Home | History | Annotate | Download | only in pdf
      1 
      2 /*
      3  * Copyright 2011 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkPDFShader.h"
     11 
     12 #include "SkData.h"
     13 #include "SkPDFCatalog.h"
     14 #include "SkPDFDevice.h"
     15 #include "SkPDFFormXObject.h"
     16 #include "SkPDFGraphicState.h"
     17 #include "SkPDFResourceDict.h"
     18 #include "SkPDFUtils.h"
     19 #include "SkScalar.h"
     20 #include "SkStream.h"
     21 #include "SkTemplates.h"
     22 #include "SkThread.h"
     23 #include "SkTSet.h"
     24 #include "SkTypes.h"
     25 
     26 static bool transformBBox(const SkMatrix& matrix, SkRect* bbox) {
     27     SkMatrix inverse;
     28     if (!matrix.invert(&inverse)) {
     29         return false;
     30     }
     31     inverse.mapRect(bbox);
     32     return true;
     33 }
     34 
     35 static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) {
     36     SkVector    vec = pts[1] - pts[0];
     37     SkScalar    mag = vec.length();
     38     SkScalar    inv = mag ? SkScalarInvert(mag) : 0;
     39 
     40     vec.scale(inv);
     41     matrix->setSinCos(vec.fY, vec.fX);
     42     matrix->preScale(mag, mag);
     43     matrix->postTranslate(pts[0].fX, pts[0].fY);
     44 }
     45 
     46 /* Assumes t + startOffset is on the stack and does a linear interpolation on t
     47    between startOffset and endOffset from prevColor to curColor (for each color
     48    component), leaving the result in component order on the stack. It assumes
     49    there are always 3 components per color.
     50    @param range                  endOffset - startOffset
     51    @param curColor[components]   The current color components.
     52    @param prevColor[components]  The previous color components.
     53    @param result                 The result ps function.
     54  */
     55 static void interpolateColorCode(SkScalar range, SkScalar* curColor,
     56                                  SkScalar* prevColor, SkString* result) {
     57     static const int kColorComponents = 3;
     58 
     59     // Figure out how to scale each color component.
     60     SkScalar multiplier[kColorComponents];
     61     for (int i = 0; i < kColorComponents; i++) {
     62         multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range);
     63     }
     64 
     65     // Calculate when we no longer need to keep a copy of the input parameter t.
     66     // If the last component to use t is i, then dupInput[0..i - 1] = true
     67     // and dupInput[i .. components] = false.
     68     bool dupInput[kColorComponents];
     69     dupInput[kColorComponents - 1] = false;
     70     for (int i = kColorComponents - 2; i >= 0; i--) {
     71         dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
     72     }
     73 
     74     if (!dupInput[0] && multiplier[0] == 0) {
     75         result->append("pop ");
     76     }
     77 
     78     for (int i = 0; i < kColorComponents; i++) {
     79         // If the next components needs t and this component will consume a
     80         // copy, make another copy.
     81         if (dupInput[i] && multiplier[i] != 0) {
     82             result->append("dup ");
     83         }
     84 
     85         if (multiplier[i] == 0) {
     86             result->appendScalar(prevColor[i]);
     87             result->append(" ");
     88         } else {
     89             if (multiplier[i] != 1) {
     90                 result->appendScalar(multiplier[i]);
     91                 result->append(" mul ");
     92             }
     93             if (prevColor[i] != 0) {
     94                 result->appendScalar(prevColor[i]);
     95                 result->append(" add ");
     96             }
     97         }
     98 
     99         if (dupInput[i]) {
    100             result->append("exch\n");
    101         }
    102     }
    103 }
    104 
    105 /* Generate Type 4 function code to map t=[0,1) to the passed gradient,
    106    clamping at the edges of the range.  The generated code will be of the form:
    107        if (t < 0) {
    108            return colorData[0][r,g,b];
    109        } else {
    110            if (t < info.fColorOffsets[1]) {
    111                return linearinterpolation(colorData[0][r,g,b],
    112                                           colorData[1][r,g,b]);
    113            } else {
    114                if (t < info.fColorOffsets[2]) {
    115                    return linearinterpolation(colorData[1][r,g,b],
    116                                               colorData[2][r,g,b]);
    117                } else {
    118 
    119                 ...    } else {
    120                            return colorData[info.fColorCount - 1][r,g,b];
    121                        }
    122                 ...
    123            }
    124        }
    125  */
    126 static void gradientFunctionCode(const SkShader::GradientInfo& info,
    127                                  SkString* result) {
    128     /* We want to linearly interpolate from the previous color to the next.
    129        Scale the colors from 0..255 to 0..1 and determine the multipliers
    130        for interpolation.
    131        C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
    132      */
    133     static const int kColorComponents = 3;
    134     typedef SkScalar ColorTuple[kColorComponents];
    135     SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount);
    136     ColorTuple *colorData = colorDataAlloc.get();
    137     const SkScalar scale = SkScalarInvert(SkIntToScalar(255));
    138     for (int i = 0; i < info.fColorCount; i++) {
    139         colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale);
    140         colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale);
    141         colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale);
    142     }
    143 
    144     // Clamp the initial color.
    145     result->append("dup 0 le {pop ");
    146     result->appendScalar(colorData[0][0]);
    147     result->append(" ");
    148     result->appendScalar(colorData[0][1]);
    149     result->append(" ");
    150     result->appendScalar(colorData[0][2]);
    151     result->append(" }\n");
    152 
    153     // The gradient colors.
    154     for (int i = 1 ; i < info.fColorCount; i++) {
    155         result->append("{dup ");
    156         result->appendScalar(info.fColorOffsets[i]);
    157         result->append(" le {");
    158         if (info.fColorOffsets[i - 1] != 0) {
    159             result->appendScalar(info.fColorOffsets[i - 1]);
    160             result->append(" sub\n");
    161         }
    162 
    163         interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1],
    164                              colorData[i], colorData[i - 1], result);
    165         result->append("}\n");
    166     }
    167 
    168     // Clamp the final color.
    169     result->append("{pop ");
    170     result->appendScalar(colorData[info.fColorCount - 1][0]);
    171     result->append(" ");
    172     result->appendScalar(colorData[info.fColorCount - 1][1]);
    173     result->append(" ");
    174     result->appendScalar(colorData[info.fColorCount - 1][2]);
    175 
    176     for (int i = 0 ; i < info.fColorCount; i++) {
    177         result->append("} ifelse\n");
    178     }
    179 }
    180 
    181 /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
    182 static void tileModeCode(SkShader::TileMode mode, SkString* result) {
    183     if (mode == SkShader::kRepeat_TileMode) {
    184         result->append("dup truncate sub\n");  // Get the fractional part.
