otherwise, figure out what the true and false return values are
   1851   // so we can insert a new select instruction.
   1852   Value *TrueValue = TrueRet->getReturnValue();
   1853   Value *FalseValue = FalseRet->getReturnValue();
   1854 
   1855   // Unwrap any PHI nodes in the return blocks.
   1856   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   1857     if (TVPN->getParent() == TrueSucc)
   1858       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   1859   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   1860     if (FVPN->getParent() == FalseSucc)
   1861       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   1862 
   1863   // In order for this transformation to be safe, we must be able to
   1864   // unconditionally execute both operands to the return.  This is
   1865   // normally the case, but we could have a potentially-trapping
   1866   // constant expression that prevents this transformation from being
   1867   // safe.
   1868   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   1869     if (TCV->canTrap())
   1870       return false;
   1871   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   1872     if (FCV->canTrap())
   1873       return false;
   1874 
   1875   // Okay, we collected all the mapped values and checked them for sanity, and
   1876   // defined to really do this transformation.  First, update the CFG.
   1877   TrueSucc->removePredecessor(BI->getParent());
   1878   FalseSucc->removePredecessor(BI->getParent());
   1879 
   1880   // Insert select instructions where needed.
   1881   Value *BrCond = BI->getCondition();
   1882   if (TrueValue) {
   1883     // Insert a select if the results differ.
   1884     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   1885     } else if (isa<UndefValue>(TrueValue)) {
   1886       TrueValue = FalseValue;
   1887     } else {
   1888       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
   1889                                        FalseValue, "retval");
   1890     }
   1891   }
   1892 
   1893   Value *RI = !TrueValue ?
   1894     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   1895 
   1896   (void) RI;
   1897 
   1898   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   1899                << "\n  " << *BI << "NewRet = " << *RI
   1900                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
   1901 
   1902   EraseTerminatorInstAndDCECond(BI);
   1903 
   1904   return true;
   1905 }
   1906 
   1907 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
   1908 /// probabilities of the branch taking each edge. Fills in the two APInt
   1909 /// parameters and return true, or returns false if no or invalid metadata was
   1910 /// found.
   1911 static bool ExtractBranchMetadata(BranchInst *BI,
   1912                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
   1913   assert(BI->isConditional() &&
   1914          "Looking for probabilities on unconditional branch?");
   1915   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
   1916   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
   1917   ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
   1918   ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
   1919   if (!CITrue || !CIFalse) return false;
   1920   ProbTrue = CITrue->getValue().getZExtValue();
   1921   ProbFalse = CIFalse->getValue().getZExtValue();
   1922   return true;
   1923 }
   1924 
   1925 /// checkCSEInPredecessor - Return true if the given instruction is available
   1926 /// in its predecessor block. If yes, the instruction will be removed.
   1927 ///
   1928 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
   1929   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
   1930     return false;
   1931   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
   1932     Instruction *PBI = &*I;
   1933     // Check whether Inst and PBI generate the same value.
   1934     if (Inst->isIdenticalTo(PBI)) {
   1935       Inst->replaceAllUsesWith(PBI);
   1936       Inst->eraseFromParent();
   1937       return true;
   1938     }
   1939   }
   1940   return false;
   1941 }
   1942 
   1943 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
   1944 /// predecessor branches to us and one of our successors, fold the block into
   1945 /// the predecessor and use logical operations to pick the right destination.
   1946 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
   1947   BasicBlock *BB = BI->getParent();
   1948 
   1949   Instruction *Cond = 0;
   1950   if (BI->isConditional())
   1951     Cond = dyn_cast<Instruction>(BI->getCondition());
   1952   else {
   1953     // For unconditional branch, check for a simple CFG pattern, where
   1954     // BB has a single predecessor and BB's successor is also its predecessor's
   1955     // successor. If such pattern exisits, check for CSE between BB and its
   1956     // predecessor.
   1957     if (BasicBlock *PB = BB->getSinglePredecessor())
   1958       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
   1959         if (PBI->isConditional() &&
   1960             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
   1961              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
   1962           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
   1963                I != E; ) {
   1964             Instruction *Curr = I++;
   1965             if (isa<CmpInst>(Curr)) {
   1966               Cond = Curr;
   1967               break;
   1968             }
   1969             // Quit if we can't remove this instruction.
   1970             if (!checkCSEInPredecessor(Curr, PB))
   1971               return false;
   1972           }
   1973         }
   1974 
   1975     if (Cond == 0)
   1976       return false;
   1977   }
   1978 
   1979   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   1980     Cond->getParent() != BB || !Cond->hasOneUse())
   1981   return false;
   1982 
   1983   // Only allow this if the condition is a simple instruction that can be
   1984   // executed unconditionally.  It must be in the same block as the branch, and
   1985   // must be at the front of the block.
   1986   BasicBlock::iterator FrontIt = BB->front();
   1987 
   1988   // Ignore dbg intrinsics.
   1989   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1990 
   1991   // Allow a single instruction to be hoisted in addition to the compare
   1992   // that feeds the branch.  We later ensure that any values that _it_ uses
   1993   // were also live in the predecessor, so that we don't unnecessarily create
   1994   // register pressure or inhibit out-of-order execution.
   1995   Instruction *BonusInst = 0;
   1996   if (&*FrontIt != Cond &&
   1997       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
   1998       isSafeToSpeculativelyExecute(FrontIt)) {
   1999     BonusInst = &*FrontIt;
   2000     ++FrontIt;
   2001 
   2002     // Ignore dbg intrinsics.
   2003     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   2004   }
   2005 
   2006   // Only a single bonus inst is allowed.
   2007   if (&*FrontIt != Cond)
   2008     return false;
   2009 
   2010   // Make sure the instruction after the condition is the cond branch.
   2011   BasicBlock::iterator CondIt = Cond; ++CondIt;
   2012 
   2013   // Ingore dbg intrinsics.
   2014   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
   2015 
   2016   if (&*CondIt != BI)
   2017     return false;
   2018 
   2019   // Cond is known to be a compare or binary operator.  Check to make sure that
   2020   // neither operand is a potentially-trapping constant expression.
   2021   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   2022     if (CE->canTrap())
   2023       return false;
   2024   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   2025     if (CE->canTrap())
   2026       return false;
   2027 
   2028   // Finally, don't infinitely unroll conditional loops.
   2029   BasicBlock *TrueDest  = BI->getSuccessor(0);
   2030   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
   2031   if (TrueDest == BB || FalseDest == BB)
   2032     return false;
   2033 
   2034   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2035     BasicBlock *PredBlock = *PI;
   2036     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   2037 
   2038     // Check that we have two conditional branches.  If there is a PHI node in
   2039     // the common successor, verify that the same value flows in from both
   2040     // blocks.
   2041     SmallVector<PHINode*, 4> PHIs;
   2042     if (PBI == 0 || PBI->isUnconditional() ||
   2043         (BI->isConditional() &&
   2044          !SafeToMergeTerminators(BI, PBI)) ||
   2045         (!BI->isConditional() &&
   2046          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
   2047       continue;
   2048 
   2049     // Determine if the two branches share a common destination.
   2050     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
   2051     bool InvertPredCond = false;
   2052 
   2053     if (BI->isConditional()) {
   2054       if (PBI->getSuccessor(0) == TrueDest)
   2055         Opc = Instruction::Or;
   2056       else if (PBI->getSuccessor(1) == FalseDest)
   2057         Opc = Instruction::And;
   2058       else if (PBI->getSuccessor(0) == FalseDest)
   2059         Opc = Instruction::And, InvertPredCond = true;
   2060       else if (PBI->getSuccessor(1) == TrueDest)
   2061         Opc = Instruction::Or, InvertPredCond = true;
   2062       else
   2063         continue;
   2064     } else {
   2065       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
   2066         continue;
   2067     }
   2068 
   2069     // Ensure that any values used in the bonus instruction are also used
   2070     // by the terminator of the predecessor.  This means that those values
   2071     // must already have been resolved, so we won't be inhibiting the
   2072     // out-of-order core by speculating them earlier.
   2073     if (BonusInst) {
   2074       // Collect the values used by the bonus inst
   2075       SmallPtrSet<Value*, 4> UsedValues;
   2076       for (Instruction::op_iterator OI = BonusInst->op_begin(),
   2077            OE = BonusInst->op_end(); OI != OE; ++OI) {
   2078         Value *V = *OI;
   2079         if (!isa<Constant>(V))
   2080           UsedValues.insert(V);
   2081       }
   2082 
   2083       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
   2084       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
   2085 
   2086       // Walk up to four levels back up the use-def chain of the predecessor's
   2087       // terminator to see if all those values were used.  The choice of four
   2088       // levels is arbitrary, to provide a compile-time-cost bound.
   2089       while (!Worklist.empty()) {
   2090         std::pair<Value*, unsigned> Pair = Worklist.back();
   2091         Worklist.pop_back();
   2092 
   2093         if (Pair.second >= 4) continue;
   2094         UsedValues.erase(Pair.first);
   2095         if (UsedValues.empty()) break;
   2096 
   2097         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
   2098           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
   2099                OI != OE; ++OI)
   2100             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
   2101         }
   2102       }
   2103 
   2104       if (!UsedValues.empty()) return false;
   2105     }
   2106 
   2107     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   2108     IRBuilder<> Builder(PBI);
   2109 
   2110     // If we need to invert the condition in the pred block to match, do so now.
   2111     if (InvertPredCond) {
   2112       Value *NewCond = PBI->getCondition();
   2113 
   2114       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   2115         CmpInst *CI = cast<CmpInst>(NewCond);
   2116         CI->setPredicate(CI->getInversePredicate());
   2117       } else {
   2118         NewCond = Builder.CreateNot(NewCond,
   2119                                     PBI->getCondition()->getName()+".not");
   2120       }
   2121 
   2122       PBI->setCondition(NewCond);
   2123       PBI->swapSuccessors();
   2124     }
   2125 
   2126     // If we have a bonus inst, clone it into the predecessor block.
   2127     Instruction *NewBonus = 0;
   2128     if (BonusInst) {
   2129       NewBonus = BonusInst->clone();
   2130       PredBlock->getInstList().insert(PBI, NewBonus);
   2131       NewBonus->takeName(BonusInst);
   2132       BonusInst->setName(BonusInst->getName()+".old");
   2133     }
   2134 
   2135     // Clone Cond into the predecessor basic block, and or/and the
   2136     // two conditions together.
