Home | History | Annotate | Download | only in ARM
      1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a printer that converts from our internal representation
     11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "asm-printer"
     16 #include "ARMAsmPrinter.h"
     17 #include "ARM.h"
     18 #include "ARMBuildAttrs.h"
     19 #include "ARMConstantPoolValue.h"
     20 #include "ARMMachineFunctionInfo.h"
     21 #include "ARMTargetMachine.h"
     22 #include "ARMTargetObjectFile.h"
     23 #include "InstPrinter/ARMInstPrinter.h"
     24 #include "MCTargetDesc/ARMAddressingModes.h"
     25 #include "MCTargetDesc/ARMMCExpr.h"
     26 #include "llvm/ADT/SetVector.h"
     27 #include "llvm/ADT/SmallString.h"
     28 #include "llvm/Assembly/Writer.h"
     29 #include "llvm/CodeGen/MachineFunctionPass.h"
     30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     31 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     32 #include "llvm/DebugInfo.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DataLayout.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Type.h"
     37 #include "llvm/MC/MCAsmInfo.h"
     38 #include "llvm/MC/MCAssembler.h"
     39 #include "llvm/MC/MCContext.h"
     40 #include "llvm/MC/MCELFStreamer.h"
     41 #include "llvm/MC/MCInst.h"
     42 #include "llvm/MC/MCInstBuilder.h"
     43 #include "llvm/MC/MCObjectStreamer.h"
     44 #include "llvm/MC/MCSectionMachO.h"
     45 #include "llvm/MC/MCStreamer.h"
     46 #include "llvm/MC/MCSymbol.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/ELF.h"
     50 #include "llvm/Support/ErrorHandling.h"
     51 #include "llvm/Support/TargetRegistry.h"
     52 #include "llvm/Support/raw_ostream.h"
     53 #include "llvm/Target/Mangler.h"
     54 #include "llvm/Target/TargetMachine.h"
     55 #include <cctype>
     56 using namespace llvm;
     57 
     58 namespace {
     59 
     60   // Per section and per symbol attributes are not supported.
     61   // To implement them we would need the ability to delay this emission
     62   // until the assembly file is fully parsed/generated as only then do we
     63   // know the symbol and section numbers.
     64   class AttributeEmitter {
     65   public:
     66     virtual void MaybeSwitchVendor(StringRef Vendor) = 0;
     67     virtual void EmitAttribute(unsigned Attribute, unsigned Value) = 0;
     68     virtual void EmitTextAttribute(unsigned Attribute, StringRef String) = 0;
     69     virtual void Finish() = 0;
     70     virtual ~AttributeEmitter() {}
     71   };
     72 
     73   class AsmAttributeEmitter : public AttributeEmitter {
     74     MCStreamer &Streamer;
     75 
     76   public:
     77     AsmAttributeEmitter(MCStreamer &Streamer_) : Streamer(Streamer_) {}
     78     void MaybeSwitchVendor(StringRef Vendor) { }
     79 
     80     void EmitAttribute(unsigned Attribute, unsigned Value) {
     81       Streamer.EmitRawText("\t.eabi_attribute " +
     82                            Twine(Attribute) + ", " + Twine(Value));
     83     }
     84 
     85     void EmitTextAttribute(unsigned Attribute, StringRef String) {
     86       switch (Attribute) {
     87       default: llvm_unreachable("Unsupported Text attribute in ASM Mode");
     88       case ARMBuildAttrs::CPU_name:
     89         Streamer.EmitRawText(StringRef("\t.cpu ") + String.lower());
     90         break;
     91       /* GAS requires .fpu to be emitted regardless of EABI attribute */
     92       case ARMBuildAttrs::Advanced_SIMD_arch:
     93       case ARMBuildAttrs::VFP_arch:
     94         Streamer.EmitRawText(StringRef("\t.fpu ") + String.lower());
     95         break;
     96       }
     97     }
     98     void Finish() { }
     99   };
    100 
    101   class ObjectAttributeEmitter : public AttributeEmitter {
    102     // This structure holds all attributes, accounting for
    103     // their string/numeric value, so we can later emmit them
    104     // in declaration order, keeping all in the same vector
    105     struct AttributeItemType {
    106       enum {
    107         HiddenAttribute = 0,
    108         NumericAttribute,
    109         TextAttribute
    110       } Type;
    111       unsigned Tag;
    112       unsigned IntValue;
    113       StringRef StringValue;
    114     } AttributeItem;
    115 
    116     MCObjectStreamer &Streamer;
    117     StringRef CurrentVendor;
    118     SmallVector<AttributeItemType, 64> Contents;
    119 
    120     // Account for the ULEB/String size of each item,
    121     // not just the number of items
    122     size_t ContentsSize;
    123     // FIXME: this should be in a more generic place, but
    124     // getULEBSize() is in MCAsmInfo and will be moved to MCDwarf
    125     size_t getULEBSize(int Value) {
    126       size_t Size = 0;
    127       do {
    128         Value >>= 7;
    129         Size += sizeof(int8_t); // Is this really necessary?
    130       } while (Value);
    131       return Size;
    132     }
    133 
    134   public:
    135     ObjectAttributeEmitter(MCObjectStreamer &Streamer_) :
    136       Streamer(Streamer_), CurrentVendor(""), ContentsSize(0) { }
    137 
    138     void MaybeSwitchVendor(StringRef Vendor) {
    139       assert(!Vendor.empty() && "Vendor cannot be empty.");
    140 
    141       if (CurrentVendor.empty())
    142         CurrentVendor = Vendor;
    143       else if (CurrentVendor == Vendor)
    144         return;
    145       else
    146         Finish();
    147 
    148       CurrentVendor = Vendor;
    149 
    150       assert(Contents.size() == 0);
    151     }
    152 
    153     void EmitAttribute(unsigned Attribute, unsigned Value) {
    154       AttributeItemType attr = {
    155         AttributeItemType::NumericAttribute,
    156         Attribute,
    157         Value,
    158         StringRef("")
    159       };
    160       ContentsSize += getULEBSize(Attribute);
    161       ContentsSize += getULEBSize(Value);
    162       Contents.push_back(attr);
    163     }
    164 
    165     void EmitTextAttribute(unsigned Attribute, StringRef String) {
    166       AttributeItemType attr = {
    167         AttributeItemType::TextAttribute,
    168         Attribute,
    169         0,
    170         String
    171       };
    172       ContentsSize += getULEBSize(Attribute);
    173       // String + \0
    174       ContentsSize += String.size()+1;
    175 
    176       Contents.push_back(attr);
    177     }
    178 
    179     void Finish() {
    180       // Vendor size + Vendor name + '\0'
    181       const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
    182 
    183       // Tag + Tag Size
    184       const size_t TagHeaderSize = 1 + 4;
    185 
    186       Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
    187       Streamer.EmitBytes(CurrentVendor);
    188       Streamer.EmitIntValue(0, 1); // '\0'
    189 
    190       Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
    191       Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
    192 
    193       // Size should have been accounted for already, now
    194       // emit each field as its type (ULEB or String)
    195       for (unsigned int i=0; i<Contents.size(); ++i) {
    196         AttributeItemType item = Contents[i];
    197         Streamer.EmitULEB128IntValue(item.Tag);
    198         switch (item.Type) {
    199         default: llvm_unreachable("Invalid attribute type");
    200         case AttributeItemType::NumericAttribute:
    201           Streamer.EmitULEB128IntValue(item.IntValue);
    202           break;
    203         case AttributeItemType::TextAttribute:
    204           Streamer.EmitBytes(item.StringValue.upper());
    205           Streamer.EmitIntValue(0, 1); // '\0'
    206           break;
    207         }
    208       }
    209 
    210       Contents.clear();
    211     }
    212   };
    213 
    214 } // end of anonymous namespace
    215 
    216 /// EmitDwarfRegOp - Emit dwarf register operation.
    217 void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
    218                                    bool Indirect) const {
    219   const TargetRegisterInfo *RI = TM.getRegisterInfo();
    220   if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1) {
    221     AsmPrinter::EmitDwarfRegOp(MLoc, Indirect);
    222     return;
    223   }
    224   assert(MLoc.isReg() && !Indirect &&
    225          "This doesn't support offset/indirection - implement it if needed");
    226   unsigned Reg = MLoc.getReg();
    227   if (Reg >= ARM::S0 && Reg <= ARM::S31) {
    228     assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering");
    229     // S registers are described as bit-pieces of a register
    230     // S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0)
    231     // S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32)
    232 
    233     unsigned SReg = Reg - ARM::S0;
    234     bool odd = SReg & 0x1;
    235     unsigned Rx = 256 + (SReg >> 1);
    236 
    237     OutStreamer.AddComment("DW_OP_regx for S register");
    238     EmitInt8(dwarf::DW_OP_regx);
    239 
    240     OutStreamer.AddComment(Twine(SReg));
    241     EmitULEB128(Rx);
    242 
    243     if (odd) {
    244       OutStreamer.AddComment("DW_OP_bit_piece 32 32");
    245       EmitInt8(dwarf::DW_OP_bit_piece);
    246       EmitULEB128(32);
    247       EmitULEB128(32);
    248     } else {
    249       OutStreamer.AddComment("DW_OP_bit_piece 32 0");
    250       EmitInt8(dwarf::DW_OP_bit_piece);
    251       EmitULEB128(32);
    252       EmitULEB128(0);
    253     }
    254   } else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) {
    255     assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering");
    256     // Q registers Q0-Q15 are described by composing two D registers together.
