1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CFG.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV) { 91 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 92 } 93 94 /// EmitLoadOfLValue - Given an expression with complex type that represents a 95 /// value l-value, this method emits the address of the l-value, then loads 96 /// and returns the result. 97 Value *EmitLoadOfLValue(const Expr *E) { 98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load)); 99 } 100 101 /// EmitConversionToBool - Convert the specified expression value to a 102 /// boolean (i1) truth value. This is equivalent to "Val != 0". 103 Value *EmitConversionToBool(Value *Src, QualType DstTy); 104 105 /// \brief Emit a check that a conversion to or from a floating-point type 106 /// does not overflow. 107 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 108 Value *Src, QualType SrcType, 109 QualType DstType, llvm::Type *DstTy); 110 111 /// EmitScalarConversion - Emit a conversion from the specified type to the 112 /// specified destination type, both of which are LLVM scalar types. 113 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 114 115 /// EmitComplexToScalarConversion - Emit a conversion from the specified 116 /// complex type to the specified destination type, where the destination type 117 /// is an LLVM scalar type. 118 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 119 QualType SrcTy, QualType DstTy); 120 121 /// EmitNullValue - Emit a value that corresponds to null for the given type. 122 Value *EmitNullValue(QualType Ty); 123 124 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 125 Value *EmitFloatToBoolConversion(Value *V) { 126 // Compare against 0.0 for fp scalars. 127 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 128 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 129 } 130 131 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 132 Value *EmitPointerToBoolConversion(Value *V) { 133 Value *Zero = llvm::ConstantPointerNull::get( 134 cast<llvm::PointerType>(V->getType())); 135 return Builder.CreateICmpNE(V, Zero, "tobool"); 136 } 137 138 Value *EmitIntToBoolConversion(Value *V) { 139 // Because of the type rules of C, we often end up computing a 140 // logical value, then zero extending it to int, then wanting it 141 // as a logical value again. Optimize this common case. 142 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 143 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 144 Value *Result = ZI->getOperand(0); 145 // If there aren't any more uses, zap the instruction to save space. 146 // Note that there can be more uses, for example if this 147 // is the result of an assignment. 148 if (ZI->use_empty()) 149 ZI->eraseFromParent(); 150 return Result; 151 } 152 } 153 154 return Builder.CreateIsNotNull(V, "tobool"); 155 } 156 157 //===--------------------------------------------------------------------===// 158 // Visitor Methods 159 //===--------------------------------------------------------------------===// 160 161 Value *Visit(Expr *E) { 162 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 163 } 164 165 Value *VisitStmt(Stmt *S) { 166 S->dump(CGF.getContext().getSourceManager()); 167 llvm_unreachable("Stmt can't have complex result type!"); 168 } 169 Value *VisitExpr(Expr *S); 170 171 Value *VisitParenExpr(ParenExpr *PE) { 172 return Visit(PE->getSubExpr()); 173 } 174 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 175 return Visit(E->getReplacement()); 176 } 177 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 178 return Visit(GE->getResultExpr()); 179 } 180 181 // Leaves. 182 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 183 return Builder.getInt(E->getValue()); 184 } 185 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 186 return llvm::ConstantFP::get(VMContext, E->getValue()); 187 } 188 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 189 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 190 } 191 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 192 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 193 } 194 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 195 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 196 } 197 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 198 return EmitNullValue(E->getType()); 199 } 200 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 201 return EmitNullValue(E->getType()); 202 } 203 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 204 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 205 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 206 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 207 return Builder.CreateBitCast(V, ConvertType(E->getType())); 208 } 209 210 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 211 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 212 } 213 214 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 215 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 216 } 217 218 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 219 if (E->isGLValue()) 220 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E)); 221 222 // Otherwise, assume the mapping is the scalar directly. 223 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 224 } 225 226 // l-values. 227 Value *VisitDeclRefExpr(DeclRefExpr *E) { 228 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 229 if (result.isReference()) 230 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E)); 231 return result.getValue(); 232 } 233 return EmitLoadOfLValue(E); 234 } 235 236 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 237 return CGF.EmitObjCSelectorExpr(E); 238 } 239 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 240 return CGF.EmitObjCProtocolExpr(E); 241 } 242 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 243 return EmitLoadOfLValue(E); 244 } 245 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 246 if (E->getMethodDecl() && 247 E->getMethodDecl()->getResultType()->isReferenceType()) 248 return EmitLoadOfLValue(E); 249 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 250 } 251 252 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 253 LValue LV = CGF.EmitObjCIsaExpr(E); 254 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal(); 255 return V; 256 } 257 258 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 259 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 260 Value *VisitMemberExpr(MemberExpr *E); 261 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 262 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 263 return EmitLoadOfLValue(E); 264 } 265 266 Value *VisitInitListExpr(InitListExpr *E); 267 268 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 269 return EmitNullValue(E->getType()); 270 } 271 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 272 if (E->getType()->isVariablyModifiedType()) 273 CGF.EmitVariablyModifiedType(E->getType()); 274 return VisitCastExpr(E); 275 } 276 Value *VisitCastExpr(CastExpr *E); 277 278 Value *VisitCallExpr(const CallExpr *E) { 279 if (E->getCallReturnType()->isReferenceType()) 280 return EmitLoadOfLValue(E); 281 282 return CGF.EmitCallExpr(E).getScalarVal(); 283 } 284 285 Value *VisitStmtExpr(const StmtExpr *E); 286 287 // Unary Operators. 