Home | History | Annotate | Download | only in Instrumentation
      1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file is a part of MemorySanitizer, a detector of uninitialized
     11 /// reads.
     12 ///
     13 /// Status: early prototype.
     14 ///
     15 /// The algorithm of the tool is similar to Memcheck
     16 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
     17 /// byte of the application memory, poison the shadow of the malloc-ed
     18 /// or alloca-ed memory, load the shadow bits on every memory read,
     19 /// propagate the shadow bits through some of the arithmetic
     20 /// instruction (including MOV), store the shadow bits on every memory
     21 /// write, report a bug on some other instructions (e.g. JMP) if the
     22 /// associated shadow is poisoned.
     23 ///
     24 /// But there are differences too. The first and the major one:
     25 /// compiler instrumentation instead of binary instrumentation. This
     26 /// gives us much better register allocation, possible compiler
     27 /// optimizations and a fast start-up. But this brings the major issue
     28 /// as well: msan needs to see all program events, including system
     29 /// calls and reads/writes in system libraries, so we either need to
     30 /// compile *everything* with msan or use a binary translation
     31 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
     32 /// Another difference from Memcheck is that we use 8 shadow bits per
     33 /// byte of application memory and use a direct shadow mapping. This
     34 /// greatly simplifies the instrumentation code and avoids races on
     35 /// shadow updates (Memcheck is single-threaded so races are not a
     36 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
     37 /// path storage that uses 8 bits per byte).
     38 ///
     39 /// The default value of shadow is 0, which means "clean" (not poisoned).
     40 ///
     41 /// Every module initializer should call __msan_init to ensure that the
     42 /// shadow memory is ready. On error, __msan_warning is called. Since
     43 /// parameters and return values may be passed via registers, we have a
     44 /// specialized thread-local shadow for return values
     45 /// (__msan_retval_tls) and parameters (__msan_param_tls).
     46 ///
     47 ///                           Origin tracking.
     48 ///
     49 /// MemorySanitizer can track origins (allocation points) of all uninitialized
     50 /// values. This behavior is controlled with a flag (msan-track-origins) and is
     51 /// disabled by default.
     52 ///
     53 /// Origins are 4-byte values created and interpreted by the runtime library.
     54 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
     55 /// of application memory. Propagation of origins is basically a bunch of
     56 /// "select" instructions that pick the origin of a dirty argument, if an
     57 /// instruction has one.
     58 ///
     59 /// Every 4 aligned, consecutive bytes of application memory have one origin
     60 /// value associated with them. If these bytes contain uninitialized data
     61 /// coming from 2 different allocations, the last store wins. Because of this,
     62 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
     63 /// practice.
     64 ///
     65 /// Origins are meaningless for fully initialized values, so MemorySanitizer
     66 /// avoids storing origin to memory when a fully initialized value is stored.
     67 /// This way it avoids needless overwritting origin of the 4-byte region on
     68 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
     69 //===----------------------------------------------------------------------===//
     70 
     71 #define DEBUG_TYPE "msan"
     72 
     73 #include "llvm/Transforms/Instrumentation.h"
     74 #include "llvm/ADT/DepthFirstIterator.h"
     75 #include "llvm/ADT/SmallString.h"
     76 #include "llvm/ADT/SmallVector.h"
     77 #include "llvm/ADT/Triple.h"
     78 #include "llvm/ADT/ValueMap.h"
     79 #include "llvm/IR/DataLayout.h"
     80 #include "llvm/IR/Function.h"
     81 #include "llvm/IR/IRBuilder.h"
     82 #include "llvm/IR/InlineAsm.h"
     83 #include "llvm/IR/IntrinsicInst.h"
     84 #include "llvm/IR/LLVMContext.h"
     85 #include "llvm/IR/MDBuilder.h"
     86 #include "llvm/IR/Module.h"
     87 #include "llvm/IR/Type.h"
     88 #include "llvm/InstVisitor.h"
     89 #include "llvm/Support/CommandLine.h"
     90 #include "llvm/Support/Compiler.h"
     91 #include "llvm/Support/Debug.h"
     92 #include "llvm/Support/raw_ostream.h"
     93 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     94 #include "llvm/Transforms/Utils/Local.h"
     95 #include "llvm/Transforms/Utils/ModuleUtils.h"
     96 #include "llvm/Transforms/Utils/SpecialCaseList.h"
     97 
     98 using namespace llvm;
     99 
    100 static const uint64_t kShadowMask32 = 1ULL << 31;
    101 static const uint64_t kShadowMask64 = 1ULL << 46;
    102 static const uint64_t kOriginOffset32 = 1ULL << 30;
    103 static const uint64_t kOriginOffset64 = 1ULL << 45;
    104 static const unsigned kMinOriginAlignment = 4;
    105 static const unsigned kShadowTLSAlignment = 8;
    106 
    107 /// \brief Track origins of uninitialized values.
    108 ///
    109 /// Adds a section to MemorySanitizer report that points to the allocation
    110 /// (stack or heap) the uninitialized bits came from originally.
    111 static cl::opt<bool> ClTrackOrigins("msan-track-origins",
    112        cl::desc("Track origins (allocation sites) of poisoned memory"),
    113        cl::Hidden, cl::init(false));
    114 static cl::opt<bool> ClKeepGoing("msan-keep-going",
    115        cl::desc("keep going after reporting a UMR"),
    116        cl::Hidden, cl::init(false));
    117 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
    118        cl::desc("poison uninitialized stack variables"),
    119        cl::Hidden, cl::init(true));
    120 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
    121        cl::desc("poison uninitialized stack variables with a call"),
    122        cl::Hidden, cl::init(false));
    123 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
    124        cl::desc("poison uninitialized stack variables with the given patter"),
    125        cl::Hidden, cl::init(0xff));
    126 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
    127        cl::desc("poison undef temps"),
    128        cl::Hidden, cl::init(true));
    129 
    130 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
    131        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
    132        cl::Hidden, cl::init(true));
    133 
    134 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
    135        cl::desc("exact handling of relational integer ICmp"),
    136        cl::Hidden, cl::init(false));
    137 
    138 static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
    139        cl::desc("store origin for clean (fully initialized) values"),
    140        cl::Hidden, cl::init(false));
    141 
    142 // This flag controls whether we check the shadow of the address
    143 // operand of load or store. Such bugs are very rare, since load from
    144 // a garbage address typically results in SEGV, but still happen
    145 // (e.g. only lower bits of address are garbage, or the access happens
    146 // early at program startup where malloc-ed memory is more likely to
    147 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
    148 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
    149        cl::desc("report accesses through a pointer which has poisoned shadow"),
    150        cl::Hidden, cl::init(true));
    151 
    152 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
    153        cl::desc("print out instructions with default strict semantics"),
    154        cl::Hidden, cl::init(false));
    155 
    156 static cl::opt<std::string>  ClBlacklistFile("msan-blacklist",
    157        cl::desc("File containing the list of functions where MemorySanitizer "
    158                 "should not report bugs"), cl::Hidden);
    159 
    160 namespace {
    161 
    162 /// \brief An instrumentation pass implementing detection of uninitialized
    163 /// reads.
    164 ///
    165 /// MemorySanitizer: instrument the code in module to find
    166 /// uninitialized reads.
    167 class MemorySanitizer : public FunctionPass {
    168  public:
    169   MemorySanitizer(bool TrackOrigins = false,
    170                   StringRef BlacklistFile = StringRef())
    171     : FunctionPass(ID),
    172       TrackOrigins(TrackOrigins || ClTrackOrigins),
    173       TD(0),
    174       WarningFn(0),
    175       BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
    176                                           : BlacklistFile) { }
    177   const char *getPassName() const { return "MemorySanitizer"; }
    178   bool runOnFunction(Function &F);
    179   bool doInitialization(Module &M);
    180   static char ID;  // Pass identification, replacement for typeid.
    181 
    182  private:
    183   void initializeCallbacks(Module &M);
    184 
    185   /// \brief Track origins (allocation points) of uninitialized values.
    186   bool TrackOrigins;
    187 
    188   DataLayout *TD;
    189   LLVMContext *C;
    190   Type *IntptrTy;
    191   Type *OriginTy;
    192   /// \brief Thread-local shadow storage for function parameters.
    193   GlobalVariable *ParamTLS;
    194   /// \brief Thread-local origin storage for function parameters.
    195   GlobalVariable *ParamOriginTLS;
    196   /// \brief Thread-local shadow storage for function return value.
    197   GlobalVariable *RetvalTLS;
    198   /// \brief Thread-local origin storage for function return value.
    199   GlobalVariable *RetvalOriginTLS;
    200   /// \brief Thread-local shadow storage for in-register va_arg function
    201   /// parameters (x86_64-specific).
    202   GlobalVariable *VAArgTLS;
    203   /// \brief Thread-local shadow storage for va_arg overflow area
    204   /// (x86_64-specific).
    205   GlobalVariable *VAArgOverflowSizeTLS;
    206   /// \brief Thread-local space used to pass origin value to the UMR reporting
    207   /// function.
    208   GlobalVariable *OriginTLS;
    209 
    210   /// \brief The run-time callback to print a warning.
    211   Value *WarningFn;
    212   /// \brief Run-time helper that copies origin info for a memory range.
    213   Value *MsanCopyOriginFn;
    214   /// \brief Run-time helper that generates a new origin value for a stack
    215   /// allocation.
    216   Value *MsanSetAllocaOriginFn;
    217   /// \brief Run-time helper that poisons stack on function entry.