    257     // Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1)
    258     // DW_OP_piece(8)
    259 
    260     unsigned QReg = Reg - ARM::Q0;
    261     unsigned D1 = 256 + 2 * QReg;
    262     unsigned D2 = D1 + 1;
    263 
    264     OutStreamer.AddComment("DW_OP_regx for Q register: D1");
    265     EmitInt8(dwarf::DW_OP_regx);
    266     EmitULEB128(D1);
    267     OutStreamer.AddComment("DW_OP_piece 8");
    268     EmitInt8(dwarf::DW_OP_piece);
    269     EmitULEB128(8);
    270 
    271     OutStreamer.AddComment("DW_OP_regx for Q register: D2");
    272     EmitInt8(dwarf::DW_OP_regx);
    273     EmitULEB128(D2);
    274     OutStreamer.AddComment("DW_OP_piece 8");
    275     EmitInt8(dwarf::DW_OP_piece);
    276     EmitULEB128(8);
    277   }
    278 }
    279 
    280 void ARMAsmPrinter::EmitFunctionBodyEnd() {
    281   // Make sure to terminate any constant pools that were at the end
    282   // of the function.
    283   if (!InConstantPool)
    284     return;
    285   InConstantPool = false;
    286   OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
    287 }
    288 
    289 void ARMAsmPrinter::EmitFunctionEntryLabel() {
    290   if (AFI->isThumbFunction()) {
    291     OutStreamer.EmitAssemblerFlag(MCAF_Code16);
    292     OutStreamer.EmitThumbFunc(CurrentFnSym);
    293   }
    294 
    295   OutStreamer.EmitLabel(CurrentFnSym);
    296 }
    297 
    298 void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
    299   uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
    300   assert(Size && "C++ constructor pointer had zero size!");
    301 
    302   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
    303   assert(GV && "C++ constructor pointer was not a GlobalValue!");
    304 
    305   const MCExpr *E = MCSymbolRefExpr::Create(Mang->getSymbol(GV),
    306                                             (Subtarget->isTargetDarwin()
    307                                              ? MCSymbolRefExpr::VK_None
    308                                              : MCSymbolRefExpr::VK_ARM_TARGET1),
    309                                             OutContext);
    310 
    311   OutStreamer.EmitValue(E, Size);
    312 }
    313 
    314 /// runOnMachineFunction - This uses the EmitInstruction()
    315 /// method to print assembly for each instruction.
    316 ///
    317 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
    318   AFI = MF.getInfo<ARMFunctionInfo>();
    319   MCP = MF.getConstantPool();
    320 
    321   return AsmPrinter::runOnMachineFunction(MF);
    322 }
    323 
    324 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
    325                                  raw_ostream &O, const char *Modifier) {
    326   const MachineOperand &MO = MI->getOperand(OpNum);
    327   unsigned TF = MO.getTargetFlags();
    328 
    329   switch (MO.getType()) {
    330   default: llvm_unreachable("<unknown operand type>");
    331   case MachineOperand::MO_Register: {
    332     unsigned Reg = MO.getReg();
    333     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
    334     assert(!MO.getSubReg() && "Subregs should be eliminated!");
    335     if(ARM::GPRPairRegClass.contains(Reg)) {
    336       const MachineFunction &MF = *MI->getParent()->getParent();
    337       const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
    338       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
    339     }
    340     O << ARMInstPrinter::getRegisterName(Reg);
    341     break;
    342   }
    343   case MachineOperand::MO_Immediate: {
    344     int64_t Imm = MO.getImm();
    345     O << '#';
    346     if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
    347         (TF == ARMII::MO_LO16))
    348       O << ":lower16:";
    349     else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
    350              (TF == ARMII::MO_HI16))
    351       O << ":upper16:";
    352     O << Imm;
    353     break;
    354   }
    355   case MachineOperand::MO_MachineBasicBlock:
    356     O << *MO.getMBB()->getSymbol();
    357     return;
    358   case MachineOperand::MO_GlobalAddress: {
    359     const GlobalValue *GV = MO.getGlobal();
    360     if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
    361         (TF & ARMII::MO_LO16))
    362       O << ":lower16:";
    363     else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
    364              (TF & ARMII::MO_HI16))
    365       O << ":upper16:";
    366     O << *Mang->getSymbol(GV);
    367 
    368     printOffset(MO.getOffset(), O);
    369     if (TF == ARMII::MO_PLT)
    370       O << "(PLT)";
    371     break;
    372   }
    373   case MachineOperand::MO_ExternalSymbol: {
    374     O << *GetExternalSymbolSymbol(MO.getSymbolName());
    375     if (TF == ARMII::MO_PLT)
    376       O << "(PLT)";
    377     break;
    378   }
    379   case MachineOperand::MO_ConstantPoolIndex:
    380     O << *GetCPISymbol(MO.getIndex());
    381     break;
    382   case MachineOperand::MO_JumpTableIndex:
    383     O << *GetJTISymbol(MO.getIndex());
    384     break;
    385   }
    386 }
    387 
    388 //===--------------------------------------------------------------------===//
    389 
    390 MCSymbol *ARMAsmPrinter::
    391 GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
    392   SmallString<60> Name;
    393   raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
    394     << getFunctionNumber() << '_' << uid << '_' << uid2;
    395   return OutContext.GetOrCreateSymbol(Name.str());
    396 }
    397 
    398 
    399 MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
    400   SmallString<60> Name;
    401   raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
    402     << getFunctionNumber();
    403   return OutContext.GetOrCreateSymbol(Name.str());
    404 }
    405 
    406 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
    407                                     unsigned AsmVariant, const char *ExtraCode,
    408                                     raw_ostream &O) {
    409   // Does this asm operand have a single letter operand modifier?
    410   if (ExtraCode && ExtraCode[0]) {
    411     if (ExtraCode[1] != 0) return true; // Unknown modifier.
    412 
    413     switch (ExtraCode[0]) {
    414     default:
    415       // See if this is a generic print operand
    416       return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
    417     case 'a': // Print as a memory address.
    418       if (MI->getOperand(OpNum).isReg()) {
    419         O << "["
    420           << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
    421           << "]";
    422         return false;
    423       }
    424       // Fallthrough
    425     case 'c': // Don't print "#" before an immediate operand.
    426       if (!MI->getOperand(OpNum).isImm())
    427         return true;
    428       O << MI->getOperand(OpNum).getImm();
    429       return false;
    430     case 'P': // Print a VFP double precision register.
    431     case 'q': // Print a NEON quad precision register.
    432       printOperand(MI, OpNum, O);
    433       return false;
    434     case 'y': // Print a VFP single precision register as indexed double.
    435       if (MI->getOperand(OpNum).isReg()) {
    436         unsigned Reg = MI->getOperand(OpNum).getReg();
    437         const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
    438         // Find the 'd' register that has this 's' register as a sub-register,
    439         // and determine the lane number.
    440         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
    441           if (!ARM::DPRRegClass.contains(*SR))
    442             continue;
    443           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
    444           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
    445           return false;
    446         }
    447       }
    448       return true;
    449     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
    450       if (!MI->getOperand(OpNum).isImm())
    451         return true;
    452       O << ~(MI->getOperand(OpNum).getImm());
    453       return false;
    454     case 'L': // The low 16 bits of an immediate constant.
    455       if (!MI->getOperand(OpNum).isImm())
    456         return true;
    457       O << (MI->getOperand(OpNum).getImm() & 0xffff);
    458       return false;
    459     case 'M': { // A register range suitable for LDM/STM.
    460       if (!MI->getOperand(OpNum).isReg())
    461         return true;
    462       const MachineOperand &MO = MI->getOperand(OpNum);
    463       unsigned RegBegin = MO.getReg();
    464       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
    465       // already got the operands in registers that are operands to the
    466       // inline asm statement.
    467       O << "{";
    468       if (ARM::GPRPairRegClass.contains(RegBegin)) {
    469         const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
    470         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
    471         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";;
    472         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
    473       }
    474       O << ARMInstPrinter::getRegisterName(RegBegin);
    475 
    476       // FIXME: The register allocator not only may not have given us the
    477       // registers in sequence, but may not be in ascending registers. This
    478       // will require changes in the register allocator that'll need to be
    479       // propagated down here if the operands change.
    480       unsigned RegOps = OpNum + 1;
    481       while (MI->getOperand(RegOps).isReg()) {
    482         O << ", "
    483           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
    484         RegOps++;
    485       }
    486 
    487       O << "}";
    488 
    489       return false;
    490     }
    491     case 'R': // The most significant register of a pair.
    492     case 'Q': { // The least significant register of a pair.