288 Value *VisitUnaryPostDec(const UnaryOperator *E) { 289 LValue LV = EmitLValue(E->getSubExpr()); 290 return EmitScalarPrePostIncDec(E, LV, false, false); 291 } 292 Value *VisitUnaryPostInc(const UnaryOperator *E) { 293 LValue LV = EmitLValue(E->getSubExpr()); 294 return EmitScalarPrePostIncDec(E, LV, true, false); 295 } 296 Value *VisitUnaryPreDec(const UnaryOperator *E) { 297 LValue LV = EmitLValue(E->getSubExpr()); 298 return EmitScalarPrePostIncDec(E, LV, false, true); 299 } 300 Value *VisitUnaryPreInc(const UnaryOperator *E) { 301 LValue LV = EmitLValue(E->getSubExpr()); 302 return EmitScalarPrePostIncDec(E, LV, true, true); 303 } 304 305 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 306 llvm::Value *InVal, 307 llvm::Value *NextVal, 308 bool IsInc); 309 310 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 311 bool isInc, bool isPre); 312 313 314 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 315 if (isa<MemberPointerType>(E->getType())) // never sugared 316 return CGF.CGM.getMemberPointerConstant(E); 317 318 return EmitLValue(E->getSubExpr()).getAddress(); 319 } 320 Value *VisitUnaryDeref(const UnaryOperator *E) { 321 if (E->getType()->isVoidType()) 322 return Visit(E->getSubExpr()); // the actual value should be unused 323 return EmitLoadOfLValue(E); 324 } 325 Value *VisitUnaryPlus(const UnaryOperator *E) { 326 // This differs from gcc, though, most likely due to a bug in gcc. 327 TestAndClearIgnoreResultAssign(); 328 return Visit(E->getSubExpr()); 329 } 330 Value *VisitUnaryMinus (const UnaryOperator *E); 331 Value *VisitUnaryNot (const UnaryOperator *E); 332 Value *VisitUnaryLNot (const UnaryOperator *E); 333 Value *VisitUnaryReal (const UnaryOperator *E); 334 Value *VisitUnaryImag (const UnaryOperator *E); 335 Value *VisitUnaryExtension(const UnaryOperator *E) { 336 return Visit(E->getSubExpr()); 337 } 338 339 // C++ 340 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 341 return EmitLoadOfLValue(E); 342 } 343 344 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 345 return Visit(DAE->getExpr()); 346 } 347 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 348 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 349 return Visit(DIE->getExpr()); 350 } 351 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 352 return CGF.LoadCXXThis(); 353 } 354 355 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 356 CGF.enterFullExpression(E); 357 CodeGenFunction::RunCleanupsScope Scope(CGF); 358 return Visit(E->getSubExpr()); 359 } 360 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 361 return CGF.EmitCXXNewExpr(E); 362 } 363 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 364 CGF.EmitCXXDeleteExpr(E); 365 return 0; 366 } 367 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 368 return Builder.getInt1(E->getValue()); 369 } 370 371 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { 372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 373 } 374 375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 377 } 378 379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 381 } 382 383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 384 // C++ [expr.pseudo]p1: 385 // The result shall only be used as the operand for the function call 386 // operator (), and the result of such a call has type void. The only 387 // effect is the evaluation of the postfix-expression before the dot or 388 // arrow. 389 CGF.EmitScalarExpr(E->getBase()); 390 return 0; 391 } 392 393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 394 return EmitNullValue(E->getType()); 395 } 396 397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 398 CGF.EmitCXXThrowExpr(E); 399 return 0; 400 } 401 402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 403 return Builder.getInt1(E->getValue()); 404 } 405 406 // Binary Operators. 407 Value *EmitMul(const BinOpInfo &Ops) { 408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 410 case LangOptions::SOB_Defined: 411 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 412 case LangOptions::SOB_Undefined: 413 if (!CGF.SanOpts->SignedIntegerOverflow) 414 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 415 // Fall through. 416 case LangOptions::SOB_Trapping: 417 return EmitOverflowCheckedBinOp(Ops); 418 } 419 } 420 421 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 422 return EmitOverflowCheckedBinOp(Ops); 423 424 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 425 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 426 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 427 } 428 /// Create a binary op that checks for overflow. 429 /// Currently only supports +, - and *. 430 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 431 432 // Check for undefined division and modulus behaviors. 433 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 434 llvm::Value *Zero,bool isDiv); 435 // Common helper for getting how wide LHS of shift is. 436 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 437 Value *EmitDiv(const BinOpInfo &Ops); 438 Value *EmitRem(const BinOpInfo &Ops); 439 Value *EmitAdd(const BinOpInfo &Ops); 440 Value *EmitSub(const BinOpInfo &Ops); 441 Value *EmitShl(const BinOpInfo &Ops); 442 Value *EmitShr(const BinOpInfo &Ops); 443 Value *EmitAnd(const BinOpInfo &Ops) { 444 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 445 } 446 Value *EmitXor(const BinOpInfo &Ops) { 447 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 448 } 449 Value *EmitOr (const BinOpInfo &Ops) { 450 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 451 } 452 453 BinOpInfo EmitBinOps(const BinaryOperator *E); 454 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 456 Value *&Result); 457 458 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 459 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 460 461 // Binary operators and binary compound assignment operators. 462 #define HANDLEBINOP(OP) \ 463 Value *VisitBin ## OP(const BinaryOperator *E) { \ 464 return Emit ## OP(EmitBinOps(E)); \ 465 } \ 466 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 467 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 468 } 469 HANDLEBINOP(Mul) 470 HANDLEBINOP(Div) 471 HANDLEBINOP(Rem) 472 HANDLEBINOP(Add) 473 HANDLEBINOP(Sub) 474 HANDLEBINOP(Shl) 475 HANDLEBINOP(Shr) 476 HANDLEBINOP(And) 477 HANDLEBINOP(Xor) 478 HANDLEBINOP(Or) 479 #undef HANDLEBINOP 480 481 // Comparisons. 482 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 483 unsigned SICmpOpc, unsigned FCmpOpc); 484 #define VISITCOMP(CODE, UI, SI, FP) \ 485 Value *VisitBin##CODE(const BinaryOperator *E) { \ 486 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 487 llvm::FCmpInst::FP); } 488 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 489 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 490 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 491 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 492 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 493 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 494 #undef VISITCOMP 495 496 Value *VisitBinAssign (const BinaryOperator *E); 497 498 Value *VisitBinLAnd (const BinaryOperator *E); 499 Value *VisitBinLOr (const BinaryOperator *E); 500 Value *VisitBinComma (const BinaryOperator *E); 501 502 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 503 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 504 505 // Other Operators. 506 Value *VisitBlockExpr(const BlockExpr *BE); 507 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 508 Value *VisitChooseExpr(ChooseExpr *CE); 509 Value *VisitVAArgExpr(VAArgExpr *VE); 510 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 511 return CGF.EmitObjCStringLiteral(E); 512 } 513 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 514 return CGF.EmitObjCBoxedExpr(E); 515 } 516 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 517 return CGF.EmitObjCArrayLiteral(E); 518 } 519 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 520 return CGF.EmitObjCDictionaryLiteral(E); 521 } 522 Value *VisitAsTypeExpr(AsTypeExpr *CE); 523 Value *VisitAtomicExpr(AtomicExpr *AE); 524 }; 525 } // end anonymous namespace. 526 527 //===----------------------------------------------------------------------===// 528 // Utilities 529 //===----------------------------------------------------------------------===// 530 531 /// EmitConversionToBool - Convert the specified expression value to a 532 /// boolean (i1) truth value. This is equivalent to "Val != 0". 