    218   Value *MsanPoisonStackFn;
    219   /// \brief MSan runtime replacements for memmove, memcpy and memset.
    220   Value *MemmoveFn, *MemcpyFn, *MemsetFn;
    221 
    222   /// \brief Address mask used in application-to-shadow address calculation.
    223   /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
    224   uint64_t ShadowMask;
    225   /// \brief Offset of the origin shadow from the "normal" shadow.
    226   /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
    227   uint64_t OriginOffset;
    228   /// \brief Branch weights for error reporting.
    229   MDNode *ColdCallWeights;
    230   /// \brief Branch weights for origin store.
    231   MDNode *OriginStoreWeights;
    232   /// \brief Path to blacklist file.
    233   SmallString<64> BlacklistFile;
    234   /// \brief The blacklist.
    235   OwningPtr<SpecialCaseList> BL;
    236   /// \brief An empty volatile inline asm that prevents callback merge.
    237   InlineAsm *EmptyAsm;
    238 
    239   friend struct MemorySanitizerVisitor;
    240   friend struct VarArgAMD64Helper;
    241 };
    242 }  // namespace
    243 
    244 char MemorySanitizer::ID = 0;
    245 INITIALIZE_PASS(MemorySanitizer, "msan",
    246                 "MemorySanitizer: detects uninitialized reads.",
    247                 false, false)
    248 
    249 FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
    250                                               StringRef BlacklistFile) {
    251   return new MemorySanitizer(TrackOrigins, BlacklistFile);
    252 }
    253 
    254 /// \brief Create a non-const global initialized with the given string.
    255 ///
    256 /// Creates a writable global for Str so that we can pass it to the
    257 /// run-time lib. Runtime uses first 4 bytes of the string to store the
    258 /// frame ID, so the string needs to be mutable.
    259 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
    260                                                             StringRef Str) {
    261   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
    262   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
    263                             GlobalValue::PrivateLinkage, StrConst, "");
    264 }
    265 
    266 
    267 /// \brief Insert extern declaration of runtime-provided functions and globals.
    268 void MemorySanitizer::initializeCallbacks(Module &M) {
    269   // Only do this once.
    270   if (WarningFn)
    271     return;
    272 
    273   IRBuilder<> IRB(*C);
    274   // Create the callback.
    275   // FIXME: this function should have "Cold" calling conv,
    276   // which is not yet implemented.
    277   StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
    278                                         : "__msan_warning_noreturn";
    279   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
    280 
    281   MsanCopyOriginFn = M.getOrInsertFunction(
    282     "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
    283     IRB.getInt8PtrTy(), IntptrTy, NULL);
    284   MsanSetAllocaOriginFn = M.getOrInsertFunction(
    285     "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
    286     IRB.getInt8PtrTy(), NULL);
    287   MsanPoisonStackFn = M.getOrInsertFunction(
    288     "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
    289   MemmoveFn = M.getOrInsertFunction(
    290     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    291     IRB.getInt8PtrTy(), IntptrTy, NULL);
    292   MemcpyFn = M.getOrInsertFunction(
    293     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    294     IntptrTy, NULL);
    295   MemsetFn = M.getOrInsertFunction(
    296     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
    297     IntptrTy, NULL);
    298 
    299   // Create globals.
    300   RetvalTLS = new GlobalVariable(
    301     M, ArrayType::get(IRB.getInt64Ty(), 8), false,
    302     GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
    303     GlobalVariable::InitialExecTLSModel);
    304   RetvalOriginTLS = new GlobalVariable(
    305     M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
    306     "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
    307 
    308   ParamTLS = new GlobalVariable(
    309     M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
    310     GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
    311     GlobalVariable::InitialExecTLSModel);
    312   ParamOriginTLS = new GlobalVariable(
    313     M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
    314     0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
    315 
    316   VAArgTLS = new GlobalVariable(
    317     M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
    318     GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
    319     GlobalVariable::InitialExecTLSModel);
    320   VAArgOverflowSizeTLS = new GlobalVariable(
    321     M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
    322     "__msan_va_arg_overflow_size_tls", 0,
    323     GlobalVariable::InitialExecTLSModel);
    324   OriginTLS = new GlobalVariable(
    325     M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
    326     "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
    327 
    328   // We insert an empty inline asm after __msan_report* to avoid callback merge.
    329   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
    330                             StringRef(""), StringRef(""),
    331                             /*hasSideEffects=*/true);
    332 }
    333 
    334 /// \brief Module-level initialization.
    335 ///
    336 /// inserts a call to __msan_init to the module's constructor list.
    337 bool MemorySanitizer::doInitialization(Module &M) {
    338   TD = getAnalysisIfAvailable<DataLayout>();
    339   if (!TD)
    340     return false;
    341   BL.reset(new SpecialCaseList(BlacklistFile));
    342   C = &(M.getContext());
    343   unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
    344   switch (PtrSize) {
    345     case 64:
    346       ShadowMask = kShadowMask64;
    347       OriginOffset = kOriginOffset64;
    348       break;
    349     case 32:
    350       ShadowMask = kShadowMask32;
    351       OriginOffset = kOriginOffset32;
    352       break;
    353     default:
    354       report_fatal_error("unsupported pointer size");
    355       break;
    356   }
    357 
    358   IRBuilder<> IRB(*C);
    359   IntptrTy = IRB.getIntPtrTy(TD);
    360   OriginTy = IRB.getInt32Ty();
    361 
    362   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
    363   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
    364 
    365   // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
    366   appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
    367                       "__msan_init", IRB.getVoidTy(), NULL)), 0);
    368 
    369   if (TrackOrigins)
    370     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
    371                        IRB.getInt32(TrackOrigins), "__msan_track_origins");
    372 
    373   if (ClKeepGoing)
    374     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
    375                        IRB.getInt32(ClKeepGoing), "__msan_keep_going");
    376 
    377   return true;
    378 }
    379 
    380 namespace {
    381 
    382 /// \brief A helper class that handles instrumentation of VarArg
    383 /// functions on a particular platform.
    384 ///
    385 /// Implementations are expected to insert the instrumentation
    386 /// necessary to propagate argument shadow through VarArg function
    387 /// calls. Visit* methods are called during an InstVisitor pass over
    388 /// the function, and should avoid creating new basic blocks. A new
    389 /// instance of this class is created for each instrumented function.
    390 struct VarArgHelper {
    391   /// \brief Visit a CallSite.
    392   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
    393 
    394   /// \brief Visit a va_start call.
    395   virtual void visitVAStartInst(VAStartInst &I) = 0;
    396 
    397   /// \brief Visit a va_copy call.
    398   virtual void visitVACopyInst(VACopyInst &I) = 0;
    399 
    400   /// \brief Finalize function instrumentation.
    401   ///
    402   /// This method is called after visiting all interesting (see above)
    403   /// instructions in a function.
    404   virtual void finalizeInstrumentation() = 0;
    405 
    406   virtual ~VarArgHelper() {}
    407 };
    408 
    409 struct MemorySanitizerVisitor;
    410 
    411 VarArgHelper*
    412 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
    413                    MemorySanitizerVisitor &Visitor);
    414 
    415 /// This class does all the work for a given function. Store and Load
    416 /// instructions store and load corresponding shadow and origin
    417 /// values. Most instructions propagate shadow from arguments to their
    418 /// return values. Certain instructions (most importantly, BranchInst)
    419 /// test their argument shadow and print reports (with a runtime call) if it's
    420 /// non-zero.
    421 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
    422   Function &F;
    423   MemorySanitizer &MS;
    424   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
    425   ValueMap<Value*, Value*> ShadowMap, OriginMap;
    426   bool InsertChecks;
    427   bool LoadShadow;
    428   bool PoisonStack;
    429   bool PoisonUndef;
    430   OwningPtr<VarArgHelper> VAHelper;
    431 
    432   struct ShadowOriginAndInsertPoint {
    433     Instruction *Shadow;
    434     Instruction *Origin;
    435     Instruction *OrigIns;
    436     ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
    437       : Shadow(S), Origin(O), OrigIns(I) { }
    438     ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
    439   };
    440   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
    441   SmallVector<Instruction*, 16> StoreList;
    442 
    443   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
    444       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
    445     bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
    446                                                    AttributeSet::FunctionIndex,
    447                                                    Attribute::SanitizeMemory);
    448     InsertChecks = SanitizeFunction;
    449     LoadShadow = SanitizeFunction;
    450     PoisonStack = SanitizeFunction && ClPoisonStack;
    451     PoisonUndef = SanitizeFunction && ClPoisonUndef;
    452 
    453     DEBUG(if (!InsertChecks)
    454           dbgs() << "MemorySanitizer is not inserting checks into '"
    455                  << F.getName() << "'\n");
    456   }
    457 
    458   void materializeStores() {
    459     for (size_t i = 0, n = StoreList.size(); i < n; i++) {
    460       StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
    461 
    462       IRBuilder<> IRB(&I);
    463       Value *Val = I.getValueOperand();
    464       Value *Addr = I.getPointerOperand();
    465       Value *Shadow = getShadow(Val);
    466       Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
    467 
    468       StoreInst *NewSI =
    469         IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
    470       DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
    471       (void)NewSI;
    472 
    473       if (ClCheckAccessAddress)
    474         insertCheck(Addr, &I);
    475 
    476       if (MS.TrackOrigins) {
    477         unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
    478         if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
    479           IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
    480                                  Alignment);
    481         } else {
    482           Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
    483 
    484           Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
    485           // TODO(eugenis): handle non-zero constant shadow by inserting an
    486           // unconditional check (can not simply fail compilation as this could
    487           // be in the dead code).