    185         result->append("dup 0 le {1 add} if\n");  // Map (-1,0) => (0,1)
    186         return;
    187     }
    188 
    189     if (mode == SkShader::kMirror_TileMode) {
    190         // Map t mod 2 into [0, 1, 1, 0].
    191         //               Code                     Stack
    192         result->append("abs "                 // Map negative to positive.
    193                        "dup "                 // t.s t.s
    194                        "truncate "            // t.s t
    195                        "dup "                 // t.s t t
    196                        "cvi "                 // t.s t T
    197                        "2 mod "               // t.s t (i mod 2)
    198                        "1 eq "                // t.s t true|false
    199                        "3 1 roll "            // true|false t.s t
    200                        "sub "                 // true|false 0.s
    201                        "exch "                // 0.s true|false
    202                        "{1 exch sub} if\n");  // 1 - 0.s|0.s
    203     }
    204 }
    205 
    206 /**
    207  *  Returns PS function code that applies inverse perspective
    208  *  to a x, y point.
    209  *  The function assumes that the stack has at least two elements,
    210  *  and that the top 2 elements are numeric values.
    211  *  After executing this code on a PS stack, the last 2 elements are updated
    212  *  while the rest of the stack is preserved intact.
    213  *  inversePerspectiveMatrix is the inverse perspective matrix.
    214  */
    215 static SkString apply_perspective_to_coordinates(
    216         const SkMatrix& inversePerspectiveMatrix) {
    217     SkString code;
    218     if (!inversePerspectiveMatrix.hasPerspective()) {
    219         return code;
    220     }
    221 
    222     // Perspective matrix should be:
    223     // 1   0  0
    224     // 0   1  0
    225     // p0 p1 p2
    226 
    227     const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0];
    228     const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1];
    229     const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2];
    230 
    231     // y = y / (p2 + p0 x + p1 y)
    232     // x = x / (p2 + p0 x + p1 y)
    233 
    234     // Input on stack: x y
    235     code.append(" dup ");               // x y y
    236     code.appendScalar(p1);              // x y y p1
    237     code.append(" mul "                 // x y y*p1
    238                 " 2 index ");           // x y y*p1 x
    239     code.appendScalar(p0);              // x y y p1 x p0
    240     code.append(" mul ");               // x y y*p1 x*p0
    241     code.appendScalar(p2);              // x y y p1 x*p0 p2
    242     code.append(" add "                 // x y y*p1 x*p0+p2
    243                 "add "                  // x y y*p1+x*p0+p2
    244                 "3 1 roll "             // y*p1+x*p0+p2 x y
    245                 "2 index "              // z x y y*p1+x*p0+p2
    246                 "div "                  // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2)
    247                 "3 1 roll "             // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x
    248                 "exch "                 // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2
    249                 "div "                  // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2)
    250                 "exch\n");              // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2)
    251     return code;
    252 }
    253 
    254 static SkString linearCode(const SkShader::GradientInfo& info,
    255                            const SkMatrix& perspectiveRemover) {
    256     SkString function("{");
    257 
    258     function.append(apply_perspective_to_coordinates(perspectiveRemover));
    259 
    260     function.append("pop\n");  // Just ditch the y value.
    261     tileModeCode(info.fTileMode, &function);
    262     gradientFunctionCode(info, &function);
    263     function.append("}");
    264     return function;
    265 }
    266 
    267 static SkString radialCode(const SkShader::GradientInfo& info,
    268                            const SkMatrix& perspectiveRemover) {
    269     SkString function("{");
    270 
    271     function.append(apply_perspective_to_coordinates(perspectiveRemover));
    272 
    273     // Find the distance from the origin.
    274     function.append("dup "      // x y y
    275                     "mul "      // x y^2
    276                     "exch "     // y^2 x
    277                     "dup "      // y^2 x x
    278                     "mul "      // y^2 x^2
    279                     "add "      // y^2+x^2
    280                     "sqrt\n");  // sqrt(y^2+x^2)
    281 
    282     tileModeCode(info.fTileMode, &function);
    283     gradientFunctionCode(info, &function);
    284     function.append("}");
    285     return function;
    286 }
    287 
    288 /* The math here is all based on the description in Two_Point_Radial_Gradient,
    289    with one simplification, the coordinate space has been scaled so that
    290    Dr = 1.  This means we don't need to scale the entire equation by 1/Dr^2.
    291  */
    292 static SkString twoPointRadialCode(const SkShader::GradientInfo& info,
    293                                    const SkMatrix& perspectiveRemover) {
    294     SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX;
    295     SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY;
    296     SkScalar sr = info.fRadius[0];
    297     SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1;
    298     bool posRoot = info.fRadius[1] > info.fRadius[0];
    299 
    300     // We start with a stack of (x y), copy it and then consume one copy in
    301     // order to calculate b and the other to calculate c.
    302     SkString function("{");
    303 
    304     function.append(apply_perspective_to_coordinates(perspectiveRemover));
    305 
    306     function.append("2 copy ");
    307 
    308     // Calculate -b and b^2.
    309     function.appendScalar(dy);
    310     function.append(" mul exch ");
    311     function.appendScalar(dx);
    312     function.append(" mul add ");
    313     function.appendScalar(sr);
    314     function.append(" sub 2 mul neg dup dup mul\n");
    315 
    316     // Calculate c
    317     function.append("4 2 roll dup mul exch dup mul add ");
    318     function.appendScalar(SkScalarMul(sr, sr));
    319     function.append(" sub\n");
    320 
    321     // Calculate the determinate
    322     function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
    323     function.append(" mul sub abs sqrt\n");
    324 
    325     // And then the final value of t.
    326     if (posRoot) {
    327         function.append("sub ");
    328     } else {
    329         function.append("add ");
    330     }
    331     function.appendScalar(SkScalarMul(SkIntToScalar(2), a));
    332     function.append(" div\n");
    333 
    334     tileModeCode(info.fTileMode, &function);
    335     gradientFunctionCode(info, &function);
    336     function.append("}");
    337     return function;
    338 }
    339 
    340 /* Conical gradient shader, based on the Canvas spec for radial gradients
    341    See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient
    342  */
    343 static SkString twoPointConicalCode(const SkShader::GradientInfo& info,
    344                                     const SkMatrix& perspectiveRemover) {
    345     SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX;
    346     SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY;
    347     SkScalar r0 = info.fRadius[0];
    348     SkScalar dr = info.fRadius[1] - info.fRadius[0];
    349     SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) -
    350                  SkScalarMul(dr, dr);
    351 
    352     // First compute t, if the pixel falls outside the cone, then we'll end
    353     // with 'false' on the stack, otherwise we'll push 'true' with t below it
    354 
    355     // We start with a stack of (x y), copy it and then consume one copy in
    356     // order to calculate b and the other to calculate c.