   2137     Instruction *New = Cond->clone();
   2138     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
   2139     PredBlock->getInstList().insert(PBI, New);
   2140     New->takeName(Cond);
   2141     Cond->setName(New->getName()+".old");
   2142 
   2143     if (BI->isConditional()) {
   2144       Instruction *NewCond =
   2145         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
   2146                                             New, "or.cond"));
   2147       PBI->setCondition(NewCond);
   2148 
   2149       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2150       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2151                                                   PredFalseWeight);
   2152       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2153                                                   SuccFalseWeight);
   2154       SmallVector<uint64_t, 8> NewWeights;
   2155 
   2156       if (PBI->getSuccessor(0) == BB) {
   2157         if (PredHasWeights && SuccHasWeights) {
   2158           // PBI: br i1 %x, BB, FalseDest
   2159           // BI:  br i1 %y, TrueDest, FalseDest
   2160           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
   2161           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
   2162           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
   2163           //               TrueWeight for PBI * FalseWeight for BI.
   2164           // We assume that total weights of a BranchInst can fit into 32 bits.
   2165           // Therefore, we will not have overflow using 64-bit arithmetic.
   2166           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
   2167                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
   2168         }
   2169         AddPredecessorToBlock(TrueDest, PredBlock, BB);
   2170         PBI->setSuccessor(0, TrueDest);
   2171       }
   2172       if (PBI->getSuccessor(1) == BB) {
   2173         if (PredHasWeights && SuccHasWeights) {
   2174           // PBI: br i1 %x, TrueDest, BB
   2175           // BI:  br i1 %y, TrueDest, FalseDest
   2176           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
   2177           //              FalseWeight for PBI * TrueWeight for BI.
   2178           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
   2179               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
   2180           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
   2181           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
   2182         }
   2183         AddPredecessorToBlock(FalseDest, PredBlock, BB);
   2184         PBI->setSuccessor(1, FalseDest);
   2185       }
   2186       if (NewWeights.size() == 2) {
   2187         // Halve the weights if any of them cannot fit in an uint32_t
   2188         FitWeights(NewWeights);
   2189 
   2190         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
   2191         PBI->setMetadata(LLVMContext::MD_prof,
   2192                          MDBuilder(BI->getContext()).
   2193                          createBranchWeights(MDWeights));
   2194       } else
   2195         PBI->setMetadata(LLVMContext::MD_prof, NULL);
   2196     } else {
   2197       // Update PHI nodes in the common successors.
   2198       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
   2199         ConstantInt *PBI_C = cast<ConstantInt>(
   2200           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
   2201         assert(PBI_C->getType()->isIntegerTy(1));
   2202         Instruction *MergedCond = 0;
   2203         if (PBI->getSuccessor(0) == TrueDest) {
   2204           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
   2205           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
   2206           //       is false: !PBI_Cond and BI_Value
   2207           Instruction *NotCond =
   2208             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2209                                 "not.cond"));
   2210           MergedCond =
   2211             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2212                                 NotCond, New,
   2213                                 "and.cond"));
   2214           if (PBI_C->isOne())
   2215             MergedCond =
   2216               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2217                                   PBI->getCondition(), MergedCond,
   2218                                   "or.cond"));
   2219         } else {
   2220           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
   2221           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
   2222           //       is false: PBI_Cond and BI_Value
   2223           MergedCond =
   2224             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2225                                 PBI->getCondition(), New,
   2226                                 "and.cond"));
   2227           if (PBI_C->isOne()) {
   2228             Instruction *NotCond =
   2229               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2230                                   "not.cond"));
   2231             MergedCond =
   2232               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2233                                   NotCond, MergedCond,
   2234                                   "or.cond"));
   2235           }
   2236         }
   2237         // Update PHI Node.
   2238         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
   2239                                   MergedCond);
   2240       }
   2241       // Change PBI from Conditional to Unconditional.
   2242       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
   2243       EraseTerminatorInstAndDCECond(PBI);
   2244       PBI = New_PBI;
   2245     }
   2246 
   2247     // TODO: If BB is reachable from all paths through PredBlock, then we
   2248     // could replace PBI's branch probabilities with BI's.
   2249 
   2250     // Copy any debug value intrinsics into the end of PredBlock.
   2251     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   2252       if (isa<DbgInfoIntrinsic>(*I))
   2253         I->clone()->insertBefore(PBI);
   2254 
   2255     return true;
   2256   }
   2257   return false;
   2258 }
   2259 
   2260 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
   2261 /// predecessor of another block, this function tries to simplify it.  We know
   2262 /// that PBI and BI are both conditional branches, and BI is in one of the
   2263 /// successor blocks of PBI - PBI branches to BI.
   2264 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
   2265   assert(PBI->isConditional() && BI->isConditional());
   2266   BasicBlock *BB = BI->getParent();
   2267 
   2268   // If this block ends with a branch instruction, and if there is a
   2269   // predecessor that ends on a branch of the same condition, make
   2270   // this conditional branch redundant.
   2271   if (PBI->getCondition() == BI->getCondition() &&
   2272       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2273     // Okay, the outcome of this conditional branch is statically
   2274     // knowable.  If this block had a single pred, handle specially.
   2275     if (BB->getSinglePredecessor()) {
   2276       // Turn this into a branch on constant.
   2277       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2278       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2279                                         CondIsTrue));
   2280       return true;  // Nuke the branch on constant.
   2281     }
   2282 
   2283     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   2284     // in the constant and simplify the block result.  Subsequent passes of
   2285     // simplifycfg will thread the block.
   2286     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   2287       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   2288       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
   2289                                        std::distance(PB, PE),
   2290                                        BI->getCondition()->getName() + ".pr",
   2291                                        BB->begin());
   2292       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   2293       // predecessor, compute the PHI'd conditional value for all of the preds.
   2294       // Any predecessor where the condition is not computable we keep symbolic.
   2295       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2296         BasicBlock *P = *PI;
   2297         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
   2298             PBI != BI && PBI->isConditional() &&
   2299             PBI->getCondition() == BI->getCondition() &&
   2300             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2301           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2302           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2303                                               CondIsTrue), P);
   2304         } else {
   2305           NewPN->addIncoming(BI->getCondition(), P);
   2306         }
   2307       }
   2308 
   2309       BI->setCondition(NewPN);
   2310       return true;
   2311     }
   2312   }
   2313 
   2314   // If this is a conditional branch in an empty block, and if any
   2315   // predecessors is a conditional branch to one of our destinations,
   2316   // fold the conditions into logical ops and one cond br.
   2317   BasicBlock::iterator BBI = BB->begin();
   2318   // Ignore dbg intrinsics.
   2319   while (isa<DbgInfoIntrinsic>(BBI))
   2320     ++BBI;
   2321   if (&*BBI != BI)
   2322     return false;
   2323 
   2324 
   2325   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   2326     if (CE->canTrap())
   2327       return false;
   2328 
   2329   int PBIOp, BIOp;
   2330   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
   2331     PBIOp = BIOp = 0;
   2332   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
   2333     PBIOp = 0, BIOp = 1;
   2334   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
   2335     PBIOp = 1, BIOp = 0;
   2336   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
   2337     PBIOp = BIOp = 1;
   2338   else
   2339     return false;
   2340 
   2341   // Check to make sure that the other destination of this branch
   2342   // isn't BB itself.  If so, this is an infinite loop that will
   2343   // keep getting unwound.
   2344   if (PBI->getSuccessor(PBIOp) == BB)
   2345     return false;
   2346 
   2347   // Do not perform this transformation if it would require
   2348   // insertion of a large number of select instructions. For targets
   2349   // without predication/cmovs, this is a big pessimization.
   2350   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   2351 
   2352   unsigned NumPhis = 0;
   2353   for (BasicBlock::iterator II = CommonDest->begin();
   2354        isa<PHINode>(II); ++II, ++NumPhis)
   2355     if (NumPhis > 2) // Disable this xform.
   2356       return false;
   2357 
   2358   // Finally, if everything is ok, fold the branches to logical ops.
   2359   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
   2360 
   2361   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   2362                << "AND: " << *BI->getParent());
   2363 
   2364 
   2365   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   2366   // branch in it, where one edge (OtherDest) goes back to itself but the other
   2367   // exits.  We don't *know* that the program avoids the infinite loop
   2368   // (even though that seems likely).  If we do this xform naively, we'll end up
   2369   // recursively unpeeling the loop.  Since we know that (after the xform is
   2370   // done) that the block *is* infinite if reached, we just make it an obviously
   2371   // infinite loop with no cond branch.
   2372   if (OtherDest == BB) {
   2373     // Insert it at the end of the function, because it's either code,
   2374     // or it won't matter if it's hot. :)
   2375     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
   2376                                                   "infloop", BB->getParent());
   2377     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   2378     OtherDest = InfLoopBlock;
   2379   }
   2380 
   2381   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2382 
   2383   // BI may have other predecessors.  Because of this, we leave
   2384   // it alone, but modify PBI.
   2385 
   2386   // Make sure we get to CommonDest on True&True directions.
   2387   Value *PBICond = PBI->getCondition();
   2388   IRBuilder<true, NoFolder> Builder(PBI);
   2389   if (PBIOp)
   2390     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
   2391 
   2392   Value *BICond = BI->getCondition();
   2393   if (BIOp)
   2394     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
   2395 
   2396   // Merge the conditions.
   2397   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   2398 
   2399   // Modify PBI to branch on the new condition to the new dests.
   2400   PBI->setCondition(Cond);
   2401   PBI->setSuccessor(0, CommonDest);
   2402   PBI->setSuccessor(1, OtherDest);
   2403 
   2404   // Update branch weight for PBI.
   2405   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2406   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2407                                               PredFalseWeight);
   2408   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2409                                               SuccFalseWeight);
   2410   if (PredHasWeights && SuccHasWeights) {
   2411     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   2412     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
   2413     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   2414     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   2415     // The weight to CommonDest should be PredCommon * SuccTotal +
   2416     //                                    PredOther * SuccCommon.
   2417     // The weight to OtherDest should be PredOther * SuccOther.