    488           if (Cst)
    489             continue;
    490 
    491           Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
    492               getCleanShadow(ConvertedShadow), "_mscmp");
    493           Instruction *CheckTerm =
    494             SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
    495                                       MS.OriginStoreWeights);
    496           IRBuilder<> IRBNew(CheckTerm);
    497           IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
    498                                     Alignment);
    499         }
    500       }
    501     }
    502   }
    503 
    504   void materializeChecks() {
    505     for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
    506       Instruction *Shadow = InstrumentationList[i].Shadow;
    507       Instruction *OrigIns = InstrumentationList[i].OrigIns;
    508       IRBuilder<> IRB(OrigIns);
    509       DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
    510       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
    511       DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
    512       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
    513                                     getCleanShadow(ConvertedShadow), "_mscmp");
    514       Instruction *CheckTerm =
    515         SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
    516                                   /* Unreachable */ !ClKeepGoing,
    517                                   MS.ColdCallWeights);
    518 
    519       IRB.SetInsertPoint(CheckTerm);
    520       if (MS.TrackOrigins) {
    521         Instruction *Origin = InstrumentationList[i].Origin;
    522         IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
    523                         MS.OriginTLS);
    524       }
    525       CallInst *Call = IRB.CreateCall(MS.WarningFn);
    526       Call->setDebugLoc(OrigIns->getDebugLoc());
    527       IRB.CreateCall(MS.EmptyAsm);
    528       DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
    529     }
    530     DEBUG(dbgs() << "DONE:\n" << F);
    531   }
    532 
    533   /// \brief Add MemorySanitizer instrumentation to a function.
    534   bool runOnFunction() {
    535     MS.initializeCallbacks(*F.getParent());
    536     if (!MS.TD) return false;
    537 
    538     // In the presence of unreachable blocks, we may see Phi nodes with
    539     // incoming nodes from such blocks. Since InstVisitor skips unreachable
    540     // blocks, such nodes will not have any shadow value associated with them.
    541     // It's easier to remove unreachable blocks than deal with missing shadow.
    542     removeUnreachableBlocks(F);
    543 
    544     // Iterate all BBs in depth-first order and create shadow instructions
    545     // for all instructions (where applicable).
    546     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
    547     for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
    548          DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
    549       BasicBlock *BB = *DI;
    550       visit(*BB);
    551     }
    552 
    553     // Finalize PHI nodes.
    554     for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
    555       PHINode *PN = ShadowPHINodes[i];
    556       PHINode *PNS = cast<PHINode>(getShadow(PN));
    557       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
    558       size_t NumValues = PN->getNumIncomingValues();
    559       for (size_t v = 0; v < NumValues; v++) {
    560         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
    561         if (PNO)
    562           PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
    563       }
    564     }
    565 
    566     VAHelper->finalizeInstrumentation();
    567 
    568     // Delayed instrumentation of StoreInst.
    569     // This may add new checks to be inserted later.
    570     materializeStores();
    571 
    572     // Insert shadow value checks.
    573     materializeChecks();
    574 
    575     return true;
    576   }
    577 
    578   /// \brief Compute the shadow type that corresponds to a given Value.
    579   Type *getShadowTy(Value *V) {
    580     return getShadowTy(V->getType());
    581   }
    582 
    583   /// \brief Compute the shadow type that corresponds to a given Type.
    584   Type *getShadowTy(Type *OrigTy) {
    585     if (!OrigTy->isSized()) {
    586       return 0;
    587     }
    588     // For integer type, shadow is the same as the original type.
    589     // This may return weird-sized types like i1.
    590     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
    591       return IT;
    592     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
    593       uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
    594       return VectorType::get(IntegerType::get(*MS.C, EltSize),
    595                              VT->getNumElements());
    596     }
    597     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
    598       SmallVector<Type*, 4> Elements;
    599       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
    600         Elements.push_back(getShadowTy(ST->getElementType(i)));
    601       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
    602       DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
    603       return Res;
    604     }
    605     uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
    606     return IntegerType::get(*MS.C, TypeSize);
    607   }
    608 
    609   /// \brief Flatten a vector type.
    610   Type *getShadowTyNoVec(Type *ty) {
    611     if (VectorType *vt = dyn_cast<VectorType>(ty))
    612       return IntegerType::get(*MS.C, vt->getBitWidth());
    613     return ty;
    614   }
    615 
    616   /// \brief Convert a shadow value to it's flattened variant.
    617   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
    618     Type *Ty = V->getType();
    619     Type *NoVecTy = getShadowTyNoVec(Ty);
    620     if (Ty == NoVecTy) return V;
    621     return IRB.CreateBitCast(V, NoVecTy);
    622   }
    623 
    624   /// \brief Compute the shadow address that corresponds to a given application
    625   /// address.
    626   ///
    627   /// Shadow = Addr & ~ShadowMask.
    628   Value *getShadowPtr(Value *Addr, Type *ShadowTy,
    629                       IRBuilder<> &IRB) {
    630     Value *ShadowLong =
    631       IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
    632                     ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
    633     return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
    634   }
    635 
    636   /// \brief Compute the origin address that corresponds to a given application
    637   /// address.
    638   ///
    639   /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
    640   Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
    641     Value *ShadowLong =
    642       IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
    643                     ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
    644     Value *Add =
    645       IRB.CreateAdd(ShadowLong,
    646                     ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
    647     Value *SecondAnd =
    648       IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
    649     return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
    650   }
    651 
    652   /// \brief Compute the shadow address for a given function argument.
    653   ///
    654   /// Shadow = ParamTLS+ArgOffset.
    655   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
    656                                  int ArgOffset) {
    657     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
    658     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    659     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
    660                               "_msarg");
    661   }
    662 
    663   /// \brief Compute the origin address for a given function argument.
    664   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
    665                                  int ArgOffset) {
    666     if (!MS.TrackOrigins) return 0;
    667     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
    668     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    669     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
    670                               "_msarg_o");
    671   }
    672 
    673   /// \brief Compute the shadow address for a retval.
    674   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
    675     Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
    676     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
    677                               "_msret");
    678   }
    679 
    680   /// \brief Compute the origin address for a retval.
    681   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
    682     // We keep a single origin for the entire retval. Might be too optimistic.
    683     return MS.RetvalOriginTLS;
    684   }
    685 
    686   /// \brief Set SV to be the shadow value for V.
    687   void setShadow(Value *V, Value *SV) {
    688     assert(!ShadowMap.count(V) && "Values may only have one shadow");
    689     ShadowMap[V] = SV;
    690   }
    691 
    692   /// \brief Set Origin to be the origin value for V.
    693   void setOrigin(Value *V, Value *Origin) {
    694     if (!MS.TrackOrigins) return;
    695     assert(!OriginMap.count(V) && "Values may only have one origin");
    696     DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
    697     OriginMap[V] = Origin;
    698   }
    699 
    700   /// \brief Create a clean shadow value for a given value.
    701   ///
    702   /// Clean shadow (all zeroes) means all bits of the value are defined
    703   /// (initialized).
    704   Constant *getCleanShadow(Value *V) {
    705     Type *ShadowTy = getShadowTy(V);
    706     if (!ShadowTy)
    707       return 0;
    708     return Constant::getNullValue(ShadowTy);
    709   }
    710 
    711   /// \brief Create a dirty shadow of a given shadow type.
    712   Constant *getPoisonedShadow(Type *ShadowTy) {
    713     assert(ShadowTy);
    714     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
    715       return Constant::getAllOnesValue(ShadowTy);
    716     StructType *ST = cast<StructType>(ShadowTy);
    717     SmallVector<Constant *, 4> Vals;
    718     for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
    719       Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
    720     return ConstantStruct::get(ST, Vals);
    721   }
    722 
    723   /// \brief Create a dirty shadow for a given value.
    724   Constant *getPoisonedShadow(Value *V) {
    725     Type *ShadowTy = getShadowTy(V);
    726     if (!ShadowTy)
    727       return 0;
    728     return getPoisonedShadow(ShadowTy);
    729   }
    730 
    731   /// \brief Create a clean (zero) origin.
    732   Value *getCleanOrigin() {
    733     return Constant::getNullValue(MS.OriginTy);
    734   }
    735 
    736   /// \brief Get the shadow value for a given Value.
    737   ///
    738   /// This function either returns the value set earlier with setShadow,
    739   /// or extracts if from ParamTLS (for function arguments).
    740   Value *getShadow(Value *V) {
    741     if (Instruction *I = dyn_cast<Instruction>(V)) {
    742       // For instructions the shadow is already stored in the map.
    743       Value *Shadow = ShadowMap[V];
    744       if (!Shadow) {
    745         DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
    746         (void)I;
    747         assert(Shadow && "No shadow for a value");
    748       }
    749       return Shadow;
    750     }
    751     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
    752       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
    753       DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
    754       (void)U;
    755       return AllOnes;
    756     }
    757     if (Argument *A = dyn_cast<Argument>(V)) {
    758       // For arguments we compute the shadow on demand and store it in the map.