    493       if (OpNum == 0)
    494         return true;
    495       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
    496       if (!FlagsOP.isImm())
    497         return true;
    498       unsigned Flags = FlagsOP.getImm();
    499       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
    500       unsigned RC;
    501       InlineAsm::hasRegClassConstraint(Flags, RC);
    502       if (RC == ARM::GPRPairRegClassID) {
    503         if (NumVals != 1)
    504           return true;
    505         const MachineOperand &MO = MI->getOperand(OpNum);
    506         if (!MO.isReg())
    507           return true;
    508         const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
    509         unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
    510             ARM::gsub_0 : ARM::gsub_1);
    511         O << ARMInstPrinter::getRegisterName(Reg);
    512         return false;
    513       }
    514       if (NumVals != 2)
    515         return true;
    516       unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
    517       if (RegOp >= MI->getNumOperands())
    518         return true;
    519       const MachineOperand &MO = MI->getOperand(RegOp);
    520       if (!MO.isReg())
    521         return true;
    522       unsigned Reg = MO.getReg();
    523       O << ARMInstPrinter::getRegisterName(Reg);
    524       return false;
    525     }
    526 
    527     case 'e': // The low doubleword register of a NEON quad register.
    528     case 'f': { // The high doubleword register of a NEON quad register.
    529       if (!MI->getOperand(OpNum).isReg())
    530         return true;
    531       unsigned Reg = MI->getOperand(OpNum).getReg();
    532       if (!ARM::QPRRegClass.contains(Reg))
    533         return true;
    534       const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
    535       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
    536                                        ARM::dsub_0 : ARM::dsub_1);
    537       O << ARMInstPrinter::getRegisterName(SubReg);
    538       return false;
    539     }
    540 
    541     // This modifier is not yet supported.
    542     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
    543       return true;
    544     case 'H': { // The highest-numbered register of a pair.
    545       const MachineOperand &MO = MI->getOperand(OpNum);
    546       if (!MO.isReg())
    547         return true;
    548       const MachineFunction &MF = *MI->getParent()->getParent();
    549       const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
    550       unsigned Reg = MO.getReg();
    551       if(!ARM::GPRPairRegClass.contains(Reg))
    552         return false;
    553       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
    554       O << ARMInstPrinter::getRegisterName(Reg);
    555       return false;
    556     }
    557     }
    558   }
    559 
    560   printOperand(MI, OpNum, O);
    561   return false;
    562 }
    563 
    564 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
    565                                           unsigned OpNum, unsigned AsmVariant,
    566                                           const char *ExtraCode,
    567                                           raw_ostream &O) {
    568   // Does this asm operand have a single letter operand modifier?
    569   if (ExtraCode && ExtraCode[0]) {
    570     if (ExtraCode[1] != 0) return true; // Unknown modifier.
    571 
    572     switch (ExtraCode[0]) {
    573       case 'A': // A memory operand for a VLD1/VST1 instruction.
    574       default: return true;  // Unknown modifier.
    575       case 'm': // The base register of a memory operand.
    576         if (!MI->getOperand(OpNum).isReg())
    577           return true;
    578         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
    579         return false;
    580     }
    581   }
    582 
    583   const MachineOperand &MO = MI->getOperand(OpNum);
    584   assert(MO.isReg() && "unexpected inline asm memory operand");
    585   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
    586   return false;
    587 }
    588 
    589 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
    590   if (Subtarget->isTargetDarwin()) {
    591     Reloc::Model RelocM = TM.getRelocationModel();
    592     if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
    593       // Declare all the text sections up front (before the DWARF sections
    594       // emitted by AsmPrinter::doInitialization) so the assembler will keep
    595       // them together at the beginning of the object file.  This helps
    596       // avoid out-of-range branches that are due a fundamental limitation of
    597       // the way symbol offsets are encoded with the current Darwin ARM
    598       // relocations.
    599       const TargetLoweringObjectFileMachO &TLOFMacho =
    600         static_cast<const TargetLoweringObjectFileMachO &>(
    601           getObjFileLowering());
    602 
    603       // Collect the set of sections our functions will go into.
    604       SetVector<const MCSection *, SmallVector<const MCSection *, 8>,
    605         SmallPtrSet<const MCSection *, 8> > TextSections;
    606       // Default text section comes first.
    607       TextSections.insert(TLOFMacho.getTextSection());
    608       // Now any user defined text sections from function attributes.
    609       for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F)
    610         if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
    611           TextSections.insert(TLOFMacho.SectionForGlobal(F, Mang, TM));
    612       // Now the coalescable sections.
    613       TextSections.insert(TLOFMacho.getTextCoalSection());
    614       TextSections.insert(TLOFMacho.getConstTextCoalSection());
    615 
    616       // Emit the sections in the .s file header to fix the order.
    617       for (unsigned i = 0, e = TextSections.size(); i != e; ++i)
    618         OutStreamer.SwitchSection(TextSections[i]);
    619 
    620       if (RelocM == Reloc::DynamicNoPIC) {
    621         const MCSection *sect =
    622           OutContext.getMachOSection("__TEXT", "__symbol_stub4",
    623                                      MCSectionMachO::S_SYMBOL_STUBS,
    624                                      12, SectionKind::getText());
    625         OutStreamer.SwitchSection(sect);
    626       } else {
    627         const MCSection *sect =
    628           OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
    629                                      MCSectionMachO::S_SYMBOL_STUBS,
    630                                      16, SectionKind::getText());
    631         OutStreamer.SwitchSection(sect);
    632       }
    633       const MCSection *StaticInitSect =
    634         OutContext.getMachOSection("__TEXT", "__StaticInit",
    635                                    MCSectionMachO::S_REGULAR |
    636                                    MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
    637                                    SectionKind::getText());
    638       OutStreamer.SwitchSection(StaticInitSect);
    639     }
    640   }
    641 
    642   // Use unified assembler syntax.
    643   OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
    644 
    645   // Emit ARM Build Attributes
    646   if (Subtarget->isTargetELF())
    647     emitAttributes();
    648 }
    649 
    650 
    651 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
    652   if (Subtarget->isTargetDarwin()) {
    653     // All darwin targets use mach-o.
    654     const TargetLoweringObjectFileMachO &TLOFMacho =
    655       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
    656     MachineModuleInfoMachO &MMIMacho =
    657       MMI->getObjFileInfo<MachineModuleInfoMachO>();
    658 
    659     // Output non-lazy-pointers for external and common global variables.
    660     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
    661 
    662     if (!Stubs.empty()) {
    663       // Switch with ".non_lazy_symbol_pointer" directive.
    664       OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
    665       EmitAlignment(2);
    666       for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
    667         // L_foo$stub:
    668         OutStreamer.EmitLabel(Stubs[i].first);
    669         //   .indirect_symbol _foo
    670         MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
    671         OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
    672 
    673         if (MCSym.getInt())
    674           // External to current translation unit.
    675           OutStreamer.EmitIntValue(0, 4/*size*/);
    676         else
    677           // Internal to current translation unit.
    678           //
    679           // When we place the LSDA into the TEXT section, the type info
    680           // pointers need to be indirect and pc-rel. We accomplish this by
    681           // using NLPs; however, sometimes the types are local to the file.
    682           // We need to fill in the value for the NLP in those cases.
    683           OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
    684                                                         OutContext),
    685                                 4/*size*/);
    686       }
    687 
    688       Stubs.clear();
    689       OutStreamer.AddBlankLine();
    690     }
    691 
    692     Stubs = MMIMacho.GetHiddenGVStubList();
    693     if (!Stubs.empty()) {
    694       OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
    695       EmitAlignment(2);
    696       for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
    697         // L_foo$stub:
    698         OutStreamer.EmitLabel(Stubs[i].first);
    699         //   .long _foo
    700         OutStreamer.EmitValue(MCSymbolRefExpr::
    701                               Create(Stubs[i].second.getPointer(),
    702                                      OutContext),
    703                               4/*size*/);
    704       }
    705 
    706       Stubs.clear();
    707       OutStreamer.AddBlankLine();
    708     }
    709 
    710     // Funny Darwin hack: This flag tells the linker that no global symbols
    711     // contain code that falls through to other global symbols (e.g. the obvious
    712     // implementation of multiple entry points).  If this doesn't occur, the
    713     // linker can safely perform dead code stripping.  Since LLVM never
    714     // generates code that does this, it is always safe to set.
    715     OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
    716   }
    717   // FIXME: This should eventually end up somewhere else where more
    718   // intelligent flag decisions can be made. For now we are just maintaining
    719   // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
    720   if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&OutStreamer))
    721     MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
    722 }
    723 
    724 //===----------------------------------------------------------------------===//
    725 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
    726 // FIXME:
    727 // The following seem like one-off assembler flags, but they actually need
    728 // to appear in the .ARM.attributes section in ELF.
    729 // Instead of subclassing the MCELFStreamer, we do the work here.