   2418     SmallVector<uint64_t, 2> NewWeights;
   2419     NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
   2420                          PredOther * SuccCommon);
   2421     NewWeights.push_back(PredOther * SuccOther);
   2422     // Halve the weights if any of them cannot fit in an uint32_t
   2423     FitWeights(NewWeights);
   2424 
   2425     SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
   2426     PBI->setMetadata(LLVMContext::MD_prof,
   2427                      MDBuilder(BI->getContext()).
   2428                      createBranchWeights(MDWeights));
   2429   }
   2430 
   2431   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   2432   // block that are identical to the entries for BI's block.
   2433   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   2434 
   2435   // We know that the CommonDest already had an edge from PBI to
   2436   // it.  If it has PHIs though, the PHIs may have different
   2437   // entries for BB and PBI's BB.  If so, insert a select to make
   2438   // them agree.
   2439   PHINode *PN;
   2440   for (BasicBlock::iterator II = CommonDest->begin();
   2441        (PN = dyn_cast<PHINode>(II)); ++II) {
   2442     Value *BIV = PN->getIncomingValueForBlock(BB);
   2443     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2444     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2445     if (BIV != PBIV) {
   2446       // Insert a select in PBI to pick the right value.
   2447       Value *NV = cast<SelectInst>
   2448         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
   2449       PN->setIncomingValue(PBBIdx, NV);
   2450     }
   2451   }
   2452 
   2453   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   2454   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2455 
   2456   // This basic block is probably dead.  We know it has at least
   2457   // one fewer predecessor.
   2458   return true;
   2459 }
   2460 
   2461 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
   2462 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
   2463 // Takes care of updating the successors and removing the old terminator.
   2464 // Also makes sure not to introduce new successors by assuming that edges to
   2465 // non-successor TrueBBs and FalseBBs aren't reachable.
   2466 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   2467                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
   2468                                        uint32_t TrueWeight,
   2469                                        uint32_t FalseWeight){
   2470   // Remove any superfluous successor edges from the CFG.
   2471   // First, figure out which successors to preserve.
   2472   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   2473   // successor.
   2474   BasicBlock *KeepEdge1 = TrueBB;
   2475   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
   2476 
   2477   // Then remove the rest.
   2478   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
   2479     BasicBlock *Succ = OldTerm->getSuccessor(I);
   2480     // Make sure only to keep exactly one copy of each edge.
   2481     if (Succ == KeepEdge1)
   2482       KeepEdge1 = 0;
   2483     else if (Succ == KeepEdge2)
   2484       KeepEdge2 = 0;
   2485     else
   2486       Succ->removePredecessor(OldTerm->getParent());
   2487   }
   2488 
   2489   IRBuilder<> Builder(OldTerm);
   2490   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   2491 
   2492   // Insert an appropriate new terminator.
   2493   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
   2494     if (TrueBB == FalseBB)
   2495       // We were only looking for one successor, and it was present.
   2496       // Create an unconditional branch to it.
   2497       Builder.CreateBr(TrueBB);
   2498     else {
   2499       // We found both of the successors we were looking for.
   2500       // Create a conditional branch sharing the condition of the select.
   2501       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   2502       if (TrueWeight != FalseWeight)
   2503         NewBI->setMetadata(LLVMContext::MD_prof,
   2504                            MDBuilder(OldTerm->getContext()).
   2505                            createBranchWeights(TrueWeight, FalseWeight));
   2506     }
   2507   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   2508     // Neither of the selected blocks were successors, so this
   2509     // terminator must be unreachable.
   2510     new UnreachableInst(OldTerm->getContext(), OldTerm);
   2511   } else {
   2512     // One of the selected values was a successor, but the other wasn't.
   2513     // Insert an unconditional branch to the one that was found;
   2514     // the edge to the one that wasn't must be unreachable.
   2515     if (KeepEdge1 == 0)
   2516       // Only TrueBB was found.
   2517       Builder.CreateBr(TrueBB);
   2518     else
   2519       // Only FalseBB was found.
   2520       Builder.CreateBr(FalseBB);
   2521   }
   2522 
   2523   EraseTerminatorInstAndDCECond(OldTerm);
   2524   return true;
   2525 }
   2526 
   2527 // SimplifySwitchOnSelect - Replaces
   2528 //   (switch (select cond, X, Y)) on constant X, Y
   2529 // with a branch - conditional if X and Y lead to distinct BBs,
   2530 // unconditional otherwise.
   2531 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   2532   // Check for constant integer values in the select.
   2533   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   2534   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   2535   if (!TrueVal || !FalseVal)
   2536     return false;
   2537 
   2538   // Find the relevant condition and destinations.
   2539   Value *Condition = Select->getCondition();
   2540   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
   2541   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
   2542 
   2543   // Get weight for TrueBB and FalseBB.
   2544   uint32_t TrueWeight = 0, FalseWeight = 0;
   2545   SmallVector<uint64_t, 8> Weights;
   2546   bool HasWeights = HasBranchWeights(SI);
   2547   if (HasWeights) {
   2548     GetBranchWeights(SI, Weights);
   2549     if (Weights.size() == 1 + SI->getNumCases()) {
   2550       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
   2551                                      getSuccessorIndex()];
   2552       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
   2553                                       getSuccessorIndex()];
   2554     }
   2555   }
   2556 
   2557   // Perform the actual simplification.
   2558   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
   2559                                     TrueWeight, FalseWeight);
   2560 }
   2561 
   2562 // SimplifyIndirectBrOnSelect - Replaces
   2563 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   2564 //                             blockaddress(@fn, BlockB)))
   2565 // with
   2566 //   (br cond, BlockA, BlockB).
   2567 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   2568   // Check that both operands of the select are block addresses.
   2569   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   2570   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   2571   if (!TBA || !FBA)
   2572     return false;
   2573 
   2574   // Extract the actual blocks.
   2575   BasicBlock *TrueBB = TBA->getBasicBlock();
   2576   BasicBlock *FalseBB = FBA->getBasicBlock();
   2577 
   2578   // Perform the actual simplification.
   2579   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
   2580                                     0, 0);
   2581 }
   2582 
   2583 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
   2584 /// instruction (a seteq/setne with a constant) as the only instruction in a
   2585 /// block that ends with an uncond branch.  We are looking for a very specific
   2586 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   2587 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   2588 /// default value goes to an uncond block with a seteq in it, we get something
   2589 /// like:
   2590 ///
   2591 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   2592 /// DEFAULT:
   2593 ///   %tmp = icmp eq i8 %A, 92
   2594 ///   br label %end
   2595 /// end:
   2596 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   2597 ///
   2598 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   2599 /// the PHI, merging the third icmp into the switch.
   2600 static bool TryToSimplifyUncondBranchWithICmpInIt(
   2601     ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
   2602     const DataLayout *TD) {
   2603   BasicBlock *BB = ICI->getParent();
   2604 
   2605   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   2606   // complex.
   2607   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
   2608 
   2609   Value *V = ICI->getOperand(0);
   2610   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   2611 
   2612   // The pattern we're looking for is where our only predecessor is a switch on
   2613   // 'V' and this block is the default case for the switch.  In this case we can
   2614   // fold the compared value into the switch to simplify things.
   2615   BasicBlock *Pred = BB->getSinglePredecessor();
   2616   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
   2617 
   2618   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   2619   if (SI->getCondition() != V)
   2620     return false;
   2621 
   2622   // If BB is reachable on a non-default case, then we simply know the value of
   2623   // V in this block.  Substitute it and constant fold the icmp instruction
   2624   // away.
   2625   if (SI->getDefaultDest() != BB) {
   2626     ConstantInt *VVal = SI->findCaseDest(BB);
   2627     assert(VVal && "Should have a unique destination value");
   2628     ICI->setOperand(0, VVal);
   2629 
   2630     if (Value *V = SimplifyInstruction(ICI, TD)) {
   2631       ICI->replaceAllUsesWith(V);
   2632       ICI->eraseFromParent();
   2633     }
   2634     // BB is now empty, so it is likely to simplify away.
   2635     return SimplifyCFG(BB, TTI, TD) | true;
   2636   }
   2637 
   2638   // Ok, the block is reachable from the default dest.  If the constant we're
   2639   // comparing exists in one of the other edges, then we can constant fold ICI
   2640   // and zap it.
   2641   if (SI->findCaseValue(Cst) != SI->case_default()) {
   2642     Value *V;
   2643     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2644       V = ConstantInt::getFalse(BB->getContext());
   2645     else
   2646       V = ConstantInt::getTrue(BB->getContext());
   2647 
   2648     ICI->replaceAllUsesWith(V);
   2649     ICI->eraseFromParent();
   2650     // BB is now empty, so it is likely to simplify away.
   2651     return SimplifyCFG(BB, TTI, TD) | true;
   2652   }
   2653 
   2654   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   2655   // the block.
   2656   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   2657   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
   2658   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
   2659       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   2660     return false;
   2661 
   2662   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   2663   // true in the PHI.
   2664   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   2665   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
   2666 
   2667   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2668     std::swap(DefaultCst, NewCst);
   2669 
   2670   // Replace ICI (which is used by the PHI for the default value) with true or
   2671   // false depending on if it is EQ or NE.
   2672   ICI->replaceAllUsesWith(DefaultCst);
   2673   ICI->eraseFromParent();
   2674 
   2675   // Okay, the switch goes to this block on a default value.  Add an edge from
   2676   // the switch to the merge point on the compared value.
   2677   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
   2678                                          BB->getParent(), BB);
   2679   SmallVector<uint64_t, 8> Weights;
   2680   bool HasWeights = HasBranchWeights(SI);
   2681   if (HasWeights) {
   2682     GetBranchWeights(SI, Weights);
   2683     if (Weights.size() == 1 + SI->getNumCases()) {
   2684       // Split weight for default case to case for "Cst".
   2685       Weights[0] = (Weights[0]+1) >> 1;
   2686       Weights.push_back(Weights[0]);
   2687 
   2688       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   2689       SI->setMetadata(LLVMContext::MD_prof,
   2690                       MDBuilder(SI->getContext()).
   2691                       createBranchWeights(MDWeights));
   2692     }
   2693   }
   2694   SI->addCase(Cst, NewBB);
   2695 
   2696   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   2697   Builder.SetInsertPoint(NewBB);
   2698   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   2699   Builder.CreateBr(SuccBlock);
   2700   PHIUse->addIncoming(NewCst, NewBB);
   2701   return true;
   2702 }
   2703 
   2704 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
   2705 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   2706 /// fold it into a switch instruction if so.
