Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Stmt nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGDebugInfo.h"
     16 #include "CodeGenModule.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/StmtVisitor.h"
     19 #include "clang/Sema/SemaDiagnostic.h"
     20 #include "clang/Basic/PrettyStackTrace.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "llvm/ADT/StringExtras.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/InlineAsm.h"
     25 #include "llvm/IR/Intrinsics.h"
     26 #include "llvm/Support/CallSite.h"
     27 using namespace clang;
     28 using namespace CodeGen;
     29 
     30 //===----------------------------------------------------------------------===//
     31 //                              Statement Emission
     32 //===----------------------------------------------------------------------===//
     33 
     34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
     35   if (CGDebugInfo *DI = getDebugInfo()) {
     36     SourceLocation Loc;
     37     Loc = S->getLocStart();
     38     DI->EmitLocation(Builder, Loc);
     39 
     40     LastStopPoint = Loc;
     41   }
     42 }
     43 
     44 void CodeGenFunction::EmitStmt(const Stmt *S) {
     45   assert(S && "Null statement?");
     46 
     47   // These statements have their own debug info handling.
     48   if (EmitSimpleStmt(S))
     49     return;
     50 
     51   // Check if we are generating unreachable code.
     52   if (!HaveInsertPoint()) {
     53     // If so, and the statement doesn't contain a label, then we do not need to
     54     // generate actual code. This is safe because (1) the current point is
     55     // unreachable, so we don't need to execute the code, and (2) we've already
     56     // handled the statements which update internal data structures (like the
     57     // local variable map) which could be used by subsequent statements.
     58     if (!ContainsLabel(S)) {
     59       // Verify that any decl statements were handled as simple, they may be in
     60       // scope of subsequent reachable statements.
     61       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
     62       return;
     63     }
     64 
     65     // Otherwise, make a new block to hold the code.
     66     EnsureInsertPoint();
     67   }
     68 
     69   // Generate a stoppoint if we are emitting debug info.
     70   EmitStopPoint(S);
     71 
     72   switch (S->getStmtClass()) {
     73   case Stmt::NoStmtClass:
     74   case Stmt::CXXCatchStmtClass:
     75   case Stmt::SEHExceptStmtClass:
     76   case Stmt::SEHFinallyStmtClass:
     77   case Stmt::MSDependentExistsStmtClass:
     78   case Stmt::OMPParallelDirectiveClass:
     79     llvm_unreachable("invalid statement class to emit generically");
     80   case Stmt::NullStmtClass:
     81   case Stmt::CompoundStmtClass:
     82   case Stmt::DeclStmtClass:
     83   case Stmt::LabelStmtClass:
     84   case Stmt::AttributedStmtClass:
     85   case Stmt::GotoStmtClass:
     86   case Stmt::BreakStmtClass:
     87   case Stmt::ContinueStmtClass:
     88   case Stmt::DefaultStmtClass:
     89   case Stmt::CaseStmtClass:
     90     llvm_unreachable("should have emitted these statements as simple");
     91 
     92 #define STMT(Type, Base)
     93 #define ABSTRACT_STMT(Op)
     94 #define EXPR(Type, Base) \
     95   case Stmt::Type##Class:
     96 #include "clang/AST/StmtNodes.inc"
     97   {
     98     // Remember the block we came in on.
     99     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
    100     assert(incoming && "expression emission must have an insertion point");
    101 
    102     EmitIgnoredExpr(cast<Expr>(S));
    103 
    104     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
    105     assert(outgoing && "expression emission cleared block!");
    106 
    107     // The expression emitters assume (reasonably!) that the insertion
    108     // point is always set.  To maintain that, the call-emission code
    109     // for noreturn functions has to enter a new block with no
    110     // predecessors.  We want to kill that block and mark the current
    111     // insertion point unreachable in the common case of a call like
    112     // "exit();".  Since expression emission doesn't otherwise create
    113     // blocks with no predecessors, we can just test for that.
    114     // However, we must be careful not to do this to our incoming
    115     // block, because *statement* emission does sometimes create
    116     // reachable blocks which will have no predecessors until later in
    117     // the function.  This occurs with, e.g., labels that are not
    118     // reachable by fallthrough.
    119     if (incoming != outgoing && outgoing->use_empty()) {
    120       outgoing->eraseFromParent();
    121       Builder.ClearInsertionPoint();
    122     }
    123     break;
    124   }
    125 
    126   case Stmt::IndirectGotoStmtClass:
    127     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
    128 
    129   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
    130   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
    131   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
    132   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
    133 
    134   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
    135 
    136   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
    137   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
    138   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
    139   case Stmt::CapturedStmtClass:
    140     EmitCapturedStmt(cast<CapturedStmt>(*S), CR_Default);
    141     break;
    142   case Stmt::ObjCAtTryStmtClass:
    143     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    144     break;
    145   case Stmt::ObjCAtCatchStmtClass:
    146     llvm_unreachable(
    147                     "@catch statements should be handled by EmitObjCAtTryStmt");
    148   case Stmt::ObjCAtFinallyStmtClass:
    149     llvm_unreachable(
    150                   "@finally statements should be handled by EmitObjCAtTryStmt");
    151   case Stmt::ObjCAtThrowStmtClass:
    152     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    153     break;
    154   case Stmt::ObjCAtSynchronizedStmtClass:
    155     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    156     break;
    157   case Stmt::ObjCForCollectionStmtClass:
    158     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    159     break;
    160   case Stmt::ObjCAutoreleasePoolStmtClass:
    161     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
    162     break;
    163 
    164   case Stmt::CXXTryStmtClass:
    165     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    166     break;
    167   case Stmt::CXXForRangeStmtClass:
    168     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
    169   case Stmt::SEHTryStmtClass:
    170     // FIXME Not yet implemented
    171     break;
    172   }
    173 }
    174 
    175 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
    176   switch (S->getStmtClass()) {
    177   default: return false;
    178   case Stmt::NullStmtClass: break;
    179   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
    180   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
    181   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
    182   case Stmt::AttributedStmtClass:
    183                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
    184   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
    185   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
    186   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
    187   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
    188   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
    189   }
    190 
    191   return true;
    192 }
    193 
    194 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
    195 /// this captures the expression result of the last sub-statement and returns it
    196 /// (for use by the statement expression extension).
    197 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
    198                                                AggValueSlot AggSlot) {
    199   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
    200                              "LLVM IR generation of compound statement ('{}')");
    201 
    202   // Keep track of the current cleanup stack depth, including debug scopes.
    203   LexicalScope Scope(*this, S.getSourceRange());
    204 
    205   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
    206 }
    207 
    208 llvm::Value*
    209 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
    210                                               bool GetLast,
    211                                               AggValueSlot AggSlot) {
    212 
    213   for (CompoundStmt::const_body_iterator I = S.body_begin(),
    214        E = S.body_end()-GetLast; I != E; ++I)
    215     EmitStmt(*I);
    216 
    217   llvm::Value *RetAlloca = 0;
    218   if (GetLast) {
    219     // We have to special case labels here.  They are statements, but when put
    220     // at the end of a statement expression, they yield the value of their
    221     // subexpression.  Handle this by walking through all labels we encounter,
    222     // emitting them before we evaluate the subexpr.
    223     const Stmt *LastStmt = S.body_back();
    224     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
    225       EmitLabel(LS->getDecl());
    226       LastStmt = LS->getSubStmt();
    227     }
    228 
    229     EnsureInsertPoint();
    230 
    231     QualType ExprTy = cast<Expr>(LastStmt)->getType();
    232     if (hasAggregateEvaluationKind(ExprTy)) {
    233       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
    234     } else {
    235       // We can't return an RValue here because there might be cleanups at
    236       // the end of the StmtExpr.  Because of that, we have to emit the result
    237       // here into a temporary alloca.
    238       RetAlloca = CreateMemTemp(ExprTy);
    239       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
    240                        /*IsInit*/false);
    241     }
    242 
    243   }
    244 
    245   return RetAlloca;
    246 }
    247 
    248 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
    249   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
    250 
    251   // If there is a cleanup stack, then we it isn't worth trying to
    252   // simplify this block (we would need to remove it from the scope map
    253   // and cleanup entry).