    759       Value **ShadowPtr = &ShadowMap[V];
    760       if (*ShadowPtr)
    761         return *ShadowPtr;
    762       Function *F = A->getParent();
    763       IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
    764       unsigned ArgOffset = 0;
    765       for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
    766            AI != AE; ++AI) {
    767         if (!AI->getType()->isSized()) {
    768           DEBUG(dbgs() << "Arg is not sized\n");
    769           continue;
    770         }
    771         unsigned Size = AI->hasByValAttr()
    772           ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
    773           : MS.TD->getTypeAllocSize(AI->getType());
    774         if (A == AI) {
    775           Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
    776           if (AI->hasByValAttr()) {
    777             // ByVal pointer itself has clean shadow. We copy the actual
    778             // argument shadow to the underlying memory.
    779             // Figure out maximal valid memcpy alignment.
    780             unsigned ArgAlign = AI->getParamAlignment();
    781             if (ArgAlign == 0) {
    782               Type *EltType = A->getType()->getPointerElementType();
    783               ArgAlign = MS.TD->getABITypeAlignment(EltType);
    784             }
    785             unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
    786             Value *Cpy = EntryIRB.CreateMemCpy(
    787                 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
    788                 CopyAlign);
    789             DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
    790             (void)Cpy;
    791             *ShadowPtr = getCleanShadow(V);
    792           } else {
    793             *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
    794           }
    795           DEBUG(dbgs() << "  ARG:    "  << *AI << " ==> " <<
    796                 **ShadowPtr << "\n");
    797           if (MS.TrackOrigins) {
    798             Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
    799             setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
    800           }
    801         }
    802         ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
    803       }
    804       assert(*ShadowPtr && "Could not find shadow for an argument");
    805       return *ShadowPtr;
    806     }
    807     // For everything else the shadow is zero.
    808     return getCleanShadow(V);
    809   }
    810 
    811   /// \brief Get the shadow for i-th argument of the instruction I.
    812   Value *getShadow(Instruction *I, int i) {
    813     return getShadow(I->getOperand(i));
    814   }
    815 
    816   /// \brief Get the origin for a value.
    817   Value *getOrigin(Value *V) {
    818     if (!MS.TrackOrigins) return 0;
    819     if (isa<Instruction>(V) || isa<Argument>(V)) {
    820       Value *Origin = OriginMap[V];
    821       if (!Origin) {
    822         DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
    823         Origin = getCleanOrigin();
    824       }
    825       return Origin;
    826     }
    827     return getCleanOrigin();
    828   }
    829 
    830   /// \brief Get the origin for i-th argument of the instruction I.
    831   Value *getOrigin(Instruction *I, int i) {
    832     return getOrigin(I->getOperand(i));
    833   }
    834 
    835   /// \brief Remember the place where a shadow check should be inserted.
    836   ///
    837   /// This location will be later instrumented with a check that will print a
    838   /// UMR warning in runtime if the value is not fully defined.
    839   void insertCheck(Value *Val, Instruction *OrigIns) {
    840     assert(Val);
    841     if (!InsertChecks) return;
    842     Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
    843     if (!Shadow) return;
    844 #ifndef NDEBUG
    845     Type *ShadowTy = Shadow->getType();
    846     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
    847            "Can only insert checks for integer and vector shadow types");
    848 #endif
    849     Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
    850     InstrumentationList.push_back(
    851       ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
    852   }
    853 
    854   // ------------------- Visitors.
    855 
    856   /// \brief Instrument LoadInst
    857   ///
    858   /// Loads the corresponding shadow and (optionally) origin.
    859   /// Optionally, checks that the load address is fully defined.
    860   void visitLoadInst(LoadInst &I) {
    861     assert(I.getType()->isSized() && "Load type must have size");
    862     IRBuilder<> IRB(&I);
    863     Type *ShadowTy = getShadowTy(&I);
    864     Value *Addr = I.getPointerOperand();
    865     if (LoadShadow) {
    866       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
    867       setShadow(&I,
    868                 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
    869     } else {
    870       setShadow(&I, getCleanShadow(&I));
    871     }
    872 
    873     if (ClCheckAccessAddress)
    874       insertCheck(I.getPointerOperand(), &I);
    875 
    876     if (MS.TrackOrigins) {
    877       if (LoadShadow) {
    878         unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
    879         setOrigin(&I,
    880                   IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
    881       } else {
    882         setOrigin(&I, getCleanOrigin());
    883       }
    884     }
    885   }
    886 
    887   /// \brief Instrument StoreInst
    888   ///
    889   /// Stores the corresponding shadow and (optionally) origin.
    890   /// Optionally, checks that the store address is fully defined.
    891   void visitStoreInst(StoreInst &I) {
    892     StoreList.push_back(&I);
    893   }
    894 
    895   // Vector manipulation.
    896   void visitExtractElementInst(ExtractElementInst &I) {
    897     insertCheck(I.getOperand(1), &I);
    898     IRBuilder<> IRB(&I);
    899     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
    900               "_msprop"));
    901     setOrigin(&I, getOrigin(&I, 0));
    902   }
    903 
    904   void visitInsertElementInst(InsertElementInst &I) {
    905     insertCheck(I.getOperand(2), &I);
    906     IRBuilder<> IRB(&I);
    907     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
    908               I.getOperand(2), "_msprop"));
    909     setOriginForNaryOp(I);
    910   }
    911 
    912   void visitShuffleVectorInst(ShuffleVectorInst &I) {
    913     insertCheck(I.getOperand(2), &I);
    914     IRBuilder<> IRB(&I);
    915     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
    916               I.getOperand(2), "_msprop"));
    917     setOriginForNaryOp(I);
    918   }
    919 
    920   // Casts.
    921   void visitSExtInst(SExtInst &I) {
    922     IRBuilder<> IRB(&I);
    923     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
    924     setOrigin(&I, getOrigin(&I, 0));
    925   }
    926 
    927   void visitZExtInst(ZExtInst &I) {
    928     IRBuilder<> IRB(&I);
    929     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
    930     setOrigin(&I, getOrigin(&I, 0));
    931   }
    932 
    933   void visitTruncInst(TruncInst &I) {
    934     IRBuilder<> IRB(&I);
    935     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
    936     setOrigin(&I, getOrigin(&I, 0));
    937   }
    938 
    939   void visitBitCastInst(BitCastInst &I) {
    940     IRBuilder<> IRB(&I);
    941     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
    942     setOrigin(&I, getOrigin(&I, 0));
    943   }
    944 
    945   void visitPtrToIntInst(PtrToIntInst &I) {
    946     IRBuilder<> IRB(&I);
    947     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
    948              "_msprop_ptrtoint"));
    949     setOrigin(&I, getOrigin(&I, 0));
    950   }
    951 
    952   void visitIntToPtrInst(IntToPtrInst &I) {
    953     IRBuilder<> IRB(&I);
    954     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
    955              "_msprop_inttoptr"));
    956     setOrigin(&I, getOrigin(&I, 0));
    957   }
    958 
    959   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
    960   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
    961   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
    962   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
    963   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
    964   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
    965 
    966   /// \brief Propagate shadow for bitwise AND.
    967   ///
    968   /// This code is exact, i.e. if, for example, a bit in the left argument
    969   /// is defined and 0, then neither the value not definedness of the
    970   /// corresponding bit in B don't affect the resulting shadow.
    971   void visitAnd(BinaryOperator &I) {
    972     IRBuilder<> IRB(&I);
    973     //  "And" of 0 and a poisoned value results in unpoisoned value.
    974     //  1&1 => 1;     0&1 => 0;     p&1 => p;
    975     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
    976     //  1&p => p;     0&p => 0;     p&p => p;
    977     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
    978     Value *S1 = getShadow(&I, 0);
    979     Value *S2 = getShadow(&I, 1);
    980     Value *V1 = I.getOperand(0);
    981     Value *V2 = I.getOperand(1);
    982     if (V1->getType() != S1->getType()) {
    983       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
    984       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
    985     }
    986     Value *S1S2 = IRB.CreateAnd(S1, S2);
    987     Value *V1S2 = IRB.CreateAnd(V1, S2);
    988     Value *S1V2 = IRB.CreateAnd(S1, V2);
    989     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
    990     setOriginForNaryOp(I);
    991   }
    992 
    993   void visitOr(BinaryOperator &I) {
    994     IRBuilder<> IRB(&I);
    995     //  "Or" of 1 and a poisoned value results in unpoisoned value.
    996     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
    997     //  1|0 => 1;     0|0 => 0;     p|0 => p;
    998     //  1|p => 1;     0|p => p;     p|p => p;
    999     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
   1000     Value *S1 = getShadow(&I, 0);
   1001     Value *S2 = getShadow(&I, 1);
   1002     Value *V1 = IRB.CreateNot(I.getOperand(0));
   1003     Value *V2 = IRB.CreateNot(I.getOperand(1));
   1004     if (V1->getType() != S1->getType()) {
   1005       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
   1006       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
   1007     }
   1008     Value *S1S2 = IRB.CreateAnd(S1, S2);
   1009     Value *V1S2 = IRB.CreateAnd(V1, S2);
   1010     Value *S1V2 = IRB.CreateAnd(S1, V2);
   1011     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
   1012     setOriginForNaryOp(I);
   1013   }
   1014 
   1015   /// \brief Default propagation of shadow and/or origin.
   1016   ///
   1017   /// This class implements the general case of shadow propagation, used in all
   1018   /// cases where we don't know and/or don't care about what the operation
   1019   /// actually does. It converts all input shadow values to a common type
   1020   /// (extending or truncating as necessary), and bitwise OR's them.
   1021   ///
   1022   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
   1023   /// fully initialized), and less prone to false positives.