    730 
    731 void ARMAsmPrinter::emitAttributes() {
    732 
    733   emitARMAttributeSection();
    734 
    735   /* GAS expect .fpu to be emitted, regardless of VFP build attribute */
    736   bool emitFPU = false;
    737   AttributeEmitter *AttrEmitter;
    738   if (OutStreamer.hasRawTextSupport()) {
    739     AttrEmitter = new AsmAttributeEmitter(OutStreamer);
    740     emitFPU = true;
    741   } else {
    742     MCObjectStreamer &O = static_cast<MCObjectStreamer&>(OutStreamer);
    743     AttrEmitter = new ObjectAttributeEmitter(O);
    744   }
    745 
    746   AttrEmitter->MaybeSwitchVendor("aeabi");
    747 
    748   std::string CPUString = Subtarget->getCPUString();
    749 
    750   if (CPUString == "cortex-a8" ||
    751       Subtarget->isCortexA8()) {
    752     AttrEmitter->EmitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a8");
    753     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
    754     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile,
    755                                ARMBuildAttrs::ApplicationProfile);
    756     AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
    757                                ARMBuildAttrs::Allowed);
    758     AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
    759                                ARMBuildAttrs::AllowThumb32);
    760     // Fixme: figure out when this is emitted.
    761     //AttrEmitter->EmitAttribute(ARMBuildAttrs::WMMX_arch,
    762     //                           ARMBuildAttrs::AllowWMMXv1);
    763     //
    764 
    765     /// ADD additional Else-cases here!
    766   } else if (CPUString == "xscale") {
    767     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TEJ);
    768     AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
    769                                ARMBuildAttrs::Allowed);
    770     AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
    771                                ARMBuildAttrs::Allowed);
    772   } else if (Subtarget->hasV8Ops())
    773     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v8);
    774   else if (Subtarget->hasV7Ops()) {
    775     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
    776     AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
    777                                ARMBuildAttrs::AllowThumb32);
    778   } else if (Subtarget->hasV6T2Ops())
    779     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v6T2);
    780   else if (Subtarget->hasV6Ops())
    781     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v6);
    782   else if (Subtarget->hasV5TEOps())
    783     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TE);
    784   else if (Subtarget->hasV5TOps())
    785     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5T);
    786   else if (Subtarget->hasV4TOps())
    787     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4T);
    788   else
    789     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4);
    790 
    791   if (Subtarget->hasNEON() && emitFPU) {
    792     /* NEON is not exactly a VFP architecture, but GAS emit one of
    793      * neon/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
    794     if (Subtarget->hasVFP4())
    795       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
    796                                      "neon-vfpv4");
    797     else
    798       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon");
    799     /* If emitted for NEON, omit from VFP below, since you can have both
    800      * NEON and VFP in build attributes but only one .fpu */
    801     emitFPU = false;
    802   }
    803 
    804   /* V8FP + .fpu */
    805   if (Subtarget->hasV8FP()) {
    806     AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
    807                                ARMBuildAttrs::AllowV8FPA);
    808     if (emitFPU)
    809       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "v8fp");
    810     /* VFPv4 + .fpu */
    811   } else if (Subtarget->hasVFP4()) {
    812     AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
    813                                ARMBuildAttrs::AllowFPv4A);
    814     if (emitFPU)
    815       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv4");
    816 
    817   /* VFPv3 + .fpu */
    818   } else if (Subtarget->hasVFP3()) {
    819     AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
    820                                ARMBuildAttrs::AllowFPv3A);
    821     if (emitFPU)
    822       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv3");
    823 
    824   /* VFPv2 + .fpu */
    825   } else if (Subtarget->hasVFP2()) {
    826     AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
    827                                ARMBuildAttrs::AllowFPv2);
    828     if (emitFPU)
    829       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv2");
    830   }
    831 
    832   /* TODO: ARMBuildAttrs::Allowed is not completely accurate,
    833    * since NEON can have 1 (allowed) or 2 (MAC operations) */
    834   if (Subtarget->hasNEON()) {
    835     if (Subtarget->hasV8Ops())
    836       AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
    837                                  ARMBuildAttrs::AllowedNeonV8);
    838     else
    839       AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
    840                                  ARMBuildAttrs::Allowed);
    841   }
    842 
    843   // Signal various FP modes.
    844   if (!TM.Options.UnsafeFPMath) {
    845     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_denormal,
    846                                ARMBuildAttrs::Allowed);
    847     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
    848                                ARMBuildAttrs::Allowed);
    849   }
    850 
    851   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
    852     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
    853                                ARMBuildAttrs::Allowed);
    854   else
    855     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
    856                                ARMBuildAttrs::AllowIEE754);
    857 
    858   // FIXME: add more flags to ARMBuildAttrs.h
    859   // 8-bytes alignment stuff.
    860   AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_needed, 1);
    861   AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1);
    862 
    863   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
    864   if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) {
    865     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3);
    866     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_VFP_args, 1);
    867   }
    868   // FIXME: Should we signal R9 usage?
    869 
    870   if (Subtarget->hasDivide())
    871     AttrEmitter->EmitAttribute(ARMBuildAttrs::DIV_use, 1);
    872 
    873   AttrEmitter->Finish();
    874   delete AttrEmitter;
    875 }
    876 
    877 void ARMAsmPrinter::emitARMAttributeSection() {
    878   // <format-version>
    879   // [ <section-length> "vendor-name"
    880   // [ <file-tag> <size> <attribute>*
    881   //   | <section-tag> <size> <section-number>* 0 <attribute>*
    882   //   | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
    883   //   ]+
    884   // ]*
    885 
    886   if (OutStreamer.hasRawTextSupport())
    887     return;
    888 
    889   const ARMElfTargetObjectFile &TLOFELF =
    890     static_cast<const ARMElfTargetObjectFile &>
    891     (getObjFileLowering());
    892 
    893   OutStreamer.SwitchSection(TLOFELF.getAttributesSection());
    894 
    895   // Format version
    896   OutStreamer.EmitIntValue(0x41, 1);
    897 }
    898 
    899 //===----------------------------------------------------------------------===//
    900 
    901 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
    902                              unsigned LabelId, MCContext &Ctx) {
    903 
    904   MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
    905                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
    906   return Label;
    907 }
    908 
    909 static MCSymbolRefExpr::VariantKind
    910 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
    911   switch (Modifier) {
    912   case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
    913   case ARMCP::TLSGD:       return MCSymbolRefExpr::VK_ARM_TLSGD;
    914   case ARMCP::TPOFF:       return MCSymbolRefExpr::VK_ARM_TPOFF;
    915   case ARMCP::GOTTPOFF:    return MCSymbolRefExpr::VK_ARM_GOTTPOFF;
    916   case ARMCP::GOT:         return MCSymbolRefExpr::VK_ARM_GOT;
    917   case ARMCP::GOTOFF:      return MCSymbolRefExpr::VK_ARM_GOTOFF;
    918   }
    919   llvm_unreachable("Invalid ARMCPModifier!");
    920 }
    921 
    922 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV) {
    923   bool isIndirect = Subtarget->isTargetDarwin() &&
    924     Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
    925   if (!isIndirect)
    926     return Mang->getSymbol(GV);
    927 
    928   // FIXME: Remove this when Darwin transition to @GOT like syntax.
    929   MCSymbol *MCSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
    930   MachineModuleInfoMachO &MMIMachO =
    931     MMI->getObjFileInfo<MachineModuleInfoMachO>();
    932   MachineModuleInfoImpl::StubValueTy &StubSym =
    933     GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) :
    934     MMIMachO.getGVStubEntry(MCSym);
    935   if (StubSym.getPointer() == 0)
    936     StubSym = MachineModuleInfoImpl::
    937       StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
    938   return MCSym;
    939 }
    940 
    941 void ARMAsmPrinter::
    942 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
    943   int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
    944 
    945   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
    946 
    947   MCSymbol *MCSym;
    948   if (ACPV->isLSDA()) {
    949     SmallString<128> Str;
    950     raw_svector_ostream OS(Str);
    951     OS << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
    952     MCSym = OutContext.GetOrCreateSymbol(OS.str());
    953   } else if (ACPV->isBlockAddress()) {
    954     const BlockAddress *BA =
    955       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
    956     MCSym = GetBlockAddressSymbol(BA);
    957   } else if (ACPV->isGlobalValue()) {
    958     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
    959     MCSym = GetARMGVSymbol(GV);
    960   } else if (ACPV->isMachineBasicBlock()) {
    961     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
    962     MCSym = MBB->getSymbol();
    963   } else {
    964     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
    965     const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
    966     MCSym = GetExternalSymbolSymbol(Sym);
    967   }
    968 
    969   // Create an MCSymbol for the reference.
    970   const MCExpr *Expr =
    971     MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
    972                             OutContext);
    973 
    974   if (ACPV->getPCAdjustment()) {
    975     MCSymbol *PCLabel = getPICLabel(MAI->getPrivateGlobalPrefix(),
    976                                     getFunctionNumber(),
    977                                     ACPV->getLabelId(),
    978                                     OutContext);
    979     const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
    980     PCRelExpr =
    981       MCBinaryExpr::CreateAdd(PCRelExpr,
    982                               MCConstantExpr::Create(ACPV->getPCAdjustment(),
    983                                                      OutContext),
    984                               OutContext);
    985     if (ACPV->mustAddCurrentAddress()) {
    986       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
    987       // label, so just emit a local label end reference that instead.