    254   if (!EHStack.empty())
    255     return;
    256 
    257   // Can only simplify direct branches.
    258   if (!BI || !BI->isUnconditional())
    259     return;
    260 
    261   // Can only simplify empty blocks.
    262   if (BI != BB->begin())
    263     return;
    264 
    265   BB->replaceAllUsesWith(BI->getSuccessor(0));
    266   BI->eraseFromParent();
    267   BB->eraseFromParent();
    268 }
    269 
    270 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
    271   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    272 
    273   // Fall out of the current block (if necessary).
    274   EmitBranch(BB);
    275 
    276   if (IsFinished && BB->use_empty()) {
    277     delete BB;
    278     return;
    279   }
    280 
    281   // Place the block after the current block, if possible, or else at
    282   // the end of the function.
    283   if (CurBB && CurBB->getParent())
    284     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
    285   else
    286     CurFn->getBasicBlockList().push_back(BB);
    287   Builder.SetInsertPoint(BB);
    288 }
    289 
    290 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
    291   // Emit a branch from the current block to the target one if this
    292   // was a real block.  If this was just a fall-through block after a
    293   // terminator, don't emit it.
    294   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    295 
    296   if (!CurBB || CurBB->getTerminator()) {
    297     // If there is no insert point or the previous block is already
    298     // terminated, don't touch it.
    299   } else {
    300     // Otherwise, create a fall-through branch.
    301     Builder.CreateBr(Target);
    302   }
    303 
    304   Builder.ClearInsertionPoint();
    305 }
    306 
    307 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
    308   bool inserted = false;
    309   for (llvm::BasicBlock::use_iterator
    310          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
    311     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
    312       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
    313       inserted = true;
    314       break;
    315     }
    316   }
    317 
    318   if (!inserted)
    319     CurFn->getBasicBlockList().push_back(block);
    320 
    321   Builder.SetInsertPoint(block);
    322 }
    323 
    324 CodeGenFunction::JumpDest
    325 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
    326   JumpDest &Dest = LabelMap[D];
    327   if (Dest.isValid()) return Dest;
    328 
    329   // Create, but don't insert, the new block.
    330   Dest = JumpDest(createBasicBlock(D->getName()),
    331                   EHScopeStack::stable_iterator::invalid(),
    332                   NextCleanupDestIndex++);
    333   return Dest;
    334 }
    335 
    336 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
    337   // Add this label to the current lexical scope if we're within any
    338   // normal cleanups.  Jumps "in" to this label --- when permitted by
    339   // the language --- may need to be routed around such cleanups.
    340   if (EHStack.hasNormalCleanups() && CurLexicalScope)
    341     CurLexicalScope->addLabel(D);
    342 
    343   JumpDest &Dest = LabelMap[D];
    344 
    345   // If we didn't need a forward reference to this label, just go
    346   // ahead and create a destination at the current scope.
    347   if (!Dest.isValid()) {
    348     Dest = getJumpDestInCurrentScope(D->getName());
    349 
    350   // Otherwise, we need to give this label a target depth and remove
    351   // it from the branch-fixups list.
    352   } else {
    353     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
    354     Dest.setScopeDepth(EHStack.stable_begin());
    355     ResolveBranchFixups(Dest.getBlock());
    356   }
    357 
    358   EmitBlock(Dest.getBlock());
    359 }
    360 
    361 /// Change the cleanup scope of the labels in this lexical scope to
    362 /// match the scope of the enclosing context.
    363 void CodeGenFunction::LexicalScope::rescopeLabels() {
    364   assert(!Labels.empty());
    365   EHScopeStack::stable_iterator innermostScope
    366     = CGF.EHStack.getInnermostNormalCleanup();
    367 
    368   // Change the scope depth of all the labels.
    369   for (SmallVectorImpl<const LabelDecl*>::const_iterator
    370          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
    371     assert(CGF.LabelMap.count(*i));
    372     JumpDest &dest = CGF.LabelMap.find(*i)->second;
    373     assert(dest.getScopeDepth().isValid());
    374     assert(innermostScope.encloses(dest.getScopeDepth()));
    375     dest.setScopeDepth(innermostScope);
    376   }
    377 
    378   // Reparent the labels if the new scope also has cleanups.
    379   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
    380     ParentScope->Labels.append(Labels.begin(), Labels.end());
    381   }
    382 }
    383 
    384 
    385 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
    386   EmitLabel(S.getDecl());
    387   EmitStmt(S.getSubStmt());
    388 }
    389 
    390 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
    391   EmitStmt(S.getSubStmt());
    392 }
    393 
    394 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
    395   // If this code is reachable then emit a stop point (if generating
    396   // debug info). We have to do this ourselves because we are on the
    397   // "simple" statement path.
    398   if (HaveInsertPoint())
    399     EmitStopPoint(&S);
    400 
    401   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
    402 }
    403 
    404 
    405 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
    406   if (const LabelDecl *Target = S.getConstantTarget()) {
    407     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
    408     return;
    409   }
    410 
    411   // Ensure that we have an i8* for our PHI node.
    412   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
    413                                          Int8PtrTy, "addr");
    414   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    415 
    416   // Get the basic block for the indirect goto.
    417   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
    418 
    419   // The first instruction in the block has to be the PHI for the switch dest,
    420   // add an entry for this branch.
    421   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
    422 
    423   EmitBranch(IndGotoBB);
    424 }
    425 
    426 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
    427   // C99 6.8.4.1: The first substatement is executed if the expression compares
    428   // unequal to 0.  The condition must be a scalar type.
    429   LexicalScope ConditionScope(*this, S.getSourceRange());
    430 
    431   if (S.getConditionVariable())
    432     EmitAutoVarDecl(*S.getConditionVariable());
    433 
    434   // If the condition constant folds and can be elided, try to avoid emitting
    435   // the condition and the dead arm of the if/else.
    436   bool CondConstant;
    437   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
    438     // Figure out which block (then or else) is executed.
    439     const Stmt *Executed = S.getThen();
    440     const Stmt *Skipped  = S.getElse();
    441     if (!CondConstant)  // Condition false?
    442       std::swap(Executed, Skipped);
    443 
    444     // If the skipped block has no labels in it, just emit the executed block.
    445     // This avoids emitting dead code and simplifies the CFG substantially.
    446     if (!ContainsLabel(Skipped)) {
    447       if (Executed) {
    448         RunCleanupsScope ExecutedScope(*this);
    449         EmitStmt(Executed);
    450       }
    451       return;
    452     }
    453   }
    454 
    455   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
    456   // the conditional branch.
    457   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
    458   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
    459   llvm::BasicBlock *ElseBlock = ContBlock;
    460   if (S.getElse())
    461     ElseBlock = createBasicBlock("if.else");
    462   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
    463 
    464   // Emit the 'then' code.
    465   EmitBlock(ThenBlock);
    466   {
    467     RunCleanupsScope ThenScope(*this);
    468     EmitStmt(S.getThen());
    469   }
    470   EmitBranch(ContBlock);
    471 
    472   // Emit the 'else' code if present.
    473   if (const Stmt *Else = S.getElse()) {
    474     // There is no need to emit line number for unconditional branch.
    475     if (getDebugInfo())
    476       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
    477     EmitBlock(ElseBlock);
    478     {
    479       RunCleanupsScope ElseScope(*this);
    480       EmitStmt(Else);
    481     }
    482     // There is no need to emit line number for unconditional branch.
    483     if (getDebugInfo())
    484       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
    485     EmitBranch(ContBlock);
    486   }
    487 
    488   // Emit the continuation block for code after the if.
    489   EmitBlock(ContBlock, true);
    490 }
    491 
    492 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
    493   // Emit the header for the loop, which will also become
    494   // the continue target.
    495   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
    496   EmitBlock(LoopHeader.getBlock());
    497 
    498   // Create an exit block for when the condition fails, which will
    499   // also become the break target.
