1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Sema/SemaDiagnostic.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/Support/CallSite.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Statement Emission 32 //===----------------------------------------------------------------------===// 33 34 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 35 if (CGDebugInfo *DI = getDebugInfo()) { 36 SourceLocation Loc; 37 Loc = S->getLocStart(); 38 DI->EmitLocation(Builder, Loc); 39 40 LastStopPoint = Loc; 41 } 42 } 43 44 void CodeGenFunction::EmitStmt(const Stmt *S) { 45 assert(S && "Null statement?"); 46 47 // These statements have their own debug info handling. 48 if (EmitSimpleStmt(S)) 49 return; 50 51 // Check if we are generating unreachable code. 52 if (!HaveInsertPoint()) { 53 // If so, and the statement doesn't contain a label, then we do not need to 54 // generate actual code. This is safe because (1) the current point is 55 // unreachable, so we don't need to execute the code, and (2) we've already 56 // handled the statements which update internal data structures (like the 57 // local variable map) which could be used by subsequent statements. 58 if (!ContainsLabel(S)) { 59 // Verify that any decl statements were handled as simple, they may be in 60 // scope of subsequent reachable statements. 61 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 62 return; 63 } 64 65 // Otherwise, make a new block to hold the code. 66 EnsureInsertPoint(); 67 } 68 69 // Generate a stoppoint if we are emitting debug info. 70 EmitStopPoint(S); 71 72 switch (S->getStmtClass()) { 73 case Stmt::NoStmtClass: 74 case Stmt::CXXCatchStmtClass: 75 case Stmt::SEHExceptStmtClass: 76 case Stmt::SEHFinallyStmtClass: 77 case Stmt::MSDependentExistsStmtClass: 78 case Stmt::OMPParallelDirectiveClass: 79 llvm_unreachable("invalid statement class to emit generically"); 80 case Stmt::NullStmtClass: 81 case Stmt::CompoundStmtClass: 82 case Stmt::DeclStmtClass: 83 case Stmt::LabelStmtClass: 84 case Stmt::AttributedStmtClass: 85 case Stmt::GotoStmtClass: 86 case Stmt::BreakStmtClass: 87 case Stmt::ContinueStmtClass: 88 case Stmt::DefaultStmtClass: 89 case Stmt::CaseStmtClass: 90 llvm_unreachable("should have emitted these statements as simple"); 91 92 #define STMT(Type, Base) 93 #define ABSTRACT_STMT(Op) 94 #define EXPR(Type, Base) \ 95 case Stmt::Type##Class: 96 #include "clang/AST/StmtNodes.inc" 97 { 98 // Remember the block we came in on. 99 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 100 assert(incoming && "expression emission must have an insertion point"); 101 102 EmitIgnoredExpr(cast<Expr>(S)); 103 104 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 105 assert(outgoing && "expression emission cleared block!"); 106 107 // The expression emitters assume (reasonably!) that the insertion 108 // point is always set. To maintain that, the call-emission code 109 // for noreturn functions has to enter a new block with no 110 // predecessors. We want to kill that block and mark the current 111 // insertion point unreachable in the common case of a call like 112 // "exit();". Since expression emission doesn't otherwise create 113 // blocks with no predecessors, we can just test for that. 114 // However, we must be careful not to do this to our incoming 115 // block, because *statement* emission does sometimes create 116 // reachable blocks which will have no predecessors until later in 117 // the function. This occurs with, e.g., labels that are not 118 // reachable by fallthrough. 119 if (incoming != outgoing && outgoing->use_empty()) { 120 outgoing->eraseFromParent(); 121 Builder.ClearInsertionPoint(); 122 } 123 break; 124 } 125 126 case Stmt::IndirectGotoStmtClass: 127 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 128 129 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 130 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 131 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 132 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 133 134 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 135 136 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 137 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 138 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 139 case Stmt::CapturedStmtClass: 140 EmitCapturedStmt(cast<CapturedStmt>(*S), CR_Default); 141 break; 142 case Stmt::ObjCAtTryStmtClass: 143 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 144 break; 145 case Stmt::ObjCAtCatchStmtClass: 146 llvm_unreachable( 147 "@catch statements should be handled by EmitObjCAtTryStmt"); 148 case Stmt::ObjCAtFinallyStmtClass: 149 llvm_unreachable( 150 "@finally statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtThrowStmtClass: 152 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 153 break; 154 case Stmt::ObjCAtSynchronizedStmtClass: 155 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 156 break; 157 case Stmt::ObjCForCollectionStmtClass: 158 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 159 break; 160 case Stmt::ObjCAutoreleasePoolStmtClass: 161 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 162 break; 163 164 case Stmt::CXXTryStmtClass: 165 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 166 break; 167 case Stmt::CXXForRangeStmtClass: 168 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 169 case Stmt::SEHTryStmtClass: 170 // FIXME Not yet implemented 171 break; 172 } 173 } 174 175 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 176 switch (S->getStmtClass()) { 177 default: return false; 178 case Stmt::NullStmtClass: break; 179 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 180 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 181 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 182 case Stmt::AttributedStmtClass: 183 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 184 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 185 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 186 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 187 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 188 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 189 } 190 191 return true; 192 } 193 194 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 195 /// this captures the expression result of the last sub-statement and returns it 196 /// (for use by the statement expression extension). 197 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 198 AggValueSlot AggSlot) { 199 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 200 "LLVM IR generation of compound statement ('{}')"); 201 202 // Keep track of the current cleanup stack depth, including debug scopes. 203 LexicalScope Scope(*this, S.getSourceRange()); 204 205 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 206 } 207 208 llvm::Value* 209 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 210 bool GetLast, 211 AggValueSlot AggSlot) { 212 213 for (CompoundStmt::const_body_iterator I = S.body_begin(), 214 E = S.body_end()-GetLast; I != E; ++I) 215 EmitStmt(*I); 216 217 llvm::Value *RetAlloca = 0; 218 if (GetLast) { 219 // We have to special case labels here. They are statements, but when put 220 // at the end of a statement expression, they yield the value of their 221 // subexpression. Handle this by walking through all labels we encounter, 222 // emitting them before we evaluate the subexpr. 223 const Stmt *LastStmt = S.body_back(); 224 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 225 EmitLabel(LS->getDecl()); 226 LastStmt = LS->getSubStmt(); 227 } 228 229 EnsureInsertPoint(); 230 231 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 232 if (hasAggregateEvaluationKind(ExprTy)) { 233 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 234 } else { 235 // We can't return an RValue here because there might be cleanups at 236 // the end of the StmtExpr. Because of that, we have to emit the result 237 // here into a temporary alloca. 238 RetAlloca = CreateMemTemp(ExprTy); 239 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 240 /*IsInit*/false); 241 } 242 243 } 244 245 return RetAlloca; 246 } 247 248 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 249 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 250 251 // If there is a cleanup stack, then we it isn't worth trying to 252 // simplify this block (we would need to remove it from the scope map 253 // and cleanup entry). 