    988       MCSymbol *DotSym = OutContext.CreateTempSymbol();
    989       OutStreamer.EmitLabel(DotSym);
    990       const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
    991       PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
    992     }
    993     Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
    994   }
    995   OutStreamer.EmitValue(Expr, Size);
    996 }
    997 
    998 void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
    999   unsigned Opcode = MI->getOpcode();
   1000   int OpNum = 1;
   1001   if (Opcode == ARM::BR_JTadd)
   1002     OpNum = 2;
   1003   else if (Opcode == ARM::BR_JTm)
   1004     OpNum = 3;
   1005 
   1006   const MachineOperand &MO1 = MI->getOperand(OpNum);
   1007   const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
   1008   unsigned JTI = MO1.getIndex();
   1009 
   1010   // Emit a label for the jump table.
   1011   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
   1012   OutStreamer.EmitLabel(JTISymbol);
   1013 
   1014   // Mark the jump table as data-in-code.
   1015   OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
   1016 
   1017   // Emit each entry of the table.
   1018   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1019   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1020   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1021 
   1022   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
   1023     MachineBasicBlock *MBB = JTBBs[i];
   1024     // Construct an MCExpr for the entry. We want a value of the form:
   1025     // (BasicBlockAddr - TableBeginAddr)
   1026     //
   1027     // For example, a table with entries jumping to basic blocks BB0 and BB1
   1028     // would look like:
   1029     // LJTI_0_0:
   1030     //    .word (LBB0 - LJTI_0_0)
   1031     //    .word (LBB1 - LJTI_0_0)
   1032     const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1033 
   1034     if (TM.getRelocationModel() == Reloc::PIC_)
   1035       Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
   1036                                                                    OutContext),
   1037                                      OutContext);
   1038     // If we're generating a table of Thumb addresses in static relocation
   1039     // model, we need to add one to keep interworking correctly.
   1040     else if (AFI->isThumbFunction())
   1041       Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext),
   1042                                      OutContext);
   1043     OutStreamer.EmitValue(Expr, 4);
   1044   }
   1045   // Mark the end of jump table data-in-code region.
   1046   OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
   1047 }
   1048 
   1049 void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
   1050   unsigned Opcode = MI->getOpcode();
   1051   int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
   1052   const MachineOperand &MO1 = MI->getOperand(OpNum);
   1053   const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
   1054   unsigned JTI = MO1.getIndex();
   1055 
   1056   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
   1057   OutStreamer.EmitLabel(JTISymbol);
   1058 
   1059   // Emit each entry of the table.
   1060   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1061   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1062   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1063   unsigned OffsetWidth = 4;
   1064   if (MI->getOpcode() == ARM::t2TBB_JT) {
   1065     OffsetWidth = 1;
   1066     // Mark the jump table as data-in-code.
   1067     OutStreamer.EmitDataRegion(MCDR_DataRegionJT8);
   1068   } else if (MI->getOpcode() == ARM::t2TBH_JT) {
   1069     OffsetWidth = 2;
   1070     // Mark the jump table as data-in-code.
   1071     OutStreamer.EmitDataRegion(MCDR_DataRegionJT16);
   1072   }
   1073 
   1074   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
   1075     MachineBasicBlock *MBB = JTBBs[i];
   1076     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
   1077                                                       OutContext);
   1078     // If this isn't a TBB or TBH, the entries are direct branch instructions.
   1079     if (OffsetWidth == 4) {
   1080       OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2B)
   1081         .addExpr(MBBSymbolExpr)
   1082         .addImm(ARMCC::AL)
   1083         .addReg(0));
   1084       continue;
   1085     }
   1086     // Otherwise it's an offset from the dispatch instruction. Construct an
   1087     // MCExpr for the entry. We want a value of the form:
   1088     // (BasicBlockAddr - TableBeginAddr) / 2
   1089     //
   1090     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
   1091     // would look like:
   1092     // LJTI_0_0:
   1093     //    .byte (LBB0 - LJTI_0_0) / 2
   1094     //    .byte (LBB1 - LJTI_0_0) / 2
   1095     const MCExpr *Expr =
   1096       MCBinaryExpr::CreateSub(MBBSymbolExpr,
   1097                               MCSymbolRefExpr::Create(JTISymbol, OutContext),
   1098                               OutContext);
   1099     Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
   1100                                    OutContext);
   1101     OutStreamer.EmitValue(Expr, OffsetWidth);
   1102   }
   1103   // Mark the end of jump table data-in-code region. 32-bit offsets use
   1104   // actual branch instructions here, so we don't mark those as a data-region
   1105   // at all.
   1106   if (OffsetWidth != 4)
   1107     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
   1108 }
   1109 
   1110 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
   1111   assert(MI->getFlag(MachineInstr::FrameSetup) &&
   1112       "Only instruction which are involved into frame setup code are allowed");
   1113 
   1114   const MachineFunction &MF = *MI->getParent()->getParent();
   1115   const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
   1116   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
   1117 
   1118   unsigned FramePtr = RegInfo->getFrameRegister(MF);
   1119   unsigned Opc = MI->getOpcode();
   1120   unsigned SrcReg, DstReg;
   1121 
   1122   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
   1123     // Two special cases:
   1124     // 1) tPUSH does not have src/dst regs.
   1125     // 2) for Thumb1 code we sometimes materialize the constant via constpool
   1126     // load. Yes, this is pretty fragile, but for now I don't see better
   1127     // way... :(
   1128     SrcReg = DstReg = ARM::SP;
   1129   } else {
   1130     SrcReg = MI->getOperand(1).getReg();
   1131     DstReg = MI->getOperand(0).getReg();
   1132   }
   1133 
   1134   // Try to figure out the unwinding opcode out of src / dst regs.
   1135   if (MI->mayStore()) {
   1136     // Register saves.
   1137     assert(DstReg == ARM::SP &&
   1138            "Only stack pointer as a destination reg is supported");
   1139 
   1140     SmallVector<unsigned, 4> RegList;
   1141     // Skip src & dst reg, and pred ops.
   1142     unsigned StartOp = 2 + 2;
   1143     // Use all the operands.
   1144     unsigned NumOffset = 0;
   1145 
   1146     switch (Opc) {
   1147     default:
   1148       MI->dump();
   1149       llvm_unreachable("Unsupported opcode for unwinding information");
   1150     case ARM::tPUSH:
   1151       // Special case here: no src & dst reg, but two extra imp ops.
   1152       StartOp = 2; NumOffset = 2;
   1153     case ARM::STMDB_UPD:
   1154     case ARM::t2STMDB_UPD:
   1155     case ARM::VSTMDDB_UPD:
   1156       assert(SrcReg == ARM::SP &&
   1157              "Only stack pointer as a source reg is supported");
   1158       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
   1159            i != NumOps; ++i) {
   1160         const MachineOperand &MO = MI->getOperand(i);
   1161         // Actually, there should never be any impdef stuff here. Skip it
   1162         // temporary to workaround PR11902.
   1163         if (MO.isImplicit())
   1164           continue;
   1165         RegList.push_back(MO.getReg());
   1166       }
   1167       break;
   1168     case ARM::STR_PRE_IMM:
   1169     case ARM::STR_PRE_REG:
   1170     case ARM::t2STR_PRE:
   1171       assert(MI->getOperand(2).getReg() == ARM::SP &&
   1172              "Only stack pointer as a source reg is supported");
   1173       RegList.push_back(SrcReg);
   1174       break;
   1175     }
   1176     OutStreamer.EmitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
   1177   } else {
   1178     // Changes of stack / frame pointer.
   1179     if (SrcReg == ARM::SP) {
   1180       int64_t Offset = 0;
   1181       switch (Opc) {
   1182       default:
   1183         MI->dump();
   1184         llvm_unreachable("Unsupported opcode for unwinding information");
   1185       case ARM::MOVr:
   1186       case ARM::tMOVr:
   1187         Offset = 0;
   1188         break;
   1189       case ARM::ADDri:
   1190         Offset = -MI->getOperand(2).getImm();
   1191         break;
   1192       case ARM::SUBri:
   1193       case ARM::t2SUBri:
   1194         Offset = MI->getOperand(2).getImm();
   1195         break;
   1196       case ARM::tSUBspi:
   1197         Offset = MI->getOperand(2).getImm()*4;
   1198         break;
   1199       case ARM::tADDspi:
   1200       case ARM::tADDrSPi:
   1201         Offset = -MI->getOperand(2).getImm()*4;
   1202         break;
   1203       case ARM::tLDRpci: {
   1204         // Grab the constpool index and check, whether it corresponds to
   1205         // original or cloned constpool entry.
   1206         unsigned CPI = MI->getOperand(1).getIndex();
   1207         const MachineConstantPool *MCP = MF.getConstantPool();
   1208         if (CPI >= MCP->getConstants().size())
   1209           CPI = AFI.getOriginalCPIdx(CPI);
   1210         assert(CPI != -1U && "Invalid constpool index");
   1211 
   1212         // Derive the actual offset.
   1213         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
   1214         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
   1215         // FIXME: Check for user, it should be "add" instruction!
   1216         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
   1217         break;
   1218       }
   1219       }
   1220 
   1221       if (DstReg == FramePtr && FramePtr != ARM::SP)
   1222         // Set-up of the frame pointer. Positive values correspond to "add"
   1223         // instruction.