    500   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
    501 
    502   // Store the blocks to use for break and continue.
    503   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
    504 
    505   // C++ [stmt.while]p2:
    506   //   When the condition of a while statement is a declaration, the
    507   //   scope of the variable that is declared extends from its point
    508   //   of declaration (3.3.2) to the end of the while statement.
    509   //   [...]
    510   //   The object created in a condition is destroyed and created
    511   //   with each iteration of the loop.
    512   RunCleanupsScope ConditionScope(*this);
    513 
    514   if (S.getConditionVariable())
    515     EmitAutoVarDecl(*S.getConditionVariable());
    516 
    517   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
    518   // evaluation of the controlling expression takes place before each
    519   // execution of the loop body.
    520   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    521 
    522   // while(1) is common, avoid extra exit blocks.  Be sure
    523   // to correctly handle break/continue though.
    524   bool EmitBoolCondBranch = true;
    525   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    526     if (C->isOne())
    527       EmitBoolCondBranch = false;
    528 
    529   // As long as the condition is true, go to the loop body.
    530   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
    531   if (EmitBoolCondBranch) {
    532     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    533     if (ConditionScope.requiresCleanups())
    534       ExitBlock = createBasicBlock("while.exit");
    535 
    536     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
    537 
    538     if (ExitBlock != LoopExit.getBlock()) {
    539       EmitBlock(ExitBlock);
    540       EmitBranchThroughCleanup(LoopExit);
    541     }
    542   }
    543 
    544   // Emit the loop body.  We have to emit this in a cleanup scope
    545   // because it might be a singleton DeclStmt.
    546   {
    547     RunCleanupsScope BodyScope(*this);
    548     EmitBlock(LoopBody);
    549     EmitStmt(S.getBody());
    550   }
    551 
    552   BreakContinueStack.pop_back();
    553 
    554   // Immediately force cleanup.
    555   ConditionScope.ForceCleanup();
    556 
    557   // Branch to the loop header again.
    558   EmitBranch(LoopHeader.getBlock());
    559 
    560   // Emit the exit block.
    561   EmitBlock(LoopExit.getBlock(), true);
    562 
    563   // The LoopHeader typically is just a branch if we skipped emitting
    564   // a branch, try to erase it.
    565   if (!EmitBoolCondBranch)
    566     SimplifyForwardingBlocks(LoopHeader.getBlock());
    567 }
    568 
    569 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
    570   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
    571   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
    572 
    573   // Store the blocks to use for break and continue.
    574   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
    575 
    576   // Emit the body of the loop.
    577   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
    578   EmitBlock(LoopBody);
    579   {
    580     RunCleanupsScope BodyScope(*this);
    581     EmitStmt(S.getBody());
    582   }
    583 
    584   BreakContinueStack.pop_back();
    585 
    586   EmitBlock(LoopCond.getBlock());
    587 
    588   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
    589   // after each execution of the loop body."
    590 
    591   // Evaluate the conditional in the while header.
    592   // C99 6.8.5p2/p4: The first substatement is executed if the expression
    593   // compares unequal to 0.  The condition must be a scalar type.
    594   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    595 
    596   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
    597   // to correctly handle break/continue though.
    598   bool EmitBoolCondBranch = true;
    599   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    600     if (C->isZero())
    601       EmitBoolCondBranch = false;
    602 
    603   // As long as the condition is true, iterate the loop.
    604   if (EmitBoolCondBranch)
    605     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
    606 
    607   // Emit the exit block.
    608   EmitBlock(LoopExit.getBlock());
    609 
    610   // The DoCond block typically is just a branch if we skipped
    611   // emitting a branch, try to erase it.
    612   if (!EmitBoolCondBranch)
    613     SimplifyForwardingBlocks(LoopCond.getBlock());
    614 }
    615 
    616 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
    617   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    618 
    619   RunCleanupsScope ForScope(*this);
    620 
    621   CGDebugInfo *DI = getDebugInfo();
    622   if (DI)
    623     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
    624 
    625   // Evaluate the first part before the loop.
    626   if (S.getInit())
    627     EmitStmt(S.getInit());
    628 
    629   // Start the loop with a block that tests the condition.
    630   // If there's an increment, the continue scope will be overwritten
    631   // later.
    632   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
    633   llvm::BasicBlock *CondBlock = Continue.getBlock();
    634   EmitBlock(CondBlock);
    635 
    636   // Create a cleanup scope for the condition variable cleanups.
    637   RunCleanupsScope ConditionScope(*this);
    638 
    639   llvm::Value *BoolCondVal = 0;
    640   if (S.getCond()) {
    641     // If the for statement has a condition scope, emit the local variable
    642     // declaration.
    643     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    644     if (S.getConditionVariable()) {
    645       EmitAutoVarDecl(*S.getConditionVariable());
    646     }
    647 
    648     // If there are any cleanups between here and the loop-exit scope,
    649     // create a block to stage a loop exit along.
    650     if (ForScope.requiresCleanups())
    651       ExitBlock = createBasicBlock("for.cond.cleanup");
    652 
    653     // As long as the condition is true, iterate the loop.
    654     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    655 
    656     // C99 6.8.5p2/p4: The first substatement is executed if the expression
    657     // compares unequal to 0.  The condition must be a scalar type.
    658     BoolCondVal = EvaluateExprAsBool(S.getCond());
    659     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
    660 
    661     if (ExitBlock != LoopExit.getBlock()) {
    662       EmitBlock(ExitBlock);
    663       EmitBranchThroughCleanup(LoopExit);
    664     }
    665 
    666     EmitBlock(ForBody);
    667   } else {
    668     // Treat it as a non-zero constant.  Don't even create a new block for the
    669     // body, just fall into it.
    670   }
    671 
    672   // If the for loop doesn't have an increment we can just use the
    673   // condition as the continue block.  Otherwise we'll need to create
    674   // a block for it (in the current scope, i.e. in the scope of the
    675   // condition), and that we will become our continue block.
    676   if (S.getInc())
    677     Continue = getJumpDestInCurrentScope("for.inc");
    678 
    679   // Store the blocks to use for break and continue.
    680   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    681 
    682   {
    683     // Create a separate cleanup scope for the body, in case it is not
    684     // a compound statement.
    685     RunCleanupsScope BodyScope(*this);
    686     EmitStmt(S.getBody());
    687   }
    688 
    689   // If there is an increment, emit it next.
    690   if (S.getInc()) {
    691     EmitBlock(Continue.getBlock());
    692     EmitStmt(S.getInc());
    693   }
    694 
    695   BreakContinueStack.pop_back();
    696 
    697   ConditionScope.ForceCleanup();
    698   EmitBranch(CondBlock);
    699 
    700   ForScope.ForceCleanup();
    701 
    702   if (DI)
    703     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
    704 
    705   // Emit the fall-through block.
    706   EmitBlock(LoopExit.getBlock(), true);
    707 }
    708 
    709 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
    710   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    711 
    712   RunCleanupsScope ForScope(*this);
    713 
    714   CGDebugInfo *DI = getDebugInfo();
    715   if (DI)
    716     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
    717 
    718   // Evaluate the first pieces before the loop.
    719   EmitStmt(S.getRangeStmt());
    720   EmitStmt(S.getBeginEndStmt());
    721 
    722   // Start the loop with a block that tests the condition.
    723   // If there's an increment, the continue scope will be overwritten
    724   // later.
    725   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
    726   EmitBlock(CondBlock);
    727 
    728   // If there are any cleanups between here and the loop-exit scope,
    729   // create a block to stage a loop exit along.
    730   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    731   if (ForScope.requiresCleanups())
    732     ExitBlock = createBasicBlock("for.cond.cleanup");
    733 
    734   // The loop body, consisting of the specified body and the loop variable.
    735   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    736 
    737   // The body is executed if the expression, contextually converted
    738   // to bool, is true.
    739   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    740   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
    741 
    742   if (ExitBlock != LoopExit.getBlock()) {
    743     EmitBlock(ExitBlock);
    744     EmitBranchThroughCleanup(LoopExit);
    745   }
    746 
    747   EmitBlock(ForBody);
    748 
    749   // Create a block for the increment. In case of a 'continue', we jump there.