   2707 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
   2708                                       IRBuilder<> &Builder) {
   2709   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   2710   if (Cond == 0) return false;
   2711 
   2712 
   2713   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   2714   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   2715   // 'setne's and'ed together, collect them.
   2716   Value *CompVal = 0;
   2717   std::vector<ConstantInt*> Values;
   2718   bool TrueWhenEqual = true;
   2719   Value *ExtraCase = 0;
   2720   unsigned UsedICmps = 0;
   2721 
   2722   if (Cond->getOpcode() == Instruction::Or) {
   2723     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
   2724                                      UsedICmps);
   2725   } else if (Cond->getOpcode() == Instruction::And) {
   2726     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
   2727                                      UsedICmps);
   2728     TrueWhenEqual = false;
   2729   }
   2730 
   2731   // If we didn't have a multiply compared value, fail.
   2732   if (CompVal == 0) return false;
   2733 
   2734   // Avoid turning single icmps into a switch.
   2735   if (UsedICmps <= 1)
   2736     return false;
   2737 
   2738   // There might be duplicate constants in the list, which the switch
   2739   // instruction can't handle, remove them now.
   2740   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   2741   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   2742 
   2743   // If Extra was used, we require at least two switch values to do the
   2744   // transformation.  A switch with one value is just an cond branch.
   2745   if (ExtraCase && Values.size() < 2) return false;
   2746 
   2747   // TODO: Preserve branch weight metadata, similarly to how
   2748   // FoldValueComparisonIntoPredecessors preserves it.
   2749 
   2750   // Figure out which block is which destination.
   2751   BasicBlock *DefaultBB = BI->getSuccessor(1);
   2752   BasicBlock *EdgeBB    = BI->getSuccessor(0);
   2753   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
   2754 
   2755   BasicBlock *BB = BI->getParent();
   2756 
   2757   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   2758                << " cases into SWITCH.  BB is:\n" << *BB);
   2759 
   2760   // If there are any extra values that couldn't be folded into the switch
   2761   // then we evaluate them with an explicit branch first.  Split the block
   2762   // right before the condbr to handle it.
   2763   if (ExtraCase) {
   2764     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
   2765     // Remove the uncond branch added to the old block.
   2766     TerminatorInst *OldTI = BB->getTerminator();
   2767     Builder.SetInsertPoint(OldTI);
   2768 
   2769     if (TrueWhenEqual)
   2770       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   2771     else
   2772       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   2773 
   2774     OldTI->eraseFromParent();
   2775 
   2776     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   2777     // for the edge we just added.
   2778     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   2779 
   2780     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   2781           << "\nEXTRABB = " << *BB);
   2782     BB = NewBB;
   2783   }
   2784 
   2785   Builder.SetInsertPoint(BI);
   2786   // Convert pointer to int before we switch.
   2787   if (CompVal->getType()->isPointerTy()) {
   2788     assert(TD && "Cannot switch on pointer without DataLayout");
   2789     CompVal = Builder.CreatePtrToInt(CompVal,
   2790                                      TD->getIntPtrType(CompVal->getContext()),
   2791                                      "magicptr");
   2792   }
   2793 
   2794   // Create the new switch instruction now.
   2795   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   2796 
   2797   // Add all of the 'cases' to the switch instruction.
   2798   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   2799     New->addCase(Values[i], EdgeBB);
   2800 
   2801   // We added edges from PI to the EdgeBB.  As such, if there were any
   2802   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   2803   // the number of edges added.
   2804   for (BasicBlock::iterator BBI = EdgeBB->begin();
   2805        isa<PHINode>(BBI); ++BBI) {
   2806     PHINode *PN = cast<PHINode>(BBI);
   2807     Value *InVal = PN->getIncomingValueForBlock(BB);
   2808     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
   2809       PN->addIncoming(InVal, BB);
   2810   }
   2811 
   2812   // Erase the old branch instruction.
   2813   EraseTerminatorInstAndDCECond(BI);
   2814 
   2815   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   2816   return true;
   2817 }
   2818 
   2819 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   2820   // If this is a trivial landing pad that just continues unwinding the caught
   2821   // exception then zap the landing pad, turning its invokes into calls.
   2822   BasicBlock *BB = RI->getParent();
   2823   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   2824   if (RI->getValue() != LPInst)
   2825     // Not a landing pad, or the resume is not unwinding the exception that
   2826     // caused control to branch here.
   2827     return false;
   2828 
   2829   // Check that there are no other instructions except for debug intrinsics.
   2830   BasicBlock::iterator I = LPInst, E = RI;
   2831   while (++I != E)
   2832     if (!isa<DbgInfoIntrinsic>(I))
   2833       return false;
   2834 
   2835   // Turn all invokes that unwind here into calls and delete the basic block.
   2836   bool InvokeRequiresTableEntry = false;
   2837   bool Changed = false;
   2838   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   2839     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
   2840 
   2841     if (II->hasFnAttr(Attribute::UWTable)) {
   2842       // Don't remove an `invoke' instruction if the ABI requires an entry into
   2843       // the table.
   2844       InvokeRequiresTableEntry = true;
   2845       continue;
   2846     }
   2847 
   2848     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
   2849 
   2850     // Insert a call instruction before the invoke.
   2851     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
   2852     Call->takeName(II);
   2853     Call->setCallingConv(II->getCallingConv());
   2854     Call->setAttributes(II->getAttributes());
   2855     Call->setDebugLoc(II->getDebugLoc());
   2856 
   2857     // Anything that used the value produced by the invoke instruction now uses
   2858     // the value produced by the call instruction.  Note that we do this even
   2859     // for void functions and calls with no uses so that the callgraph edge is
   2860     // updated.
   2861     II->replaceAllUsesWith(Call);
   2862     BB->removePredecessor(II->getParent());
   2863 
   2864     // Insert a branch to the normal destination right before the invoke.
   2865     BranchInst::Create(II->getNormalDest(), II);
   2866 
   2867     // Finally, delete the invoke instruction!
   2868     II->eraseFromParent();
   2869     Changed = true;
   2870   }
   2871 
   2872   if (!InvokeRequiresTableEntry)
   2873     // The landingpad is now unreachable.  Zap it.
   2874     BB->eraseFromParent();
   2875 
   2876   return Changed;
   2877 }
   2878 
   2879 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   2880   BasicBlock *BB = RI->getParent();
   2881   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2882 
   2883   // Find predecessors that end with branches.
   2884   SmallVector<BasicBlock*, 8> UncondBranchPreds;
   2885   SmallVector<BranchInst*, 8> CondBranchPreds;
   2886   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2887     BasicBlock *P = *PI;
   2888     TerminatorInst *PTI = P->getTerminator();
   2889     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   2890       if (BI->isUnconditional())
   2891         UncondBranchPreds.push_back(P);
   2892       else
   2893         CondBranchPreds.push_back(BI);
   2894     }
   2895   }
   2896 
   2897   // If we found some, do the transformation!
   2898   if (!UncondBranchPreds.empty() && DupRet) {
   2899     while (!UncondBranchPreds.empty()) {
   2900       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   2901       DEBUG(dbgs() << "FOLDING: " << *BB
   2902             << "INTO UNCOND BRANCH PRED: " << *Pred);
   2903       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   2904     }
   2905 
   2906     // If we eliminated all predecessors of the block, delete the block now.
   2907     if (pred_begin(BB) == pred_end(BB))
   2908       // We know there are no successors, so just nuke the block.
   2909       BB->eraseFromParent();
   2910 
   2911     return true;
   2912   }
   2913 
   2914   // Check out all of the conditional branches going to this return
   2915   // instruction.  If any of them just select between returns, change the
   2916   // branch itself into a select/return pair.
   2917   while (!CondBranchPreds.empty()) {
   2918     BranchInst *BI = CondBranchPreds.pop_back_val();
   2919 
   2920     // Check to see if the non-BB successor is also a return block.
   2921     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   2922         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   2923         SimplifyCondBranchToTwoReturns(BI, Builder))
   2924       return true;
   2925   }
   2926   return false;
   2927 }
   2928 
   2929 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   2930   BasicBlock *BB = UI->getParent();
   2931 
   2932   bool Changed = false;
   2933 
   2934   // If there are any instructions immediately before the unreachable that can
   2935   // be removed, do so.
   2936   while (UI != BB->begin()) {
   2937     BasicBlock::iterator BBI = UI;
   2938     --BBI;
   2939     // Do not delete instructions that can have side effects which might cause
   2940     // the unreachable to not be reachable; specifically, calls and volatile
   2941     // operations may have this effect.
   2942     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
   2943 
   2944     if (BBI->mayHaveSideEffects()) {
   2945       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   2946         if (SI->isVolatile())
   2947           break;
   2948       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
   2949         if (LI->isVolatile())
   2950           break;
   2951       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   2952         if (RMWI->isVolatile())
   2953           break;
   2954       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   2955         if (CXI->isVolatile())
   2956           break;
   2957       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   2958                  !isa<LandingPadInst>(BBI)) {
   2959         break;
   2960       }
   2961       // Note that deleting LandingPad's here is in fact okay, although it
   2962       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   2963       // all the predecessors of this block will be the unwind edges of Invokes,
   2964       // and we can therefore guarantee this block will be erased.
   2965     }
   2966 
   2967     // Delete this instruction (any uses are guaranteed to be dead)
   2968     if (!BBI->use_empty())
   2969       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   2970     BBI->eraseFromParent();
   2971     Changed = true;
   2972   }
   2973 
   2974   // If the unreachable instruction is the first in the block, take a gander
   2975   // at all of the predecessors of this instruction, and simplify them.