    357     SkString function("{");
    358 
    359     function.append(apply_perspective_to_coordinates(perspectiveRemover));
    360 
    361     function.append("2 copy ");
    362 
    363     // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr).
    364     function.appendScalar(dy);
    365     function.append(" mul exch ");
    366     function.appendScalar(dx);
    367     function.append(" mul add ");
    368     function.appendScalar(SkScalarMul(r0, dr));
    369     function.append(" add -2 mul dup dup mul\n");
    370 
    371     // c = x^2 + y^2 + radius0^2
    372     function.append("4 2 roll dup mul exch dup mul add ");
    373     function.appendScalar(SkScalarMul(r0, r0));
    374     function.append(" sub dup 4 1 roll\n");
    375 
    376     // Contents of the stack at this point: c, b, b^2, c
    377 
    378     // if a = 0, then we collapse to a simpler linear case
    379     if (a == 0) {
    380 
    381         // t = -c/b
    382         function.append("pop pop div neg dup ");
    383 
    384         // compute radius(t)
    385         function.appendScalar(dr);
    386         function.append(" mul ");
    387         function.appendScalar(r0);
    388         function.append(" add\n");
    389 
    390         // if r(t) < 0, then it's outside the cone
    391         function.append("0 lt {pop false} {true} ifelse\n");
    392 
    393     } else {
    394 
    395         // quadratic case: the Canvas spec wants the largest
    396         // root t for which radius(t) > 0
    397 
    398         // compute the discriminant (b^2 - 4ac)
    399         function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
    400         function.append(" mul sub dup\n");
    401 
    402         // if d >= 0, proceed
    403         function.append("0 ge {\n");
    404 
    405         // an intermediate value we'll use to compute the roots:
    406         // q = -0.5 * (b +/- sqrt(d))
    407         function.append("sqrt exch dup 0 lt {exch -1 mul} if");
    408         function.append(" add -0.5 mul dup\n");
    409 
    410         // first root = q / a
    411         function.appendScalar(a);
    412         function.append(" div\n");
    413 
    414         // second root = c / q
    415         function.append("3 1 roll div\n");
    416 
    417         // put the larger root on top of the stack
    418         function.append("2 copy gt {exch} if\n");
    419 
    420         // compute radius(t) for larger root
    421         function.append("dup ");
    422         function.appendScalar(dr);
    423         function.append(" mul ");
    424         function.appendScalar(r0);
    425         function.append(" add\n");
    426 
    427         // if r(t) > 0, we have our t, pop off the smaller root and we're done
    428         function.append(" 0 gt {exch pop true}\n");
    429 
    430         // otherwise, throw out the larger one and try the smaller root
    431         function.append("{pop dup\n");
    432         function.appendScalar(dr);
    433         function.append(" mul ");
    434         function.appendScalar(r0);
    435         function.append(" add\n");
    436 
    437         // if r(t) < 0, push false, otherwise the smaller root is our t
    438         function.append("0 le {pop false} {true} ifelse\n");
    439         function.append("} ifelse\n");
    440 
    441         // d < 0, clear the stack and push false
    442         function.append("} {pop pop pop false} ifelse\n");
    443     }
    444 
    445     // if the pixel is in the cone, proceed to compute a color
    446     function.append("{");
    447     tileModeCode(info.fTileMode, &function);
    448     gradientFunctionCode(info, &function);
    449 
    450     // otherwise, just write black
    451     function.append("} {0 0 0} ifelse }");
    452 
    453     return function;
    454 }
    455 
    456 static SkString sweepCode(const SkShader::GradientInfo& info,
    457                           const SkMatrix& perspectiveRemover) {
    458     SkString function("{exch atan 360 div\n");
    459     tileModeCode(info.fTileMode, &function);
    460     gradientFunctionCode(info, &function);
    461     function.append("}");
    462     return function;
    463 }
    464 
    465 class SkPDFShader::State {
    466 public:
    467     SkShader::GradientType fType;
    468     SkShader::GradientInfo fInfo;
    469     SkAutoFree fColorData;    // This provides storage for arrays in fInfo.
    470     SkMatrix fCanvasTransform;
    471     SkMatrix fShaderTransform;
    472     SkIRect fBBox;
    473 
    474     SkBitmap fImage;
    475     uint32_t fPixelGeneration;
    476     SkShader::TileMode fImageTileModes[2];
    477 
    478     State(const SkShader& shader, const SkMatrix& canvasTransform,
    479           const SkIRect& bbox);
    480 
    481     bool operator==(const State& b) const;
    482 
    483     SkPDFShader::State* CreateAlphaToLuminosityState() const;
    484     SkPDFShader::State* CreateOpaqueState() const;
    485 
    486     bool GradientHasAlpha() const;
    487 
    488 private:
    489     State(const State& other);
    490     State operator=(const State& rhs);
    491     void AllocateGradientInfoStorage();
    492 };
    493 
    494 class SkPDFFunctionShader : public SkPDFDict, public SkPDFShader {
    495 public:
    496     explicit SkPDFFunctionShader(SkPDFShader::State* state);
    497     virtual ~SkPDFFunctionShader() {
    498         if (isValid()) {
    499             RemoveShader(this);
    500         }
    501         fResources.unrefAll();
    502     }
    503 
    504     virtual bool isValid() { return fResources.count() > 0; }
    505 
    506     void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
    507                       SkTSet<SkPDFObject*>* newResourceObjects) {
    508         GetResourcesHelper(&fResources,
    509                            knownResourceObjects,
    510                            newResourceObjects);
    511     }
    512 
    513 private:
    514     static SkPDFObject* RangeObject();
    515 
    516     SkTDArray<SkPDFObject*> fResources;
    517     SkAutoTDelete<const SkPDFShader::State> fState;
    518 
    519     SkPDFStream* makePSFunction(const SkString& psCode, SkPDFArray* domain);
    520 };
    521 
    522 /**
    523  * A shader for PDF gradients. This encapsulates the function shader
    524  * inside a tiling pattern while providing a common pattern interface.
    525  * The encapsulation allows the use of a SMask for transparency gradients.