254 if (!EHStack.empty()) 255 return; 256 257 // Can only simplify direct branches. 258 if (!BI || !BI->isUnconditional()) 259 return; 260 261 // Can only simplify empty blocks. 262 if (BI != BB->begin()) 263 return; 264 265 BB->replaceAllUsesWith(BI->getSuccessor(0)); 266 BI->eraseFromParent(); 267 BB->eraseFromParent(); 268 } 269 270 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 271 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 272 273 // Fall out of the current block (if necessary). 274 EmitBranch(BB); 275 276 if (IsFinished && BB->use_empty()) { 277 delete BB; 278 return; 279 } 280 281 // Place the block after the current block, if possible, or else at 282 // the end of the function. 283 if (CurBB && CurBB->getParent()) 284 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 285 else 286 CurFn->getBasicBlockList().push_back(BB); 287 Builder.SetInsertPoint(BB); 288 } 289 290 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 291 // Emit a branch from the current block to the target one if this 292 // was a real block. If this was just a fall-through block after a 293 // terminator, don't emit it. 294 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 295 296 if (!CurBB || CurBB->getTerminator()) { 297 // If there is no insert point or the previous block is already 298 // terminated, don't touch it. 299 } else { 300 // Otherwise, create a fall-through branch. 301 Builder.CreateBr(Target); 302 } 303 304 Builder.ClearInsertionPoint(); 305 } 306 307 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 308 bool inserted = false; 309 for (llvm::BasicBlock::use_iterator 310 i = block->use_begin(), e = block->use_end(); i != e; ++i) { 311 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) { 312 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 313 inserted = true; 314 break; 315 } 316 } 317 318 if (!inserted) 319 CurFn->getBasicBlockList().push_back(block); 320 321 Builder.SetInsertPoint(block); 322 } 323 324 CodeGenFunction::JumpDest 325 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 326 JumpDest &Dest = LabelMap[D]; 327 if (Dest.isValid()) return Dest; 328 329 // Create, but don't insert, the new block. 330 Dest = JumpDest(createBasicBlock(D->getName()), 331 EHScopeStack::stable_iterator::invalid(), 332 NextCleanupDestIndex++); 333 return Dest; 334 } 335 336 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 337 // Add this label to the current lexical scope if we're within any 338 // normal cleanups. Jumps "in" to this label --- when permitted by 339 // the language --- may need to be routed around such cleanups. 340 if (EHStack.hasNormalCleanups() && CurLexicalScope) 341 CurLexicalScope->addLabel(D); 342 343 JumpDest &Dest = LabelMap[D]; 344 345 // If we didn't need a forward reference to this label, just go 346 // ahead and create a destination at the current scope. 347 if (!Dest.isValid()) { 348 Dest = getJumpDestInCurrentScope(D->getName()); 349 350 // Otherwise, we need to give this label a target depth and remove 351 // it from the branch-fixups list. 352 } else { 353 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 354 Dest.setScopeDepth(EHStack.stable_begin()); 355 ResolveBranchFixups(Dest.getBlock()); 356 } 357 358 EmitBlock(Dest.getBlock()); 359 } 360 361 /// Change the cleanup scope of the labels in this lexical scope to 362 /// match the scope of the enclosing context. 363 void CodeGenFunction::LexicalScope::rescopeLabels() { 364 assert(!Labels.empty()); 365 EHScopeStack::stable_iterator innermostScope 366 = CGF.EHStack.getInnermostNormalCleanup(); 367 368 // Change the scope depth of all the labels. 369 for (SmallVectorImpl<const LabelDecl*>::const_iterator 370 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 371 assert(CGF.LabelMap.count(*i)); 372 JumpDest &dest = CGF.LabelMap.find(*i)->second; 373 assert(dest.getScopeDepth().isValid()); 374 assert(innermostScope.encloses(dest.getScopeDepth())); 375 dest.setScopeDepth(innermostScope); 376 } 377 378 // Reparent the labels if the new scope also has cleanups. 379 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 380 ParentScope->Labels.append(Labels.begin(), Labels.end()); 381 } 382 } 383 384 385 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 386 EmitLabel(S.getDecl()); 387 EmitStmt(S.getSubStmt()); 388 } 389 390 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 391 EmitStmt(S.getSubStmt()); 392 } 393 394 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 395 // If this code is reachable then emit a stop point (if generating 396 // debug info). We have to do this ourselves because we are on the 397 // "simple" statement path. 398 if (HaveInsertPoint()) 399 EmitStopPoint(&S); 400 401 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 402 } 403 404 405 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 406 if (const LabelDecl *Target = S.getConstantTarget()) { 407 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 408 return; 409 } 410 411 // Ensure that we have an i8* for our PHI node. 412 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 413 Int8PtrTy, "addr"); 414 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 415 416 // Get the basic block for the indirect goto. 417 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 418 419 // The first instruction in the block has to be the PHI for the switch dest, 420 // add an entry for this branch. 421 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 422 423 EmitBranch(IndGotoBB); 424 } 425 426 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 427 // C99 6.8.4.1: The first substatement is executed if the expression compares 428 // unequal to 0. The condition must be a scalar type. 429 LexicalScope ConditionScope(*this, S.getSourceRange()); 430 431 if (S.getConditionVariable()) 432 EmitAutoVarDecl(*S.getConditionVariable()); 433 434 // If the condition constant folds and can be elided, try to avoid emitting 435 // the condition and the dead arm of the if/else. 436 bool CondConstant; 437 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 438 // Figure out which block (then or else) is executed. 439 const Stmt *Executed = S.getThen(); 440 const Stmt *Skipped = S.getElse(); 441 if (!CondConstant) // Condition false? 442 std::swap(Executed, Skipped); 443 444 // If the skipped block has no labels in it, just emit the executed block. 445 // This avoids emitting dead code and simplifies the CFG substantially. 446 if (!ContainsLabel(Skipped)) { 447 if (Executed) { 448 RunCleanupsScope ExecutedScope(*this); 449 EmitStmt(Executed); 450 } 451 return; 452 } 453 } 454 455 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 456 // the conditional branch. 457 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 458 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 459 llvm::BasicBlock *ElseBlock = ContBlock; 460 if (S.getElse()) 461 ElseBlock = createBasicBlock("if.else"); 462 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); 463 464 // Emit the 'then' code. 465 EmitBlock(ThenBlock); 466 { 467 RunCleanupsScope ThenScope(*this); 468 EmitStmt(S.getThen()); 469 } 470 EmitBranch(ContBlock); 471 472 // Emit the 'else' code if present. 473 if (const Stmt *Else = S.getElse()) { 474 // There is no need to emit line number for unconditional branch. 475 if (getDebugInfo()) 476 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 477 EmitBlock(ElseBlock); 478 { 479 RunCleanupsScope ElseScope(*this); 480 EmitStmt(Else); 481 } 482 // There is no need to emit line number for unconditional branch. 483 if (getDebugInfo()) 484 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 485 EmitBranch(ContBlock); 486 } 487 488 // Emit the continuation block for code after the if. 489 EmitBlock(ContBlock, true); 490 } 491 492 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 493 // Emit the header for the loop, which will also become 494 // the continue target. 495 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 496 EmitBlock(LoopHeader.getBlock()); 497 498 // Create an exit block for when the condition fails, which will 499 // also become the break target. 