   1224         OutStreamer.EmitSetFP(FramePtr, ARM::SP, -Offset);
   1225       else if (DstReg == ARM::SP) {
   1226         // Change of SP by an offset. Positive values correspond to "sub"
   1227         // instruction.
   1228         OutStreamer.EmitPad(Offset);
   1229       } else {
   1230         MI->dump();
   1231         llvm_unreachable("Unsupported opcode for unwinding information");
   1232       }
   1233     } else if (DstReg == ARM::SP) {
   1234       // FIXME: .movsp goes here
   1235       MI->dump();
   1236       llvm_unreachable("Unsupported opcode for unwinding information");
   1237     }
   1238     else {
   1239       MI->dump();
   1240       llvm_unreachable("Unsupported opcode for unwinding information");
   1241     }
   1242   }
   1243 }
   1244 
   1245 extern cl::opt<bool> EnableARMEHABI;
   1246 
   1247 // Simple pseudo-instructions have their lowering (with expansion to real
   1248 // instructions) auto-generated.
   1249 #include "ARMGenMCPseudoLowering.inc"
   1250 
   1251 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
   1252   // If we just ended a constant pool, mark it as such.
   1253   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
   1254     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
   1255     InConstantPool = false;
   1256   }
   1257 
   1258   // Emit unwinding stuff for frame-related instructions
   1259   if (EnableARMEHABI && MI->getFlag(MachineInstr::FrameSetup))
   1260     EmitUnwindingInstruction(MI);
   1261 
   1262   // Do any auto-generated pseudo lowerings.
   1263   if (emitPseudoExpansionLowering(OutStreamer, MI))
   1264     return;
   1265 
   1266   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
   1267          "Pseudo flag setting opcode should be expanded early");
   1268 
   1269   // Check for manual lowerings.
   1270   unsigned Opc = MI->getOpcode();
   1271   switch (Opc) {
   1272   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
   1273   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
   1274   case ARM::LEApcrel:
   1275   case ARM::tLEApcrel:
   1276   case ARM::t2LEApcrel: {
   1277     // FIXME: Need to also handle globals and externals
   1278     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
   1279     OutStreamer.EmitInstruction(MCInstBuilder(MI->getOpcode() ==
   1280                                               ARM::t2LEApcrel ? ARM::t2ADR
   1281                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
   1282                      : ARM::ADR))
   1283       .addReg(MI->getOperand(0).getReg())
   1284       .addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext))
   1285       // Add predicate operands.
   1286       .addImm(MI->getOperand(2).getImm())
   1287       .addReg(MI->getOperand(3).getReg()));
   1288     return;
   1289   }
   1290   case ARM::LEApcrelJT:
   1291   case ARM::tLEApcrelJT:
   1292   case ARM::t2LEApcrelJT: {
   1293     MCSymbol *JTIPICSymbol =
   1294       GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
   1295                                   MI->getOperand(2).getImm());
   1296     OutStreamer.EmitInstruction(MCInstBuilder(MI->getOpcode() ==
   1297                                               ARM::t2LEApcrelJT ? ARM::t2ADR
   1298                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
   1299                      : ARM::ADR))
   1300       .addReg(MI->getOperand(0).getReg())
   1301       .addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext))
   1302       // Add predicate operands.
   1303       .addImm(MI->getOperand(3).getImm())
   1304       .addReg(MI->getOperand(4).getReg()));
   1305     return;
   1306   }
   1307   // Darwin call instructions are just normal call instructions with different
   1308   // clobber semantics (they clobber R9).
   1309   case ARM::BX_CALL: {
   1310     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
   1311       .addReg(ARM::LR)
   1312       .addReg(ARM::PC)
   1313       // Add predicate operands.
   1314       .addImm(ARMCC::AL)
   1315       .addReg(0)
   1316       // Add 's' bit operand (always reg0 for this)
   1317       .addReg(0));
   1318 
   1319     OutStreamer.EmitInstruction(MCInstBuilder(ARM::BX)
   1320       .addReg(MI->getOperand(0).getReg()));
   1321     return;
   1322   }
   1323   case ARM::tBX_CALL: {
   1324     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
   1325       .addReg(ARM::LR)
   1326       .addReg(ARM::PC)
   1327       // Add predicate operands.
   1328       .addImm(ARMCC::AL)
   1329       .addReg(0));
   1330 
   1331     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tBX)
   1332       .addReg(MI->getOperand(0).getReg())
   1333       // Add predicate operands.
   1334       .addImm(ARMCC::AL)
   1335       .addReg(0));
   1336     return;
   1337   }
   1338   case ARM::BMOVPCRX_CALL: {
   1339     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
   1340       .addReg(ARM::LR)
   1341       .addReg(ARM::PC)
   1342       // Add predicate operands.
   1343       .addImm(ARMCC::AL)
   1344       .addReg(0)
   1345       // Add 's' bit operand (always reg0 for this)
   1346       .addReg(0));
   1347 
   1348     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
   1349       .addReg(ARM::PC)
   1350       .addReg(MI->getOperand(0).getReg())
   1351       // Add predicate operands.
   1352       .addImm(ARMCC::AL)
   1353       .addReg(0)
   1354       // Add 's' bit operand (always reg0 for this)
   1355       .addReg(0));
   1356     return;
   1357   }
   1358   case ARM::BMOVPCB_CALL: {
   1359     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
   1360       .addReg(ARM::LR)
   1361       .addReg(ARM::PC)
   1362       // Add predicate operands.
   1363       .addImm(ARMCC::AL)
   1364       .addReg(0)
   1365       // Add 's' bit operand (always reg0 for this)
   1366       .addReg(0));
   1367 
   1368     const GlobalValue *GV = MI->getOperand(0).getGlobal();
   1369     MCSymbol *GVSym = Mang->getSymbol(GV);
   1370     const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
   1371     OutStreamer.EmitInstruction(MCInstBuilder(ARM::Bcc)
   1372       .addExpr(GVSymExpr)
   1373       // Add predicate operands.
   1374       .addImm(ARMCC::AL)
   1375       .addReg(0));
   1376     return;
   1377   }
   1378   case ARM::MOVi16_ga_pcrel:
   1379   case ARM::t2MOVi16_ga_pcrel: {
   1380     MCInst TmpInst;
   1381     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
   1382     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
   1383 
   1384     unsigned TF = MI->getOperand(1).getTargetFlags();
   1385     bool isPIC = TF == ARMII::MO_LO16_NONLAZY_PIC;
   1386     const GlobalValue *GV = MI->getOperand(1).getGlobal();
   1387     MCSymbol *GVSym = GetARMGVSymbol(GV);
   1388     const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
   1389     if (isPIC) {
   1390       MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
   1391                                        getFunctionNumber(),
   1392                                        MI->getOperand(2).getImm(), OutContext);
   1393       const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
   1394       unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
   1395       const MCExpr *PCRelExpr =
   1396         ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
   1397                                   MCBinaryExpr::CreateAdd(LabelSymExpr,
   1398                                       MCConstantExpr::Create(PCAdj, OutContext),
   1399                                           OutContext), OutContext), OutContext);
   1400       TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
   1401     } else {
   1402       const MCExpr *RefExpr= ARMMCExpr::CreateLower16(GVSymExpr, OutContext);
   1403       TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
   1404     }
   1405 
   1406     // Add predicate operands.
   1407     TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
   1408     TmpInst.addOperand(MCOperand::CreateReg(0));
   1409     // Add 's' bit operand (always reg0 for this)
   1410     TmpInst.addOperand(MCOperand::CreateReg(0));
   1411     OutStreamer.EmitInstruction(TmpInst);
   1412     return;
   1413   }
   1414   case ARM::MOVTi16_ga_pcrel:
   1415   case ARM::t2MOVTi16_ga_pcrel: {
   1416     MCInst TmpInst;
   1417     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
   1418                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
   1419     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
   1420     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
   1421 
   1422     unsigned TF = MI->getOperand(2).getTargetFlags();
   1423     bool isPIC = TF == ARMII::MO_HI16_NONLAZY_PIC;
   1424     const GlobalValue *GV = MI->getOperand(2).getGlobal();
   1425     MCSymbol *GVSym = GetARMGVSymbol(GV);
   1426     const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
   1427     if (isPIC) {
   1428       MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
   1429                                        getFunctionNumber(),
   1430                                        MI->getOperand(3).getImm(), OutContext);
   1431       const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
   1432       unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
   1433       const MCExpr *PCRelExpr =
   1434         ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
   1435                                    MCBinaryExpr::CreateAdd(LabelSymExpr,
   1436                                       MCConstantExpr::Create(PCAdj, OutContext),
   1437                                           OutContext), OutContext), OutContext);
   1438       TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
   1439     } else {
   1440       const MCExpr *RefExpr= ARMMCExpr::CreateUpper16(GVSymExpr, OutContext);
   1441       TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
   1442     }
   1443     // Add predicate operands.