   1024   ///
   1025   /// This class also implements the general case of origin propagation. For a
   1026   /// Nary operation, result origin is set to the origin of an argument that is
   1027   /// not entirely initialized. If there is more than one such arguments, the
   1028   /// rightmost of them is picked. It does not matter which one is picked if all
   1029   /// arguments are initialized.
   1030   template <bool CombineShadow>
   1031   class Combiner {
   1032     Value *Shadow;
   1033     Value *Origin;
   1034     IRBuilder<> &IRB;
   1035     MemorySanitizerVisitor *MSV;
   1036 
   1037   public:
   1038     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
   1039       Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
   1040 
   1041     /// \brief Add a pair of shadow and origin values to the mix.
   1042     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
   1043       if (CombineShadow) {
   1044         assert(OpShadow);
   1045         if (!Shadow)
   1046           Shadow = OpShadow;
   1047         else {
   1048           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
   1049           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
   1050         }
   1051       }
   1052 
   1053       if (MSV->MS.TrackOrigins) {
   1054         assert(OpOrigin);
   1055         if (!Origin) {
   1056           Origin = OpOrigin;
   1057         } else {
   1058           Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
   1059           Value *Cond = IRB.CreateICmpNE(FlatShadow,
   1060                                          MSV->getCleanShadow(FlatShadow));
   1061           Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
   1062         }
   1063       }
   1064       return *this;
   1065     }
   1066 
   1067     /// \brief Add an application value to the mix.
   1068     Combiner &Add(Value *V) {
   1069       Value *OpShadow = MSV->getShadow(V);
   1070       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
   1071       return Add(OpShadow, OpOrigin);
   1072     }
   1073 
   1074     /// \brief Set the current combined values as the given instruction's shadow
   1075     /// and origin.
   1076     void Done(Instruction *I) {
   1077       if (CombineShadow) {
   1078         assert(Shadow);
   1079         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
   1080         MSV->setShadow(I, Shadow);
   1081       }
   1082       if (MSV->MS.TrackOrigins) {
   1083         assert(Origin);
   1084         MSV->setOrigin(I, Origin);
   1085       }
   1086     }
   1087   };
   1088 
   1089   typedef Combiner<true> ShadowAndOriginCombiner;
   1090   typedef Combiner<false> OriginCombiner;
   1091 
   1092   /// \brief Propagate origin for arbitrary operation.
   1093   void setOriginForNaryOp(Instruction &I) {
   1094     if (!MS.TrackOrigins) return;
   1095     IRBuilder<> IRB(&I);
   1096     OriginCombiner OC(this, IRB);
   1097     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
   1098       OC.Add(OI->get());
   1099     OC.Done(&I);
   1100   }
   1101 
   1102   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
   1103     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
   1104            "Vector of pointers is not a valid shadow type");
   1105     return Ty->isVectorTy() ?
   1106       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
   1107       Ty->getPrimitiveSizeInBits();
   1108   }
   1109 
   1110   /// \brief Cast between two shadow types, extending or truncating as
   1111   /// necessary.
   1112   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
   1113     Type *srcTy = V->getType();
   1114     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
   1115       return IRB.CreateIntCast(V, dstTy, false);
   1116     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
   1117         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
   1118       return IRB.CreateIntCast(V, dstTy, false);
   1119     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
   1120     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
   1121     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
   1122     Value *V2 =
   1123       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
   1124     return IRB.CreateBitCast(V2, dstTy);
   1125     // TODO: handle struct types.
   1126   }
   1127 
   1128   /// \brief Propagate shadow for arbitrary operation.
   1129   void handleShadowOr(Instruction &I) {
   1130     IRBuilder<> IRB(&I);
   1131     ShadowAndOriginCombiner SC(this, IRB);
   1132     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
   1133       SC.Add(OI->get());
   1134     SC.Done(&I);
   1135   }
   1136 
   1137   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
   1138   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
   1139   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
   1140   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
   1141   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
   1142   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
   1143   void visitMul(BinaryOperator &I) { handleShadowOr(I); }
   1144 
   1145   void handleDiv(Instruction &I) {
   1146     IRBuilder<> IRB(&I);
   1147     // Strict on the second argument.
   1148     insertCheck(I.getOperand(1), &I);
   1149     setShadow(&I, getShadow(&I, 0));
   1150     setOrigin(&I, getOrigin(&I, 0));
   1151   }
   1152 
   1153   void visitUDiv(BinaryOperator &I) { handleDiv(I); }
   1154   void visitSDiv(BinaryOperator &I) { handleDiv(I); }
   1155   void visitFDiv(BinaryOperator &I) { handleDiv(I); }
   1156   void visitURem(BinaryOperator &I) { handleDiv(I); }
   1157   void visitSRem(BinaryOperator &I) { handleDiv(I); }
   1158   void visitFRem(BinaryOperator &I) { handleDiv(I); }
   1159 
   1160   /// \brief Instrument == and != comparisons.
   1161   ///
   1162   /// Sometimes the comparison result is known even if some of the bits of the
   1163   /// arguments are not.
   1164   void handleEqualityComparison(ICmpInst &I) {
   1165     IRBuilder<> IRB(&I);
   1166     Value *A = I.getOperand(0);
   1167     Value *B = I.getOperand(1);
   1168     Value *Sa = getShadow(A);
   1169     Value *Sb = getShadow(B);
   1170 
   1171     // Get rid of pointers and vectors of pointers.
   1172     // For ints (and vectors of ints), types of A and Sa match,
   1173     // and this is a no-op.
   1174     A = IRB.CreatePointerCast(A, Sa->getType());
   1175     B = IRB.CreatePointerCast(B, Sb->getType());
   1176 
   1177     // A == B  <==>  (C = A^B) == 0
   1178     // A != B  <==>  (C = A^B) != 0
   1179     // Sc = Sa | Sb
   1180     Value *C = IRB.CreateXor(A, B);
   1181     Value *Sc = IRB.CreateOr(Sa, Sb);
   1182     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
   1183     // Result is defined if one of the following is true
   1184     // * there is a defined 1 bit in C
   1185     // * C is fully defined
   1186     // Si = !(C & ~Sc) && Sc
   1187     Value *Zero = Constant::getNullValue(Sc->getType());
   1188     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
   1189     Value *Si =
   1190       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
   1191                     IRB.CreateICmpEQ(
   1192                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
   1193     Si->setName("_msprop_icmp");
   1194     setShadow(&I, Si);
   1195     setOriginForNaryOp(I);
   1196   }
   1197 
   1198   /// \brief Build the lowest possible value of V, taking into account V's
   1199   ///        uninitialized bits.
   1200   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
   1201                                 bool isSigned) {
   1202     if (isSigned) {
   1203       // Split shadow into sign bit and other bits.
   1204       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
   1205       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
   1206       // Maximise the undefined shadow bit, minimize other undefined bits.
   1207       return
   1208         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
   1209     } else {
   1210       // Minimize undefined bits.
   1211       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
   1212     }
   1213   }
   1214 
   1215   /// \brief Build the highest possible value of V, taking into account V's
   1216   ///        uninitialized bits.
   1217   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
   1218                                 bool isSigned) {
   1219     if (isSigned) {
   1220       // Split shadow into sign bit and other bits.
   1221       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
   1222       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
   1223       // Minimise the undefined shadow bit, maximise other undefined bits.
   1224       return
   1225         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
   1226     } else {
   1227       // Maximize undefined bits.
   1228       return IRB.CreateOr(A, Sa);
   1229     }
   1230   }
   1231 
   1232   /// \brief Instrument relational comparisons.
   1233   ///
   1234   /// This function does exact shadow propagation for all relational
   1235   /// comparisons of integers, pointers and vectors of those.
   1236   /// FIXME: output seems suboptimal when one of the operands is a constant
   1237   void handleRelationalComparisonExact(ICmpInst &I) {
   1238     IRBuilder<> IRB(&I);
   1239     Value *A = I.getOperand(0);
   1240     Value *B = I.getOperand(1);
   1241     Value *Sa = getShadow(A);
   1242     Value *Sb = getShadow(B);
   1243 
   1244     // Get rid of pointers and vectors of pointers.
   1245     // For ints (and vectors of ints), types of A and Sa match,
   1246     // and this is a no-op.
   1247     A = IRB.CreatePointerCast(A, Sa->getType());
   1248     B = IRB.CreatePointerCast(B, Sb->getType());
   1249 
   1250     // Let [a0, a1] be the interval of possible values of A, taking into account
   1251     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
   1252     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
   1253     bool IsSigned = I.isSigned();
   1254     Value *S1 = IRB.CreateICmp(I.getPredicate(),
   1255                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
   1256                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
   1257     Value *S2 = IRB.CreateICmp(I.getPredicate(),
   1258                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
   1259                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
   1260     Value *Si = IRB.CreateXor(S1, S2);
   1261     setShadow(&I, Si);
   1262     setOriginForNaryOp(I);
   1263   }
   1264 
   1265   /// \brief Instrument signed relational comparisons.
   1266   ///
   1267   /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
   1268   /// propagating the highest bit of the shadow. Everything else is delegated
   1269   /// to handleShadowOr().