500 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 501 502 // Store the blocks to use for break and continue. 503 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 504 505 // C++ [stmt.while]p2: 506 // When the condition of a while statement is a declaration, the 507 // scope of the variable that is declared extends from its point 508 // of declaration (3.3.2) to the end of the while statement. 509 // [...] 510 // The object created in a condition is destroyed and created 511 // with each iteration of the loop. 512 RunCleanupsScope ConditionScope(*this); 513 514 if (S.getConditionVariable()) 515 EmitAutoVarDecl(*S.getConditionVariable()); 516 517 // Evaluate the conditional in the while header. C99 6.8.5.1: The 518 // evaluation of the controlling expression takes place before each 519 // execution of the loop body. 520 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 521 522 // while(1) is common, avoid extra exit blocks. Be sure 523 // to correctly handle break/continue though. 524 bool EmitBoolCondBranch = true; 525 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 526 if (C->isOne()) 527 EmitBoolCondBranch = false; 528 529 // As long as the condition is true, go to the loop body. 530 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 531 if (EmitBoolCondBranch) { 532 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 533 if (ConditionScope.requiresCleanups()) 534 ExitBlock = createBasicBlock("while.exit"); 535 536 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 537 538 if (ExitBlock != LoopExit.getBlock()) { 539 EmitBlock(ExitBlock); 540 EmitBranchThroughCleanup(LoopExit); 541 } 542 } 543 544 // Emit the loop body. We have to emit this in a cleanup scope 545 // because it might be a singleton DeclStmt. 546 { 547 RunCleanupsScope BodyScope(*this); 548 EmitBlock(LoopBody); 549 EmitStmt(S.getBody()); 550 } 551 552 BreakContinueStack.pop_back(); 553 554 // Immediately force cleanup. 555 ConditionScope.ForceCleanup(); 556 557 // Branch to the loop header again. 558 EmitBranch(LoopHeader.getBlock()); 559 560 // Emit the exit block. 561 EmitBlock(LoopExit.getBlock(), true); 562 563 // The LoopHeader typically is just a branch if we skipped emitting 564 // a branch, try to erase it. 565 if (!EmitBoolCondBranch) 566 SimplifyForwardingBlocks(LoopHeader.getBlock()); 567 } 568 569 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 570 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 571 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 572 573 // Store the blocks to use for break and continue. 574 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 575 576 // Emit the body of the loop. 577 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 578 EmitBlock(LoopBody); 579 { 580 RunCleanupsScope BodyScope(*this); 581 EmitStmt(S.getBody()); 582 } 583 584 BreakContinueStack.pop_back(); 585 586 EmitBlock(LoopCond.getBlock()); 587 588 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 589 // after each execution of the loop body." 590 591 // Evaluate the conditional in the while header. 592 // C99 6.8.5p2/p4: The first substatement is executed if the expression 593 // compares unequal to 0. The condition must be a scalar type. 594 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 595 596 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 597 // to correctly handle break/continue though. 598 bool EmitBoolCondBranch = true; 599 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 600 if (C->isZero()) 601 EmitBoolCondBranch = false; 602 603 // As long as the condition is true, iterate the loop. 604 if (EmitBoolCondBranch) 605 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); 606 607 // Emit the exit block. 608 EmitBlock(LoopExit.getBlock()); 609 610 // The DoCond block typically is just a branch if we skipped 611 // emitting a branch, try to erase it. 612 if (!EmitBoolCondBranch) 613 SimplifyForwardingBlocks(LoopCond.getBlock()); 614 } 615 616 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 617 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 618 619 RunCleanupsScope ForScope(*this); 620 621 CGDebugInfo *DI = getDebugInfo(); 622 if (DI) 623 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 624 625 // Evaluate the first part before the loop. 626 if (S.getInit()) 627 EmitStmt(S.getInit()); 628 629 // Start the loop with a block that tests the condition. 630 // If there's an increment, the continue scope will be overwritten 631 // later. 632 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 633 llvm::BasicBlock *CondBlock = Continue.getBlock(); 634 EmitBlock(CondBlock); 635 636 // Create a cleanup scope for the condition variable cleanups. 637 RunCleanupsScope ConditionScope(*this); 638 639 llvm::Value *BoolCondVal = 0; 640 if (S.getCond()) { 641 // If the for statement has a condition scope, emit the local variable 642 // declaration. 643 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 644 if (S.getConditionVariable()) { 645 EmitAutoVarDecl(*S.getConditionVariable()); 646 } 647 648 // If there are any cleanups between here and the loop-exit scope, 649 // create a block to stage a loop exit along. 650 if (ForScope.requiresCleanups()) 651 ExitBlock = createBasicBlock("for.cond.cleanup"); 652 653 // As long as the condition is true, iterate the loop. 654 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 655 656 // C99 6.8.5p2/p4: The first substatement is executed if the expression 657 // compares unequal to 0. The condition must be a scalar type. 658 BoolCondVal = EvaluateExprAsBool(S.getCond()); 659 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 660 661 if (ExitBlock != LoopExit.getBlock()) { 662 EmitBlock(ExitBlock); 663 EmitBranchThroughCleanup(LoopExit); 664 } 665 666 EmitBlock(ForBody); 667 } else { 668 // Treat it as a non-zero constant. Don't even create a new block for the 669 // body, just fall into it. 670 } 671 672 // If the for loop doesn't have an increment we can just use the 673 // condition as the continue block. Otherwise we'll need to create 674 // a block for it (in the current scope, i.e. in the scope of the 675 // condition), and that we will become our continue block. 676 if (S.getInc()) 677 Continue = getJumpDestInCurrentScope("for.inc"); 678 679 // Store the blocks to use for break and continue. 680 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 681 682 { 683 // Create a separate cleanup scope for the body, in case it is not 684 // a compound statement. 685 RunCleanupsScope BodyScope(*this); 686 EmitStmt(S.getBody()); 687 } 688 689 // If there is an increment, emit it next. 690 if (S.getInc()) { 691 EmitBlock(Continue.getBlock()); 692 EmitStmt(S.getInc()); 693 } 694 695 BreakContinueStack.pop_back(); 696 697 ConditionScope.ForceCleanup(); 698 EmitBranch(CondBlock); 699 700 ForScope.ForceCleanup(); 701 702 if (DI) 703 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 704 705 // Emit the fall-through block. 706 EmitBlock(LoopExit.getBlock(), true); 707 } 708 709 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 710 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 711 712 RunCleanupsScope ForScope(*this); 713 714 CGDebugInfo *DI = getDebugInfo(); 715 if (DI) 716 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 717 718 // Evaluate the first pieces before the loop. 719 EmitStmt(S.getRangeStmt()); 720 EmitStmt(S.getBeginEndStmt()); 721 722 // Start the loop with a block that tests the condition. 723 // If there's an increment, the continue scope will be overwritten 724 // later. 725 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 726 EmitBlock(CondBlock); 727 728 // If there are any cleanups between here and the loop-exit scope, 729 // create a block to stage a loop exit along. 730 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 731 if (ForScope.requiresCleanups()) 732 ExitBlock = createBasicBlock("for.cond.cleanup"); 733 734 // The loop body, consisting of the specified body and the loop variable. 735 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 736 737 // The body is executed if the expression, contextually converted 738 // to bool, is true. 739 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 740 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 741 742 if (ExitBlock != LoopExit.getBlock()) { 743 EmitBlock(ExitBlock); 744 EmitBranchThroughCleanup(LoopExit); 745 } 746 747 EmitBlock(ForBody); 748 749 // Create a block for the increment. In case of a 'continue', we jump there. 