    526  */
    527 class SkPDFAlphaFunctionShader : public SkPDFStream, public SkPDFShader {
    528 public:
    529     explicit SkPDFAlphaFunctionShader(SkPDFShader::State* state);
    530     virtual ~SkPDFAlphaFunctionShader() {
    531         if (isValid()) {
    532             RemoveShader(this);
    533         }
    534     }
    535 
    536     virtual bool isValid() {
    537         return fColorShader.get() != NULL;
    538     }
    539 
    540 private:
    541     SkAutoTDelete<const SkPDFShader::State> fState;
    542 
    543     SkPDFGraphicState* CreateSMaskGraphicState();
    544 
    545     void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
    546                       SkTSet<SkPDFObject*>* newResourceObjects) {
    547         fResourceDict->getReferencedResources(knownResourceObjects,
    548                                               newResourceObjects,
    549                                               true);
    550     }
    551 
    552     SkAutoTUnref<SkPDFObject> fColorShader;
    553     SkAutoTUnref<SkPDFResourceDict> fResourceDict;
    554 };
    555 
    556 class SkPDFImageShader : public SkPDFStream, public SkPDFShader {
    557 public:
    558     explicit SkPDFImageShader(SkPDFShader::State* state);
    559     virtual ~SkPDFImageShader() {
    560         if (isValid()) {
    561             RemoveShader(this);
    562         }
    563         fResources.unrefAll();
    564     }
    565 
    566     virtual bool isValid() { return size() > 0; }
    567 
    568     void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
    569                       SkTSet<SkPDFObject*>* newResourceObjects) {
    570         GetResourcesHelper(&fResources.toArray(),
    571                            knownResourceObjects,
    572                            newResourceObjects);
    573     }
    574 
    575 private:
    576     SkTSet<SkPDFObject*> fResources;
    577     SkAutoTDelete<const SkPDFShader::State> fState;
    578 };
    579 
    580 SkPDFShader::SkPDFShader() {}
    581 
    582 // static
    583 SkPDFObject* SkPDFShader::GetPDFShaderByState(State* inState) {
    584     SkPDFObject* result;
    585 
    586     SkAutoTDelete<State> shaderState(inState);
    587     if (shaderState.get()->fType == SkShader::kNone_GradientType &&
    588             shaderState.get()->fImage.isNull()) {
    589         // TODO(vandebo) This drops SKComposeShader on the floor.  We could
    590         // handle compose shader by pulling things up to a layer, drawing with
    591         // the first shader, applying the xfer mode and drawing again with the
    592         // second shader, then applying the layer to the original drawing.
    593         return NULL;
    594     }
    595 
    596     ShaderCanonicalEntry entry(NULL, shaderState.get());
    597     int index = CanonicalShaders().find(entry);
    598     if (index >= 0) {
    599         result = CanonicalShaders()[index].fPDFShader;
    600         result->ref();
    601         return result;
    602     }
    603 
    604     bool valid = false;
    605     // The PDFShader takes ownership of the shaderSate.
    606     if (shaderState.get()->fType == SkShader::kNone_GradientType) {
    607         SkPDFImageShader* imageShader =
    608             new SkPDFImageShader(shaderState.detach());
    609         valid = imageShader->isValid();
    610         result = imageShader;
    611     } else {
    612         if (shaderState.get()->GradientHasAlpha()) {
    613             SkPDFAlphaFunctionShader* gradientShader =
    614                 SkNEW_ARGS(SkPDFAlphaFunctionShader, (shaderState.detach()));
    615             valid = gradientShader->isValid();
    616             result = gradientShader;
    617         } else {
    618             SkPDFFunctionShader* functionShader =
    619                 SkNEW_ARGS(SkPDFFunctionShader, (shaderState.detach()));
    620             valid = functionShader->isValid();
    621             result = functionShader;
    622         }
    623     }
    624     if (!valid) {
    625         delete result;
    626         return NULL;
    627     }
    628     entry.fPDFShader = result;
    629     CanonicalShaders().push(entry);
    630     return result;  // return the reference that came from new.
    631 }
    632 
    633 // static
    634 void SkPDFShader::RemoveShader(SkPDFObject* shader) {
    635     SkAutoMutexAcquire lock(CanonicalShadersMutex());
    636     ShaderCanonicalEntry entry(shader, NULL);
    637     int index = CanonicalShaders().find(entry);
    638     SkASSERT(index >= 0);
    639     CanonicalShaders().removeShuffle(index);
    640 }
    641 
    642 // static
    643 SkPDFObject* SkPDFShader::GetPDFShader(const SkShader& shader,
    644                                        const SkMatrix& matrix,
    645                                        const SkIRect& surfaceBBox) {
    646     SkAutoMutexAcquire lock(CanonicalShadersMutex());
    647     return GetPDFShaderByState(
    648             SkNEW_ARGS(State, (shader, matrix, surfaceBBox)));
    649 }
    650 
    651 // static
    652 SkTDArray<SkPDFShader::ShaderCanonicalEntry>& SkPDFShader::CanonicalShaders() {
    653     // This initialization is only thread safe with gcc.
    654     static SkTDArray<ShaderCanonicalEntry> gCanonicalShaders;
    655     return gCanonicalShaders;
    656 }
    657 
    658 // static
    659 SkBaseMutex& SkPDFShader::CanonicalShadersMutex() {
    660     // This initialization is only thread safe with gcc or when
    661     // POD-style mutex initialization is used.
    662     SK_DECLARE_STATIC_MUTEX(gCanonicalShadersMutex);
    663     return gCanonicalShadersMutex;
    664 }
    665 
    666 // static
    667 SkPDFObject* SkPDFFunctionShader::RangeObject() {
    668     // This initialization is only thread safe with gcc.
    669     static SkPDFArray* range = NULL;
    670     // This method is only used with CanonicalShadersMutex, so it's safe to
    671     // populate domain.
    672     if (range == NULL) {
    673         range = new SkPDFArray;
    674         range->reserve(6);
    675         range->appendInt(0);
    676         range->appendInt(1);
    677         range->appendInt(0);
    678         range->appendInt(1);
    679         range->appendInt(0);
    680         range->appendInt(1);
    681     }
    682     return range;
    683 }
    684 
    685 static SkPDFResourceDict* get_gradient_resource_dict(
    686         SkPDFObject* functionShader,
    687         SkPDFObject* gState) {
    688     SkPDFResourceDict* dict = new SkPDFResourceDict();
    689 
    690     if (functionShader != NULL) {
    691         dict->insertResourceAsReference(
    692                 SkPDFResourceDict::kPattern_ResourceType, 0, functionShader);
    693     }
    694     if (gState != NULL) {
    695         dict->insertResourceAsReference(
    696                 SkPDFResourceDict::kExtGState_ResourceType, 0, gState);
    697     }
    698 
    699     return dict;
    700 }
    701 
    702 static void populate_tiling_pattern_dict(SkPDFDict* pattern,
    703                                       SkRect& bbox, SkPDFDict* resources,
    704                                       const SkMatrix& matrix) {
    705     const int kTiling_PatternType = 1;
    706     const int kColoredTilingPattern_PaintType = 1;
    707     const int kConstantSpacing_TilingType = 1;
    708 
    709     pattern->insertName("Type", "Pattern");
    710     pattern->insertInt("PatternType", kTiling_PatternType);
    711     pattern->insertInt("PaintType", kColoredTilingPattern_PaintType);
    712     pattern->insertInt("TilingType", kConstantSpacing_TilingType);
    713     pattern->insert("BBox", SkPDFUtils::RectToArray(bbox))->unref();
    714     pattern->insertScalar("XStep", bbox.width());
    715     pattern->insertScalar("YStep", bbox.height());
    716     pattern->insert("Resources", resources);
    717     if (!matrix.isIdentity()) {
    718         pattern->insert("Matrix", SkPDFUtils::MatrixToArray(matrix))->unref();
    719     }
    720 }
    721 
    722 /**
    723  * Creates a content stream which fills the pattern P0 across bounds.