   1270   void handleSignedRelationalComparison(ICmpInst &I) {
   1271     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
   1272     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
   1273     Value* op = NULL;
   1274     CmpInst::Predicate pre = I.getPredicate();
   1275     if (constOp0 && constOp0->isNullValue() &&
   1276         (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
   1277       op = I.getOperand(1);
   1278     } else if (constOp1 && constOp1->isNullValue() &&
   1279                (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
   1280       op = I.getOperand(0);
   1281     }
   1282     if (op) {
   1283       IRBuilder<> IRB(&I);
   1284       Value* Shadow =
   1285         IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
   1286       setShadow(&I, Shadow);
   1287       setOrigin(&I, getOrigin(op));
   1288     } else {
   1289       handleShadowOr(I);
   1290     }
   1291   }
   1292 
   1293   void visitICmpInst(ICmpInst &I) {
   1294     if (!ClHandleICmp) {
   1295       handleShadowOr(I);
   1296       return;
   1297     }
   1298     if (I.isEquality()) {
   1299       handleEqualityComparison(I);
   1300       return;
   1301     }
   1302 
   1303     assert(I.isRelational());
   1304     if (ClHandleICmpExact) {
   1305       handleRelationalComparisonExact(I);
   1306       return;
   1307     }
   1308     if (I.isSigned()) {
   1309       handleSignedRelationalComparison(I);
   1310       return;
   1311     }
   1312 
   1313     assert(I.isUnsigned());
   1314     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
   1315       handleRelationalComparisonExact(I);
   1316       return;
   1317     }
   1318 
   1319     handleShadowOr(I);
   1320   }
   1321 
   1322   void visitFCmpInst(FCmpInst &I) {
   1323     handleShadowOr(I);
   1324   }
   1325 
   1326   void handleShift(BinaryOperator &I) {
   1327     IRBuilder<> IRB(&I);
   1328     // If any of the S2 bits are poisoned, the whole thing is poisoned.
   1329     // Otherwise perform the same shift on S1.
   1330     Value *S1 = getShadow(&I, 0);
   1331     Value *S2 = getShadow(&I, 1);
   1332     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
   1333                                    S2->getType());
   1334     Value *V2 = I.getOperand(1);
   1335     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
   1336     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
   1337     setOriginForNaryOp(I);
   1338   }
   1339 
   1340   void visitShl(BinaryOperator &I) { handleShift(I); }
   1341   void visitAShr(BinaryOperator &I) { handleShift(I); }
   1342   void visitLShr(BinaryOperator &I) { handleShift(I); }
   1343 
   1344   /// \brief Instrument llvm.memmove
   1345   ///
   1346   /// At this point we don't know if llvm.memmove will be inlined or not.
   1347   /// If we don't instrument it and it gets inlined,
   1348   /// our interceptor will not kick in and we will lose the memmove.
   1349   /// If we instrument the call here, but it does not get inlined,
   1350   /// we will memove the shadow twice: which is bad in case
   1351   /// of overlapping regions. So, we simply lower the intrinsic to a call.
   1352   ///
   1353   /// Similar situation exists for memcpy and memset.
   1354   void visitMemMoveInst(MemMoveInst &I) {
   1355     IRBuilder<> IRB(&I);
   1356     IRB.CreateCall3(
   1357       MS.MemmoveFn,
   1358       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1359       IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
   1360       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
   1361     I.eraseFromParent();
   1362   }
   1363 
   1364   // Similar to memmove: avoid copying shadow twice.
   1365   // This is somewhat unfortunate as it may slowdown small constant memcpys.
   1366   // FIXME: consider doing manual inline for small constant sizes and proper
   1367   // alignment.
   1368   void visitMemCpyInst(MemCpyInst &I) {
   1369     IRBuilder<> IRB(&I);
   1370     IRB.CreateCall3(
   1371       MS.MemcpyFn,
   1372       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1373       IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
   1374       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
   1375     I.eraseFromParent();
   1376   }
   1377 
   1378   // Same as memcpy.
   1379   void visitMemSetInst(MemSetInst &I) {
   1380     IRBuilder<> IRB(&I);
   1381     IRB.CreateCall3(
   1382       MS.MemsetFn,
   1383       IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
   1384       IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
   1385       IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
   1386     I.eraseFromParent();
   1387   }
   1388 
   1389   void visitVAStartInst(VAStartInst &I) {
   1390     VAHelper->visitVAStartInst(I);
   1391   }
   1392 
   1393   void visitVACopyInst(VACopyInst &I) {
   1394     VAHelper->visitVACopyInst(I);
   1395   }
   1396 
   1397   enum IntrinsicKind {
   1398     IK_DoesNotAccessMemory,
   1399     IK_OnlyReadsMemory,
   1400     IK_WritesMemory
   1401   };
   1402 
   1403   static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
   1404     const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
   1405     const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
   1406     const int OnlyReadsMemory = IK_OnlyReadsMemory;
   1407     const int OnlyAccessesArgumentPointees = IK_WritesMemory;
   1408     const int UnknownModRefBehavior = IK_WritesMemory;
   1409 #define GET_INTRINSIC_MODREF_BEHAVIOR
   1410 #define ModRefBehavior IntrinsicKind
   1411 #include "llvm/IR/Intrinsics.gen"
   1412 #undef ModRefBehavior
   1413 #undef GET_INTRINSIC_MODREF_BEHAVIOR
   1414   }
   1415 
   1416   /// \brief Handle vector store-like intrinsics.
   1417   ///
   1418   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
   1419   /// has 1 pointer argument and 1 vector argument, returns void.
   1420   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
   1421     IRBuilder<> IRB(&I);
   1422     Value* Addr = I.getArgOperand(0);
   1423     Value *Shadow = getShadow(&I, 1);
   1424     Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
   1425 
   1426     // We don't know the pointer alignment (could be unaligned SSE store!).
   1427     // Have to assume to worst case.
   1428     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
   1429 
   1430     if (ClCheckAccessAddress)
   1431       insertCheck(Addr, &I);
   1432 
   1433     // FIXME: use ClStoreCleanOrigin
   1434     // FIXME: factor out common code from materializeStores
   1435     if (MS.TrackOrigins)
   1436       IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
   1437     return true;
   1438   }
   1439 
   1440   /// \brief Handle vector load-like intrinsics.
   1441   ///
   1442   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
   1443   /// has 1 pointer argument, returns a vector.
   1444   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
   1445     IRBuilder<> IRB(&I);
   1446     Value *Addr = I.getArgOperand(0);
   1447 
   1448     Type *ShadowTy = getShadowTy(&I);
   1449     if (LoadShadow) {
   1450       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
   1451       // We don't know the pointer alignment (could be unaligned SSE load!).
   1452       // Have to assume to worst case.
   1453       setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
   1454     } else {
   1455       setShadow(&I, getCleanShadow(&I));
   1456     }
   1457 
   1458 
   1459     if (ClCheckAccessAddress)
   1460       insertCheck(Addr, &I);
   1461 
   1462     if (MS.TrackOrigins) {
   1463       if (LoadShadow)
   1464         setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
   1465       else
   1466         setOrigin(&I, getCleanOrigin());
   1467     }
   1468     return true;
   1469   }
   1470 
   1471   /// \brief Handle (SIMD arithmetic)-like intrinsics.
   1472   ///
   1473   /// Instrument intrinsics with any number of arguments of the same type,
   1474   /// equal to the return type. The type should be simple (no aggregates or
   1475   /// pointers; vectors are fine).
   1476   /// Caller guarantees that this intrinsic does not access memory.
   1477   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
   1478     Type *RetTy = I.getType();
   1479     if (!(RetTy->isIntOrIntVectorTy() ||
   1480           RetTy->isFPOrFPVectorTy() ||
   1481           RetTy->isX86_MMXTy()))
   1482       return false;
   1483 
   1484     unsigned NumArgOperands = I.getNumArgOperands();
   1485 
   1486     for (unsigned i = 0; i < NumArgOperands; ++i) {
   1487       Type *Ty = I.getArgOperand(i)->getType();
   1488       if (Ty != RetTy)
   1489         return false;
   1490     }
   1491 
   1492     IRBuilder<> IRB(&I);
   1493     ShadowAndOriginCombiner SC(this, IRB);
   1494     for (unsigned i = 0; i < NumArgOperands; ++i)
   1495       SC.Add(I.getArgOperand(i));
   1496     SC.Done(&I);
   1497 
   1498     return true;
   1499   }
   1500 
   1501   /// \brief Heuristically instrument unknown intrinsics.
   1502   ///
   1503   /// The main purpose of this code is to do something reasonable with all
   1504   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
   1505   /// We recognize several classes of intrinsics by their argument types and
   1506   /// ModRefBehaviour and apply special intrumentation when we are reasonably
   1507   /// sure that we know what the intrinsic does.
   1508   ///
   1509   /// We special-case intrinsics where this approach fails. See llvm.bswap
   1510   /// handling as an example of that.
   1511   bool handleUnknownIntrinsic(IntrinsicInst &I) {
   1512     unsigned NumArgOperands = I.getNumArgOperands();
   1513     if (NumArgOperands == 0)
   1514       return false;
   1515 
   1516     Intrinsic::ID iid = I.getIntrinsicID();
   1517     IntrinsicKind IK = getIntrinsicKind(iid);
   1518     bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
   1519     bool WritesMemory = IK == IK_WritesMemory;
   1520     assert(!(OnlyReadsMemory && WritesMemory));
   1521 
   1522     if (NumArgOperands == 2 &&
   1523         I.getArgOperand(0)->getType()->isPointerTy() &&
   1524         I.getArgOperand(1)->getType()->isVectorTy() &&
   1525         I.getType()->isVoidTy() &&
   1526         WritesMemory) {
   1527       // This looks like a vector store.