750 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 751 752 // Store the blocks to use for break and continue. 753 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 754 755 { 756 // Create a separate cleanup scope for the loop variable and body. 757 RunCleanupsScope BodyScope(*this); 758 EmitStmt(S.getLoopVarStmt()); 759 EmitStmt(S.getBody()); 760 } 761 762 // If there is an increment, emit it next. 763 EmitBlock(Continue.getBlock()); 764 EmitStmt(S.getInc()); 765 766 BreakContinueStack.pop_back(); 767 768 EmitBranch(CondBlock); 769 770 ForScope.ForceCleanup(); 771 772 if (DI) 773 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 774 775 // Emit the fall-through block. 776 EmitBlock(LoopExit.getBlock(), true); 777 } 778 779 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 780 if (RV.isScalar()) { 781 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 782 } else if (RV.isAggregate()) { 783 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 784 } else { 785 EmitStoreOfComplex(RV.getComplexVal(), 786 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 787 /*init*/ true); 788 } 789 EmitBranchThroughCleanup(ReturnBlock); 790 } 791 792 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 793 /// if the function returns void, or may be missing one if the function returns 794 /// non-void. Fun stuff :). 795 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 796 // Emit the result value, even if unused, to evalute the side effects. 797 const Expr *RV = S.getRetValue(); 798 799 // Treat block literals in a return expression as if they appeared 800 // in their own scope. This permits a small, easily-implemented 801 // exception to our over-conservative rules about not jumping to 802 // statements following block literals with non-trivial cleanups. 803 RunCleanupsScope cleanupScope(*this); 804 if (const ExprWithCleanups *cleanups = 805 dyn_cast_or_null<ExprWithCleanups>(RV)) { 806 enterFullExpression(cleanups); 807 RV = cleanups->getSubExpr(); 808 } 809 810 // FIXME: Clean this up by using an LValue for ReturnTemp, 811 // EmitStoreThroughLValue, and EmitAnyExpr. 812 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 813 // Apply the named return value optimization for this return statement, 814 // which means doing nothing: the appropriate result has already been 815 // constructed into the NRVO variable. 816 817 // If there is an NRVO flag for this variable, set it to 1 into indicate 818 // that the cleanup code should not destroy the variable. 819 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 820 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 821 } else if (!ReturnValue) { 822 // Make sure not to return anything, but evaluate the expression 823 // for side effects. 824 if (RV) 825 EmitAnyExpr(RV); 826 } else if (RV == 0) { 827 // Do nothing (return value is left uninitialized) 828 } else if (FnRetTy->isReferenceType()) { 829 // If this function returns a reference, take the address of the expression 830 // rather than the value. 831 RValue Result = EmitReferenceBindingToExpr(RV); 832 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 833 } else { 834 switch (getEvaluationKind(RV->getType())) { 835 case TEK_Scalar: 836 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 837 break; 838 case TEK_Complex: 839 EmitComplexExprIntoLValue(RV, 840 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 841 /*isInit*/ true); 842 break; 843 case TEK_Aggregate: { 844 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 845 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 846 Qualifiers(), 847 AggValueSlot::IsDestructed, 848 AggValueSlot::DoesNotNeedGCBarriers, 849 AggValueSlot::IsNotAliased)); 850 break; 851 } 852 } 853 } 854 855 ++NumReturnExprs; 856 if (RV == 0 || RV->isEvaluatable(getContext())) 857 ++NumSimpleReturnExprs; 858 859 cleanupScope.ForceCleanup(); 860 EmitBranchThroughCleanup(ReturnBlock); 861 } 862 863 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 864 // As long as debug info is modeled with instructions, we have to ensure we 865 // have a place to insert here and write the stop point here. 866 if (HaveInsertPoint()) 867 EmitStopPoint(&S); 868 869 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); 870 I != E; ++I) 871 EmitDecl(**I); 872 } 873 874 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 875 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 876 877 // If this code is reachable then emit a stop point (if generating 878 // debug info). We have to do this ourselves because we are on the 879 // "simple" statement path. 880 if (HaveInsertPoint()) 881 EmitStopPoint(&S); 882 883 JumpDest Block = BreakContinueStack.back().BreakBlock; 884 EmitBranchThroughCleanup(Block); 885 } 886 887 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 888 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 889 890 // If this code is reachable then emit a stop point (if generating 891 // debug info). We have to do this ourselves because we are on the 892 // "simple" statement path. 893 if (HaveInsertPoint()) 894 EmitStopPoint(&S); 895 896 JumpDest Block = BreakContinueStack.back().ContinueBlock; 897 EmitBranchThroughCleanup(Block); 898 } 899 900 /// EmitCaseStmtRange - If case statement range is not too big then 901 /// add multiple cases to switch instruction, one for each value within 902 /// the range. If range is too big then emit "if" condition check. 903 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 904 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 905 906 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 907 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 908 909 // Emit the code for this case. We do this first to make sure it is 910 // properly chained from our predecessor before generating the 911 // switch machinery to enter this block. 912 EmitBlock(createBasicBlock("sw.bb")); 913 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 914 EmitStmt(S.getSubStmt()); 915 916 // If range is empty, do nothing. 917 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 918 return; 919 920 llvm::APInt Range = RHS - LHS; 921 // FIXME: parameters such as this should not be hardcoded. 922 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 923 // Range is small enough to add multiple switch instruction cases. 924 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { 925 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 926 LHS++; 927 } 928 return; 929 } 930 931 // The range is too big. Emit "if" condition into a new block, 932 // making sure to save and restore the current insertion point. 933 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 934 935 // Push this test onto the chain of range checks (which terminates 936 // in the default basic block). The switch's default will be changed 937 // to the top of this chain after switch emission is complete. 938 llvm::BasicBlock *FalseDest = CaseRangeBlock; 939 CaseRangeBlock = createBasicBlock("sw.caserange"); 940 941 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 942 Builder.SetInsertPoint(CaseRangeBlock); 943 944 // Emit range check. 945 llvm::Value *Diff = 946 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 947 llvm::Value *Cond = 948 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 949 Builder.CreateCondBr(Cond, CaseDest, FalseDest); 950 951 // Restore the appropriate insertion point. 952 if (RestoreBB) 953 Builder.SetInsertPoint(RestoreBB); 954 else 955 Builder.ClearInsertionPoint(); 956 } 957 958 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 959 // If there is no enclosing switch instance that we're aware of, then this 960 // case statement and its block can be elided. This situation only happens 961 // when we've constant-folded the switch, are emitting the constant case, 962 // and part of the constant case includes another case statement. For 963 // instance: switch (4) { case 4: do { case 5: } while (1); } 964 if (!SwitchInsn) { 965 EmitStmt(S.getSubStmt()); 966 return; 967 } 968 969 // Handle case ranges. 