   2976   if (&BB->front() != UI) return Changed;
   2977 
   2978   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   2979   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   2980     TerminatorInst *TI = Preds[i]->getTerminator();
   2981     IRBuilder<> Builder(TI);
   2982     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   2983       if (BI->isUnconditional()) {
   2984         if (BI->getSuccessor(0) == BB) {
   2985           new UnreachableInst(TI->getContext(), TI);
   2986           TI->eraseFromParent();
   2987           Changed = true;
   2988         }
   2989       } else {
   2990         if (BI->getSuccessor(0) == BB) {
   2991           Builder.CreateBr(BI->getSuccessor(1));
   2992           EraseTerminatorInstAndDCECond(BI);
   2993         } else if (BI->getSuccessor(1) == BB) {
   2994           Builder.CreateBr(BI->getSuccessor(0));
   2995           EraseTerminatorInstAndDCECond(BI);
   2996           Changed = true;
   2997         }
   2998       }
   2999     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   3000       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3001            i != e; ++i)
   3002         if (i.getCaseSuccessor() == BB) {
   3003           BB->removePredecessor(SI->getParent());
   3004           SI->removeCase(i);
   3005           --i; --e;
   3006           Changed = true;
   3007         }
   3008       // If the default value is unreachable, figure out the most popular
   3009       // destination and make it the default.
   3010       if (SI->getDefaultDest() == BB) {
   3011         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
   3012         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3013              i != e; ++i) {
   3014           std::pair<unsigned, unsigned> &entry =
   3015               Popularity[i.getCaseSuccessor()];
   3016           if (entry.first == 0) {
   3017             entry.first = 1;
   3018             entry.second = i.getCaseIndex();
   3019           } else {
   3020             entry.first++;
   3021           }
   3022         }
   3023 
   3024         // Find the most popular block.
   3025         unsigned MaxPop = 0;
   3026         unsigned MaxIndex = 0;
   3027         BasicBlock *MaxBlock = 0;
   3028         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
   3029              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
   3030           if (I->second.first > MaxPop ||
   3031               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
   3032             MaxPop = I->second.first;
   3033             MaxIndex = I->second.second;
   3034             MaxBlock = I->first;
   3035           }
   3036         }
   3037         if (MaxBlock) {
   3038           // Make this the new default, allowing us to delete any explicit
   3039           // edges to it.
   3040           SI->setDefaultDest(MaxBlock);
   3041           Changed = true;
   3042 
   3043           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
   3044           // it.
   3045           if (isa<PHINode>(MaxBlock->begin()))
   3046             for (unsigned i = 0; i != MaxPop-1; ++i)
   3047               MaxBlock->removePredecessor(SI->getParent());
   3048 
   3049           for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3050                i != e; ++i)
   3051             if (i.getCaseSuccessor() == MaxBlock) {
   3052               SI->removeCase(i);
   3053               --i; --e;
   3054             }
   3055         }
   3056       }
   3057     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
   3058       if (II->getUnwindDest() == BB) {
   3059         // Convert the invoke to a call instruction.  This would be a good
   3060         // place to note that the call does not throw though.
   3061         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   3062         II->removeFromParent();   // Take out of symbol table
   3063 
   3064         // Insert the call now...
   3065         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
   3066         Builder.SetInsertPoint(BI);
   3067         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   3068                                           Args, II->getName());
   3069         CI->setCallingConv(II->getCallingConv());
   3070         CI->setAttributes(II->getAttributes());
   3071         // If the invoke produced a value, the call does now instead.
   3072         II->replaceAllUsesWith(CI);
   3073         delete II;
   3074         Changed = true;
   3075       }
   3076     }
   3077   }
   3078 
   3079   // If this block is now dead, remove it.
   3080   if (pred_begin(BB) == pred_end(BB) &&
   3081       BB != &BB->getParent()->getEntryBlock()) {
   3082     // We know there are no successors, so just nuke the block.
   3083     BB->eraseFromParent();
   3084     return true;
   3085   }
   3086 
   3087   return Changed;
   3088 }
   3089 
   3090 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
   3091 /// integer range comparison into a sub, an icmp and a branch.
   3092 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   3093   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3094 
   3095   // Make sure all cases point to the same destination and gather the values.
   3096   SmallVector<ConstantInt *, 16> Cases;
   3097   SwitchInst::CaseIt I = SI->case_begin();
   3098   Cases.push_back(I.getCaseValue());
   3099   SwitchInst::CaseIt PrevI = I++;
   3100   for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
   3101     if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
   3102       return false;
   3103     Cases.push_back(I.getCaseValue());
   3104   }
   3105   assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
   3106 
   3107   // Sort the case values, then check if they form a range we can transform.
   3108   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   3109   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
   3110     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
   3111       return false;
   3112   }
   3113 
   3114   Constant *Offset = ConstantExpr::getNeg(Cases.back());
   3115   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
   3116 
   3117   Value *Sub = SI->getCondition();
   3118   if (!Offset->isNullValue())
   3119     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
   3120   Value *Cmp;
   3121   // If NumCases overflowed, then all possible values jump to the successor.
   3122   if (NumCases->isNullValue() && SI->getNumCases() != 0)
   3123     Cmp = ConstantInt::getTrue(SI->getContext());
   3124   else
   3125     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   3126   BranchInst *NewBI = Builder.CreateCondBr(
   3127       Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
   3128 
   3129   // Update weight for the newly-created conditional branch.
   3130   SmallVector<uint64_t, 8> Weights;
   3131   bool HasWeights = HasBranchWeights(SI);
   3132   if (HasWeights) {
   3133     GetBranchWeights(SI, Weights);
   3134     if (Weights.size() == 1 + SI->getNumCases()) {
   3135       // Combine all weights for the cases to be the true weight of NewBI.
   3136       // We assume that the sum of all weights for a Terminator can fit into 32
   3137       // bits.
   3138       uint32_t NewTrueWeight = 0;
   3139       for (unsigned I = 1, E = Weights.size(); I != E; ++I)
   3140         NewTrueWeight += (uint32_t)Weights[I];
   3141       NewBI->setMetadata(LLVMContext::MD_prof,
   3142                          MDBuilder(SI->getContext()).
   3143                          createBranchWeights(NewTrueWeight,
   3144                                              (uint32_t)Weights[0]));
   3145     }
   3146   }
   3147 
   3148   // Prune obsolete incoming values off the successor's PHI nodes.
   3149   for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
   3150        isa<PHINode>(BBI); ++BBI) {
   3151     for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
   3152       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3153   }
   3154   SI->eraseFromParent();
   3155 
   3156   return true;
   3157 }
   3158 
   3159 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
   3160 /// and use it to remove dead cases.
   3161 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
   3162   Value *Cond = SI->getCondition();
   3163   unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
   3164   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   3165   ComputeMaskedBits(Cond, KnownZero, KnownOne);
   3166 
   3167   // Gather dead cases.
   3168   SmallVector<ConstantInt*, 8> DeadCases;
   3169   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3170     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
   3171         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
   3172       DeadCases.push_back(I.getCaseValue());
   3173       DEBUG(dbgs() << "SimplifyCFG: switch case '"
   3174                    << I.getCaseValue() << "' is dead.\n");
   3175     }
   3176   }
   3177 
   3178   SmallVector<uint64_t, 8> Weights;
   3179   bool HasWeight = HasBranchWeights(SI);
   3180   if (HasWeight) {
   3181     GetBranchWeights(SI, Weights);
   3182     HasWeight = (Weights.size() == 1 + SI->getNumCases());
   3183   }
   3184 
   3185   // Remove dead cases from the switch.
   3186   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
   3187     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
   3188     assert(Case != SI->case_default() &&
   3189            "Case was not found. Probably mistake in DeadCases forming.");
   3190     if (HasWeight) {
   3191       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
   3192       Weights.pop_back();
   3193     }
   3194 
   3195     // Prune unused values from PHI nodes.
   3196     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
   3197     SI->removeCase(Case);
   3198   }
   3199   if (HasWeight) {
   3200     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   3201     SI->setMetadata(LLVMContext::MD_prof,
   3202                     MDBuilder(SI->getParent()->getContext()).
   3203                     createBranchWeights(MDWeights));
   3204   }
   3205 
   3206   return !DeadCases.empty();
   3207 }
   3208 
   3209 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
   3210 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   3211 /// by an unconditional branch), look at the phi node for BB in the successor
   3212 /// block and see if the incoming value is equal to CaseValue. If so, return
   3213 /// the phi node, and set PhiIndex to BB's index in the phi node.
   3214 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   3215                                               BasicBlock *BB,
   3216                                               int *PhiIndex) {
   3217   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   3218     return NULL; // BB must be empty to be a candidate for simplification.
   3219   if (!BB->getSinglePredecessor())
   3220     return NULL; // BB must be dominated by the switch.
   3221 
   3222   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   3223   if (!Branch || !Branch->isUnconditional())
   3224     return NULL; // Terminator must be unconditional branch.
   3225 
   3226   BasicBlock *Succ = Branch->getSuccessor(0);
   3227 
   3228   BasicBlock::iterator I = Succ->begin();
   3229   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3230     int Idx = PHI->getBasicBlockIndex(BB);
   3231     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   3232 
   3233     Value *InValue = PHI->getIncomingValue(Idx);
   3234     if (InValue != CaseValue) continue;
   3235 
   3236     *PhiIndex = Idx;
   3237     return PHI;
   3238   }
   3239 
   3240   return NULL;
   3241 }
   3242 
   3243 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
   3244 /// instruction to a phi node dominated by the switch, if that would mean that
   3245 /// some of the destination blocks of the switch can be folded away.
   3246 /// Returns true if a change is made.
   3247 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   3248   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
   3249   ForwardingNodesMap ForwardingNodes;
   3250 
   3251   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3252     ConstantInt *CaseValue = I.getCaseValue();
   3253     BasicBlock *CaseDest = I.getCaseSuccessor();
   3254 
   3255     int PhiIndex;
   3256     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
   3257                                                  &PhiIndex);
   3258     if (!PHI) continue;
   3259 
   3260     ForwardingNodes[PHI].push_back(PhiIndex);
   3261   }
   3262 
   3263   bool Changed = false;
   3264 
   3265   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   3266        E = ForwardingNodes.end(); I != E; ++I) {
   3267     PHINode *Phi = I->first;
   3268     SmallVectorImpl<int> &Indexes = I->second;
   3269 
   3270     if (Indexes.size() < 2) continue;
   3271 
   3272     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   3273       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   3274     Changed = true;
   3275   }
   3276 
   3277   return Changed;
   3278 }
   3279 
   3280 /// ValidLookupTableConstant - Return true if the backend will be able to handle
   3281 /// initializing an array of constants like C.