   1528       return handleVectorStoreIntrinsic(I);
   1529     }
   1530 
   1531     if (NumArgOperands == 1 &&
   1532         I.getArgOperand(0)->getType()->isPointerTy() &&
   1533         I.getType()->isVectorTy() &&
   1534         OnlyReadsMemory) {
   1535       // This looks like a vector load.
   1536       return handleVectorLoadIntrinsic(I);
   1537     }
   1538 
   1539     if (!OnlyReadsMemory && !WritesMemory)
   1540       if (maybeHandleSimpleNomemIntrinsic(I))
   1541         return true;
   1542 
   1543     // FIXME: detect and handle SSE maskstore/maskload
   1544     return false;
   1545   }
   1546 
   1547   void handleBswap(IntrinsicInst &I) {
   1548     IRBuilder<> IRB(&I);
   1549     Value *Op = I.getArgOperand(0);
   1550     Type *OpType = Op->getType();
   1551     Function *BswapFunc = Intrinsic::getDeclaration(
   1552       F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
   1553     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
   1554     setOrigin(&I, getOrigin(Op));
   1555   }
   1556 
   1557   void visitIntrinsicInst(IntrinsicInst &I) {
   1558     switch (I.getIntrinsicID()) {
   1559     case llvm::Intrinsic::bswap:
   1560       handleBswap(I);
   1561       break;
   1562     default:
   1563       if (!handleUnknownIntrinsic(I))
   1564         visitInstruction(I);
   1565       break;
   1566     }
   1567   }
   1568 
   1569   void visitCallSite(CallSite CS) {
   1570     Instruction &I = *CS.getInstruction();
   1571     assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
   1572     if (CS.isCall()) {
   1573       CallInst *Call = cast<CallInst>(&I);
   1574 
   1575       // For inline asm, do the usual thing: check argument shadow and mark all
   1576       // outputs as clean. Note that any side effects of the inline asm that are
   1577       // not immediately visible in its constraints are not handled.
   1578       if (Call->isInlineAsm()) {
   1579         visitInstruction(I);
   1580         return;
   1581       }
   1582 
   1583       // Allow only tail calls with the same types, otherwise
   1584       // we may have a false positive: shadow for a non-void RetVal
   1585       // will get propagated to a void RetVal.
   1586       if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
   1587         Call->setTailCall(false);
   1588 
   1589       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
   1590 
   1591       // We are going to insert code that relies on the fact that the callee
   1592       // will become a non-readonly function after it is instrumented by us. To
   1593       // prevent this code from being optimized out, mark that function
   1594       // non-readonly in advance.
   1595       if (Function *Func = Call->getCalledFunction()) {
   1596         // Clear out readonly/readnone attributes.
   1597         AttrBuilder B;
   1598         B.addAttribute(Attribute::ReadOnly)
   1599           .addAttribute(Attribute::ReadNone);
   1600         Func->removeAttributes(AttributeSet::FunctionIndex,
   1601                                AttributeSet::get(Func->getContext(),
   1602                                                  AttributeSet::FunctionIndex,
   1603                                                  B));
   1604       }
   1605     }
   1606     IRBuilder<> IRB(&I);
   1607     unsigned ArgOffset = 0;
   1608     DEBUG(dbgs() << "  CallSite: " << I << "\n");
   1609     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
   1610          ArgIt != End; ++ArgIt) {
   1611       Value *A = *ArgIt;
   1612       unsigned i = ArgIt - CS.arg_begin();
   1613       if (!A->getType()->isSized()) {
   1614         DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
   1615         continue;
   1616       }
   1617       unsigned Size = 0;
   1618       Value *Store = 0;
   1619       // Compute the Shadow for arg even if it is ByVal, because
   1620       // in that case getShadow() will copy the actual arg shadow to
   1621       // __msan_param_tls.
   1622       Value *ArgShadow = getShadow(A);
   1623       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
   1624       DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
   1625             " Shadow: " << *ArgShadow << "\n");
   1626       if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
   1627         assert(A->getType()->isPointerTy() &&
   1628                "ByVal argument is not a pointer!");
   1629         Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
   1630         unsigned Alignment = CS.getParamAlignment(i + 1);
   1631         Store = IRB.CreateMemCpy(ArgShadowBase,
   1632                                  getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
   1633                                  Size, Alignment);
   1634       } else {
   1635         Size = MS.TD->getTypeAllocSize(A->getType());
   1636         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
   1637                                        kShadowTLSAlignment);
   1638       }
   1639       if (MS.TrackOrigins)
   1640         IRB.CreateStore(getOrigin(A),
   1641                         getOriginPtrForArgument(A, IRB, ArgOffset));
   1642       (void)Store;
   1643       assert(Size != 0 && Store != 0);
   1644       DEBUG(dbgs() << "  Param:" << *Store << "\n");
   1645       ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
   1646     }
   1647     DEBUG(dbgs() << "  done with call args\n");
   1648 
   1649     FunctionType *FT =
   1650       cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
   1651     if (FT->isVarArg()) {
   1652       VAHelper->visitCallSite(CS, IRB);
   1653     }
   1654 
   1655     // Now, get the shadow for the RetVal.
   1656     if (!I.getType()->isSized()) return;
   1657     IRBuilder<> IRBBefore(&I);
   1658     // Untill we have full dynamic coverage, make sure the retval shadow is 0.
   1659     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
   1660     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
   1661     Instruction *NextInsn = 0;
   1662     if (CS.isCall()) {
   1663       NextInsn = I.getNextNode();
   1664     } else {
   1665       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
   1666       if (!NormalDest->getSinglePredecessor()) {
   1667         // FIXME: this case is tricky, so we are just conservative here.
   1668         // Perhaps we need to split the edge between this BB and NormalDest,
   1669         // but a naive attempt to use SplitEdge leads to a crash.
   1670         setShadow(&I, getCleanShadow(&I));
   1671         setOrigin(&I, getCleanOrigin());
   1672         return;
   1673       }
   1674       NextInsn = NormalDest->getFirstInsertionPt();
   1675       assert(NextInsn &&
   1676              "Could not find insertion point for retval shadow load");
   1677     }
   1678     IRBuilder<> IRBAfter(NextInsn);
   1679     Value *RetvalShadow =
   1680       IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
   1681                                  kShadowTLSAlignment, "_msret");
   1682     setShadow(&I, RetvalShadow);
   1683     if (MS.TrackOrigins)
   1684       setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
   1685   }
   1686 
   1687   void visitReturnInst(ReturnInst &I) {
   1688     IRBuilder<> IRB(&I);
   1689     if (Value *RetVal = I.getReturnValue()) {
   1690       // Set the shadow for the RetVal.
   1691       Value *Shadow = getShadow(RetVal);
   1692       Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
   1693       DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
   1694       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
   1695       if (MS.TrackOrigins)
   1696         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
   1697     }
   1698   }
   1699 
   1700   void visitPHINode(PHINode &I) {
   1701     IRBuilder<> IRB(&I);
   1702     ShadowPHINodes.push_back(&I);
   1703     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
   1704                                 "_msphi_s"));
   1705     if (MS.TrackOrigins)
   1706       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
   1707                                   "_msphi_o"));
   1708   }
   1709 
   1710   void visitAllocaInst(AllocaInst &I) {
   1711     setShadow(&I, getCleanShadow(&I));
   1712     IRBuilder<> IRB(I.getNextNode());
   1713     uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
   1714     if (PoisonStack && ClPoisonStackWithCall) {
   1715       IRB.CreateCall2(MS.MsanPoisonStackFn,
   1716                       IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
   1717                       ConstantInt::get(MS.IntptrTy, Size));
   1718     } else {
   1719       Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
   1720       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
   1721       IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
   1722     }
   1723 
   1724     if (PoisonStack && MS.TrackOrigins) {
   1725       setOrigin(&I, getCleanOrigin());
   1726       SmallString<2048> StackDescriptionStorage;
   1727       raw_svector_ostream StackDescription(StackDescriptionStorage);
   1728       // We create a string with a description of the stack allocation and
   1729       // pass it into __msan_set_alloca_origin.
   1730       // It will be printed by the run-time if stack-originated UMR is found.
   1731       // The first 4 bytes of the string are set to '----' and will be replaced
   1732       // by __msan_va_arg_overflow_size_tls at the first call.
   1733       StackDescription << "----" << I.getName() << "@" << F.getName();
   1734       Value *Descr =
   1735           createPrivateNonConstGlobalForString(*F.getParent(),
   1736                                                StackDescription.str());
   1737       IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
   1738                       IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
   1739                       ConstantInt::get(MS.IntptrTy, Size),
   1740                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
   1741     }
   1742   }
   1743 
   1744   void visitSelectInst(SelectInst& I) {
   1745     IRBuilder<> IRB(&I);
   1746     setShadow(&I,  IRB.CreateSelect(I.getCondition(),
   1747               getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
   1748               "_msprop"));
   1749     if (MS.TrackOrigins) {
   1750       // Origins are always i32, so any vector conditions must be flattened.
   1751       // FIXME: consider tracking vector origins for app vectors?
   1752       Value *Cond = I.getCondition();
   1753       if (Cond->getType()->isVectorTy()) {
   1754         Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
   1755         Cond = IRB.CreateICmpNE(ConvertedShadow,
   1756                                 getCleanShadow(ConvertedShadow), "_mso_select");
   1757       }
   1758       setOrigin(&I, IRB.CreateSelect(Cond,
   1759                 getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
   1760     }
   1761   }
   1762 
   1763   void visitLandingPadInst(LandingPadInst &I) {
   1764     // Do nothing.