970 if (S.getRHS()) { 971 EmitCaseStmtRange(S); 972 return; 973 } 974 975 llvm::ConstantInt *CaseVal = 976 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 977 978 // If the body of the case is just a 'break', and if there was no fallthrough, 979 // try to not emit an empty block. 980 if ((CGM.getCodeGenOpts().OptimizationLevel > 0) && 981 isa<BreakStmt>(S.getSubStmt())) { 982 JumpDest Block = BreakContinueStack.back().BreakBlock; 983 984 // Only do this optimization if there are no cleanups that need emitting. 985 if (isObviouslyBranchWithoutCleanups(Block)) { 986 SwitchInsn->addCase(CaseVal, Block.getBlock()); 987 988 // If there was a fallthrough into this case, make sure to redirect it to 989 // the end of the switch as well. 990 if (Builder.GetInsertBlock()) { 991 Builder.CreateBr(Block.getBlock()); 992 Builder.ClearInsertionPoint(); 993 } 994 return; 995 } 996 } 997 998 EmitBlock(createBasicBlock("sw.bb")); 999 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 1000 SwitchInsn->addCase(CaseVal, CaseDest); 1001 1002 // Recursively emitting the statement is acceptable, but is not wonderful for 1003 // code where we have many case statements nested together, i.e.: 1004 // case 1: 1005 // case 2: 1006 // case 3: etc. 1007 // Handling this recursively will create a new block for each case statement 1008 // that falls through to the next case which is IR intensive. It also causes 1009 // deep recursion which can run into stack depth limitations. Handle 1010 // sequential non-range case statements specially. 1011 const CaseStmt *CurCase = &S; 1012 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1013 1014 // Otherwise, iteratively add consecutive cases to this switch stmt. 1015 while (NextCase && NextCase->getRHS() == 0) { 1016 CurCase = NextCase; 1017 llvm::ConstantInt *CaseVal = 1018 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1019 SwitchInsn->addCase(CaseVal, CaseDest); 1020 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1021 } 1022 1023 // Normal default recursion for non-cases. 1024 EmitStmt(CurCase->getSubStmt()); 1025 } 1026 1027 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1028 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1029 assert(DefaultBlock->empty() && 1030 "EmitDefaultStmt: Default block already defined?"); 1031 EmitBlock(DefaultBlock); 1032 EmitStmt(S.getSubStmt()); 1033 } 1034 1035 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1036 /// constant value that is being switched on, see if we can dead code eliminate 1037 /// the body of the switch to a simple series of statements to emit. Basically, 1038 /// on a switch (5) we want to find these statements: 1039 /// case 5: 1040 /// printf(...); <-- 1041 /// ++i; <-- 1042 /// break; 1043 /// 1044 /// and add them to the ResultStmts vector. If it is unsafe to do this 1045 /// transformation (for example, one of the elided statements contains a label 1046 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1047 /// should include statements after it (e.g. the printf() line is a substmt of 1048 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1049 /// statement, then return CSFC_Success. 1050 /// 1051 /// If Case is non-null, then we are looking for the specified case, checking 1052 /// that nothing we jump over contains labels. If Case is null, then we found 1053 /// the case and are looking for the break. 1054 /// 1055 /// If the recursive walk actually finds our Case, then we set FoundCase to 1056 /// true. 1057 /// 1058 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1059 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1060 const SwitchCase *Case, 1061 bool &FoundCase, 1062 SmallVectorImpl<const Stmt*> &ResultStmts) { 1063 // If this is a null statement, just succeed. 1064 if (S == 0) 1065 return Case ? CSFC_Success : CSFC_FallThrough; 1066 1067 // If this is the switchcase (case 4: or default) that we're looking for, then 1068 // we're in business. Just add the substatement. 1069 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1070 if (S == Case) { 1071 FoundCase = true; 1072 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 1073 ResultStmts); 1074 } 1075 1076 // Otherwise, this is some other case or default statement, just ignore it. 1077 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1078 ResultStmts); 1079 } 1080 1081 // If we are in the live part of the code and we found our break statement, 1082 // return a success! 1083 if (Case == 0 && isa<BreakStmt>(S)) 1084 return CSFC_Success; 1085 1086 // If this is a switch statement, then it might contain the SwitchCase, the 1087 // break, or neither. 1088 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1089 // Handle this as two cases: we might be looking for the SwitchCase (if so 1090 // the skipped statements must be skippable) or we might already have it. 1091 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1092 if (Case) { 1093 // Keep track of whether we see a skipped declaration. The code could be 1094 // using the declaration even if it is skipped, so we can't optimize out 1095 // the decl if the kept statements might refer to it. 1096 bool HadSkippedDecl = false; 1097 1098 // If we're looking for the case, just see if we can skip each of the 1099 // substatements. 1100 for (; Case && I != E; ++I) { 1101 HadSkippedDecl |= isa<DeclStmt>(*I); 1102 1103 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1104 case CSFC_Failure: return CSFC_Failure; 1105 case CSFC_Success: 1106 // A successful result means that either 1) that the statement doesn't 1107 // have the case and is skippable, or 2) does contain the case value 1108 // and also contains the break to exit the switch. In the later case, 1109 // we just verify the rest of the statements are elidable. 1110 if (FoundCase) { 1111 // If we found the case and skipped declarations, we can't do the 1112 // optimization. 1113 if (HadSkippedDecl) 1114 return CSFC_Failure; 1115 1116 for (++I; I != E; ++I) 1117 if (CodeGenFunction::ContainsLabel(*I, true)) 1118 return CSFC_Failure; 1119 return CSFC_Success; 1120 } 1121 break; 1122 case CSFC_FallThrough: 1123 // If we have a fallthrough condition, then we must have found the 1124 // case started to include statements. Consider the rest of the 1125 // statements in the compound statement as candidates for inclusion. 1126 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1127 // We recursively found Case, so we're not looking for it anymore. 1128 Case = 0; 1129 1130 // If we found the case and skipped declarations, we can't do the 1131 // optimization. 1132 if (HadSkippedDecl) 1133 return CSFC_Failure; 1134 break; 1135 } 1136 } 1137 } 1138 1139 // If we have statements in our range, then we know that the statements are 1140 // live and need to be added to the set of statements we're tracking. 1141 for (; I != E; ++I) { 1142 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1143 case CSFC_Failure: return CSFC_Failure; 1144 case CSFC_FallThrough: 1145 // A fallthrough result means that the statement was simple and just 1146 // included in ResultStmt, keep adding them afterwards. 1147 break; 1148 case CSFC_Success: 1149 // A successful result means that we found the break statement and 1150 // stopped statement inclusion. We just ensure that any leftover stmts 1151 // are skippable and return success ourselves. 1152 for (++I; I != E; ++I) 1153 if (CodeGenFunction::ContainsLabel(*I, true)) 1154 return CSFC_Failure; 1155 return CSFC_Success; 1156 } 1157 } 1158 1159 return Case ? CSFC_Success : CSFC_FallThrough; 1160 } 1161 1162 // Okay, this is some other statement that we don't handle explicitly, like a 1163 // for statement or increment etc. If we are skipping over this statement, 1164 // just verify it doesn't have labels, which would make it invalid to elide. 1165 if (Case) { 1166 if (CodeGenFunction::ContainsLabel(S, true)) 1167 return CSFC_Failure; 1168 return CSFC_Success; 1169 } 1170 1171 // Otherwise, we want to include this statement. Everything is cool with that 1172 // so long as it doesn't contain a break out of the switch we're in. 1173 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1174 1175 // Otherwise, everything is great. Include the statement and tell the caller 1176 // that we fall through and include the next statement as well. 1177 ResultStmts.push_back(S); 1178 return CSFC_FallThrough; 1179 } 1180 1181 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1182 /// then invoke CollectStatementsForCase to find the list of statements to emit 1183 /// for a switch on constant. See the comment above CollectStatementsForCase 1184 /// for more details. 