    750   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
    751 
    752   // Store the blocks to use for break and continue.
    753   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    754 
    755   {
    756     // Create a separate cleanup scope for the loop variable and body.
    757     RunCleanupsScope BodyScope(*this);
    758     EmitStmt(S.getLoopVarStmt());
    759     EmitStmt(S.getBody());
    760   }
    761 
    762   // If there is an increment, emit it next.
    763   EmitBlock(Continue.getBlock());
    764   EmitStmt(S.getInc());
    765 
    766   BreakContinueStack.pop_back();
    767 
    768   EmitBranch(CondBlock);
    769 
    770   ForScope.ForceCleanup();
    771 
    772   if (DI)
    773     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
    774 
    775   // Emit the fall-through block.
    776   EmitBlock(LoopExit.getBlock(), true);
    777 }
    778 
    779 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
    780   if (RV.isScalar()) {
    781     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
    782   } else if (RV.isAggregate()) {
    783     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
    784   } else {
    785     EmitStoreOfComplex(RV.getComplexVal(),
    786                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
    787                        /*init*/ true);
    788   }
    789   EmitBranchThroughCleanup(ReturnBlock);
    790 }
    791 
    792 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
    793 /// if the function returns void, or may be missing one if the function returns
    794 /// non-void.  Fun stuff :).
    795 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
    796   // Emit the result value, even if unused, to evalute the side effects.
    797   const Expr *RV = S.getRetValue();
    798 
    799   // Treat block literals in a return expression as if they appeared
    800   // in their own scope.  This permits a small, easily-implemented
    801   // exception to our over-conservative rules about not jumping to
    802   // statements following block literals with non-trivial cleanups.
    803   RunCleanupsScope cleanupScope(*this);
    804   if (const ExprWithCleanups *cleanups =
    805         dyn_cast_or_null<ExprWithCleanups>(RV)) {
    806     enterFullExpression(cleanups);
    807     RV = cleanups->getSubExpr();
    808   }
    809 
    810   // FIXME: Clean this up by using an LValue for ReturnTemp,
    811   // EmitStoreThroughLValue, and EmitAnyExpr.
    812   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
    813     // Apply the named return value optimization for this return statement,
    814     // which means doing nothing: the appropriate result has already been
    815     // constructed into the NRVO variable.
    816 
    817     // If there is an NRVO flag for this variable, set it to 1 into indicate
    818     // that the cleanup code should not destroy the variable.
    819     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
    820       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
    821   } else if (!ReturnValue) {
    822     // Make sure not to return anything, but evaluate the expression
    823     // for side effects.
    824     if (RV)
    825       EmitAnyExpr(RV);
    826   } else if (RV == 0) {
    827     // Do nothing (return value is left uninitialized)
    828   } else if (FnRetTy->isReferenceType()) {
    829     // If this function returns a reference, take the address of the expression
    830     // rather than the value.
    831     RValue Result = EmitReferenceBindingToExpr(RV);
    832     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
    833   } else {
    834     switch (getEvaluationKind(RV->getType())) {
    835     case TEK_Scalar:
    836       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
    837       break;
    838     case TEK_Complex:
    839       EmitComplexExprIntoLValue(RV,
    840                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
    841                                 /*isInit*/ true);
    842       break;
    843     case TEK_Aggregate: {
    844       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
    845       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
    846                                             Qualifiers(),
    847                                             AggValueSlot::IsDestructed,
    848                                             AggValueSlot::DoesNotNeedGCBarriers,
    849                                             AggValueSlot::IsNotAliased));
    850       break;
    851     }
    852     }
    853   }
    854 
    855   ++NumReturnExprs;
    856   if (RV == 0 || RV->isEvaluatable(getContext()))
    857     ++NumSimpleReturnExprs;
    858 
    859   cleanupScope.ForceCleanup();
    860   EmitBranchThroughCleanup(ReturnBlock);
    861 }
    862 
    863 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
    864   // As long as debug info is modeled with instructions, we have to ensure we
    865   // have a place to insert here and write the stop point here.
    866   if (HaveInsertPoint())
    867     EmitStopPoint(&S);
    868 
    869   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
    870        I != E; ++I)
    871     EmitDecl(**I);
    872 }
    873 
    874 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
    875   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
    876 
    877   // If this code is reachable then emit a stop point (if generating
    878   // debug info). We have to do this ourselves because we are on the
    879   // "simple" statement path.
    880   if (HaveInsertPoint())
    881     EmitStopPoint(&S);
    882 
    883   JumpDest Block = BreakContinueStack.back().BreakBlock;
    884   EmitBranchThroughCleanup(Block);
    885 }
    886 
    887 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
    888   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
    889 
    890   // If this code is reachable then emit a stop point (if generating
    891   // debug info). We have to do this ourselves because we are on the
    892   // "simple" statement path.
    893   if (HaveInsertPoint())
    894     EmitStopPoint(&S);
    895 
    896   JumpDest Block = BreakContinueStack.back().ContinueBlock;
    897   EmitBranchThroughCleanup(Block);
    898 }
    899 
    900 /// EmitCaseStmtRange - If case statement range is not too big then
    901 /// add multiple cases to switch instruction, one for each value within
    902 /// the range. If range is too big then emit "if" condition check.
    903 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
    904   assert(S.getRHS() && "Expected RHS value in CaseStmt");
    905 
    906   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
    907   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
    908 
    909   // Emit the code for this case. We do this first to make sure it is
    910   // properly chained from our predecessor before generating the
    911   // switch machinery to enter this block.
    912   EmitBlock(createBasicBlock("sw.bb"));
    913   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
    914   EmitStmt(S.getSubStmt());
    915 
    916   // If range is empty, do nothing.
    917   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
    918     return;
    919 
    920   llvm::APInt Range = RHS - LHS;
    921   // FIXME: parameters such as this should not be hardcoded.
    922   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
    923     // Range is small enough to add multiple switch instruction cases.
    924     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
    925       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
    926       LHS++;
    927     }
    928     return;
    929   }
    930 
    931   // The range is too big. Emit "if" condition into a new block,
    932   // making sure to save and restore the current insertion point.
    933   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
    934 
    935   // Push this test onto the chain of range checks (which terminates
    936   // in the default basic block). The switch's default will be changed
    937   // to the top of this chain after switch emission is complete.
    938   llvm::BasicBlock *FalseDest = CaseRangeBlock;
    939   CaseRangeBlock = createBasicBlock("sw.caserange");
    940 
    941   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
    942   Builder.SetInsertPoint(CaseRangeBlock);
    943 
    944   // Emit range check.
    945   llvm::Value *Diff =
    946     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
    947   llvm::Value *Cond =
    948     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
    949   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
    950 
    951   // Restore the appropriate insertion point.
    952   if (RestoreBB)
    953     Builder.SetInsertPoint(RestoreBB);
    954   else
    955     Builder.ClearInsertionPoint();
    956 }
    957 
    958 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
    959   // If there is no enclosing switch instance that we're aware of, then this
    960   // case statement and its block can be elided.  This situation only happens
    961   // when we've constant-folded the switch, are emitting the constant case,
    962   // and part of the constant case includes another case statement.  For
    963   // instance: switch (4) { case 4: do { case 5: } while (1); }
    964   if (!SwitchInsn) {
    965     EmitStmt(S.getSubStmt());
    966     return;
    967   }
    968 
    969   // Handle case ranges.
    970   if (S.getRHS()) {
    971     EmitCaseStmtRange(S);
    972     return;
    973   }
    974 
    975   llvm::ConstantInt *CaseVal =
    976     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
    977 
    978   // If the body of the case is just a 'break', and if there was no fallthrough,
    979   // try to not emit an empty block.
    980   if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
    981       isa<BreakStmt>(S.getSubStmt())) {
    982     JumpDest Block = BreakContinueStack.back().BreakBlock;
    983 
    984     // Only do this optimization if there are no cleanups that need emitting.