533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 534 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 535 536 if (SrcType->isRealFloatingType()) 537 return EmitFloatToBoolConversion(Src); 538 539 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 540 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 541 542 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 543 "Unknown scalar type to convert"); 544 545 if (isa<llvm::IntegerType>(Src->getType())) 546 return EmitIntToBoolConversion(Src); 547 548 assert(isa<llvm::PointerType>(Src->getType())); 549 return EmitPointerToBoolConversion(Src); 550 } 551 552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 553 QualType OrigSrcType, 554 Value *Src, QualType SrcType, 555 QualType DstType, 556 llvm::Type *DstTy) { 557 using llvm::APFloat; 558 using llvm::APSInt; 559 560 llvm::Type *SrcTy = Src->getType(); 561 562 llvm::Value *Check = 0; 563 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 564 // Integer to floating-point. This can fail for unsigned short -> __half 565 // or unsigned __int128 -> float. 566 assert(DstType->isFloatingType()); 567 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 568 569 APFloat LargestFloat = 570 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 571 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 572 573 bool IsExact; 574 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 575 &IsExact) != APFloat::opOK) 576 // The range of representable values of this floating point type includes 577 // all values of this integer type. Don't need an overflow check. 578 return; 579 580 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 581 if (SrcIsUnsigned) 582 Check = Builder.CreateICmpULE(Src, Max); 583 else { 584 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 585 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 586 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 587 Check = Builder.CreateAnd(GE, LE); 588 } 589 } else { 590 const llvm::fltSemantics &SrcSema = 591 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 592 if (isa<llvm::IntegerType>(DstTy)) { 593 // Floating-point to integer. This has undefined behavior if the source is 594 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 595 // to an integer). 596 unsigned Width = CGF.getContext().getIntWidth(DstType); 597 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 598 599 APSInt Min = APSInt::getMinValue(Width, Unsigned); 600 APFloat MinSrc(SrcSema, APFloat::uninitialized); 601 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 602 APFloat::opOverflow) 603 // Don't need an overflow check for lower bound. Just check for 604 // -Inf/NaN. 605 MinSrc = APFloat::getInf(SrcSema, true); 606 else 607 // Find the largest value which is too small to represent (before 608 // truncation toward zero). 609 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 610 611 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 612 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 613 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 614 APFloat::opOverflow) 615 // Don't need an overflow check for upper bound. Just check for 616 // +Inf/NaN. 617 MaxSrc = APFloat::getInf(SrcSema, false); 618 else 619 // Find the smallest value which is too large to represent (before 620 // truncation toward zero). 621 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 622 623 // If we're converting from __half, convert the range to float to match 624 // the type of src. 625 if (OrigSrcType->isHalfType()) { 626 const llvm::fltSemantics &Sema = 627 CGF.getContext().getFloatTypeSemantics(SrcType); 628 bool IsInexact; 629 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 630 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 631 } 632 633 llvm::Value *GE = 634 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 635 llvm::Value *LE = 636 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 637 Check = Builder.CreateAnd(GE, LE); 638 } else { 639 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 640 // 641 // Floating-point to floating-point. This has undefined behavior if the 642 // source is not in the range of representable values of the destination 643 // type. The C and C++ standards are spectacularly unclear here. We 644 // diagnose finite out-of-range conversions, but allow infinities and NaNs 645 // to convert to the corresponding value in the smaller type. 646 // 647 // C11 Annex F gives all such conversions defined behavior for IEC 60559 648 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 649 // does not. 650 651 // Converting from a lower rank to a higher rank can never have 652 // undefined behavior, since higher-rank types must have a superset 653 // of values of lower-rank types. 654 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 655 return; 656 657 assert(!OrigSrcType->isHalfType() && 658 "should not check conversion from __half, it has the lowest rank"); 659 660 const llvm::fltSemantics &DstSema = 661 CGF.getContext().getFloatTypeSemantics(DstType); 662 APFloat MinBad = APFloat::getLargest(DstSema, false); 663 APFloat MaxBad = APFloat::getInf(DstSema, false); 664 665 bool IsInexact; 666 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 667 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 668 669 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 670 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 671 llvm::Value *GE = 672 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 673 llvm::Value *LE = 674 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 675 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 676 } 677 } 678 679 // FIXME: Provide a SourceLocation. 680 llvm::Constant *StaticArgs[] = { 681 CGF.EmitCheckTypeDescriptor(OrigSrcType), 682 CGF.EmitCheckTypeDescriptor(DstType) 683 }; 684 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 685 CodeGenFunction::CRK_Recoverable); 686 } 687 688 /// EmitScalarConversion - Emit a conversion from the specified type to the 689 /// specified destination type, both of which are LLVM scalar types. 690 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 691 QualType DstType) { 692 SrcType = CGF.getContext().getCanonicalType(SrcType); 693 DstType = CGF.getContext().getCanonicalType(DstType); 694 if (SrcType == DstType) return Src; 695 696 if (DstType->isVoidType()) return 0; 697 698 llvm::Value *OrigSrc = Src; 699 QualType OrigSrcType = SrcType; 700 llvm::Type *SrcTy = Src->getType(); 701 702 // If casting to/from storage-only half FP, use special intrinsics. 703 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 704 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 705 SrcType = CGF.getContext().FloatTy; 706 SrcTy = CGF.FloatTy; 707 } 708 709 // Handle conversions to bool first, they are special: comparisons against 0. 710 if (DstType->isBooleanType()) 711 return EmitConversionToBool(Src, SrcType); 712 713 llvm::Type *DstTy = ConvertType(DstType); 714 715 // Ignore conversions like int -> uint. 716 if (SrcTy == DstTy) 717 return Src; 718 719 // Handle pointer conversions next: pointers can only be converted to/from 720 // other pointers and integers. Check for pointer types in terms of LLVM, as 721 // some native types (like Obj-C id) may map to a pointer type. 722 if (isa<llvm::PointerType>(DstTy)) { 723 // The source value may be an integer, or a pointer. 724 if (isa<llvm::PointerType>(SrcTy)) 725 return Builder.CreateBitCast(Src, DstTy, "conv"); 726 727 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 728 // First, convert to the correct width so that we control the kind of 729 // extension. 