    724  * @param gsIndex A graphics state resource index to apply, or <0 if no
    725  * graphics state to apply.
    726  */
    727 static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) {
    728     SkDynamicMemoryWStream content;
    729     if (gsIndex >= 0) {
    730         SkPDFUtils::ApplyGraphicState(gsIndex, &content);
    731     }
    732     SkPDFUtils::ApplyPattern(0, &content);
    733     SkPDFUtils::AppendRectangle(bounds, &content);
    734     SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType,
    735                           &content);
    736 
    737     return content.detachAsStream();
    738 }
    739 
    740 /**
    741  * Creates a ExtGState with the SMask set to the luminosityShader in
    742  * luminosity mode. The shader pattern extends to the bbox.
    743  */
    744 SkPDFGraphicState* SkPDFAlphaFunctionShader::CreateSMaskGraphicState() {
    745     SkRect bbox;
    746     bbox.set(fState.get()->fBBox);
    747 
    748     SkAutoTUnref<SkPDFObject> luminosityShader(
    749             SkPDFShader::GetPDFShaderByState(
    750                  fState->CreateAlphaToLuminosityState()));
    751 
    752     SkAutoTUnref<SkStream> alphaStream(create_pattern_fill_content(-1, bbox));
    753 
    754     SkAutoTUnref<SkPDFResourceDict>
    755         resources(get_gradient_resource_dict(luminosityShader, NULL));
    756 
    757     SkAutoTUnref<SkPDFFormXObject> alphaMask(
    758             new SkPDFFormXObject(alphaStream.get(), bbox, resources.get()));
    759 
    760     return SkPDFGraphicState::GetSMaskGraphicState(
    761             alphaMask.get(), false,
    762             SkPDFGraphicState::kLuminosity_SMaskMode);
    763 }
    764 
    765 SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state)
    766         : fState(state) {
    767     SkRect bbox;
    768     bbox.set(fState.get()->fBBox);
    769 
    770     fColorShader.reset(
    771             SkPDFShader::GetPDFShaderByState(state->CreateOpaqueState()));
    772 
    773     // Create resource dict with alpha graphics state as G0 and
    774     // pattern shader as P0, then write content stream.
    775     SkAutoTUnref<SkPDFGraphicState> alphaGs(CreateSMaskGraphicState());
    776     fResourceDict.reset(
    777             get_gradient_resource_dict(fColorShader.get(), alphaGs.get()));
    778 
    779     SkAutoTUnref<SkStream> colorStream(
    780             create_pattern_fill_content(0, bbox));
    781     setData(colorStream.get());
    782 
    783     populate_tiling_pattern_dict(this, bbox, fResourceDict.get(),
    784                                  SkMatrix::I());
    785 }
    786 
    787 // Finds affine and persp such that in = affine * persp.
    788 // but it returns the inverse of perspective matrix.
    789 static bool split_perspective(const SkMatrix in, SkMatrix* affine,
    790                               SkMatrix* perspectiveInverse) {
    791     const SkScalar p2 = in[SkMatrix::kMPersp2];
    792 
    793     if (SkScalarNearlyZero(p2)) {
    794         return false;
    795     }
    796 
    797     const SkScalar zero = SkIntToScalar(0);
    798     const SkScalar one = SkIntToScalar(1);
    799 
    800     const SkScalar sx = in[SkMatrix::kMScaleX];
    801     const SkScalar kx = in[SkMatrix::kMSkewX];
    802     const SkScalar tx = in[SkMatrix::kMTransX];
    803     const SkScalar ky = in[SkMatrix::kMSkewY];
    804     const SkScalar sy = in[SkMatrix::kMScaleY];
    805     const SkScalar ty = in[SkMatrix::kMTransY];
    806     const SkScalar p0 = in[SkMatrix::kMPersp0];
    807     const SkScalar p1 = in[SkMatrix::kMPersp1];
    808 
    809     // Perspective matrix would be:
    810     // 1  0  0
    811     // 0  1  0
    812     // p0 p1 p2
    813     // But we need the inverse of persp.
    814     perspectiveInverse->setAll(one,          zero,       zero,
    815                                zero,         one,        zero,
    816                                -p0/p2,     -p1/p2,     1/p2);
    817 
    818     affine->setAll(sx - p0 * tx / p2,       kx - p1 * tx / p2,      tx / p2,
    819                    ky - p0 * ty / p2,       sy - p1 * ty / p2,      ty / p2,
    820                    zero,                    zero,                   one);
    821 
    822     return true;
    823 }
    824 
    825 SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state)
    826         : SkPDFDict("Pattern"),
    827           fState(state) {
    828     SkString (*codeFunction)(const SkShader::GradientInfo& info,
    829                              const SkMatrix& perspectiveRemover) = NULL;
    830     SkPoint transformPoints[2];
    831 
    832     // Depending on the type of the gradient, we want to transform the
    833     // coordinate space in different ways.
    834     const SkShader::GradientInfo* info = &fState.get()->fInfo;
    835     transformPoints[0] = info->fPoint[0];
    836     transformPoints[1] = info->fPoint[1];
    837     switch (fState.get()->fType) {
    838         case SkShader::kLinear_GradientType:
    839             codeFunction = &linearCode;
    840             break;
    841         case SkShader::kRadial_GradientType:
    842             transformPoints[1] = transformPoints[0];
    843             transformPoints[1].fX += info->fRadius[0];
    844             codeFunction = &radialCode;
    845             break;
    846         case SkShader::kRadial2_GradientType: {
    847             // Bail out if the radii are the same.  Empty fResources signals
    848             // an error and isValid will return false.