1185 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1186 const llvm::APSInt &ConstantCondValue, 1187 SmallVectorImpl<const Stmt*> &ResultStmts, 1188 ASTContext &C) { 1189 // First step, find the switch case that is being branched to. We can do this 1190 // efficiently by scanning the SwitchCase list. 1191 const SwitchCase *Case = S.getSwitchCaseList(); 1192 const DefaultStmt *DefaultCase = 0; 1193 1194 for (; Case; Case = Case->getNextSwitchCase()) { 1195 // It's either a default or case. Just remember the default statement in 1196 // case we're not jumping to any numbered cases. 1197 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1198 DefaultCase = DS; 1199 continue; 1200 } 1201 1202 // Check to see if this case is the one we're looking for. 1203 const CaseStmt *CS = cast<CaseStmt>(Case); 1204 // Don't handle case ranges yet. 1205 if (CS->getRHS()) return false; 1206 1207 // If we found our case, remember it as 'case'. 1208 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1209 break; 1210 } 1211 1212 // If we didn't find a matching case, we use a default if it exists, or we 1213 // elide the whole switch body! 1214 if (Case == 0) { 1215 // It is safe to elide the body of the switch if it doesn't contain labels 1216 // etc. If it is safe, return successfully with an empty ResultStmts list. 1217 if (DefaultCase == 0) 1218 return !CodeGenFunction::ContainsLabel(&S); 1219 Case = DefaultCase; 1220 } 1221 1222 // Ok, we know which case is being jumped to, try to collect all the 1223 // statements that follow it. This can fail for a variety of reasons. Also, 1224 // check to see that the recursive walk actually found our case statement. 1225 // Insane cases like this can fail to find it in the recursive walk since we 1226 // don't handle every stmt kind: 1227 // switch (4) { 1228 // while (1) { 1229 // case 4: ... 1230 bool FoundCase = false; 1231 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1232 ResultStmts) != CSFC_Failure && 1233 FoundCase; 1234 } 1235 1236 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1237 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1238 1239 RunCleanupsScope ConditionScope(*this); 1240 1241 if (S.getConditionVariable()) 1242 EmitAutoVarDecl(*S.getConditionVariable()); 1243 1244 // Handle nested switch statements. 1245 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1246 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1247 1248 // See if we can constant fold the condition of the switch and therefore only 1249 // emit the live case statement (if any) of the switch. 1250 llvm::APSInt ConstantCondValue; 1251 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1252 SmallVector<const Stmt*, 4> CaseStmts; 1253 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1254 getContext())) { 1255 RunCleanupsScope ExecutedScope(*this); 1256 1257 // At this point, we are no longer "within" a switch instance, so 1258 // we can temporarily enforce this to ensure that any embedded case 1259 // statements are not emitted. 1260 SwitchInsn = 0; 1261 1262 // Okay, we can dead code eliminate everything except this case. Emit the 1263 // specified series of statements and we're good. 1264 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1265 EmitStmt(CaseStmts[i]); 1266 1267 // Now we want to restore the saved switch instance so that nested 1268 // switches continue to function properly 1269 SwitchInsn = SavedSwitchInsn; 1270 1271 return; 1272 } 1273 } 1274 1275 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1276 1277 // Create basic block to hold stuff that comes after switch 1278 // statement. We also need to create a default block now so that 1279 // explicit case ranges tests can have a place to jump to on 1280 // failure. 1281 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1282 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1283 CaseRangeBlock = DefaultBlock; 1284 1285 // Clear the insertion point to indicate we are in unreachable code. 1286 Builder.ClearInsertionPoint(); 1287 1288 // All break statements jump to NextBlock. If BreakContinueStack is non empty 1289 // then reuse last ContinueBlock. 1290 JumpDest OuterContinue; 1291 if (!BreakContinueStack.empty()) 1292 OuterContinue = BreakContinueStack.back().ContinueBlock; 1293 1294 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1295 1296 // Emit switch body. 1297 EmitStmt(S.getBody()); 1298 1299 BreakContinueStack.pop_back(); 1300 1301 // Update the default block in case explicit case range tests have 1302 // been chained on top. 1303 SwitchInsn->setDefaultDest(CaseRangeBlock); 1304 1305 // If a default was never emitted: 1306 if (!DefaultBlock->getParent()) { 1307 // If we have cleanups, emit the default block so that there's a 1308 // place to jump through the cleanups from. 1309 if (ConditionScope.requiresCleanups()) { 1310 EmitBlock(DefaultBlock); 1311 1312 // Otherwise, just forward the default block to the switch end. 1313 } else { 1314 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1315 delete DefaultBlock; 1316 } 1317 } 1318 1319 ConditionScope.ForceCleanup(); 1320 1321 // Emit continuation. 1322 EmitBlock(SwitchExit.getBlock(), true); 1323 1324 SwitchInsn = SavedSwitchInsn; 1325 CaseRangeBlock = SavedCRBlock; 1326 } 1327 1328 static std::string 1329 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1330 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1331 std::string Result; 1332 1333 while (*Constraint) { 1334 switch (*Constraint) { 1335 default: 1336 Result += Target.convertConstraint(Constraint); 1337 break; 1338 // Ignore these 1339 case '*': 1340 case '?': 1341 case '!': 1342 case '=': // Will see this and the following in mult-alt constraints. 1343 case '+': 1344 break; 1345 case '#': // Ignore the rest of the constraint alternative. 1346 while (Constraint[1] && Constraint[1] != ',') 1347 Constraint++; 1348 break; 1349 case ',': 1350 Result += "|"; 1351 break; 1352 case 'g': 1353 Result += "imr"; 1354 break; 1355 case '[': { 1356 assert(OutCons && 1357 "Must pass output names to constraints with a symbolic name"); 1358 unsigned Index; 1359 bool result = Target.resolveSymbolicName(Constraint, 1360 &(*OutCons)[0], 1361 OutCons->size(), Index); 1362 assert(result && "Could not resolve symbolic name"); (void)result; 1363 Result += llvm::utostr(Index); 1364 break; 1365 } 1366 } 1367 1368 Constraint++; 1369 } 1370 1371 return Result; 1372 } 1373 1374 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1375 /// as using a particular register add that as a constraint that will be used 1376 /// in this asm stmt. 1377 static std::string 1378 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1379 const TargetInfo &Target, CodeGenModule &CGM, 1380 const AsmStmt &Stmt) { 1381 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1382 if (!AsmDeclRef) 1383 return Constraint; 1384 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1385 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1386 if (!Variable) 1387 return Constraint; 1388 if (Variable->getStorageClass() != SC_Register) 1389 return Constraint; 1390 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1391 if (!Attr) 1392 return Constraint; 1393 StringRef Register = Attr->getLabel(); 1394 assert(Target.isValidGCCRegisterName(Register)); 1395 // We're using validateOutputConstraint here because we only care if 1396 // this is a register constraint. 