    985     if (isObviouslyBranchWithoutCleanups(Block)) {
    986       SwitchInsn->addCase(CaseVal, Block.getBlock());
    987 
    988       // If there was a fallthrough into this case, make sure to redirect it to
    989       // the end of the switch as well.
    990       if (Builder.GetInsertBlock()) {
    991         Builder.CreateBr(Block.getBlock());
    992         Builder.ClearInsertionPoint();
    993       }
    994       return;
    995     }
    996   }
    997 
    998   EmitBlock(createBasicBlock("sw.bb"));
    999   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
   1000   SwitchInsn->addCase(CaseVal, CaseDest);
   1001 
   1002   // Recursively emitting the statement is acceptable, but is not wonderful for
   1003   // code where we have many case statements nested together, i.e.:
   1004   //  case 1:
   1005   //    case 2:
   1006   //      case 3: etc.
   1007   // Handling this recursively will create a new block for each case statement
   1008   // that falls through to the next case which is IR intensive.  It also causes
   1009   // deep recursion which can run into stack depth limitations.  Handle
   1010   // sequential non-range case statements specially.
   1011   const CaseStmt *CurCase = &S;
   1012   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
   1013 
   1014   // Otherwise, iteratively add consecutive cases to this switch stmt.
   1015   while (NextCase && NextCase->getRHS() == 0) {
   1016     CurCase = NextCase;
   1017     llvm::ConstantInt *CaseVal =
   1018       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
   1019     SwitchInsn->addCase(CaseVal, CaseDest);
   1020     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
   1021   }
   1022 
   1023   // Normal default recursion for non-cases.
   1024   EmitStmt(CurCase->getSubStmt());
   1025 }
   1026 
   1027 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
   1028   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
   1029   assert(DefaultBlock->empty() &&
   1030          "EmitDefaultStmt: Default block already defined?");
   1031   EmitBlock(DefaultBlock);
   1032   EmitStmt(S.getSubStmt());
   1033 }
   1034 
   1035 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
   1036 /// constant value that is being switched on, see if we can dead code eliminate
   1037 /// the body of the switch to a simple series of statements to emit.  Basically,
   1038 /// on a switch (5) we want to find these statements:
   1039 ///    case 5:
   1040 ///      printf(...);    <--
   1041 ///      ++i;            <--
   1042 ///      break;
   1043 ///
   1044 /// and add them to the ResultStmts vector.  If it is unsafe to do this
   1045 /// transformation (for example, one of the elided statements contains a label
   1046 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
   1047 /// should include statements after it (e.g. the printf() line is a substmt of
   1048 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
   1049 /// statement, then return CSFC_Success.
   1050 ///
   1051 /// If Case is non-null, then we are looking for the specified case, checking
   1052 /// that nothing we jump over contains labels.  If Case is null, then we found
   1053 /// the case and are looking for the break.
   1054 ///
   1055 /// If the recursive walk actually finds our Case, then we set FoundCase to
   1056 /// true.
   1057 ///
   1058 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
   1059 static CSFC_Result CollectStatementsForCase(const Stmt *S,
   1060                                             const SwitchCase *Case,
   1061                                             bool &FoundCase,
   1062                               SmallVectorImpl<const Stmt*> &ResultStmts) {
   1063   // If this is a null statement, just succeed.
   1064   if (S == 0)
   1065     return Case ? CSFC_Success : CSFC_FallThrough;
   1066 
   1067   // If this is the switchcase (case 4: or default) that we're looking for, then
   1068   // we're in business.  Just add the substatement.
   1069   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
   1070     if (S == Case) {
   1071       FoundCase = true;
   1072       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
   1073                                       ResultStmts);
   1074     }
   1075 
   1076     // Otherwise, this is some other case or default statement, just ignore it.
   1077     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
   1078                                     ResultStmts);
   1079   }
   1080 
   1081   // If we are in the live part of the code and we found our break statement,
   1082   // return a success!
   1083   if (Case == 0 && isa<BreakStmt>(S))
   1084     return CSFC_Success;
   1085 
   1086   // If this is a switch statement, then it might contain the SwitchCase, the
   1087   // break, or neither.
   1088   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
   1089     // Handle this as two cases: we might be looking for the SwitchCase (if so
   1090     // the skipped statements must be skippable) or we might already have it.
   1091     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
   1092     if (Case) {
   1093       // Keep track of whether we see a skipped declaration.  The code could be
   1094       // using the declaration even if it is skipped, so we can't optimize out
   1095       // the decl if the kept statements might refer to it.
   1096       bool HadSkippedDecl = false;
   1097 
   1098       // If we're looking for the case, just see if we can skip each of the
   1099       // substatements.
   1100       for (; Case && I != E; ++I) {
   1101         HadSkippedDecl |= isa<DeclStmt>(*I);
   1102 
   1103         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
   1104         case CSFC_Failure: return CSFC_Failure;
   1105         case CSFC_Success:
   1106           // A successful result means that either 1) that the statement doesn't
   1107           // have the case and is skippable, or 2) does contain the case value
   1108           // and also contains the break to exit the switch.  In the later case,
   1109           // we just verify the rest of the statements are elidable.
   1110           if (FoundCase) {
   1111             // If we found the case and skipped declarations, we can't do the
   1112             // optimization.
   1113             if (HadSkippedDecl)
   1114               return CSFC_Failure;
   1115 
   1116             for (++I; I != E; ++I)
   1117               if (CodeGenFunction::ContainsLabel(*I, true))
   1118                 return CSFC_Failure;
   1119             return CSFC_Success;
   1120           }
   1121           break;
   1122         case CSFC_FallThrough:
   1123           // If we have a fallthrough condition, then we must have found the
   1124           // case started to include statements.  Consider the rest of the
   1125           // statements in the compound statement as candidates for inclusion.
   1126           assert(FoundCase && "Didn't find case but returned fallthrough?");
   1127           // We recursively found Case, so we're not looking for it anymore.
   1128           Case = 0;
   1129 
   1130           // If we found the case and skipped declarations, we can't do the
   1131           // optimization.
   1132           if (HadSkippedDecl)
   1133             return CSFC_Failure;
   1134           break;
   1135         }
   1136       }
   1137     }
   1138 
   1139     // If we have statements in our range, then we know that the statements are
   1140     // live and need to be added to the set of statements we're tracking.
   1141     for (; I != E; ++I) {
   1142       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
   1143       case CSFC_Failure: return CSFC_Failure;
   1144       case CSFC_FallThrough:
   1145         // A fallthrough result means that the statement was simple and just
   1146         // included in ResultStmt, keep adding them afterwards.
   1147         break;
   1148       case CSFC_Success:
   1149         // A successful result means that we found the break statement and
   1150         // stopped statement inclusion.  We just ensure that any leftover stmts
   1151         // are skippable and return success ourselves.
   1152         for (++I; I != E; ++I)
   1153           if (CodeGenFunction::ContainsLabel(*I, true))
   1154             return CSFC_Failure;
   1155         return CSFC_Success;
   1156       }
   1157     }
   1158 
   1159     return Case ? CSFC_Success : CSFC_FallThrough;
   1160   }
   1161 
   1162   // Okay, this is some other statement that we don't handle explicitly, like a
   1163   // for statement or increment etc.  If we are skipping over this statement,
   1164   // just verify it doesn't have labels, which would make it invalid to elide.
   1165   if (Case) {
   1166     if (CodeGenFunction::ContainsLabel(S, true))
   1167       return CSFC_Failure;
   1168     return CSFC_Success;
   1169   }
   1170 
   1171   // Otherwise, we want to include this statement.  Everything is cool with that
   1172   // so long as it doesn't contain a break out of the switch we're in.
   1173   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
   1174 
   1175   // Otherwise, everything is great.  Include the statement and tell the caller
   1176   // that we fall through and include the next statement as well.
   1177   ResultStmts.push_back(S);
   1178   return CSFC_FallThrough;
   1179 }
   1180 
   1181 /// FindCaseStatementsForValue - Find the case statement being jumped to and
   1182 /// then invoke CollectStatementsForCase to find the list of statements to emit
   1183 /// for a switch on constant.  See the comment above CollectStatementsForCase
   1184 /// for more details.