730 llvm::Type *MiddleTy = CGF.IntPtrTy; 731 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 732 llvm::Value* IntResult = 733 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 734 // Then, cast to pointer. 735 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 736 } 737 738 if (isa<llvm::PointerType>(SrcTy)) { 739 // Must be an ptr to int cast. 740 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 741 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 742 } 743 744 // A scalar can be splatted to an extended vector of the same element type 745 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 746 // Cast the scalar to element type 747 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 748 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 749 750 // Splat the element across to all elements 751 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 752 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 753 } 754 755 // Allow bitcast from vector to integer/fp of the same size. 756 if (isa<llvm::VectorType>(SrcTy) || 757 isa<llvm::VectorType>(DstTy)) 758 return Builder.CreateBitCast(Src, DstTy, "conv"); 759 760 // Finally, we have the arithmetic types: real int/float. 761 Value *Res = NULL; 762 llvm::Type *ResTy = DstTy; 763 764 // An overflowing conversion has undefined behavior if either the source type 765 // or the destination type is a floating-point type. 766 if (CGF.SanOpts->FloatCastOverflow && 767 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 768 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 769 DstTy); 770 771 // Cast to half via float 772 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 773 DstTy = CGF.FloatTy; 774 775 if (isa<llvm::IntegerType>(SrcTy)) { 776 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 777 if (isa<llvm::IntegerType>(DstTy)) 778 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 779 else if (InputSigned) 780 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 781 else 782 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 783 } else if (isa<llvm::IntegerType>(DstTy)) { 784 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 785 if (DstType->isSignedIntegerOrEnumerationType()) 786 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 787 else 788 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 789 } else { 790 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 791 "Unknown real conversion"); 792 if (DstTy->getTypeID() < SrcTy->getTypeID()) 793 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 794 else 795 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 796 } 797 798 if (DstTy != ResTy) { 799 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 800 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 801 } 802 803 return Res; 804 } 805 806 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 807 /// type to the specified destination type, where the destination type is an 808 /// LLVM scalar type. 809 Value *ScalarExprEmitter:: 810 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 811 QualType SrcTy, QualType DstTy) { 812 // Get the source element type. 813 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 814 815 // Handle conversions to bool first, they are special: comparisons against 0. 816 if (DstTy->isBooleanType()) { 817 // Complex != 0 -> (Real != 0) | (Imag != 0) 818 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 819 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 820 return Builder.CreateOr(Src.first, Src.second, "tobool"); 821 } 822 823 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 824 // the imaginary part of the complex value is discarded and the value of the 825 // real part is converted according to the conversion rules for the 826 // corresponding real type. 827 return EmitScalarConversion(Src.first, SrcTy, DstTy); 828 } 829 830 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 831 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 832 } 833 834 /// \brief Emit a sanitization check for the given "binary" operation (which 835 /// might actually be a unary increment which has been lowered to a binary 836 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 837 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 838 StringRef CheckName; 839 SmallVector<llvm::Constant *, 4> StaticData; 840 SmallVector<llvm::Value *, 2> DynamicData; 841 842 BinaryOperatorKind Opcode = Info.Opcode; 843 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 844 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 845 846 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 847 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 848 if (UO && UO->getOpcode() == UO_Minus) { 849 CheckName = "negate_overflow"; 850 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 851 DynamicData.push_back(Info.RHS); 852 } else { 853 if (BinaryOperator::isShiftOp(Opcode)) { 854 // Shift LHS negative or too large, or RHS out of bounds. 855 CheckName = "shift_out_of_bounds"; 856 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 857 StaticData.push_back( 858 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 859 StaticData.push_back( 860 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 861 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 862 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 863 CheckName = "divrem_overflow"; 864 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 865 } else { 866 // Signed arithmetic overflow (+, -, *). 867 switch (Opcode) { 868 case BO_Add: CheckName = "add_overflow"; break; 869 case BO_Sub: CheckName = "sub_overflow"; break; 870 case BO_Mul: CheckName = "mul_overflow"; break; 871 default: llvm_unreachable("unexpected opcode for bin op check"); 872 } 873 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 874 } 875 DynamicData.push_back(Info.LHS); 876 DynamicData.push_back(Info.RHS); 877 } 878 879 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 880 CodeGenFunction::CRK_Recoverable); 881 } 882 883 //===----------------------------------------------------------------------===// 884 // Visitor Methods 885 //===----------------------------------------------------------------------===// 886 887 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 888 CGF.ErrorUnsupported(E, "scalar expression"); 889 if (E->getType()->isVoidType()) 890 return 0; 891 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 892 } 893 894 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 895 // Vector Mask Case 896 if (E->getNumSubExprs() == 2 || 897 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 898 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 899 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 900 Value *Mask; 901 902 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 903 unsigned LHSElts = LTy->getNumElements(); 904 905 if (E->getNumSubExprs() == 3) { 906 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 907 908 // Shuffle LHS & RHS into one input vector. 909 SmallVector<llvm::Constant*, 32> concat; 910 for (unsigned i = 0; i != LHSElts; ++i) { 911 concat.push_back(Builder.getInt32(2*i)); 912 concat.push_back(Builder.getInt32(2*i+1)); 913 } 914 915 Value* CV = llvm::ConstantVector::get(concat); 916 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 917 LHSElts *= 2; 918 } else { 919 Mask = RHS; 920 } 921 922 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 923 llvm::Constant* EltMask; 924 925 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 926 llvm::NextPowerOf2(LHSElts-1)-1); 927 928 // Mask off the high bits of each shuffle index. 