    849             if (info->fRadius[0] == info->fRadius[1]) {
    850                 return;
    851             }
    852             transformPoints[1] = transformPoints[0];
    853             SkScalar dr = info->fRadius[1] - info->fRadius[0];
    854             transformPoints[1].fX += dr;
    855             codeFunction = &twoPointRadialCode;
    856             break;
    857         }
    858         case SkShader::kConical_GradientType: {
    859             transformPoints[1] = transformPoints[0];
    860             transformPoints[1].fX += SK_Scalar1;
    861             codeFunction = &twoPointConicalCode;
    862             break;
    863         }
    864         case SkShader::kSweep_GradientType:
    865             transformPoints[1] = transformPoints[0];
    866             transformPoints[1].fX += SK_Scalar1;
    867             codeFunction = &sweepCode;
    868             break;
    869         case SkShader::kColor_GradientType:
    870         case SkShader::kNone_GradientType:
    871         default:
    872             return;
    873     }
    874 
    875     // Move any scaling (assuming a unit gradient) or translation
    876     // (and rotation for linear gradient), of the final gradient from
    877     // info->fPoints to the matrix (updating bbox appropriately).  Now
    878     // the gradient can be drawn on on the unit segment.
    879     SkMatrix mapperMatrix;
    880     unitToPointsMatrix(transformPoints, &mapperMatrix);
    881 
    882     SkMatrix finalMatrix = fState.get()->fCanvasTransform;
    883     finalMatrix.preConcat(fState.get()->fShaderTransform);
    884     finalMatrix.preConcat(mapperMatrix);
    885 
    886     // Preserves as much as posible in the final matrix, and only removes
    887     // the perspective. The inverse of the perspective is stored in
    888     // perspectiveInverseOnly matrix and has 3 useful numbers
    889     // (p0, p1, p2), while everything else is either 0 or 1.
    890     // In this way the shader will handle it eficiently, with minimal code.
    891     SkMatrix perspectiveInverseOnly = SkMatrix::I();
    892     if (finalMatrix.hasPerspective()) {
    893         if (!split_perspective(finalMatrix,
    894                                &finalMatrix, &perspectiveInverseOnly)) {
    895             return;
    896         }
    897     }
    898 
    899     SkRect bbox;
    900     bbox.set(fState.get()->fBBox);
    901     if (!transformBBox(finalMatrix, &bbox)) {
    902         return;
    903     }
    904 
    905     SkAutoTUnref<SkPDFArray> domain(new SkPDFArray);
    906     domain->reserve(4);
    907     domain->appendScalar(bbox.fLeft);
    908     domain->appendScalar(bbox.fRight);
    909     domain->appendScalar(bbox.fTop);
    910     domain->appendScalar(bbox.fBottom);
    911 
    912     SkString functionCode;
    913     // The two point radial gradient further references fState.get()->fInfo
    914     // in translating from x, y coordinates to the t parameter. So, we have
    915     // to transform the points and radii according to the calculated matrix.
    916     if (fState.get()->fType == SkShader::kRadial2_GradientType) {
    917         SkShader::GradientInfo twoPointRadialInfo = *info;
    918         SkMatrix inverseMapperMatrix;
    919         if (!mapperMatrix.invert(&inverseMapperMatrix)) {
    920             return;
    921         }
    922         inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
    923         twoPointRadialInfo.fRadius[0] =
    924             inverseMapperMatrix.mapRadius(info->fRadius[0]);
    925         twoPointRadialInfo.fRadius[1] =
    926             inverseMapperMatrix.mapRadius(info->fRadius[1]);
    927         functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly);
    928     } else {
    929         functionCode = codeFunction(*info, perspectiveInverseOnly);
    930     }
    931 
    932     SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict);
    933     pdfShader->insertInt("ShadingType", 1);
    934     pdfShader->insertName("ColorSpace", "DeviceRGB");
    935     pdfShader->insert("Domain", domain.get());
    936 
    937     SkPDFStream* function = makePSFunction(functionCode, domain.get());
    938     pdfShader->insert("Function", new SkPDFObjRef(function))->unref();
    939     fResources.push(function);  // Pass ownership to resource list.
    940 
    941     insertInt("PatternType", 2);
    942     insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref();
    943     insert("Shading", pdfShader.get());
    944 }
    945 
    946 SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) : fState(state) {
    947     fState.get()->fImage.lockPixels();
    948 
    949     SkMatrix finalMatrix = fState.get()->fCanvasTransform;
    950     finalMatrix.preConcat(fState.get()->fShaderTransform);
    951     SkRect surfaceBBox;
    952     surfaceBBox.set(fState.get()->fBBox);
    953     if (!transformBBox(finalMatrix, &surfaceBBox)) {
    954         return;
    955     }
    956 
    957     SkMatrix unflip;
    958     unflip.setTranslate(0, SkScalarRoundToScalar(surfaceBBox.height()));
    959     unflip.preScale(SK_Scalar1, -SK_Scalar1);
    960     SkISize size = SkISize::Make(SkScalarRound(surfaceBBox.width()),
    961                                  SkScalarRound(surfaceBBox.height()));
    962     SkPDFDevice pattern(size, size, unflip);
    963     SkCanvas canvas(&pattern);
    964     canvas.translate(-surfaceBBox.fLeft, -surfaceBBox.fTop);
    965     finalMatrix.preTranslate(surfaceBBox.fLeft, surfaceBBox.fTop);
    966 
    967     const SkBitmap* image = &fState.get()->fImage;
    968     SkScalar width = SkIntToScalar(image->width());
    969     SkScalar height = SkIntToScalar(image->height());
    970     SkShader::TileMode tileModes[2];
    971     tileModes[0] = fState.get()->fImageTileModes[0];
    972     tileModes[1] = fState.get()->fImageTileModes[1];
    973 
    974     canvas.drawBitmap(*image, 0, 0);
    975     SkRect patternBBox = SkRect::MakeXYWH(-surfaceBBox.fLeft, -surfaceBBox.fTop,
    976                                           width, height);
    977 
    978     // Tiling is implied.  First we handle mirroring.
    979     if (tileModes[0] == SkShader::kMirror_TileMode) {
    980         SkMatrix xMirror;
    981         xMirror.setScale(-1, 1);
    982         xMirror.postTranslate(2 * width, 0);
    983         canvas.drawBitmapMatrix(*image, xMirror);
    984         patternBBox.fRight += width;
    985     }
    986     if (tileModes[1] == SkShader::kMirror_TileMode) {
    987         SkMatrix yMirror;
    988         yMirror.setScale(SK_Scalar1, -SK_Scalar1);
    989         yMirror.postTranslate(0, 2 * height);
    990         canvas.drawBitmapMatrix(*image, yMirror);
    991         patternBBox.fBottom += height;
    992     }
    993     if (tileModes[0] == SkShader::kMirror_TileMode &&
    994             tileModes[1] == SkShader::kMirror_TileMode) {
    995         SkMatrix mirror;
    996         mirror.setScale(-1, -1);
    997         mirror.postTranslate(2 * width, 2 * height);
    998         canvas.drawBitmapMatrix(*image, mirror);
    999     }
   1000 
   1001     // Then handle Clamping, which requires expanding the pattern canvas to
   1002     // cover the entire surfaceBBox.