   1185 static bool FindCaseStatementsForValue(const SwitchStmt &S,
   1186                                        const llvm::APSInt &ConstantCondValue,
   1187                                 SmallVectorImpl<const Stmt*> &ResultStmts,
   1188                                        ASTContext &C) {
   1189   // First step, find the switch case that is being branched to.  We can do this
   1190   // efficiently by scanning the SwitchCase list.
   1191   const SwitchCase *Case = S.getSwitchCaseList();
   1192   const DefaultStmt *DefaultCase = 0;
   1193 
   1194   for (; Case; Case = Case->getNextSwitchCase()) {
   1195     // It's either a default or case.  Just remember the default statement in
   1196     // case we're not jumping to any numbered cases.
   1197     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
   1198       DefaultCase = DS;
   1199       continue;
   1200     }
   1201 
   1202     // Check to see if this case is the one we're looking for.
   1203     const CaseStmt *CS = cast<CaseStmt>(Case);
   1204     // Don't handle case ranges yet.
   1205     if (CS->getRHS()) return false;
   1206 
   1207     // If we found our case, remember it as 'case'.
   1208     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
   1209       break;
   1210   }
   1211 
   1212   // If we didn't find a matching case, we use a default if it exists, or we
   1213   // elide the whole switch body!
   1214   if (Case == 0) {
   1215     // It is safe to elide the body of the switch if it doesn't contain labels
   1216     // etc.  If it is safe, return successfully with an empty ResultStmts list.
   1217     if (DefaultCase == 0)
   1218       return !CodeGenFunction::ContainsLabel(&S);
   1219     Case = DefaultCase;
   1220   }
   1221 
   1222   // Ok, we know which case is being jumped to, try to collect all the
   1223   // statements that follow it.  This can fail for a variety of reasons.  Also,
   1224   // check to see that the recursive walk actually found our case statement.
   1225   // Insane cases like this can fail to find it in the recursive walk since we
   1226   // don't handle every stmt kind:
   1227   // switch (4) {
   1228   //   while (1) {
   1229   //     case 4: ...
   1230   bool FoundCase = false;
   1231   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
   1232                                   ResultStmts) != CSFC_Failure &&
   1233          FoundCase;
   1234 }
   1235 
   1236 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
   1237   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
   1238 
   1239   RunCleanupsScope ConditionScope(*this);
   1240 
   1241   if (S.getConditionVariable())
   1242     EmitAutoVarDecl(*S.getConditionVariable());
   1243 
   1244   // Handle nested switch statements.
   1245   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
   1246   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
   1247 
   1248   // See if we can constant fold the condition of the switch and therefore only
   1249   // emit the live case statement (if any) of the switch.
   1250   llvm::APSInt ConstantCondValue;
   1251   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
   1252     SmallVector<const Stmt*, 4> CaseStmts;
   1253     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
   1254                                    getContext())) {
   1255       RunCleanupsScope ExecutedScope(*this);
   1256 
   1257       // At this point, we are no longer "within" a switch instance, so
   1258       // we can temporarily enforce this to ensure that any embedded case
   1259       // statements are not emitted.
   1260       SwitchInsn = 0;
   1261 
   1262       // Okay, we can dead code eliminate everything except this case.  Emit the
   1263       // specified series of statements and we're good.
   1264       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
   1265         EmitStmt(CaseStmts[i]);
   1266 
   1267       // Now we want to restore the saved switch instance so that nested
   1268       // switches continue to function properly
   1269       SwitchInsn = SavedSwitchInsn;
   1270 
   1271       return;
   1272     }
   1273   }
   1274 
   1275   llvm::Value *CondV = EmitScalarExpr(S.getCond());
   1276 
   1277   // Create basic block to hold stuff that comes after switch
   1278   // statement. We also need to create a default block now so that
   1279   // explicit case ranges tests can have a place to jump to on
   1280   // failure.
   1281   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
   1282   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
   1283   CaseRangeBlock = DefaultBlock;
   1284 
   1285   // Clear the insertion point to indicate we are in unreachable code.
   1286   Builder.ClearInsertionPoint();
   1287 
   1288   // All break statements jump to NextBlock. If BreakContinueStack is non empty
   1289   // then reuse last ContinueBlock.
   1290   JumpDest OuterContinue;
   1291   if (!BreakContinueStack.empty())
   1292     OuterContinue = BreakContinueStack.back().ContinueBlock;
   1293 
   1294   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
   1295 
   1296   // Emit switch body.
   1297   EmitStmt(S.getBody());
   1298 
   1299   BreakContinueStack.pop_back();
   1300 
   1301   // Update the default block in case explicit case range tests have
   1302   // been chained on top.
   1303   SwitchInsn->setDefaultDest(CaseRangeBlock);
   1304 
   1305   // If a default was never emitted:
   1306   if (!DefaultBlock->getParent()) {
   1307     // If we have cleanups, emit the default block so that there's a
   1308     // place to jump through the cleanups from.
   1309     if (ConditionScope.requiresCleanups()) {
   1310       EmitBlock(DefaultBlock);
   1311 
   1312     // Otherwise, just forward the default block to the switch end.
   1313     } else {
   1314       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
   1315       delete DefaultBlock;
   1316     }
   1317   }
   1318 
   1319   ConditionScope.ForceCleanup();
   1320 
   1321   // Emit continuation.
   1322   EmitBlock(SwitchExit.getBlock(), true);
   1323 
   1324   SwitchInsn = SavedSwitchInsn;
   1325   CaseRangeBlock = SavedCRBlock;
   1326 }
   1327 
   1328 static std::string
   1329 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
   1330                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
   1331   std::string Result;
   1332 
   1333   while (*Constraint) {
   1334     switch (*Constraint) {
   1335     default:
   1336       Result += Target.convertConstraint(Constraint);
   1337       break;
   1338     // Ignore these
   1339     case '*':
   1340     case '?':
   1341     case '!':
   1342     case '=': // Will see this and the following in mult-alt constraints.
   1343     case '+':
   1344       break;
   1345     case '#': // Ignore the rest of the constraint alternative.
   1346       while (Constraint[1] && Constraint[1] != ',')
   1347         Constraint++;
   1348       break;
   1349     case ',':
   1350       Result += "|";
   1351       break;
   1352     case 'g':
   1353       Result += "imr";
   1354       break;
   1355     case '[': {
   1356       assert(OutCons &&
   1357              "Must pass output names to constraints with a symbolic name");
   1358       unsigned Index;
   1359       bool result = Target.resolveSymbolicName(Constraint,
   1360                                                &(*OutCons)[0],
   1361                                                OutCons->size(), Index);
   1362       assert(result && "Could not resolve symbolic name"); (void)result;
   1363       Result += llvm::utostr(Index);
   1364       break;
   1365     }
   1366     }
   1367 
   1368     Constraint++;
   1369   }
   1370 
   1371   return Result;
   1372 }
   1373 
   1374 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
   1375 /// as using a particular register add that as a constraint that will be used
   1376 /// in this asm stmt.
   1377 static std::string
   1378 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
   1379                        const TargetInfo &Target, CodeGenModule &CGM,
   1380                        const AsmStmt &Stmt) {
   1381   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
   1382   if (!AsmDeclRef)
   1383     return Constraint;
   1384   const ValueDecl &Value = *AsmDeclRef->getDecl();
   1385   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
   1386   if (!Variable)
   1387     return Constraint;
   1388   if (Variable->getStorageClass() != SC_Register)
   1389     return Constraint;
   1390   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
   1391   if (!Attr)
   1392     return Constraint;
   1393   StringRef Register = Attr->getLabel();
   1394   assert(Target.isValidGCCRegisterName(Register));
   1395   // We're using validateOutputConstraint here because we only care if
   1396   // this is a register constraint.