929 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 930 EltMask); 931 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 932 933 // newv = undef 934 // mask = mask & maskbits 935 // for each elt 936 // n = extract mask i 937 // x = extract val n 938 // newv = insert newv, x, i 939 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 940 MTy->getNumElements()); 941 Value* NewV = llvm::UndefValue::get(RTy); 942 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 943 Value *IIndx = Builder.getInt32(i); 944 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 945 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 946 947 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 948 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 949 } 950 return NewV; 951 } 952 953 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 954 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 955 956 SmallVector<llvm::Constant*, 32> indices; 957 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 958 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 959 // Check for -1 and output it as undef in the IR. 960 if (Idx.isSigned() && Idx.isAllOnesValue()) 961 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 962 else 963 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 964 } 965 966 Value *SV = llvm::ConstantVector::get(indices); 967 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 968 } 969 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 970 llvm::APSInt Value; 971 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 972 if (E->isArrow()) 973 CGF.EmitScalarExpr(E->getBase()); 974 else 975 EmitLValue(E->getBase()); 976 return Builder.getInt(Value); 977 } 978 979 return EmitLoadOfLValue(E); 980 } 981 982 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 983 TestAndClearIgnoreResultAssign(); 984 985 // Emit subscript expressions in rvalue context's. For most cases, this just 986 // loads the lvalue formed by the subscript expr. However, we have to be 987 // careful, because the base of a vector subscript is occasionally an rvalue, 988 // so we can't get it as an lvalue. 989 if (!E->getBase()->getType()->isVectorType()) 990 return EmitLoadOfLValue(E); 991 992 // Handle the vector case. The base must be a vector, the index must be an 993 // integer value. 994 Value *Base = Visit(E->getBase()); 995 Value *Idx = Visit(E->getIdx()); 996 QualType IdxTy = E->getIdx()->getType(); 997 998 if (CGF.SanOpts->Bounds) 999 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1000 1001 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1002 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 1003 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1004 } 1005 1006 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1007 unsigned Off, llvm::Type *I32Ty) { 1008 int MV = SVI->getMaskValue(Idx); 1009 if (MV == -1) 1010 return llvm::UndefValue::get(I32Ty); 1011 return llvm::ConstantInt::get(I32Ty, Off+MV); 1012 } 1013 1014 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1015 bool Ignore = TestAndClearIgnoreResultAssign(); 1016 (void)Ignore; 1017 assert (Ignore == false && "init list ignored"); 1018 unsigned NumInitElements = E->getNumInits(); 1019 1020 if (E->hadArrayRangeDesignator()) 1021 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1022 1023 llvm::VectorType *VType = 1024 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1025 1026 if (!VType) { 1027 if (NumInitElements == 0) { 1028 // C++11 value-initialization for the scalar. 1029 return EmitNullValue(E->getType()); 1030 } 1031 // We have a scalar in braces. Just use the first element. 1032 return Visit(E->getInit(0)); 1033 } 1034 1035 unsigned ResElts = VType->getNumElements(); 1036 1037 // Loop over initializers collecting the Value for each, and remembering 1038 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1039 // us to fold the shuffle for the swizzle into the shuffle for the vector 1040 // initializer, since LLVM optimizers generally do not want to touch 1041 // shuffles. 1042 unsigned CurIdx = 0; 1043 bool VIsUndefShuffle = false; 1044 llvm::Value *V = llvm::UndefValue::get(VType); 1045 for (unsigned i = 0; i != NumInitElements; ++i) { 1046 Expr *IE = E->getInit(i); 1047 Value *Init = Visit(IE); 1048 SmallVector<llvm::Constant*, 16> Args; 1049 1050 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1051 1052 // Handle scalar elements. If the scalar initializer is actually one 1053 // element of a different vector of the same width, use shuffle instead of 1054 // extract+insert. 1055 if (!VVT) { 1056 if (isa<ExtVectorElementExpr>(IE)) { 1057 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1058 1059 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1060 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1061 Value *LHS = 0, *RHS = 0; 1062 if (CurIdx == 0) { 1063 // insert into undef -> shuffle (src, undef) 1064 Args.push_back(C); 1065 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1066 1067 LHS = EI->getVectorOperand(); 1068 RHS = V; 1069 VIsUndefShuffle = true; 1070 } else if (VIsUndefShuffle) { 1071 // insert into undefshuffle && size match -> shuffle (v, src) 1072 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1073 for (unsigned j = 0; j != CurIdx; ++j) 1074 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1075 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1076 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1077 1078 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1079 RHS = EI->getVectorOperand(); 1080 VIsUndefShuffle = false; 1081 } 1082 if (!Args.empty()) { 1083 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1084 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1085 ++CurIdx; 1086 continue; 1087 } 1088 } 1089 } 1090 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1091 "vecinit"); 1092 VIsUndefShuffle = false; 1093 ++CurIdx; 1094 continue; 1095 } 1096 1097 unsigned InitElts = VVT->getNumElements(); 1098 1099 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1100 // input is the same width as the vector being constructed, generate an 1101 // optimized shuffle of the swizzle input into the result. 1102 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1103 if (isa<ExtVectorElementExpr>(IE)) { 1104 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1105 Value *SVOp = SVI->getOperand(0); 1106 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1107 1108 if (OpTy->getNumElements() == ResElts) { 1109 for (unsigned j = 0; j != CurIdx; ++j) { 1110 // If the current vector initializer is a shuffle with undef, merge 1111 // this shuffle directly into it. 1112 if (VIsUndefShuffle) { 1113 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1114 CGF.Int32Ty)); 1115 } else { 1116 Args.push_back(Builder.getInt32(j)); 1117 } 1118 } 1119 for (unsigned j = 0, je = InitElts; j != je; ++j) 1120 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1121 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1122 1123 if (VIsUndefShuffle) 1124 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1125 1126 Init = SVOp; 1127 } 1128 } 1129 1130 // Extend init to result vector length, and then shuffle its contribution 1131 // to the vector initializer into V. 1132 if (Args.empty()) { 1133 for (unsigned j = 0; j != InitElts; ++j) 1134 Args.push_back(Builder.getInt32(j)); 1135 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1136 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1137 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1138 Mask, "vext"); 1139 1140 Args.clear(); 1141 for (unsigned j = 0; j != CurIdx; ++j) 1142 Args.push_back(Builder.getInt32(j)); 1143 for (unsigned j = 0; j != InitElts; ++j) 1144 Args.push_back(Builder.getInt32(j+Offset)); 1145 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1146 } 1147 1148 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1149 // merging subsequent shuffles into this one. 1150 if (CurIdx == 0) 1151 std::swap(V, Init); 1152 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1153 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1154 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1155 CurIdx += InitElts; 1156 } 1157 1158 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1159 // Emit remaining default initializers. 