   1444     TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
   1445     TmpInst.addOperand(MCOperand::CreateReg(0));
   1446     // Add 's' bit operand (always reg0 for this)
   1447     TmpInst.addOperand(MCOperand::CreateReg(0));
   1448     OutStreamer.EmitInstruction(TmpInst);
   1449     return;
   1450   }
   1451   case ARM::tPICADD: {
   1452     // This is a pseudo op for a label + instruction sequence, which looks like:
   1453     // LPC0:
   1454     //     add r0, pc
   1455     // This adds the address of LPC0 to r0.
   1456 
   1457     // Emit the label.
   1458     OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
   1459                           getFunctionNumber(), MI->getOperand(2).getImm(),
   1460                           OutContext));
   1461 
   1462     // Form and emit the add.
   1463     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tADDhirr)
   1464       .addReg(MI->getOperand(0).getReg())
   1465       .addReg(MI->getOperand(0).getReg())
   1466       .addReg(ARM::PC)
   1467       // Add predicate operands.
   1468       .addImm(ARMCC::AL)
   1469       .addReg(0));
   1470     return;
   1471   }
   1472   case ARM::PICADD: {
   1473     // This is a pseudo op for a label + instruction sequence, which looks like:
   1474     // LPC0:
   1475     //     add r0, pc, r0
   1476     // This adds the address of LPC0 to r0.
   1477 
   1478     // Emit the label.
   1479     OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
   1480                           getFunctionNumber(), MI->getOperand(2).getImm(),
   1481                           OutContext));
   1482 
   1483     // Form and emit the add.
   1484     OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDrr)
   1485       .addReg(MI->getOperand(0).getReg())
   1486       .addReg(ARM::PC)
   1487       .addReg(MI->getOperand(1).getReg())
   1488       // Add predicate operands.
   1489       .addImm(MI->getOperand(3).getImm())
   1490       .addReg(MI->getOperand(4).getReg())
   1491       // Add 's' bit operand (always reg0 for this)
   1492       .addReg(0));
   1493     return;
   1494   }
   1495   case ARM::PICSTR:
   1496   case ARM::PICSTRB:
   1497   case ARM::PICSTRH:
   1498   case ARM::PICLDR:
   1499   case ARM::PICLDRB:
   1500   case ARM::PICLDRH:
   1501   case ARM::PICLDRSB:
   1502   case ARM::PICLDRSH: {
   1503     // This is a pseudo op for a label + instruction sequence, which looks like:
   1504     // LPC0:
   1505     //     OP r0, [pc, r0]
   1506     // The LCP0 label is referenced by a constant pool entry in order to get
   1507     // a PC-relative address at the ldr instruction.
   1508 
   1509     // Emit the label.
   1510     OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
   1511                           getFunctionNumber(), MI->getOperand(2).getImm(),
   1512                           OutContext));
   1513 
   1514     // Form and emit the load
   1515     unsigned Opcode;
   1516     switch (MI->getOpcode()) {
   1517     default:
   1518       llvm_unreachable("Unexpected opcode!");
   1519     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
   1520     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
   1521     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
   1522     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
   1523     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
   1524     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
   1525     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
   1526     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
   1527     }
   1528     OutStreamer.EmitInstruction(MCInstBuilder(Opcode)
   1529       .addReg(MI->getOperand(0).getReg())
   1530       .addReg(ARM::PC)
   1531       .addReg(MI->getOperand(1).getReg())
   1532       .addImm(0)
   1533       // Add predicate operands.
   1534       .addImm(MI->getOperand(3).getImm())
   1535       .addReg(MI->getOperand(4).getReg()));
   1536 
   1537     return;
   1538   }
   1539   case ARM::CONSTPOOL_ENTRY: {
   1540     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
   1541     /// in the function.  The first operand is the ID# for this instruction, the
   1542     /// second is the index into the MachineConstantPool that this is, the third
   1543     /// is the size in bytes of this constant pool entry.
   1544     /// The required alignment is specified on the basic block holding this MI.
   1545     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
   1546     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
   1547 
   1548     // If this is the first entry of the pool, mark it.
   1549     if (!InConstantPool) {
   1550       OutStreamer.EmitDataRegion(MCDR_DataRegion);
   1551       InConstantPool = true;
   1552     }
   1553 
   1554     OutStreamer.EmitLabel(GetCPISymbol(LabelId));
   1555 
   1556     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
   1557     if (MCPE.isMachineConstantPoolEntry())
   1558       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
   1559     else
   1560       EmitGlobalConstant(MCPE.Val.ConstVal);
   1561     return;
   1562   }
   1563   case ARM::t2BR_JT: {
   1564     // Lower and emit the instruction itself, then the jump table following it.
   1565     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
   1566       .addReg(ARM::PC)
   1567       .addReg(MI->getOperand(0).getReg())
   1568       // Add predicate operands.
   1569       .addImm(ARMCC::AL)
   1570       .addReg(0));
   1571 
   1572     // Output the data for the jump table itself
   1573     EmitJump2Table(MI);
   1574     return;
   1575   }
   1576   case ARM::t2TBB_JT: {
   1577     // Lower and emit the instruction itself, then the jump table following it.
   1578     OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2TBB)
   1579       .addReg(ARM::PC)
   1580       .addReg(MI->getOperand(0).getReg())
   1581       // Add predicate operands.
   1582       .addImm(ARMCC::AL)
   1583       .addReg(0));
   1584 
   1585     // Output the data for the jump table itself
   1586     EmitJump2Table(MI);
   1587     // Make sure the next instruction is 2-byte aligned.
   1588     EmitAlignment(1);
   1589     return;
   1590   }
   1591   case ARM::t2TBH_JT: {
   1592     // Lower and emit the instruction itself, then the jump table following it.
   1593     OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2TBH)
   1594       .addReg(ARM::PC)
   1595       .addReg(MI->getOperand(0).getReg())
   1596       // Add predicate operands.
   1597       .addImm(ARMCC::AL)
   1598       .addReg(0));
   1599 
   1600     // Output the data for the jump table itself
   1601     EmitJump2Table(MI);
   1602     return;
   1603   }
   1604   case ARM::tBR_JTr:
   1605   case ARM::BR_JTr: {
   1606     // Lower and emit the instruction itself, then the jump table following it.
   1607     // mov pc, target
   1608     MCInst TmpInst;
   1609     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
   1610       ARM::MOVr : ARM::tMOVr;
   1611     TmpInst.setOpcode(Opc);
   1612     TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
   1613     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
   1614     // Add predicate operands.
   1615     TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
   1616     TmpInst.addOperand(MCOperand::CreateReg(0));
   1617     // Add 's' bit operand (always reg0 for this)
   1618     if (Opc == ARM::MOVr)
   1619       TmpInst.addOperand(MCOperand::CreateReg(0));
   1620     OutStreamer.EmitInstruction(TmpInst);
   1621 
   1622     // Make sure the Thumb jump table is 4-byte aligned.
   1623     if (Opc == ARM::tMOVr)
   1624       EmitAlignment(2);
   1625 
   1626     // Output the data for the jump table itself
   1627     EmitJumpTable(MI);
   1628     return;
   1629   }
   1630   case ARM::BR_JTm: {
   1631     // Lower and emit the instruction itself, then the jump table following it.
   1632     // ldr pc, target
   1633     MCInst TmpInst;
   1634     if (MI->getOperand(1).getReg() == 0) {
   1635       // literal offset
   1636       TmpInst.setOpcode(ARM::LDRi12);
   1637       TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
   1638       TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
   1639       TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
   1640     } else {
   1641       TmpInst.setOpcode(ARM::LDRrs);
   1642       TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
   1643       TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
   1644       TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
   1645       TmpInst.addOperand(MCOperand::CreateImm(0));
   1646     }
   1647     // Add predicate operands.
   1648     TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
   1649     TmpInst.addOperand(MCOperand::CreateReg(0));
   1650     OutStreamer.EmitInstruction(TmpInst);
   1651 
   1652     // Output the data for the jump table itself
   1653     EmitJumpTable(MI);
   1654     return;
   1655   }
   1656   case ARM::BR_JTadd: {
   1657     // Lower and emit the instruction itself, then the jump table following it.
   1658     // add pc, target, idx
   1659     OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDrr)
   1660       .addReg(ARM::PC)
   1661       .addReg(MI->getOperand(0).getReg())
   1662       .addReg(MI->getOperand(1).getReg())
   1663       // Add predicate operands.
   1664       .addImm(ARMCC::AL)
   1665       .addReg(0)
   1666       // Add 's' bit operand (always reg0 for this)
   1667       .addReg(0));
   1668 
   1669     // Output the data for the jump table itself
   1670     EmitJumpTable(MI);
   1671     return;
   1672   }
   1673   case ARM::TRAP: {
   1674     // Non-Darwin binutils don't yet support the "trap" mnemonic.
   1675     // FIXME: Remove this special case when they do.