1397 TargetInfo::ConstraintInfo Info(Constraint, ""); 1398 if (Target.validateOutputConstraint(Info) && 1399 !Info.allowsRegister()) { 1400 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1401 return Constraint; 1402 } 1403 // Canonicalize the register here before returning it. 1404 Register = Target.getNormalizedGCCRegisterName(Register); 1405 return "{" + Register.str() + "}"; 1406 } 1407 1408 llvm::Value* 1409 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1410 LValue InputValue, QualType InputType, 1411 std::string &ConstraintStr) { 1412 llvm::Value *Arg; 1413 if (Info.allowsRegister() || !Info.allowsMemory()) { 1414 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1415 Arg = EmitLoadOfLValue(InputValue).getScalarVal(); 1416 } else { 1417 llvm::Type *Ty = ConvertType(InputType); 1418 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1419 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1420 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1421 Ty = llvm::PointerType::getUnqual(Ty); 1422 1423 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1424 Ty)); 1425 } else { 1426 Arg = InputValue.getAddress(); 1427 ConstraintStr += '*'; 1428 } 1429 } 1430 } else { 1431 Arg = InputValue.getAddress(); 1432 ConstraintStr += '*'; 1433 } 1434 1435 return Arg; 1436 } 1437 1438 llvm::Value* CodeGenFunction::EmitAsmInput( 1439 const TargetInfo::ConstraintInfo &Info, 1440 const Expr *InputExpr, 1441 std::string &ConstraintStr) { 1442 if (Info.allowsRegister() || !Info.allowsMemory()) 1443 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1444 return EmitScalarExpr(InputExpr); 1445 1446 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1447 LValue Dest = EmitLValue(InputExpr); 1448 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr); 1449 } 1450 1451 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1452 /// asm call instruction. The !srcloc MDNode contains a list of constant 1453 /// integers which are the source locations of the start of each line in the 1454 /// asm. 1455 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1456 CodeGenFunction &CGF) { 1457 SmallVector<llvm::Value *, 8> Locs; 1458 // Add the location of the first line to the MDNode. 1459 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1460 Str->getLocStart().getRawEncoding())); 1461 StringRef StrVal = Str->getString(); 1462 if (!StrVal.empty()) { 1463 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1464 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1465 1466 // Add the location of the start of each subsequent line of the asm to the 1467 // MDNode. 1468 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1469 if (StrVal[i] != '\n') continue; 1470 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1471 CGF.getTarget()); 1472 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1473 LineLoc.getRawEncoding())); 1474 } 1475 } 1476 1477 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1478 } 1479 1480 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1481 // Assemble the final asm string. 1482 std::string AsmString = S.generateAsmString(getContext()); 1483 1484 // Get all the output and input constraints together. 1485 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1486 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1487 1488 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1489 StringRef Name; 1490 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1491 Name = GAS->getOutputName(i); 1492 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1493 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1494 assert(IsValid && "Failed to parse output constraint"); 1495 OutputConstraintInfos.push_back(Info); 1496 } 1497 1498 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1499 StringRef Name; 1500 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1501 Name = GAS->getInputName(i); 1502 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1503 bool IsValid = 1504 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1505 S.getNumOutputs(), Info); 1506 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1507 InputConstraintInfos.push_back(Info); 1508 } 1509 1510 std::string Constraints; 1511 1512 std::vector<LValue> ResultRegDests; 1513 std::vector<QualType> ResultRegQualTys; 1514 std::vector<llvm::Type *> ResultRegTypes; 1515 std::vector<llvm::Type *> ResultTruncRegTypes; 1516 std::vector<llvm::Type *> ArgTypes; 1517 std::vector<llvm::Value*> Args; 1518 1519 // Keep track of inout constraints. 1520 std::string InOutConstraints; 1521 std::vector<llvm::Value*> InOutArgs; 1522 std::vector<llvm::Type*> InOutArgTypes; 1523 1524 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1525 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1526 1527 // Simplify the output constraint. 1528 std::string OutputConstraint(S.getOutputConstraint(i)); 1529 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1530 getTarget()); 1531 1532 const Expr *OutExpr = S.getOutputExpr(i); 1533 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1534 1535 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1536 getTarget(), CGM, S); 1537 1538 LValue Dest = EmitLValue(OutExpr); 1539 if (!Constraints.empty()) 1540 Constraints += ','; 1541 1542 // If this is a register output, then make the inline asm return it 1543 // by-value. If this is a memory result, return the value by-reference. 1544 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1545 Constraints += "=" + OutputConstraint; 1546 ResultRegQualTys.push_back(OutExpr->getType()); 1547 ResultRegDests.push_back(Dest); 1548 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1549 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1550 1551 // If this output is tied to an input, and if the input is larger, then 1552 // we need to set the actual result type of the inline asm node to be the 1553 // same as the input type. 1554 if (Info.hasMatchingInput()) { 1555 unsigned InputNo; 1556 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1557 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1558 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1559 break; 1560 } 1561 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1562 1563 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1564 QualType OutputType = OutExpr->getType(); 1565 1566 uint64_t InputSize = getContext().getTypeSize(InputTy); 1567 if (getContext().getTypeSize(OutputType) < InputSize) { 1568 // Form the asm to return the value as a larger integer or fp type. 1569 ResultRegTypes.back() = ConvertType(InputTy); 1570 } 1571 } 1572 if (llvm::Type* AdjTy = 1573 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1574 ResultRegTypes.back())) 1575 ResultRegTypes.back() = AdjTy; 1576 else { 1577 CGM.getDiags().Report(S.getAsmLoc(), 1578 diag::err_asm_invalid_type_in_input) 1579 << OutExpr->getType() << OutputConstraint; 1580 } 1581 } else { 1582 ArgTypes.push_back(Dest.getAddress()->getType()); 1583 Args.push_back(Dest.getAddress()); 1584 Constraints += "=*"; 1585 Constraints += OutputConstraint; 1586 } 1587 1588 if (Info.isReadWrite()) { 1589 InOutConstraints += ','; 1590 1591 const Expr *InputExpr = S.getOutputExpr(i); 1592 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1593 InOutConstraints); 1594 1595 if (llvm::Type* AdjTy = 1596 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1597 Arg->getType())) 1598 Arg = Builder.CreateBitCast(Arg, AdjTy); 1599 1600 if (Info.allowsRegister()) 1601 InOutConstraints += llvm::utostr(i); 1602 else 1603 InOutConstraints += OutputConstraint; 1604 1605 InOutArgTypes.push_back(Arg->getType()); 1606 InOutArgs.push_back(Arg); 1607 } 1608 } 1609 1610 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1611 1612 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1613 const Expr *InputExpr = S.getInputExpr(i); 1614 1615 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1616 1617 if (!Constraints.empty()) 1618 Constraints += ','; 1619 1620 // Simplify the input constraint. 1621 std::string InputConstraint(S.getInputConstraint(i)); 1622 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1623 &OutputConstraintInfos); 1624 1625 InputConstraint = 1626 AddVariableConstraints(InputConstraint, 1627 *InputExpr->IgnoreParenNoopCasts(getContext()), 1628 getTarget(), CGM, S); 1629 1630 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1631 1632 // If this input argument is tied to a larger output result, extend the 1633 // input to be the same size as the output. The LLVM backend wants to see 1634 // the input and output of a matching constraint be the same size. Note 1635 // that GCC does not define what the top bits are here. We use zext because 1636 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1637 if (Info.hasTiedOperand()) { 1638 unsigned Output = Info.getTiedOperand(); 1639 QualType OutputType = S.getOutputExpr(Output)->getType(); 1640 QualType InputTy = InputExpr->getType(); 1641 1642 if (getContext().getTypeSize(OutputType) > 1643 getContext().getTypeSize(InputTy)) { 1644 // Use ptrtoint as appropriate so that we can do our extension. 