1160 llvm::Type *EltTy = VType->getElementType(); 1161 1162 // Emit remaining default initializers 1163 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1164 Value *Idx = Builder.getInt32(CurIdx); 1165 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1166 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1167 } 1168 return V; 1169 } 1170 1171 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1172 const Expr *E = CE->getSubExpr(); 1173 1174 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1175 return false; 1176 1177 if (isa<CXXThisExpr>(E)) { 1178 // We always assume that 'this' is never null. 1179 return false; 1180 } 1181 1182 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1183 // And that glvalue casts are never null. 1184 if (ICE->getValueKind() != VK_RValue) 1185 return false; 1186 } 1187 1188 return true; 1189 } 1190 1191 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1192 // have to handle a more broad range of conversions than explicit casts, as they 1193 // handle things like function to ptr-to-function decay etc. 1194 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1195 Expr *E = CE->getSubExpr(); 1196 QualType DestTy = CE->getType(); 1197 CastKind Kind = CE->getCastKind(); 1198 1199 if (!DestTy->isVoidType()) 1200 TestAndClearIgnoreResultAssign(); 1201 1202 // Since almost all cast kinds apply to scalars, this switch doesn't have 1203 // a default case, so the compiler will warn on a missing case. The cases 1204 // are in the same order as in the CastKind enum. 1205 switch (Kind) { 1206 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1207 case CK_BuiltinFnToFnPtr: 1208 llvm_unreachable("builtin functions are handled elsewhere"); 1209 1210 case CK_LValueBitCast: 1211 case CK_ObjCObjectLValueCast: { 1212 Value *V = EmitLValue(E).getAddress(); 1213 V = Builder.CreateBitCast(V, 1214 ConvertType(CGF.getContext().getPointerType(DestTy))); 1215 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy)); 1216 } 1217 1218 case CK_CPointerToObjCPointerCast: 1219 case CK_BlockPointerToObjCPointerCast: 1220 case CK_AnyPointerToBlockPointerCast: 1221 case CK_BitCast: { 1222 Value *Src = Visit(const_cast<Expr*>(E)); 1223 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 1224 } 1225 case CK_AtomicToNonAtomic: 1226 case CK_NonAtomicToAtomic: 1227 case CK_NoOp: 1228 case CK_UserDefinedConversion: 1229 return Visit(const_cast<Expr*>(E)); 1230 1231 case CK_BaseToDerived: { 1232 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1233 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1234 1235 llvm::Value *V = Visit(E); 1236 1237 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1238 // performed and the object is not of the derived type. 1239 if (CGF.SanitizePerformTypeCheck) 1240 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1241 V, DestTy->getPointeeType()); 1242 1243 return CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1244 CE->path_begin(), CE->path_end(), 1245 ShouldNullCheckClassCastValue(CE)); 1246 } 1247 case CK_UncheckedDerivedToBase: 1248 case CK_DerivedToBase: { 1249 const CXXRecordDecl *DerivedClassDecl = 1250 E->getType()->getPointeeCXXRecordDecl(); 1251 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1252 1253 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1254 CE->path_begin(), CE->path_end(), 1255 ShouldNullCheckClassCastValue(CE)); 1256 } 1257 case CK_Dynamic: { 1258 Value *V = Visit(const_cast<Expr*>(E)); 1259 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1260 return CGF.EmitDynamicCast(V, DCE); 1261 } 1262 1263 case CK_ArrayToPointerDecay: { 1264 assert(E->getType()->isArrayType() && 1265 "Array to pointer decay must have array source type!"); 1266 1267 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1268 1269 // Note that VLA pointers are always decayed, so we don't need to do 1270 // anything here. 1271 if (!E->getType()->isVariableArrayType()) { 1272 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1273 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1274 ->getElementType()) && 1275 "Expected pointer to array"); 1276 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1277 } 1278 1279 // Make sure the array decay ends up being the right type. This matters if 1280 // the array type was of an incomplete type. 1281 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType())); 1282 } 1283 case CK_FunctionToPointerDecay: 1284 return EmitLValue(E).getAddress(); 1285 1286 case CK_NullToPointer: 1287 if (MustVisitNullValue(E)) 1288 (void) Visit(E); 1289 1290 return llvm::ConstantPointerNull::get( 1291 cast<llvm::PointerType>(ConvertType(DestTy))); 1292 1293 case CK_NullToMemberPointer: { 1294 if (MustVisitNullValue(E)) 1295 (void) Visit(E); 1296 1297 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1298 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1299 } 1300 1301 case CK_ReinterpretMemberPointer: 1302 case CK_BaseToDerivedMemberPointer: 1303 case CK_DerivedToBaseMemberPointer: { 1304 Value *Src = Visit(E); 1305 1306 // Note that the AST doesn't distinguish between checked and 1307 // unchecked member pointer conversions, so we always have to 1308 // implement checked conversions here. This is inefficient when 1309 // actual control flow may be required in order to perform the 1310 // check, which it is for data member pointers (but not member 1311 // function pointers on Itanium and ARM). 1312 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1313 } 1314 1315 case CK_ARCProduceObject: 1316 return CGF.EmitARCRetainScalarExpr(E); 1317 case CK_ARCConsumeObject: 1318 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1319 case CK_ARCReclaimReturnedObject: { 1320 llvm::Value *value = Visit(E); 1321 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1322 return CGF.EmitObjCConsumeObject(E->getType(), value); 1323 } 1324 case CK_ARCExtendBlockObject: 1325 return CGF.EmitARCExtendBlockObject(E); 1326 1327 case CK_CopyAndAutoreleaseBlockObject: 1328 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1329 1330 case CK_FloatingRealToComplex: 1331 case CK_FloatingComplexCast: 1332 case CK_IntegralRealToComplex: 1333 case CK_IntegralComplexCast: 1334 case CK_IntegralComplexToFloatingComplex: 1335 case CK_FloatingComplexToIntegralComplex: 1336 case CK_ConstructorConversion: 1337 case CK_ToUnion: 1338 llvm_unreachable("scalar cast to non-scalar value"); 1339 1340 case CK_LValueToRValue: 1341 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1342 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1343 return Visit(const_cast<Expr*>(E)); 1344 1345 case CK_IntegralToPointer: { 1346 Value *Src = Visit(const_cast<Expr*>(E)); 1347 1348 // First, convert to the correct width so that we control the kind of 1349 // extension. 