   1397   TargetInfo::ConstraintInfo Info(Constraint, "");
   1398   if (Target.validateOutputConstraint(Info) &&
   1399       !Info.allowsRegister()) {
   1400     CGM.ErrorUnsupported(&Stmt, "__asm__");
   1401     return Constraint;
   1402   }
   1403   // Canonicalize the register here before returning it.
   1404   Register = Target.getNormalizedGCCRegisterName(Register);
   1405   return "{" + Register.str() + "}";
   1406 }
   1407 
   1408 llvm::Value*
   1409 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   1410                                     LValue InputValue, QualType InputType,
   1411                                     std::string &ConstraintStr) {
   1412   llvm::Value *Arg;
   1413   if (Info.allowsRegister() || !Info.allowsMemory()) {
   1414     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
   1415       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
   1416     } else {
   1417       llvm::Type *Ty = ConvertType(InputType);
   1418       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
   1419       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
   1420         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
   1421         Ty = llvm::PointerType::getUnqual(Ty);
   1422 
   1423         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
   1424                                                        Ty));
   1425       } else {
   1426         Arg = InputValue.getAddress();
   1427         ConstraintStr += '*';
   1428       }
   1429     }
   1430   } else {
   1431     Arg = InputValue.getAddress();
   1432     ConstraintStr += '*';
   1433   }
   1434 
   1435   return Arg;
   1436 }
   1437 
   1438 llvm::Value* CodeGenFunction::EmitAsmInput(
   1439                                          const TargetInfo::ConstraintInfo &Info,
   1440                                            const Expr *InputExpr,
   1441                                            std::string &ConstraintStr) {
   1442   if (Info.allowsRegister() || !Info.allowsMemory())
   1443     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
   1444       return EmitScalarExpr(InputExpr);
   1445 
   1446   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
   1447   LValue Dest = EmitLValue(InputExpr);
   1448   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr);
   1449 }
   1450 
   1451 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
   1452 /// asm call instruction.  The !srcloc MDNode contains a list of constant
   1453 /// integers which are the source locations of the start of each line in the
   1454 /// asm.
   1455 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
   1456                                       CodeGenFunction &CGF) {
   1457   SmallVector<llvm::Value *, 8> Locs;
   1458   // Add the location of the first line to the MDNode.
   1459   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
   1460                                         Str->getLocStart().getRawEncoding()));
   1461   StringRef StrVal = Str->getString();
   1462   if (!StrVal.empty()) {
   1463     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
   1464     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
   1465 
   1466     // Add the location of the start of each subsequent line of the asm to the
   1467     // MDNode.
   1468     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
   1469       if (StrVal[i] != '\n') continue;
   1470       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
   1471                                                       CGF.getTarget());
   1472       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
   1473                                             LineLoc.getRawEncoding()));
   1474     }
   1475   }
   1476 
   1477   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
   1478 }
   1479 
   1480 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
   1481   // Assemble the final asm string.
   1482   std::string AsmString = S.generateAsmString(getContext());
   1483 
   1484   // Get all the output and input constraints together.
   1485   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
   1486   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
   1487 
   1488   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1489     StringRef Name;
   1490     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
   1491       Name = GAS->getOutputName(i);
   1492     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
   1493     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
   1494     assert(IsValid && "Failed to parse output constraint");
   1495     OutputConstraintInfos.push_back(Info);
   1496   }
   1497 
   1498   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1499     StringRef Name;
   1500     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
   1501       Name = GAS->getInputName(i);
   1502     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
   1503     bool IsValid =
   1504       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
   1505                                           S.getNumOutputs(), Info);
   1506     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
   1507     InputConstraintInfos.push_back(Info);
   1508   }
   1509 
   1510   std::string Constraints;
   1511 
   1512   std::vector<LValue> ResultRegDests;
   1513   std::vector<QualType> ResultRegQualTys;
   1514   std::vector<llvm::Type *> ResultRegTypes;
   1515   std::vector<llvm::Type *> ResultTruncRegTypes;
   1516   std::vector<llvm::Type *> ArgTypes;
   1517   std::vector<llvm::Value*> Args;
   1518 
   1519   // Keep track of inout constraints.
   1520   std::string InOutConstraints;
   1521   std::vector<llvm::Value*> InOutArgs;
   1522   std::vector<llvm::Type*> InOutArgTypes;
   1523 
   1524   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1525     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
   1526 
   1527     // Simplify the output constraint.
   1528     std::string OutputConstraint(S.getOutputConstraint(i));
   1529     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
   1530                                           getTarget());
   1531 
   1532     const Expr *OutExpr = S.getOutputExpr(i);
   1533     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
   1534 
   1535     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
   1536                                               getTarget(), CGM, S);
   1537 
   1538     LValue Dest = EmitLValue(OutExpr);
   1539     if (!Constraints.empty())
   1540       Constraints += ',';
   1541 
   1542     // If this is a register output, then make the inline asm return it
   1543     // by-value.  If this is a memory result, return the value by-reference.
   1544     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
   1545       Constraints += "=" + OutputConstraint;
   1546       ResultRegQualTys.push_back(OutExpr->getType());
   1547       ResultRegDests.push_back(Dest);
   1548       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
   1549       ResultTruncRegTypes.push_back(ResultRegTypes.back());
   1550 
   1551       // If this output is tied to an input, and if the input is larger, then
   1552       // we need to set the actual result type of the inline asm node to be the
   1553       // same as the input type.
   1554       if (Info.hasMatchingInput()) {
   1555         unsigned InputNo;
   1556         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
   1557           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
   1558           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
   1559             break;
   1560         }
   1561         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
   1562 
   1563         QualType InputTy = S.getInputExpr(InputNo)->getType();
   1564         QualType OutputType = OutExpr->getType();
   1565 
   1566         uint64_t InputSize = getContext().getTypeSize(InputTy);
   1567         if (getContext().getTypeSize(OutputType) < InputSize) {
   1568           // Form the asm to return the value as a larger integer or fp type.
   1569           ResultRegTypes.back() = ConvertType(InputTy);
   1570         }
   1571       }
   1572       if (llvm::Type* AdjTy =
   1573             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1574                                                  ResultRegTypes.back()))
   1575         ResultRegTypes.back() = AdjTy;
   1576       else {
   1577         CGM.getDiags().Report(S.getAsmLoc(),
   1578                               diag::err_asm_invalid_type_in_input)
   1579             << OutExpr->getType() << OutputConstraint;
   1580       }
   1581     } else {
   1582       ArgTypes.push_back(Dest.getAddress()->getType());
   1583       Args.push_back(Dest.getAddress());
   1584       Constraints += "=*";
   1585       Constraints += OutputConstraint;
   1586     }
   1587 
   1588     if (Info.isReadWrite()) {
   1589       InOutConstraints += ',';
   1590 
   1591       const Expr *InputExpr = S.getOutputExpr(i);
   1592       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
   1593                                             InOutConstraints);
   1594 
   1595       if (llvm::Type* AdjTy =
   1596           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1597                                                Arg->getType()))
   1598         Arg = Builder.CreateBitCast(Arg, AdjTy);
   1599 
   1600       if (Info.allowsRegister())
   1601         InOutConstraints += llvm::utostr(i);
   1602       else
   1603         InOutConstraints += OutputConstraint;
   1604 
   1605       InOutArgTypes.push_back(Arg->getType());
   1606       InOutArgs.push_back(Arg);
   1607     }
   1608   }
   1609 
   1610   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
   1611 
   1612   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1613     const Expr *InputExpr = S.getInputExpr(i);
   1614 
   1615     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
   1616 
   1617     if (!Constraints.empty())
   1618       Constraints += ',';
   1619 
   1620     // Simplify the input constraint.
   1621     std::string InputConstraint(S.getInputConstraint(i));
   1622     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
   1623                                          &OutputConstraintInfos);
   1624 
   1625     InputConstraint =
   1626       AddVariableConstraints(InputConstraint,
   1627                             *InputExpr->IgnoreParenNoopCasts(getContext()),
   1628                             getTarget(), CGM, S);
   1629 
   1630     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
   1631 
   1632     // If this input argument is tied to a larger output result, extend the
   1633     // input to be the same size as the output.  The LLVM backend wants to see
   1634     // the input and output of a matching constraint be the same size.  Note
   1635     // that GCC does not define what the top bits are here.  We use zext because
   1636     // that is usually cheaper, but LLVM IR should really get an anyext someday.