1645 if (isa<llvm::PointerType>(Arg->getType())) 1646 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1647 llvm::Type *OutputTy = ConvertType(OutputType); 1648 if (isa<llvm::IntegerType>(OutputTy)) 1649 Arg = Builder.CreateZExt(Arg, OutputTy); 1650 else if (isa<llvm::PointerType>(OutputTy)) 1651 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1652 else { 1653 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1654 Arg = Builder.CreateFPExt(Arg, OutputTy); 1655 } 1656 } 1657 } 1658 if (llvm::Type* AdjTy = 1659 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1660 Arg->getType())) 1661 Arg = Builder.CreateBitCast(Arg, AdjTy); 1662 else 1663 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1664 << InputExpr->getType() << InputConstraint; 1665 1666 ArgTypes.push_back(Arg->getType()); 1667 Args.push_back(Arg); 1668 Constraints += InputConstraint; 1669 } 1670 1671 // Append the "input" part of inout constraints last. 1672 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1673 ArgTypes.push_back(InOutArgTypes[i]); 1674 Args.push_back(InOutArgs[i]); 1675 } 1676 Constraints += InOutConstraints; 1677 1678 // Clobbers 1679 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1680 StringRef Clobber = S.getClobber(i); 1681 1682 if (Clobber != "memory" && Clobber != "cc") 1683 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1684 1685 if (i != 0 || NumConstraints != 0) 1686 Constraints += ','; 1687 1688 Constraints += "~{"; 1689 Constraints += Clobber; 1690 Constraints += '}'; 1691 } 1692 1693 // Add machine specific clobbers 1694 std::string MachineClobbers = getTarget().getClobbers(); 1695 if (!MachineClobbers.empty()) { 1696 if (!Constraints.empty()) 1697 Constraints += ','; 1698 Constraints += MachineClobbers; 1699 } 1700 1701 llvm::Type *ResultType; 1702 if (ResultRegTypes.empty()) 1703 ResultType = VoidTy; 1704 else if (ResultRegTypes.size() == 1) 1705 ResultType = ResultRegTypes[0]; 1706 else 1707 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1708 1709 llvm::FunctionType *FTy = 1710 llvm::FunctionType::get(ResultType, ArgTypes, false); 1711 1712 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1713 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1714 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1715 llvm::InlineAsm *IA = 1716 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1717 /* IsAlignStack */ false, AsmDialect); 1718 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1719 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1720 llvm::Attribute::NoUnwind); 1721 1722 // Slap the source location of the inline asm into a !srcloc metadata on the 1723 // call. FIXME: Handle metadata for MS-style inline asms. 1724 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1725 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 1726 *this)); 1727 1728 // Extract all of the register value results from the asm. 1729 std::vector<llvm::Value*> RegResults; 1730 if (ResultRegTypes.size() == 1) { 1731 RegResults.push_back(Result); 1732 } else { 1733 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1734 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1735 RegResults.push_back(Tmp); 1736 } 1737 } 1738 1739 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1740 llvm::Value *Tmp = RegResults[i]; 1741 1742 // If the result type of the LLVM IR asm doesn't match the result type of 1743 // the expression, do the conversion. 1744 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1745 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1746 1747 // Truncate the integer result to the right size, note that TruncTy can be 1748 // a pointer. 1749 if (TruncTy->isFloatingPointTy()) 1750 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1751 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1752 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 1753 Tmp = Builder.CreateTrunc(Tmp, 1754 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1755 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1756 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1757 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 1758 Tmp = Builder.CreatePtrToInt(Tmp, 1759 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1760 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1761 } else if (TruncTy->isIntegerTy()) { 1762 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1763 } else if (TruncTy->isVectorTy()) { 1764 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1765 } 1766 } 1767 1768 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1769 } 1770 } 1771 1772 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 1773 const RecordDecl *RD = S.getCapturedRecordDecl(); 1774 QualType RecordTy = CGF.getContext().getRecordType(RD); 1775 1776 // Initialize the captured struct. 1777 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 1778 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 1779 1780 RecordDecl::field_iterator CurField = RD->field_begin(); 1781 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 1782 E = S.capture_init_end(); 1783 I != E; ++I, ++CurField) { 1784 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1785 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 1786 } 1787 1788 return SlotLV; 1789 } 1790 1791 /// Generate an outlined function for the body of a CapturedStmt, store any 1792 /// captured variables into the captured struct, and call the outlined function. 1793 llvm::Function * 1794 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 1795 const CapturedDecl *CD = S.getCapturedDecl(); 1796 const RecordDecl *RD = S.getCapturedRecordDecl(); 1797 assert(CD->hasBody() && "missing CapturedDecl body"); 1798 1799 LValue CapStruct = InitCapturedStruct(*this, S); 1800 1801 // Emit the CapturedDecl 1802 CodeGenFunction CGF(CGM, true); 1803 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 1804 llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD); 1805 delete CGF.CapturedStmtInfo; 1806 1807 // Emit call to the helper function. 1808 EmitCallOrInvoke(F, CapStruct.getAddress()); 1809 1810 return F; 1811 } 1812 1813 /// Creates the outlined function for a CapturedStmt. 1814 llvm::Function * 1815 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD, 1816 const RecordDecl *RD) { 1817 assert(CapturedStmtInfo && 1818 "CapturedStmtInfo should be set when generating the captured function"); 1819 1820 // Check if we should generate debug info for this function. 1821 maybeInitializeDebugInfo(); 1822 1823 // Build the argument list. 1824 ASTContext &Ctx = CGM.getContext(); 1825 FunctionArgList Args; 1826 Args.append(CD->param_begin(), CD->param_end()); 1827 1828 // Create the function declaration. 1829 FunctionType::ExtInfo ExtInfo; 1830 const CGFunctionInfo &FuncInfo = 1831 CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 1832 /*IsVariadic=*/false); 1833 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 1834 1835 llvm::Function *F = 1836 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 1837 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 1838 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 1839 1840 // Generate the function. 1841 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart()); 1842 1843 // Set the context parameter in CapturedStmtInfo. 1844 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 1845 assert(DeclPtr && "missing context parameter for CapturedStmt"); 1846 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 1847 1848 // If 'this' is captured, load it into CXXThisValue. 1849 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 1850 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 1851 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 1852 Ctx.getTagDeclType(RD)); 1853 LValue ThisLValue = EmitLValueForField(LV, FD); 1854 1855 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 1856 } 1857 1858 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 1859 FinishFunction(CD->getBodyRBrace()); 1860 1861 return F; 1862 } 1863