1350 llvm::Type *MiddleTy = CGF.IntPtrTy; 1351 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1352 llvm::Value* IntResult = 1353 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1354 1355 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1356 } 1357 case CK_PointerToIntegral: 1358 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1359 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1360 1361 case CK_ToVoid: { 1362 CGF.EmitIgnoredExpr(E); 1363 return 0; 1364 } 1365 case CK_VectorSplat: { 1366 llvm::Type *DstTy = ConvertType(DestTy); 1367 Value *Elt = Visit(const_cast<Expr*>(E)); 1368 Elt = EmitScalarConversion(Elt, E->getType(), 1369 DestTy->getAs<VectorType>()->getElementType()); 1370 1371 // Splat the element across to all elements 1372 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1373 return Builder.CreateVectorSplat(NumElements, Elt, "splat");; 1374 } 1375 1376 case CK_IntegralCast: 1377 case CK_IntegralToFloating: 1378 case CK_FloatingToIntegral: 1379 case CK_FloatingCast: 1380 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1381 case CK_IntegralToBoolean: 1382 return EmitIntToBoolConversion(Visit(E)); 1383 case CK_PointerToBoolean: 1384 return EmitPointerToBoolConversion(Visit(E)); 1385 case CK_FloatingToBoolean: 1386 return EmitFloatToBoolConversion(Visit(E)); 1387 case CK_MemberPointerToBoolean: { 1388 llvm::Value *MemPtr = Visit(E); 1389 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1390 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1391 } 1392 1393 case CK_FloatingComplexToReal: 1394 case CK_IntegralComplexToReal: 1395 return CGF.EmitComplexExpr(E, false, true).first; 1396 1397 case CK_FloatingComplexToBoolean: 1398 case CK_IntegralComplexToBoolean: { 1399 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1400 1401 // TODO: kill this function off, inline appropriate case here 1402 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1403 } 1404 1405 case CK_ZeroToOCLEvent: { 1406 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type"); 1407 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1408 } 1409 1410 } 1411 1412 llvm_unreachable("unknown scalar cast"); 1413 } 1414 1415 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1416 CodeGenFunction::StmtExprEvaluation eval(CGF); 1417 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1418 !E->getType()->isVoidType()); 1419 if (!RetAlloca) 1420 return 0; 1421 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType())); 1422 1423 } 1424 1425 //===----------------------------------------------------------------------===// 1426 // Unary Operators 1427 //===----------------------------------------------------------------------===// 1428 1429 llvm::Value *ScalarExprEmitter:: 1430 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1431 llvm::Value *InVal, 1432 llvm::Value *NextVal, bool IsInc) { 1433 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1434 case LangOptions::SOB_Defined: 1435 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1436 case LangOptions::SOB_Undefined: 1437 if (!CGF.SanOpts->SignedIntegerOverflow) 1438 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1439 // Fall through. 1440 case LangOptions::SOB_Trapping: 1441 BinOpInfo BinOp; 1442 BinOp.LHS = InVal; 1443 BinOp.RHS = NextVal; 1444 BinOp.Ty = E->getType(); 1445 BinOp.Opcode = BO_Add; 1446 BinOp.FPContractable = false; 1447 BinOp.E = E; 1448 return EmitOverflowCheckedBinOp(BinOp); 1449 } 1450 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1451 } 1452 1453 llvm::Value * 1454 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1455 bool isInc, bool isPre) { 1456 1457 QualType type = E->getSubExpr()->getType(); 1458 llvm::PHINode *atomicPHI = 0; 1459 llvm::Value *value; 1460 llvm::Value *input; 1461 1462 int amount = (isInc ? 1 : -1); 1463 1464 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1465 type = atomicTy->getValueType(); 1466 if (isInc && type->isBooleanType()) { 1467 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1468 if (isPre) { 1469 Builder.Insert(new llvm::StoreInst(True, 1470 LV.getAddress(), LV.isVolatileQualified(), 1471 LV.getAlignment().getQuantity(), 1472 llvm::SequentiallyConsistent)); 1473 return Builder.getTrue(); 1474 } 1475 // For atomic bool increment, we just store true and return it for 1476 // preincrement, do an atomic swap with true for postincrement 1477 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1478 LV.getAddress(), True, llvm::SequentiallyConsistent); 1479 } 1480 // Special case for atomic increment / decrement on integers, emit 1481 // atomicrmw instructions. We skip this if we want to be doing overflow 1482 // checking, and fall into the slow path with the atomic cmpxchg loop. 1483 if (!type->isBooleanType() && type->isIntegerType() && 1484 !(type->isUnsignedIntegerType() && 1485 CGF.SanOpts->UnsignedIntegerOverflow) && 1486 CGF.getLangOpts().getSignedOverflowBehavior() != 1487 LangOptions::SOB_Trapping) { 1488 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1489 llvm::AtomicRMWInst::Sub; 1490 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1491 llvm::Instruction::Sub; 1492 llvm::Value *amt = CGF.EmitToMemory( 1493 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1494 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1495 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1496 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1497 } 1498 value = EmitLoadOfLValue(LV); 1499 input = value; 1500 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1501 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1502 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1503 value = CGF.EmitToMemory(value, type); 1504 Builder.CreateBr(opBB); 1505 Builder.SetInsertPoint(opBB); 1506 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1507 atomicPHI->addIncoming(value, startBB); 1508 value = atomicPHI; 1509 } else { 1510 value = EmitLoadOfLValue(LV); 1511 input = value; 1512 } 1513 1514 // Special case of integer increment that we have to check first: bool++. 1515 // Due to promotion rules, we get: 1516 // bool++ -> bool = bool + 1 1517 // -> bool = (int)bool + 1 1518 // -> bool = ((int)bool + 1 != 0) 1519 // An interesting aspect of this is that increment is always true. 1520 // Decrement does not have this property. 1521 if (isInc && type->isBooleanType()) { 1522 value = Builder.getTrue(); 1523 1524 // Most common case by far: integer increment. 1525 } else if (type->isIntegerType()) { 1526 1527 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1528 1529 // Note that signed integer inc/dec with width less than int can't 1530 // overflow because of promotion rules; we're just eliding a few steps here. 1531 if (value->getType()->getPrimitiveSizeInBits() >= 1532 CGF.IntTy->getBitWidth() && 1533 type->isSignedIntegerOrEnumerationType()) { 1534 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1535 } else if (value->getType()->getPrimitiveSizeInBits() >= 1536 CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() && 1537 CGF.SanOpts->UnsignedIntegerOverflow) { 1538 BinOpInfo BinOp; 1539 BinOp.LHS = value; 1540 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1541 BinOp.Ty = E->getType(); 1542 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1543 BinOp.FPContractable = false; 1544 BinOp.E = E; 1545 value = EmitOverflowCheckedBinOp(BinOp); 1546 } else 1547 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1548 1549 // Next most common: pointer increment. 1550 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1551 QualType type = ptr->getPointeeType(); 1552 1553 // VLA types don't have constant size. 1554 if (const VariableArrayType *vla 1555 = CGF.getContext().getAsVariableArrayType(type)) { 1556 llvm::Value *numElts = CGF.getVLASize(vla).first; 1557 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1558 if (CGF.getLangOpts().isSignedOverflowDefined()) 1559 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1560 else 1561 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1562 1563 // Arithmetic on function pointers (!) is just +-1. 1564 } else if (type->isFunctionType()) { 1565 llvm::Value *amt = Builder.getInt32(amount); 1566 1567 value = CGF.EmitCastToVoidPtr(value); 1568 if (CGF.getLangOpts().isSignedOverflowDefined()) 1569 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1570 else 1571 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1572 value = Builder.CreateBitCast(value, input->getType()); 1573 1574 // For everything else, we can just do a simple increment. 