   1637     if (Info.hasTiedOperand()) {
   1638       unsigned Output = Info.getTiedOperand();
   1639       QualType OutputType = S.getOutputExpr(Output)->getType();
   1640       QualType InputTy = InputExpr->getType();
   1641 
   1642       if (getContext().getTypeSize(OutputType) >
   1643           getContext().getTypeSize(InputTy)) {
   1644         // Use ptrtoint as appropriate so that we can do our extension.
   1645         if (isa<llvm::PointerType>(Arg->getType()))
   1646           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
   1647         llvm::Type *OutputTy = ConvertType(OutputType);
   1648         if (isa<llvm::IntegerType>(OutputTy))
   1649           Arg = Builder.CreateZExt(Arg, OutputTy);
   1650         else if (isa<llvm::PointerType>(OutputTy))
   1651           Arg = Builder.CreateZExt(Arg, IntPtrTy);
   1652         else {
   1653           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
   1654           Arg = Builder.CreateFPExt(Arg, OutputTy);
   1655         }
   1656       }
   1657     }
   1658     if (llvm::Type* AdjTy =
   1659               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
   1660                                                    Arg->getType()))
   1661       Arg = Builder.CreateBitCast(Arg, AdjTy);
   1662     else
   1663       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
   1664           << InputExpr->getType() << InputConstraint;
   1665 
   1666     ArgTypes.push_back(Arg->getType());
   1667     Args.push_back(Arg);
   1668     Constraints += InputConstraint;
   1669   }
   1670 
   1671   // Append the "input" part of inout constraints last.
   1672   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
   1673     ArgTypes.push_back(InOutArgTypes[i]);
   1674     Args.push_back(InOutArgs[i]);
   1675   }
   1676   Constraints += InOutConstraints;
   1677 
   1678   // Clobbers
   1679   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
   1680     StringRef Clobber = S.getClobber(i);
   1681 
   1682     if (Clobber != "memory" && Clobber != "cc")
   1683     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
   1684 
   1685     if (i != 0 || NumConstraints != 0)
   1686       Constraints += ',';
   1687 
   1688     Constraints += "~{";
   1689     Constraints += Clobber;
   1690     Constraints += '}';
   1691   }
   1692 
   1693   // Add machine specific clobbers
   1694   std::string MachineClobbers = getTarget().getClobbers();
   1695   if (!MachineClobbers.empty()) {
   1696     if (!Constraints.empty())
   1697       Constraints += ',';
   1698     Constraints += MachineClobbers;
   1699   }
   1700 
   1701   llvm::Type *ResultType;
   1702   if (ResultRegTypes.empty())
   1703     ResultType = VoidTy;
   1704   else if (ResultRegTypes.size() == 1)
   1705     ResultType = ResultRegTypes[0];
   1706   else
   1707     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
   1708 
   1709   llvm::FunctionType *FTy =
   1710     llvm::FunctionType::get(ResultType, ArgTypes, false);
   1711 
   1712   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
   1713   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
   1714     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
   1715   llvm::InlineAsm *IA =
   1716     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
   1717                          /* IsAlignStack */ false, AsmDialect);
   1718   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
   1719   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   1720                        llvm::Attribute::NoUnwind);
   1721 
   1722   // Slap the source location of the inline asm into a !srcloc metadata on the
   1723   // call.  FIXME: Handle metadata for MS-style inline asms.
   1724   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
   1725     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
   1726                                                    *this));
   1727 
   1728   // Extract all of the register value results from the asm.
   1729   std::vector<llvm::Value*> RegResults;
   1730   if (ResultRegTypes.size() == 1) {
   1731     RegResults.push_back(Result);
   1732   } else {
   1733     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
   1734       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
   1735       RegResults.push_back(Tmp);
   1736     }
   1737   }
   1738 
   1739   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
   1740     llvm::Value *Tmp = RegResults[i];
   1741 
   1742     // If the result type of the LLVM IR asm doesn't match the result type of
   1743     // the expression, do the conversion.
   1744     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
   1745       llvm::Type *TruncTy = ResultTruncRegTypes[i];
   1746 
   1747       // Truncate the integer result to the right size, note that TruncTy can be
   1748       // a pointer.
   1749       if (TruncTy->isFloatingPointTy())
   1750         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
   1751       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
   1752         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
   1753         Tmp = Builder.CreateTrunc(Tmp,
   1754                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
   1755         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
   1756       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
   1757         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
   1758         Tmp = Builder.CreatePtrToInt(Tmp,
   1759                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
   1760         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   1761       } else if (TruncTy->isIntegerTy()) {
   1762         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   1763       } else if (TruncTy->isVectorTy()) {
   1764         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
   1765       }
   1766     }
   1767 
   1768     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
   1769   }
   1770 }
   1771 
   1772 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
   1773   const RecordDecl *RD = S.getCapturedRecordDecl();
   1774   QualType RecordTy = CGF.getContext().getRecordType(RD);
   1775 
   1776   // Initialize the captured struct.
   1777   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
   1778                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
   1779 
   1780   RecordDecl::field_iterator CurField = RD->field_begin();
   1781   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
   1782                                            E = S.capture_init_end();
   1783        I != E; ++I, ++CurField) {
   1784     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
   1785     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
   1786   }
   1787 
   1788   return SlotLV;
   1789 }
   1790 
   1791 /// Generate an outlined function for the body of a CapturedStmt, store any
   1792 /// captured variables into the captured struct, and call the outlined function.
   1793 llvm::Function *
   1794 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
   1795   const CapturedDecl *CD = S.getCapturedDecl();
   1796   const RecordDecl *RD = S.getCapturedRecordDecl();
   1797   assert(CD->hasBody() && "missing CapturedDecl body");
   1798 
   1799   LValue CapStruct = InitCapturedStruct(*this, S);
   1800 
   1801   // Emit the CapturedDecl
   1802   CodeGenFunction CGF(CGM, true);
   1803   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
   1804   llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD);
   1805   delete CGF.CapturedStmtInfo;
   1806 
   1807   // Emit call to the helper function.
   1808   EmitCallOrInvoke(F, CapStruct.getAddress());
   1809 
   1810   return F;
   1811 }
   1812 
   1813 /// Creates the outlined function for a CapturedStmt.
   1814 llvm::Function *
   1815 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
   1816                                               const RecordDecl *RD) {
   1817   assert(CapturedStmtInfo &&
   1818     "CapturedStmtInfo should be set when generating the captured function");
   1819 
   1820   // Check if we should generate debug info for this function.
   1821   maybeInitializeDebugInfo();
   1822 
   1823   // Build the argument list.
   1824   ASTContext &Ctx = CGM.getContext();
   1825   FunctionArgList Args;
   1826   Args.append(CD->param_begin(), CD->param_end());
   1827 
   1828   // Create the function declaration.
   1829   FunctionType::ExtInfo ExtInfo;
   1830   const CGFunctionInfo &FuncInfo =
   1831     CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
   1832                                               /*IsVariadic=*/false);
   1833   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
   1834 
   1835   llvm::Function *F =
   1836     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
   1837                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
   1838   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
   1839 
   1840   // Generate the function.
   1841   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart());
   1842 
   1843   // Set the context parameter in CapturedStmtInfo.
   1844   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
   1845   assert(DeclPtr && "missing context parameter for CapturedStmt");
   1846   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
   1847 
   1848   // If 'this' is captured, load it into CXXThisValue.
   1849   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
   1850     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
   1851     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
   1852                                            Ctx.getTagDeclType(RD));
   1853     LValue ThisLValue = EmitLValueForField(LV, FD);
   1854 
   1855     CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
   1856   }
   1857 
   1858   CapturedStmtInfo->EmitBody(*this, CD->getBody());
   1859   FinishFunction(CD->getBodyRBrace());
   1860 
   1861   return F;
   1862 }
   1863