   1765     // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
   1766     setShadow(&I, getCleanShadow(&I));
   1767     setOrigin(&I, getCleanOrigin());
   1768   }
   1769 
   1770   void visitGetElementPtrInst(GetElementPtrInst &I) {
   1771     handleShadowOr(I);
   1772   }
   1773 
   1774   void visitExtractValueInst(ExtractValueInst &I) {
   1775     IRBuilder<> IRB(&I);
   1776     Value *Agg = I.getAggregateOperand();
   1777     DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
   1778     Value *AggShadow = getShadow(Agg);
   1779     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
   1780     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
   1781     DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
   1782     setShadow(&I, ResShadow);
   1783     setOrigin(&I, getCleanOrigin());
   1784   }
   1785 
   1786   void visitInsertValueInst(InsertValueInst &I) {
   1787     IRBuilder<> IRB(&I);
   1788     DEBUG(dbgs() << "InsertValue:  " << I << "\n");
   1789     Value *AggShadow = getShadow(I.getAggregateOperand());
   1790     Value *InsShadow = getShadow(I.getInsertedValueOperand());
   1791     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
   1792     DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
   1793     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
   1794     DEBUG(dbgs() << "   Res:        " << *Res << "\n");
   1795     setShadow(&I, Res);
   1796     setOrigin(&I, getCleanOrigin());
   1797   }
   1798 
   1799   void dumpInst(Instruction &I) {
   1800     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
   1801       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
   1802     } else {
   1803       errs() << "ZZZ " << I.getOpcodeName() << "\n";
   1804     }
   1805     errs() << "QQQ " << I << "\n";
   1806   }
   1807 
   1808   void visitResumeInst(ResumeInst &I) {
   1809     DEBUG(dbgs() << "Resume: " << I << "\n");
   1810     // Nothing to do here.
   1811   }
   1812 
   1813   void visitInstruction(Instruction &I) {
   1814     // Everything else: stop propagating and check for poisoned shadow.
   1815     if (ClDumpStrictInstructions)
   1816       dumpInst(I);
   1817     DEBUG(dbgs() << "DEFAULT: " << I << "\n");
   1818     for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
   1819       insertCheck(I.getOperand(i), &I);
   1820     setShadow(&I, getCleanShadow(&I));
   1821     setOrigin(&I, getCleanOrigin());
   1822   }
   1823 };
   1824 
   1825 /// \brief AMD64-specific implementation of VarArgHelper.
   1826 struct VarArgAMD64Helper : public VarArgHelper {
   1827   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
   1828   // See a comment in visitCallSite for more details.
   1829   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
   1830   static const unsigned AMD64FpEndOffset = 176;
   1831 
   1832   Function &F;
   1833   MemorySanitizer &MS;
   1834   MemorySanitizerVisitor &MSV;
   1835   Value *VAArgTLSCopy;
   1836   Value *VAArgOverflowSize;
   1837 
   1838   SmallVector<CallInst*, 16> VAStartInstrumentationList;
   1839 
   1840   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
   1841                     MemorySanitizerVisitor &MSV)
   1842     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
   1843 
   1844   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
   1845 
   1846   ArgKind classifyArgument(Value* arg) {
   1847     // A very rough approximation of X86_64 argument classification rules.
   1848     Type *T = arg->getType();
   1849     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
   1850       return AK_FloatingPoint;
   1851     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
   1852       return AK_GeneralPurpose;
   1853     if (T->isPointerTy())
   1854       return AK_GeneralPurpose;
   1855     return AK_Memory;
   1856   }
   1857 
   1858   // For VarArg functions, store the argument shadow in an ABI-specific format
   1859   // that corresponds to va_list layout.
   1860   // We do this because Clang lowers va_arg in the frontend, and this pass
   1861   // only sees the low level code that deals with va_list internals.
   1862   // A much easier alternative (provided that Clang emits va_arg instructions)
   1863   // would have been to associate each live instance of va_list with a copy of
   1864   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
   1865   // order.
   1866   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
   1867     unsigned GpOffset = 0;
   1868     unsigned FpOffset = AMD64GpEndOffset;
   1869     unsigned OverflowOffset = AMD64FpEndOffset;
   1870     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
   1871          ArgIt != End; ++ArgIt) {
   1872       Value *A = *ArgIt;
   1873       ArgKind AK = classifyArgument(A);
   1874       if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
   1875         AK = AK_Memory;
   1876       if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
   1877         AK = AK_Memory;
   1878       Value *Base;
   1879       switch (AK) {
   1880       case AK_GeneralPurpose:
   1881         Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
   1882         GpOffset += 8;
   1883         break;
   1884       case AK_FloatingPoint:
   1885         Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
   1886         FpOffset += 16;
   1887         break;
   1888       case AK_Memory:
   1889         uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
   1890         Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
   1891         OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
   1892       }
   1893       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
   1894     }
   1895     Constant *OverflowSize =
   1896       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
   1897     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
   1898   }
   1899 
   1900   /// \brief Compute the shadow address for a given va_arg.
   1901   Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
   1902                                    int ArgOffset) {
   1903     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
   1904     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
   1905     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
   1906                               "_msarg");
   1907   }
   1908 
   1909   void visitVAStartInst(VAStartInst &I) {
   1910     IRBuilder<> IRB(&I);
   1911     VAStartInstrumentationList.push_back(&I);
   1912     Value *VAListTag = I.getArgOperand(0);
   1913     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   1914 
   1915     // Unpoison the whole __va_list_tag.
   1916     // FIXME: magic ABI constants.
   1917     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   1918                      /* size */24, /* alignment */8, false);
   1919   }
   1920 
   1921   void visitVACopyInst(VACopyInst &I) {
   1922     IRBuilder<> IRB(&I);
   1923     Value *VAListTag = I.getArgOperand(0);
   1924     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
   1925 
   1926     // Unpoison the whole __va_list_tag.
   1927     // FIXME: magic ABI constants.
   1928     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
   1929                      /* size */24, /* alignment */8, false);
   1930   }
   1931 
   1932   void finalizeInstrumentation() {
   1933     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
   1934            "finalizeInstrumentation called twice");
   1935     if (!VAStartInstrumentationList.empty()) {
   1936       // If there is a va_start in this function, make a backup copy of
   1937       // va_arg_tls somewhere in the function entry block.
   1938       IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
   1939       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
   1940       Value *CopySize =
   1941         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
   1942                       VAArgOverflowSize);
   1943       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
   1944       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
   1945     }
   1946 
   1947     // Instrument va_start.
   1948     // Copy va_list shadow from the backup copy of the TLS contents.
   1949     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
   1950       CallInst *OrigInst = VAStartInstrumentationList[i];
   1951       IRBuilder<> IRB(OrigInst->getNextNode());
   1952       Value *VAListTag = OrigInst->getArgOperand(0);
   1953 
   1954       Value *RegSaveAreaPtrPtr =
   1955         IRB.CreateIntToPtr(
   1956           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   1957                         ConstantInt::get(MS.IntptrTy, 16)),
   1958           Type::getInt64PtrTy(*MS.C));
   1959       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
   1960       Value *RegSaveAreaShadowPtr =
   1961         MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
   1962       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
   1963                        AMD64FpEndOffset, 16);
   1964 
   1965       Value *OverflowArgAreaPtrPtr =
   1966         IRB.CreateIntToPtr(
   1967           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
   1968                         ConstantInt::get(MS.IntptrTy, 8)),
   1969           Type::getInt64PtrTy(*MS.C));
   1970       Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
   1971       Value *OverflowArgAreaShadowPtr =
   1972         MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
   1973       Value *SrcPtr =
   1974         getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
   1975       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
   1976     }
   1977   }
   1978 };
   1979 
   1980 /// \brief A no-op implementation of VarArgHelper.
   1981 struct VarArgNoOpHelper : public VarArgHelper {
   1982   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
   1983                    MemorySanitizerVisitor &MSV) {}
   1984 
   1985   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {}
   1986 
   1987   void visitVAStartInst(VAStartInst &I) {}
   1988 
   1989   void visitVACopyInst(VACopyInst &I) {}
   1990 
   1991   void finalizeInstrumentation() {}
   1992 };
   1993 
   1994 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
   1995                                  MemorySanitizerVisitor &Visitor) {
   1996   // VarArg handling is only implemented on AMD64. False positives are possible
   1997   // on other platforms.
   1998   llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
   1999   if (TargetTriple.getArch() == llvm::Triple::x86_64)
   2000     return new VarArgAMD64Helper(Func, Msan, Visitor);
   2001   else
   2002     return new VarArgNoOpHelper(Func, Msan, Visitor);
   2003 }
   2004 
   2005 }  // namespace
   2006 
   2007 bool MemorySanitizer::runOnFunction(Function &F) {
   2008   MemorySanitizerVisitor Visitor(F, *this);
   2009 
   2010   // Clear out readonly/readnone attributes.
   2011   AttrBuilder B;
   2012   B.addAttribute(Attribute::ReadOnly)
   2013     .addAttribute(Attribute::ReadNone);
   2014   F.removeAttributes(AttributeSet::FunctionIndex,
   2015                      AttributeSet::get(F.getContext(),
   2016                                        AttributeSet::FunctionIndex, B));
   2017 
   2018   return Visitor.runOnFunction();
   2019 }
   2020