   1676     if (!Subtarget->isTargetDarwin()) {
   1677       //.long 0xe7ffdefe @ trap
   1678       uint32_t Val = 0xe7ffdefeUL;
   1679       OutStreamer.AddComment("trap");
   1680       OutStreamer.EmitIntValue(Val, 4);
   1681       return;
   1682     }
   1683     break;
   1684   }
   1685   case ARM::TRAPNaCl: {
   1686     //.long 0xe7fedef0 @ trap
   1687     uint32_t Val = 0xe7fedef0UL;
   1688     OutStreamer.AddComment("trap");
   1689     OutStreamer.EmitIntValue(Val, 4);
   1690     return;
   1691   }
   1692   case ARM::tTRAP: {
   1693     // Non-Darwin binutils don't yet support the "trap" mnemonic.
   1694     // FIXME: Remove this special case when they do.
   1695     if (!Subtarget->isTargetDarwin()) {
   1696       //.short 57086 @ trap
   1697       uint16_t Val = 0xdefe;
   1698       OutStreamer.AddComment("trap");
   1699       OutStreamer.EmitIntValue(Val, 2);
   1700       return;
   1701     }
   1702     break;
   1703   }
   1704   case ARM::t2Int_eh_sjlj_setjmp:
   1705   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   1706   case ARM::tInt_eh_sjlj_setjmp: {
   1707     // Two incoming args: GPR:$src, GPR:$val
   1708     // mov $val, pc
   1709     // adds $val, #7
   1710     // str $val, [$src, #4]
   1711     // movs r0, #0
   1712     // b 1f
   1713     // movs r0, #1
   1714     // 1:
   1715     unsigned SrcReg = MI->getOperand(0).getReg();
   1716     unsigned ValReg = MI->getOperand(1).getReg();
   1717     MCSymbol *Label = GetARMSJLJEHLabel();
   1718     OutStreamer.AddComment("eh_setjmp begin");
   1719     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
   1720       .addReg(ValReg)
   1721       .addReg(ARM::PC)
   1722       // Predicate.
   1723       .addImm(ARMCC::AL)
   1724       .addReg(0));
   1725 
   1726     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tADDi3)
   1727       .addReg(ValReg)
   1728       // 's' bit operand
   1729       .addReg(ARM::CPSR)
   1730       .addReg(ValReg)
   1731       .addImm(7)
   1732       // Predicate.
   1733       .addImm(ARMCC::AL)
   1734       .addReg(0));
   1735 
   1736     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tSTRi)
   1737       .addReg(ValReg)
   1738       .addReg(SrcReg)
   1739       // The offset immediate is #4. The operand value is scaled by 4 for the
   1740       // tSTR instruction.
   1741       .addImm(1)
   1742       // Predicate.
   1743       .addImm(ARMCC::AL)
   1744       .addReg(0));
   1745 
   1746     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVi8)
   1747       .addReg(ARM::R0)
   1748       .addReg(ARM::CPSR)
   1749       .addImm(0)
   1750       // Predicate.
   1751       .addImm(ARMCC::AL)
   1752       .addReg(0));
   1753 
   1754     const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
   1755     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tB)
   1756       .addExpr(SymbolExpr)
   1757       .addImm(ARMCC::AL)
   1758       .addReg(0));
   1759 
   1760     OutStreamer.AddComment("eh_setjmp end");
   1761     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVi8)
   1762       .addReg(ARM::R0)
   1763       .addReg(ARM::CPSR)
   1764       .addImm(1)
   1765       // Predicate.
   1766       .addImm(ARMCC::AL)
   1767       .addReg(0));
   1768 
   1769     OutStreamer.EmitLabel(Label);
   1770     return;
   1771   }
   1772 
   1773   case ARM::Int_eh_sjlj_setjmp_nofp:
   1774   case ARM::Int_eh_sjlj_setjmp: {
   1775     // Two incoming args: GPR:$src, GPR:$val
   1776     // add $val, pc, #8
   1777     // str $val, [$src, #+4]
   1778     // mov r0, #0
   1779     // add pc, pc, #0
   1780     // mov r0, #1
   1781     unsigned SrcReg = MI->getOperand(0).getReg();
   1782     unsigned ValReg = MI->getOperand(1).getReg();
   1783 
   1784     OutStreamer.AddComment("eh_setjmp begin");
   1785     OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDri)
   1786       .addReg(ValReg)
   1787       .addReg(ARM::PC)
   1788       .addImm(8)
   1789       // Predicate.
   1790       .addImm(ARMCC::AL)
   1791       .addReg(0)
   1792       // 's' bit operand (always reg0 for this).
   1793       .addReg(0));
   1794 
   1795     OutStreamer.EmitInstruction(MCInstBuilder(ARM::STRi12)
   1796       .addReg(ValReg)
   1797       .addReg(SrcReg)
   1798       .addImm(4)
   1799       // Predicate.
   1800       .addImm(ARMCC::AL)
   1801       .addReg(0));
   1802 
   1803     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVi)
   1804       .addReg(ARM::R0)
   1805       .addImm(0)
   1806       // Predicate.
   1807       .addImm(ARMCC::AL)
   1808       .addReg(0)
   1809       // 's' bit operand (always reg0 for this).
   1810       .addReg(0));
   1811 
   1812     OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDri)
   1813       .addReg(ARM::PC)
   1814       .addReg(ARM::PC)
   1815       .addImm(0)
   1816       // Predicate.
   1817       .addImm(ARMCC::AL)
   1818       .addReg(0)
   1819       // 's' bit operand (always reg0 for this).
   1820       .addReg(0));
   1821 
   1822     OutStreamer.AddComment("eh_setjmp end");
   1823     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVi)
   1824       .addReg(ARM::R0)
   1825       .addImm(1)
   1826       // Predicate.
   1827       .addImm(ARMCC::AL)
   1828       .addReg(0)
   1829       // 's' bit operand (always reg0 for this).
   1830       .addReg(0));
   1831     return;
   1832   }
   1833   case ARM::Int_eh_sjlj_longjmp: {
   1834     // ldr sp, [$src, #8]
   1835     // ldr $scratch, [$src, #4]
   1836     // ldr r7, [$src]
   1837     // bx $scratch
   1838     unsigned SrcReg = MI->getOperand(0).getReg();
   1839     unsigned ScratchReg = MI->getOperand(1).getReg();
   1840     OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
   1841       .addReg(ARM::SP)
   1842       .addReg(SrcReg)
   1843       .addImm(8)
   1844       // Predicate.
   1845       .addImm(ARMCC::AL)
   1846       .addReg(0));
   1847 
   1848     OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
   1849       .addReg(ScratchReg)
   1850       .addReg(SrcReg)
   1851       .addImm(4)
   1852       // Predicate.
   1853       .addImm(ARMCC::AL)
   1854       .addReg(0));
   1855 
   1856     OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
   1857       .addReg(ARM::R7)
   1858       .addReg(SrcReg)
   1859       .addImm(0)
   1860       // Predicate.
   1861       .addImm(ARMCC::AL)
   1862       .addReg(0));
   1863 
   1864     OutStreamer.EmitInstruction(MCInstBuilder(ARM::BX)
   1865       .addReg(ScratchReg)
   1866       // Predicate.
   1867       .addImm(ARMCC::AL)
   1868       .addReg(0));
   1869     return;
   1870   }
   1871   case ARM::tInt_eh_sjlj_longjmp: {
   1872     // ldr $scratch, [$src, #8]
   1873     // mov sp, $scratch
   1874     // ldr $scratch, [$src, #4]
   1875     // ldr r7, [$src]
   1876     // bx $scratch
   1877     unsigned SrcReg = MI->getOperand(0).getReg();
   1878     unsigned ScratchReg = MI->getOperand(1).getReg();
   1879     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
   1880       .addReg(ScratchReg)
   1881       .addReg(SrcReg)
   1882       // The offset immediate is #8. The operand value is scaled by 4 for the
   1883       // tLDR instruction.
   1884       .addImm(2)
   1885       // Predicate.
   1886       .addImm(ARMCC::AL)
   1887       .addReg(0));
   1888 
   1889     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
   1890       .addReg(ARM::SP)
   1891       .addReg(ScratchReg)
   1892       // Predicate.
   1893       .addImm(ARMCC::AL)
   1894       .addReg(0));
   1895 
   1896     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
   1897       .addReg(ScratchReg)
   1898       .addReg(SrcReg)
   1899       .addImm(1)
   1900       // Predicate.
   1901       .addImm(ARMCC::AL)
   1902       .addReg(0));
   1903 
   1904     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
   1905       .addReg(ARM::R7)
   1906       .addReg(SrcReg)
   1907       .addImm(0)
   1908       // Predicate.
   1909       .addImm(ARMCC::AL)
   1910       .addReg(0));
   1911 
   1912     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tBX)
   1913       .addReg(ScratchReg)
   1914       // Predicate.
   1915       .addImm(ARMCC::AL)
   1916       .addReg(0));
   1917     return;
   1918   }
   1919   }
   1920 
   1921   MCInst TmpInst;
   1922   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
   1923 
   1924   OutStreamer.EmitInstruction(TmpInst);
   1925 }
   1926 
   1927 //===----------------------------------------------------------------------===//
   1928 // Target Registry Stuff
   1929 //===----------------------------------------------------------------------===//
   1930 
   1931 // Force static initialization.
   1932 extern "C" void LLVMInitializeARMAsmPrinter() {
   1933   RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
   1934   RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
   1935 }
   1936