   3282 static bool ValidLookupTableConstant(Constant *C) {
   3283   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   3284     return CE->isGEPWithNoNotionalOverIndexing();
   3285 
   3286   return isa<ConstantFP>(C) ||
   3287       isa<ConstantInt>(C) ||
   3288       isa<ConstantPointerNull>(C) ||
   3289       isa<GlobalValue>(C) ||
   3290       isa<UndefValue>(C);
   3291 }
   3292 
   3293 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
   3294 /// its constant value in ConstantPool, returning 0 if it's not there.
   3295 static Constant *LookupConstant(Value *V,
   3296                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
   3297   if (Constant *C = dyn_cast<Constant>(V))
   3298     return C;
   3299   return ConstantPool.lookup(V);
   3300 }
   3301 
   3302 /// ConstantFold - Try to fold instruction I into a constant. This works for
   3303 /// simple instructions such as binary operations where both operands are
   3304 /// constant or can be replaced by constants from the ConstantPool. Returns the
   3305 /// resulting constant on success, 0 otherwise.
   3306 static Constant *ConstantFold(Instruction *I,
   3307                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
   3308   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
   3309     Constant *A = LookupConstant(BO->getOperand(0), ConstantPool);
   3310     if (!A)
   3311       return 0;
   3312     Constant *B = LookupConstant(BO->getOperand(1), ConstantPool);
   3313     if (!B)
   3314       return 0;
   3315     return ConstantExpr::get(BO->getOpcode(), A, B);
   3316   }
   3317 
   3318   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
   3319     Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
   3320     if (!A)
   3321       return 0;
   3322     Constant *B = LookupConstant(I->getOperand(1), ConstantPool);
   3323     if (!B)
   3324       return 0;
   3325     return ConstantExpr::getCompare(Cmp->getPredicate(), A, B);
   3326   }
   3327 
   3328   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
   3329     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
   3330     if (!A)
   3331       return 0;
   3332     if (A->isAllOnesValue())
   3333       return LookupConstant(Select->getTrueValue(), ConstantPool);
   3334     if (A->isNullValue())
   3335       return LookupConstant(Select->getFalseValue(), ConstantPool);
   3336     return 0;
   3337   }
   3338 
   3339   if (CastInst *Cast = dyn_cast<CastInst>(I)) {
   3340     Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
   3341     if (!A)
   3342       return 0;
   3343     return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy());
   3344   }
   3345 
   3346   return 0;
   3347 }
   3348 
   3349 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
   3350 /// at the common destination basic block, *CommonDest, for one of the case
   3351 /// destionations CaseDest corresponding to value CaseVal (0 for the default
   3352 /// case), of a switch instruction SI.
   3353 static bool
   3354 GetCaseResults(SwitchInst *SI,
   3355                ConstantInt *CaseVal,
   3356                BasicBlock *CaseDest,
   3357                BasicBlock **CommonDest,
   3358                SmallVectorImpl<std::pair<PHINode*,Constant*> > &Res) {
   3359   // The block from which we enter the common destination.
   3360   BasicBlock *Pred = SI->getParent();
   3361 
   3362   // If CaseDest is empty except for some side-effect free instructions through
   3363   // which we can constant-propagate the CaseVal, continue to its successor.
   3364   SmallDenseMap<Value*, Constant*> ConstantPool;
   3365   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
   3366   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
   3367        ++I) {
   3368     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
   3369       // If the terminator is a simple branch, continue to the next block.
   3370       if (T->getNumSuccessors() != 1)
   3371         return false;
   3372       Pred = CaseDest;
   3373       CaseDest = T->getSuccessor(0);
   3374     } else if (isa<DbgInfoIntrinsic>(I)) {
   3375       // Skip debug intrinsic.
   3376       continue;
   3377     } else if (Constant *C = ConstantFold(I, ConstantPool)) {
   3378       // Instruction is side-effect free and constant.
   3379       ConstantPool.insert(std::make_pair(I, C));
   3380     } else {
   3381       break;
   3382     }
   3383   }
   3384 
   3385   // If we did not have a CommonDest before, use the current one.
   3386   if (!*CommonDest)
   3387     *CommonDest = CaseDest;
   3388   // If the destination isn't the common one, abort.
   3389   if (CaseDest != *CommonDest)
   3390     return false;
   3391 
   3392   // Get the values for this case from phi nodes in the destination block.
   3393   BasicBlock::iterator I = (*CommonDest)->begin();
   3394   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3395     int Idx = PHI->getBasicBlockIndex(Pred);
   3396     if (Idx == -1)
   3397       continue;
   3398 
   3399     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
   3400                                         ConstantPool);
   3401     if (!ConstVal)
   3402       return false;
   3403 
   3404     // Note: If the constant comes from constant-propagating the case value
   3405     // through the CaseDest basic block, it will be safe to remove the
   3406     // instructions in that block. They cannot be used (except in the phi nodes
   3407     // we visit) outside CaseDest, because that block does not dominate its
   3408     // successor. If it did, we would not be in this phi node.
   3409 
   3410     // Be conservative about which kinds of constants we support.
   3411     if (!ValidLookupTableConstant(ConstVal))
   3412       return false;
   3413 
   3414     Res.push_back(std::make_pair(PHI, ConstVal));
   3415   }
   3416 
   3417   return true;
   3418 }
   3419 
   3420 namespace {
   3421   /// SwitchLookupTable - This class represents a lookup table that can be used
   3422   /// to replace a switch.
   3423   class SwitchLookupTable {
   3424   public:
   3425     /// SwitchLookupTable - Create a lookup table to use as a switch replacement
   3426     /// with the contents of Values, using DefaultValue to fill any holes in the
   3427     /// table.
   3428     SwitchLookupTable(Module &M,
   3429                       uint64_t TableSize,
   3430                       ConstantInt *Offset,
   3431              const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
   3432                       Constant *DefaultValue,
   3433                       const DataLayout *TD);
   3434 
   3435     /// BuildLookup - Build instructions with Builder to retrieve the value at
   3436     /// the position given by Index in the lookup table.
   3437     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
   3438 
   3439     /// WouldFitInRegister - Return true if a table with TableSize elements of
   3440     /// type ElementType would fit in a target-legal register.
   3441     static bool WouldFitInRegister(const DataLayout *TD,
   3442                                    uint64_t TableSize,
   3443                                    const Type *ElementType);
   3444 
   3445   private:
   3446     // Depending on the contents of the table, it can be represented in
   3447     // different ways.
   3448     enum {
   3449       // For tables where each element contains the same value, we just have to
   3450       // store that single value and return it for each lookup.
   3451       SingleValueKind,
   3452 
   3453       // For small tables with integer elements, we can pack them into a bitmap
   3454       // that fits into a target-legal register. Values are retrieved by
   3455       // shift and mask operations.
   3456       BitMapKind,
   3457 
   3458       // The table is stored as an array of values. Values are retrieved by load
   3459       // instructions from the table.
   3460       ArrayKind
   3461     } Kind;
   3462 
   3463     // For SingleValueKind, this is the single value.
   3464     Constant *SingleValue;
   3465 
   3466     // For BitMapKind, this is the bitmap.
   3467     ConstantInt *BitMap;
   3468     IntegerType *BitMapElementTy;
   3469 
   3470     // For ArrayKind, this is the array.
   3471     GlobalVariable *Array;
   3472   };
   3473 }
   3474 
   3475 SwitchLookupTable::SwitchLookupTable(Module &M,
   3476                                      uint64_t TableSize,
   3477                                      ConstantInt *Offset,
   3478              const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
   3479                                      Constant *DefaultValue,
   3480                                      const DataLayout *TD)
   3481     : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
   3482   assert(Values.size() && "Can't build lookup table without values!");
   3483   assert(TableSize >= Values.size() && "Can't fit values in table!");
   3484 
   3485   // If all values in the table are equal, this is that value.
   3486   SingleValue = Values.begin()->second;
   3487 
   3488   // Build up the table contents.
   3489   SmallVector<Constant*, 64> TableContents(TableSize);
   3490   for (size_t I = 0, E = Values.size(); I != E; ++I) {
   3491     ConstantInt *CaseVal = Values[I].first;
   3492     Constant *CaseRes = Values[I].second;
   3493     assert(CaseRes->getType() == DefaultValue->getType());
   3494 
   3495     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
   3496                    .getLimitedValue();
   3497     TableContents[Idx] = CaseRes;
   3498 
   3499     if (CaseRes != SingleValue)
   3500       SingleValue = 0;
   3501   }
   3502 
   3503   // Fill in any holes in the table with the default result.
   3504   if (Values.size() < TableSize) {
   3505     for (uint64_t I = 0; I < TableSize; ++I) {
   3506       if (!TableContents[I])
   3507         TableContents[I] = DefaultValue;
   3508     }
   3509 
   3510     if (DefaultValue != SingleValue)
   3511       SingleValue = 0;
   3512   }
   3513 
   3514   // If each element in the table contains the same value, we only need to store
   3515   // that single value.
   3516   if (SingleValue) {
   3517     Kind = SingleValueKind;
   3518     return;
   3519   }
   3520 
   3521   // If the type is integer and the table fits in a register, build a bitmap.
   3522   if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
   3523     IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
   3524     APInt TableInt(TableSize * IT->getBitWidth(), 0);
   3525     for (uint64_t I = TableSize; I > 0; --I) {
   3526       TableInt <<= IT->getBitWidth();
   3527       // Insert values into the bitmap. Undef values are set to zero.
   3528       if (!isa<UndefValue>(TableContents[I - 1])) {
   3529         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
   3530         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
   3531       }
   3532     }
   3533     BitMap = ConstantInt::get(M.getContext(), TableInt);
   3534     BitMapElementTy = IT;
   3535     Kind = BitMapKind;
   3536     ++NumBitMaps;
   3537     return;
   3538   }
   3539 
   3540   // Store the table in an array.
   3541   ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
   3542   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
   3543 
   3544   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
   3545                              GlobalVariable::PrivateLinkage,
   3546                              Initializer,
   3547                              "switch.table");
   3548   Array->setUnnamedAddr(true);
   3549   Kind = ArrayKind;
   3550 }
   3551 
   3552 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
   3553   switch (Kind) {
   3554     case SingleValueKind:
   3555       return SingleValue;
   3556     case BitMapKind: {
   3557       // Type of the bitmap (e.g. i59).