   1003 
   1004     // If both x and y are in clamp mode, we start by filling in the corners.
   1005     // (Which are just a rectangles of the corner colors.)
   1006     if (tileModes[0] == SkShader::kClamp_TileMode &&
   1007             tileModes[1] == SkShader::kClamp_TileMode) {
   1008         SkPaint paint;
   1009         SkRect rect;
   1010         rect = SkRect::MakeLTRB(surfaceBBox.fLeft, surfaceBBox.fTop, 0, 0);
   1011         if (!rect.isEmpty()) {
   1012             paint.setColor(image->getColor(0, 0));
   1013             canvas.drawRect(rect, paint);
   1014         }
   1015 
   1016         rect = SkRect::MakeLTRB(width, surfaceBBox.fTop, surfaceBBox.fRight, 0);
   1017         if (!rect.isEmpty()) {
   1018             paint.setColor(image->getColor(image->width() - 1, 0));
   1019             canvas.drawRect(rect, paint);
   1020         }
   1021 
   1022         rect = SkRect::MakeLTRB(width, height, surfaceBBox.fRight,
   1023                                 surfaceBBox.fBottom);
   1024         if (!rect.isEmpty()) {
   1025             paint.setColor(image->getColor(image->width() - 1,
   1026                                            image->height() - 1));
   1027             canvas.drawRect(rect, paint);
   1028         }
   1029 
   1030         rect = SkRect::MakeLTRB(surfaceBBox.fLeft, height, 0,
   1031                                 surfaceBBox.fBottom);
   1032         if (!rect.isEmpty()) {
   1033             paint.setColor(image->getColor(0, image->height() - 1));
   1034             canvas.drawRect(rect, paint);
   1035         }
   1036     }
   1037 
   1038     // Then expand the left, right, top, then bottom.
   1039     if (tileModes[0] == SkShader::kClamp_TileMode) {
   1040         SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
   1041         if (surfaceBBox.fLeft < 0) {
   1042             SkBitmap left;
   1043             SkAssertResult(image->extractSubset(&left, subset));
   1044 
   1045             SkMatrix leftMatrix;
   1046             leftMatrix.setScale(-surfaceBBox.fLeft, 1);
   1047             leftMatrix.postTranslate(surfaceBBox.fLeft, 0);
   1048             canvas.drawBitmapMatrix(left, leftMatrix);
   1049 
   1050             if (tileModes[1] == SkShader::kMirror_TileMode) {
   1051                 leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
   1052                 leftMatrix.postTranslate(0, 2 * height);
   1053                 canvas.drawBitmapMatrix(left, leftMatrix);
   1054             }
   1055             patternBBox.fLeft = 0;
   1056         }
   1057 
   1058         if (surfaceBBox.fRight > width) {
   1059             SkBitmap right;
   1060             subset.offset(image->width() - 1, 0);
   1061             SkAssertResult(image->extractSubset(&right, subset));
   1062 
   1063             SkMatrix rightMatrix;
   1064             rightMatrix.setScale(surfaceBBox.fRight - width, 1);
   1065             rightMatrix.postTranslate(width, 0);
   1066             canvas.drawBitmapMatrix(right, rightMatrix);
   1067 
   1068             if (tileModes[1] == SkShader::kMirror_TileMode) {
   1069                 rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
   1070                 rightMatrix.postTranslate(0, 2 * height);
   1071                 canvas.drawBitmapMatrix(right, rightMatrix);
   1072             }
   1073             patternBBox.fRight = surfaceBBox.width();
   1074         }
   1075     }
   1076 
   1077     if (tileModes[1] == SkShader::kClamp_TileMode) {
   1078         SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
   1079         if (surfaceBBox.fTop < 0) {
   1080             SkBitmap top;
   1081             SkAssertResult(image->extractSubset(&top, subset));
   1082 
   1083             SkMatrix topMatrix;
   1084             topMatrix.setScale(SK_Scalar1, -surfaceBBox.fTop);
   1085             topMatrix.postTranslate(0, surfaceBBox.fTop);
   1086             canvas.drawBitmapMatrix(top, topMatrix);
   1087 
   1088             if (tileModes[0] == SkShader::kMirror_TileMode) {
   1089                 topMatrix.postScale(-1, 1);
   1090                 topMatrix.postTranslate(2 * width, 0);
   1091                 canvas.drawBitmapMatrix(top, topMatrix);
   1092             }
   1093             patternBBox.fTop = 0;
   1094         }
   1095 
   1096         if (surfaceBBox.fBottom > height) {
   1097             SkBitmap bottom;
   1098             subset.offset(0, image->height() - 1);
   1099             SkAssertResult(image->extractSubset(&bottom, subset));
   1100 
   1101             SkMatrix bottomMatrix;
   1102             bottomMatrix.setScale(SK_Scalar1, surfaceBBox.fBottom - height);
   1103             bottomMatrix.postTranslate(0, height);
   1104             canvas.drawBitmapMatrix(bottom, bottomMatrix);
   1105 
   1106             if (tileModes[0] == SkShader::kMirror_TileMode) {
   1107                 bottomMatrix.postScale(-1, 1);
   1108                 bottomMatrix.postTranslate(2 * width, 0);
   1109                 canvas.drawBitmapMatrix(bottom, bottomMatrix);
   1110             }
   1111             patternBBox.fBottom = surfaceBBox.height();
   1112         }
   1113     }
   1114 
   1115     // Put the canvas into the pattern stream (fContent).