   3558       IntegerType *MapTy = BitMap->getType();
   3559 
   3560       // Cast Index to the same type as the bitmap.
   3561       // Note: The Index is <= the number of elements in the table, so
   3562       // truncating it to the width of the bitmask is safe.
   3563       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
   3564 
   3565       // Multiply the shift amount by the element width.
   3566       ShiftAmt = Builder.CreateMul(ShiftAmt,
   3567                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
   3568                                    "switch.shiftamt");
   3569 
   3570       // Shift down.
   3571       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
   3572                                               "switch.downshift");
   3573       // Mask off.
   3574       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
   3575                                  "switch.masked");
   3576     }
   3577     case ArrayKind: {
   3578       Value *GEPIndices[] = { Builder.getInt32(0), Index };
   3579       Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
   3580                                              "switch.gep");
   3581       return Builder.CreateLoad(GEP, "switch.load");
   3582     }
   3583   }
   3584   llvm_unreachable("Unknown lookup table kind!");
   3585 }
   3586 
   3587 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
   3588                                            uint64_t TableSize,
   3589                                            const Type *ElementType) {
   3590   if (!TD)
   3591     return false;
   3592   const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
   3593   if (!IT)
   3594     return false;
   3595   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
   3596   // are <= 15, we could try to narrow the type.
   3597 
   3598   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
   3599   if (TableSize >= UINT_MAX/IT->getBitWidth())
   3600     return false;
   3601   return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
   3602 }
   3603 
   3604 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
   3605 /// for this switch, based on the number of cases, size of the table and the
   3606 /// types of the results.
   3607 static bool ShouldBuildLookupTable(SwitchInst *SI,
   3608                                    uint64_t TableSize,
   3609                                    const TargetTransformInfo &TTI,
   3610                                    const DataLayout *TD,
   3611                             const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
   3612   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
   3613     return false; // TableSize overflowed, or mul below might overflow.
   3614 
   3615   bool AllTablesFitInRegister = true;
   3616   bool HasIllegalType = false;
   3617   for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
   3618        E = ResultTypes.end(); I != E; ++I) {
   3619     Type *Ty = I->second;
   3620 
   3621     // Saturate this flag to true.
   3622     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
   3623 
   3624     // Saturate this flag to false.
   3625     AllTablesFitInRegister = AllTablesFitInRegister &&
   3626       SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
   3627 
   3628     // If both flags saturate, we're done. NOTE: This *only* works with
   3629     // saturating flags, and all flags have to saturate first due to the
   3630     // non-deterministic behavior of iterating over a dense map.
   3631     if (HasIllegalType && !AllTablesFitInRegister)
   3632       break;
   3633   }
   3634 
   3635   // If each table would fit in a register, we should build it anyway.
   3636   if (AllTablesFitInRegister)
   3637     return true;
   3638 
   3639   // Don't build a table that doesn't fit in-register if it has illegal types.
   3640   if (HasIllegalType)
   3641     return false;
   3642 
   3643   // The table density should be at least 40%. This is the same criterion as for
   3644   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
   3645   // FIXME: Find the best cut-off.
   3646   return SI->getNumCases() * 10 >= TableSize * 4;
   3647 }
   3648 
   3649 /// SwitchToLookupTable - If the switch is only used to initialize one or more
   3650 /// phi nodes in a common successor block with different constant values,
   3651 /// replace the switch with lookup tables.
   3652 static bool SwitchToLookupTable(SwitchInst *SI,
   3653                                 IRBuilder<> &Builder,
   3654                                 const TargetTransformInfo &TTI,
   3655                                 const DataLayout* TD) {
   3656   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3657 
   3658   // Only build lookup table when we have a target that supports it.
   3659   if (!TTI.shouldBuildLookupTables())
   3660     return false;
   3661 
   3662   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
   3663   // split off a dense part and build a lookup table for that.
   3664 
   3665   // FIXME: This creates arrays of GEPs to constant strings, which means each
   3666   // GEP needs a runtime relocation in PIC code. We should just build one big
   3667   // string and lookup indices into that.
   3668 
   3669   // Ignore the switch if the number of cases is too small.
   3670   // This is similar to the check when building jump tables in
   3671   // SelectionDAGBuilder::handleJTSwitchCase.
   3672   // FIXME: Determine the best cut-off.
   3673   if (SI->getNumCases() < 4)
   3674     return false;
   3675 
   3676   // Figure out the corresponding result for each case value and phi node in the
   3677   // common destination, as well as the the min and max case values.
   3678   assert(SI->case_begin() != SI->case_end());
   3679   SwitchInst::CaseIt CI = SI->case_begin();
   3680   ConstantInt *MinCaseVal = CI.getCaseValue();
   3681   ConstantInt *MaxCaseVal = CI.getCaseValue();
   3682 
   3683   BasicBlock *CommonDest = 0;
   3684   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
   3685   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
   3686   SmallDenseMap<PHINode*, Constant*> DefaultResults;
   3687   SmallDenseMap<PHINode*, Type*> ResultTypes;
   3688   SmallVector<PHINode*, 4> PHIs;
   3689 
   3690   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
   3691     ConstantInt *CaseVal = CI.getCaseValue();
   3692     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
   3693       MinCaseVal = CaseVal;
   3694     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
   3695       MaxCaseVal = CaseVal;
   3696 
   3697     // Resulting value at phi nodes for this case value.
   3698     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
   3699     ResultsTy Results;
   3700     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
   3701                         Results))
   3702       return false;
   3703 
   3704     // Append the result from this case to the list for each phi.
   3705     for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
   3706       if (!ResultLists.count(I->first))
   3707         PHIs.push_back(I->first);
   3708       ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
   3709     }
   3710   }
   3711 
   3712   // Get the resulting values for the default case.
   3713   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
   3714   if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
   3715                       DefaultResultsList))
   3716     return false;
   3717   for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
   3718     PHINode *PHI = DefaultResultsList[I].first;
   3719     Constant *Result = DefaultResultsList[I].second;
   3720     DefaultResults[PHI] = Result;
   3721     ResultTypes[PHI] = Result->getType();
   3722   }
   3723 
   3724   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
   3725   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
   3726   if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
   3727     return false;
   3728 
   3729   // Create the BB that does the lookups.
   3730   Module &Mod = *CommonDest->getParent()->getParent();
   3731   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
   3732                                             "switch.lookup",
   3733                                             CommonDest->getParent(),
   3734                                             CommonDest);
   3735 
   3736   // Check whether the condition value is within the case range, and branch to
   3737   // the new BB.
   3738   Builder.SetInsertPoint(SI);
   3739   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
   3740                                         "switch.tableidx");
   3741   Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
   3742       MinCaseVal->getType(), TableSize));
   3743   Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
   3744 
   3745   // Populate the BB that does the lookups.
   3746   Builder.SetInsertPoint(LookupBB);
   3747   bool ReturnedEarly = false;
   3748   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
   3749     PHINode *PHI = PHIs[I];
   3750 
   3751     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
   3752                             DefaultResults[PHI], TD);
   3753 
   3754     Value *Result = Table.BuildLookup(TableIndex, Builder);
   3755 
   3756     // If the result is used to return immediately from the function, we want to
   3757     // do that right here.
   3758     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
   3759         *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
   3760       Builder.CreateRet(Result);
   3761       ReturnedEarly = true;
   3762       break;
   3763     }
   3764 
   3765     PHI->addIncoming(Result, LookupBB);
   3766   }
   3767 
   3768   if (!ReturnedEarly)
   3769     Builder.CreateBr(CommonDest);
   3770 
   3771   // Remove the switch.
   3772   for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
   3773     BasicBlock *Succ = SI->getSuccessor(i);
   3774     if (Succ == SI->getDefaultDest()) continue;
   3775     Succ->removePredecessor(SI->getParent());
   3776   }
   3777   SI->eraseFromParent();
   3778 
   3779   ++NumLookupTables;
   3780   return true;
   3781 }
   3782 
   3783 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   3784   BasicBlock *BB = SI->getParent();
   3785 
   3786   if (isValueEqualityComparison(SI)) {
   3787     // If we only have one predecessor, and if it is a branch on this value,
   3788     // see if that predecessor totally determines the outcome of this switch.
   3789     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   3790       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   3791         return SimplifyCFG(BB, TTI, TD) | true;
   3792 
   3793     Value *Cond = SI->getCondition();
   3794     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   3795       if (SimplifySwitchOnSelect(SI, Select))
   3796         return SimplifyCFG(BB, TTI, TD) | true;
   3797 
   3798     // If the block only contains the switch, see if we can fold the block
   3799     // away into any preds.
   3800     BasicBlock::iterator BBI = BB->begin();
   3801     // Ignore dbg intrinsics.
   3802     while (isa<DbgInfoIntrinsic>(BBI))
   3803       ++BBI;
   3804     if (SI == &*BBI)
   3805       if (FoldValueComparisonIntoPredecessors(SI, Builder))
   3806         return SimplifyCFG(BB, TTI, TD) | true;
   3807   }
   3808 
   3809   // Try to transform the switch into an icmp and a branch.
   3810   if (TurnSwitchRangeIntoICmp(SI, Builder))
   3811     return SimplifyCFG(BB, TTI, TD) | true;
   3812 
   3813   // Remove unreachable cases.
   3814   if (EliminateDeadSwitchCases(SI))
   3815     return SimplifyCFG(BB, TTI, TD) | true;
   3816 
   3817   if (ForwardSwitchConditionToPHI(SI))
   3818     return SimplifyCFG(BB, TTI, TD) | true;
   3819 
   3820   if (SwitchToLookupTable(SI, Builder, TTI, TD))
   3821     return SimplifyCFG(BB, TTI, TD) | true;
   3822 
   3823   return false;
   3824 }
   3825 
   3826 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   3827   BasicBlock *BB = IBI->getParent();
   3828   bool Changed = false;
   3829 
   3830   // Eliminate redundant destinations.
   3831   SmallPtrSet<Value *, 8> Succs;
   3832   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   3833     BasicBlock *Dest = IBI->getDestination(i);
   3834     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
   3835       Dest->removePredecessor(BB);
   3836       IBI->removeDestination(i);
   3837       --i; --e;
   3838       Changed = true;
   3839     }
   3840   }
   3841 
   3842   if (IBI->getNumDestinations() == 0) {
   3843     // If the indirectbr has no successors, change it to unreachable.
   3844     new UnreachableInst(IBI->getContext(), IBI);
   3845     EraseTerminatorInstAndDCECond(IBI);
   3846     return true;
   3847   }
   3848 
   3849   if (IBI->getNumDestinations() == 1) {
   3850     // If the indirectbr has one successor, change it to a direct branch.
   3851     BranchInst::Create(IBI->getDestination(0), IBI);
   3852     EraseTerminatorInstAndDCECond(IBI);
   3853     return true;
   3854   }
   3855 
   3856   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   3857     if (SimplifyIndirectBrOnSelect(IBI, SI))
   3858       return SimplifyCFG(BB, TTI, TD) | true;
   3859   }
   3860   return Changed;
   3861 }
   3862 
   3863 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
   3864   BasicBlock *BB = BI->getParent();
   3865 
   3866   if (SinkCommon && SinkThenElseCodeToEnd(BI))
   3867     return true;
   3868 
   3869   // If the Terminator is the only non-phi instruction, simplify the block.
   3870   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
   3871   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   3872       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   3873     return true;
   3874 
   3875   // If the only instruction in the block is a seteq/setne comparison
   3876   // against a constant, try to simplify the block.
   3877   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   3878     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   3879       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   3880         ;
   3881       if (I->isTerminator() &&
   3882           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
   3883         return true;
   3884     }
   3885 
   3886   // If this basic block is ONLY a compare and a branch, and if a predecessor
   3887   // branches to us and our successor, fold the comparison into the
   3888   // predecessor and use logical operations to update the incoming value
   3889   // for PHI nodes in common successor.
   3890   if (FoldBranchToCommonDest(BI))
   3891     return SimplifyCFG(BB, TTI, TD) | true;
   3892   return false;
   3893 }
   3894 
   3895 
   3896 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   3897   BasicBlock *BB = BI->getParent();
   3898 
   3899   // Conditional branch
   3900   if (isValueEqualityComparison(BI)) {
   3901     // If we only have one predecessor, and if it is a branch on this value,
   3902     // see if that predecessor totally determines the outcome of this
   3903     // switch.
   3904     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   3905       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   3906         return SimplifyCFG(BB, TTI, TD) | true;
   3907 
   3908     // This block must be empty, except for the setcond inst, if it exists.
   3909     // Ignore dbg intrinsics.
   3910     BasicBlock::iterator I = BB->begin();
   3911     // Ignore dbg intrinsics.
   3912     while (isa<DbgInfoIntrinsic>(I))
   3913       ++I;
   3914     if (&*I == BI) {
   3915       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   3916         return SimplifyCFG(BB, TTI, TD) | true;
   3917     } else if (&*I == cast<Instruction>(BI->getCondition())){
   3918       ++I;
   3919       // Ignore dbg intrinsics.
   3920       while (isa<DbgInfoIntrinsic>(I))
   3921         ++I;
   3922       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   3923         return SimplifyCFG(BB, TTI, TD) | true;
   3924     }
   3925   }
   3926 
   3927   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   3928   if (SimplifyBranchOnICmpChain(BI, TD, Builder))
   3929     return true;
   3930 
   3931   // If this basic block is ONLY a compare and a branch, and if a predecessor
   3932   // branches to us and one of our successors, fold the comparison into the
   3933   // predecessor and use logical operations to pick the right destination.
   3934   if (FoldBranchToCommonDest(BI))
   3935     return SimplifyCFG(BB, TTI, TD) | true;
   3936 
   3937   // We have a conditional branch to two blocks that are only reachable
   3938   // from BI.  We know that the condbr dominates the two blocks, so see if
   3939   // there is any identical code in the "then" and "else" blocks.  If so, we
   3940   // can hoist it up to the branching block.
   3941   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
   3942     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   3943       if (HoistThenElseCodeToIf(BI))
   3944         return SimplifyCFG(BB, TTI, TD) | true;
   3945     } else {
   3946       // If Successor #1 has multiple preds, we may be able to conditionally
   3947       // execute Successor #0 if it branches to successor #1.
   3948       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   3949       if (Succ0TI->getNumSuccessors() == 1 &&
   3950           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   3951         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
   3952           return SimplifyCFG(BB, TTI, TD) | true;
   3953     }
   3954   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   3955     // If Successor #0 has multiple preds, we may be able to conditionally
   3956     // execute Successor #1 if it branches to successor #0.
   3957     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   3958     if (Succ1TI->getNumSuccessors() == 1 &&
   3959         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   3960       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
   3961         return SimplifyCFG(BB, TTI, TD) | true;
   3962   }
   3963 
   3964   // If this is a branch on a phi node in the current block, thread control
   3965   // through this block if any PHI node entries are constants.
   3966   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   3967     if (PN->getParent() == BI->getParent())
   3968       if (FoldCondBranchOnPHI(BI, TD))
   3969         return SimplifyCFG(BB, TTI, TD) | true;
   3970 
   3971   // Scan predecessor blocks for conditional branches.
   3972   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   3973     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   3974       if (PBI != BI && PBI->isConditional())
   3975         if (SimplifyCondBranchToCondBranch(PBI, BI))
   3976           return SimplifyCFG(BB, TTI, TD) | true;
   3977 
   3978   return false;
   3979 }
   3980 
   3981 /// Check if passing a value to an instruction will cause undefined behavior.
   3982 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   3983   Constant *C = dyn_cast<Constant>(V);
   3984   if (!C)
   3985     return false;
   3986 
   3987   if (I->use_empty())
   3988     return false;
   3989 
   3990   if (C->isNullValue()) {
   3991     // Only look at the first use, avoid hurting compile time with long uselists
   3992     User *Use = *I->use_begin();
   3993 
   3994     // Now make sure that there are no instructions in between that can alter
   3995     // control flow (eg. calls)
   3996     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
   3997       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   3998         return false;
   3999 
   4000     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   4001     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   4002       if (GEP->getPointerOperand() == I)
   4003         return passingValueIsAlwaysUndefined(V, GEP);
   4004 
   4005     // Look through bitcasts.
   4006     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   4007       return passingValueIsAlwaysUndefined(V, BC);
   4008 
   4009     // Load from null is undefined.
   4010     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   4011       if (!LI->isVolatile())
   4012         return LI->getPointerAddressSpace() == 0;
   4013 
   4014     // Store to null is undefined.
   4015     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   4016       if (!SI->isVolatile())
   4017         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
   4018   }
   4019   return false;
   4020 }
   4021 
   4022 /// If BB has an incoming value that will always trigger undefined behavior
   4023 /// (eg. null pointer dereference), remove the branch leading here.
   4024 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   4025   for (BasicBlock::iterator i = BB->begin();
   4026        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
   4027     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
   4028       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
   4029         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
   4030         IRBuilder<> Builder(T);
   4031         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   4032           BB->removePredecessor(PHI->getIncomingBlock(i));
   4033           // Turn uncoditional branches into unreachables and remove the dead
   4034           // destination from conditional branches.
   4035           if (BI->isUnconditional())
   4036             Builder.CreateUnreachable();
   4037           else
   4038             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
   4039                                                          BI->getSuccessor(0));
   4040           BI->eraseFromParent();
   4041           return true;
   4042         }
   4043         // TODO: SwitchInst.
   4044       }
   4045 
   4046   return false;
   4047 }
   4048 
   4049 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   4050   bool Changed = false;
   4051 
   4052   assert(BB && BB->getParent() && "Block not embedded in function!");
   4053   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   4054 
   4055   // Remove basic blocks that have no predecessors (except the entry block)...
   4056   // or that just have themself as a predecessor.  These are unreachable.
   4057   if ((pred_begin(BB) == pred_end(BB) &&
   4058        BB != &BB->getParent()->getEntryBlock()) ||
   4059       BB->getSinglePredecessor() == BB) {
   4060     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   4061     DeleteDeadBlock(BB);
   4062     return true;
   4063   }
   4064 
   4065   // Check to see if we can constant propagate this terminator instruction
   4066   // away...
   4067   Changed |= ConstantFoldTerminator(BB, true);
   4068 
   4069   // Check for and eliminate duplicate PHI nodes in this block.
   4070   Changed |= EliminateDuplicatePHINodes(BB);
   4071 
   4072   // Check for and remove branches that will always cause undefined behavior.
   4073   Changed |= removeUndefIntroducingPredecessor(BB);
   4074 
   4075   // Merge basic blocks into their predecessor if there is only one distinct
   4076   // pred, and if there is only one distinct successor of the predecessor, and
   4077   // if there are no PHI nodes.
   4078   //
   4079   if (MergeBlockIntoPredecessor(BB))
   4080     return true;
   4081 
   4082   IRBuilder<> Builder(BB);
   4083 
   4084   // If there is a trivial two-entry PHI node in this basic block, and we can
   4085   // eliminate it, do so now.
   4086   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   4087     if (PN->getNumIncomingValues() == 2)
   4088       Changed |= FoldTwoEntryPHINode(PN, TD);
   4089 
   4090   Builder.SetInsertPoint(BB->getTerminator());
   4091   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   4092     if (BI->isUnconditional()) {
   4093       if (SimplifyUncondBranch(BI, Builder)) return true;
   4094     } else {
   4095       if (SimplifyCondBranch(BI, Builder)) return true;
   4096     }
   4097   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   4098     if (SimplifyReturn(RI, Builder)) return true;
   4099   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   4100     if (SimplifyResume(RI, Builder)) return true;
   4101   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   4102     if (SimplifySwitch(SI, Builder)) return true;
   4103   } else if (UnreachableInst *UI =
   4104                dyn_cast<UnreachableInst>(BB->getTerminator())) {
   4105     if (SimplifyUnreachable(UI)) return true;
   4106   } else if (IndirectBrInst *IBI =
   4107                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   4108     if (SimplifyIndirectBr(IBI)) return true;
   4109   }
   4110 
   4111   return Changed;
   4112 }
   4113 
   4114 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
   4115 /// example, it adjusts branches to branches to eliminate the extra hop, it
   4116 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   4117 /// of the CFG.  It returns true if a modification was made.
   4118 ///
   4119 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
   4120                        const DataLayout *TD) {
   4121   return SimplifyCFGOpt(TTI, TD).run(BB);
   4122 }
   4123