   1116     SkAutoTUnref<SkStream> content(pattern.content());
   1117     setData(content.get());
   1118     SkPDFResourceDict* resourceDict = pattern.getResourceDict();
   1119     resourceDict->getReferencedResources(fResources, &fResources, false);
   1120 
   1121     populate_tiling_pattern_dict(this, patternBBox,
   1122                                  pattern.getResourceDict(), finalMatrix);
   1123 
   1124     fState.get()->fImage.unlockPixels();
   1125 }
   1126 
   1127 SkPDFStream* SkPDFFunctionShader::makePSFunction(const SkString& psCode,
   1128                                                  SkPDFArray* domain) {
   1129     SkAutoDataUnref funcData(SkData::NewWithCopy(psCode.c_str(),
   1130                                                  psCode.size()));
   1131     SkPDFStream* result = new SkPDFStream(funcData.get());
   1132     result->insertInt("FunctionType", 4);
   1133     result->insert("Domain", domain);
   1134     result->insert("Range", RangeObject());
   1135     return result;
   1136 }
   1137 
   1138 SkPDFShader::ShaderCanonicalEntry::ShaderCanonicalEntry(SkPDFObject* pdfShader,
   1139                                                         const State* state)
   1140     : fPDFShader(pdfShader),
   1141       fState(state) {
   1142 }
   1143 
   1144 bool SkPDFShader::ShaderCanonicalEntry::operator==(
   1145         const ShaderCanonicalEntry& b) const {
   1146     return fPDFShader == b.fPDFShader ||
   1147            (fState != NULL && b.fState != NULL && *fState == *b.fState);
   1148 }
   1149 
   1150 bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const {
   1151     if (fType != b.fType ||
   1152             fCanvasTransform != b.fCanvasTransform ||
   1153             fShaderTransform != b.fShaderTransform ||
   1154             fBBox != b.fBBox) {
   1155         return false;
   1156     }
   1157 
   1158     if (fType == SkShader::kNone_GradientType) {
   1159         if (fPixelGeneration != b.fPixelGeneration ||
   1160                 fPixelGeneration == 0 ||
   1161                 fImageTileModes[0] != b.fImageTileModes[0] ||
   1162                 fImageTileModes[1] != b.fImageTileModes[1]) {
   1163             return false;
   1164         }
   1165     } else {
   1166         if (fInfo.fColorCount != b.fInfo.fColorCount ||
   1167                 memcmp(fInfo.fColors, b.fInfo.fColors,
   1168                        sizeof(SkColor) * fInfo.fColorCount) != 0 ||
   1169                 memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets,
   1170                        sizeof(SkScalar) * fInfo.fColorCount) != 0 ||
   1171                 fInfo.fPoint[0] != b.fInfo.fPoint[0] ||
   1172                 fInfo.fTileMode != b.fInfo.fTileMode) {
   1173             return false;
   1174         }
   1175 
   1176         switch (fType) {
   1177             case SkShader::kLinear_GradientType:
   1178                 if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) {
   1179                     return false;
   1180                 }
   1181                 break;
   1182             case SkShader::kRadial_GradientType:
   1183                 if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) {
   1184                     return false;
   1185                 }
   1186                 break;
   1187             case SkShader::kRadial2_GradientType:
   1188             case SkShader::kConical_GradientType:
   1189                 if (fInfo.fPoint[1] != b.fInfo.fPoint[1] ||
   1190                         fInfo.fRadius[0] != b.fInfo.fRadius[0] ||
   1191                         fInfo.fRadius[1] != b.fInfo.fRadius[1]) {
   1192                     return false;
   1193                 }
   1194                 break;
   1195             case SkShader::kSweep_GradientType:
   1196             case SkShader::kNone_GradientType:
   1197             case SkShader::kColor_GradientType:
   1198                 break;
   1199         }
   1200     }
   1201     return true;
   1202 }
   1203 
   1204 SkPDFShader::State::State(const SkShader& shader,
   1205                           const SkMatrix& canvasTransform, const SkIRect& bbox)
   1206         : fCanvasTransform(canvasTransform),
   1207           fBBox(bbox),
   1208           fPixelGeneration(0) {
   1209     fInfo.fColorCount = 0;
   1210     fInfo.fColors = NULL;
   1211     fInfo.fColorOffsets = NULL;
   1212     fShaderTransform = shader.getLocalMatrix();
   1213     fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode;
   1214 
   1215     fType = shader.asAGradient(&fInfo);
   1216 
   1217     if (fType == SkShader::kNone_GradientType) {
   1218         SkShader::BitmapType bitmapType;
   1219         SkMatrix matrix;
   1220         bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes);
   1221         if (bitmapType != SkShader::kDefault_BitmapType) {
   1222             fImage.reset();
   1223             return;
   1224         }
   1225         SkASSERT(matrix.isIdentity());
   1226         fPixelGeneration = fImage.getGenerationID();
   1227     } else {
   1228         AllocateGradientInfoStorage();
   1229         shader.asAGradient(&fInfo);
   1230     }
   1231 }
   1232 
   1233 SkPDFShader::State::State(const SkPDFShader::State& other)
   1234   : fType(other.fType),
   1235     fCanvasTransform(other.fCanvasTransform),
   1236     fShaderTransform(other.fShaderTransform),
   1237     fBBox(other.fBBox)
   1238 {
   1239     // Only gradients supported for now, since that is all that is used.
   1240     // If needed, image state copy constructor can be added here later.
   1241     SkASSERT(fType != SkShader::kNone_GradientType);
   1242 
   1243     if (fType != SkShader::kNone_GradientType) {
   1244         fInfo = other.fInfo;
   1245 
   1246         AllocateGradientInfoStorage();
   1247         for (int i = 0; i < fInfo.fColorCount; i++) {
   1248             fInfo.fColors[i] = other.fInfo.fColors[i];
   1249             fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i];
   1250         }
   1251     }
   1252 }
   1253 
   1254 /**
   1255  * Create a copy of this gradient state with alpha assigned to RGB luminousity.
   1256  * Only valid for gradient states.
   1257  */
   1258 SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const {
   1259     SkASSERT(fType != SkShader::kNone_GradientType);
   1260 
   1261     SkPDFShader::State* newState = new SkPDFShader::State(*this);
   1262 
   1263     for (int i = 0; i < fInfo.fColorCount; i++) {
   1264         SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
   1265         newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha);
   1266     }
   1267 
   1268     return newState;
   1269 }
   1270 
   1271 /**
   1272  * Create a copy of this gradient state with alpha set to fully opaque
   1273  * Only valid for gradient states.
   1274  */
   1275 SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const {
   1276     SkASSERT(fType != SkShader::kNone_GradientType);
   1277 
   1278     SkPDFShader::State* newState = new SkPDFShader::State(*this);
   1279     for (int i = 0; i < fInfo.fColorCount; i++) {
   1280         newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i],
   1281                                                  SK_AlphaOPAQUE);
   1282     }
   1283 
   1284     return newState;
   1285 }
   1286 
   1287 /**
   1288  * Returns true if state is a gradient and the gradient has alpha.
   1289  */
   1290 bool SkPDFShader::State::GradientHasAlpha() const {
   1291     if (fType == SkShader::kNone_GradientType) {
   1292         return false;
   1293     }
   1294 
   1295     for (int i = 0; i < fInfo.fColorCount; i++) {
   1296         SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
   1297         if (alpha != SK_AlphaOPAQUE) {
   1298             return true;
   1299         }
   1300     }
   1301     return false;
   1302 }
   1303 
   1304 void SkPDFShader::State::AllocateGradientInfoStorage() {
   1305     fColorData.set(sk_malloc_throw(
   1306                fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar))));
   1307     fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get());
   1308     fInfo.fColorOffsets =
   1309             reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount);
   1310 }
   1311