1575 } else { 1576 llvm::Value *amt = Builder.getInt32(amount); 1577 if (CGF.getLangOpts().isSignedOverflowDefined()) 1578 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1579 else 1580 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1581 } 1582 1583 // Vector increment/decrement. 1584 } else if (type->isVectorType()) { 1585 if (type->hasIntegerRepresentation()) { 1586 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1587 1588 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1589 } else { 1590 value = Builder.CreateFAdd( 1591 value, 1592 llvm::ConstantFP::get(value->getType(), amount), 1593 isInc ? "inc" : "dec"); 1594 } 1595 1596 // Floating point. 1597 } else if (type->isRealFloatingType()) { 1598 // Add the inc/dec to the real part. 1599 llvm::Value *amt; 1600 1601 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1602 // Another special case: half FP increment should be done via float 1603 value = 1604 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1605 input); 1606 } 1607 1608 if (value->getType()->isFloatTy()) 1609 amt = llvm::ConstantFP::get(VMContext, 1610 llvm::APFloat(static_cast<float>(amount))); 1611 else if (value->getType()->isDoubleTy()) 1612 amt = llvm::ConstantFP::get(VMContext, 1613 llvm::APFloat(static_cast<double>(amount))); 1614 else { 1615 llvm::APFloat F(static_cast<float>(amount)); 1616 bool ignored; 1617 F.convert(CGF.getTarget().getLongDoubleFormat(), 1618 llvm::APFloat::rmTowardZero, &ignored); 1619 amt = llvm::ConstantFP::get(VMContext, F); 1620 } 1621 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1622 1623 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 1624 value = 1625 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1626 value); 1627 1628 // Objective-C pointer types. 1629 } else { 1630 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1631 value = CGF.EmitCastToVoidPtr(value); 1632 1633 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1634 if (!isInc) size = -size; 1635 llvm::Value *sizeValue = 1636 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1637 1638 if (CGF.getLangOpts().isSignedOverflowDefined()) 1639 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1640 else 1641 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1642 value = Builder.CreateBitCast(value, input->getType()); 1643 } 1644 1645 if (atomicPHI) { 1646 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1647 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1648 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI, 1649 CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent); 1650 atomicPHI->addIncoming(old, opBB); 1651 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1652 Builder.CreateCondBr(success, contBB, opBB); 1653 Builder.SetInsertPoint(contBB); 1654 return isPre ? value : input; 1655 } 1656 1657 // Store the updated result through the lvalue. 1658 if (LV.isBitField()) 1659 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1660 else 1661 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1662 1663 // If this is a postinc, return the value read from memory, otherwise use the 1664 // updated value. 1665 return isPre ? value : input; 1666 } 1667 1668 1669 1670 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1671 TestAndClearIgnoreResultAssign(); 1672 // Emit unary minus with EmitSub so we handle overflow cases etc. 1673 BinOpInfo BinOp; 1674 BinOp.RHS = Visit(E->getSubExpr()); 1675 1676 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1677 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1678 else 1679 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1680 BinOp.Ty = E->getType(); 1681 BinOp.Opcode = BO_Sub; 1682 BinOp.FPContractable = false; 1683 BinOp.E = E; 1684 return EmitSub(BinOp); 1685 } 1686 1687 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1688 TestAndClearIgnoreResultAssign(); 1689 Value *Op = Visit(E->getSubExpr()); 1690 return Builder.CreateNot(Op, "neg"); 1691 } 1692 1693 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1694 // Perform vector logical not on comparison with zero vector. 1695 if (E->getType()->isExtVectorType()) { 1696 Value *Oper = Visit(E->getSubExpr()); 1697 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1698 Value *Result; 1699 if (Oper->getType()->isFPOrFPVectorTy()) 1700 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1701 else 1702 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1703 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1704 } 1705 1706 // Compare operand to zero. 1707 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1708 1709 // Invert value. 1710 // TODO: Could dynamically modify easy computations here. For example, if 1711 // the operand is an icmp ne, turn into icmp eq. 1712 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1713 1714 // ZExt result to the expr type. 1715 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1716 } 1717 1718 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1719 // Try folding the offsetof to a constant. 1720 llvm::APSInt Value; 1721 if (E->EvaluateAsInt(Value, CGF.getContext())) 1722 return Builder.getInt(Value); 1723 1724 // Loop over the components of the offsetof to compute the value. 1725 unsigned n = E->getNumComponents(); 1726 llvm::Type* ResultType = ConvertType(E->getType()); 1727 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1728 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1729 for (unsigned i = 0; i != n; ++i) { 1730 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1731 llvm::Value *Offset = 0; 1732 switch (ON.getKind()) { 1733 case OffsetOfExpr::OffsetOfNode::Array: { 1734 // Compute the index 1735 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1736 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1737 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1738 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1739 1740 // Save the element type 1741 CurrentType = 1742 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1743 1744 // Compute the element size 1745 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1746 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1747 1748 // Multiply out to compute the result 1749 Offset = Builder.CreateMul(Idx, ElemSize); 1750 break; 1751 } 1752 1753 case OffsetOfExpr::OffsetOfNode::Field: { 1754 FieldDecl *MemberDecl = ON.getField(); 1755 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1756 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1757 1758 // Compute the index of the field in its parent. 1759 unsigned i = 0; 1760 // FIXME: It would be nice if we didn't have to loop here! 1761 for (RecordDecl::field_iterator Field = RD->field_begin(), 1762 FieldEnd = RD->field_end(); 1763 Field != FieldEnd; ++Field, ++i) { 1764 if (*Field == MemberDecl) 1765 break; 1766 } 1767 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1768 1769 // Compute the offset to the field 1770 int64_t OffsetInt = RL.getFieldOffset(i) / 1771 CGF.getContext().getCharWidth(); 1772 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1773 1774 // Save the element type. 1775 CurrentType = MemberDecl->getType(); 1776 break; 1777 } 1778 1779 case OffsetOfExpr::OffsetOfNode::Identifier: 1780 llvm_unreachable("dependent __builtin_offsetof"); 1781 1782 case OffsetOfExpr::OffsetOfNode::Base: { 1783 if (ON.getBase()->isVirtual()) { 1784 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1785 continue; 1786 } 1787 1788 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1789 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1790 1791 // Save the element type. 1792 CurrentType = ON.getBase()->getType(); 1793 1794 // Compute the offset to the base. 1795 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1796 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1797 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1798 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1799 break; 1800 } 1801 } 1802 Result = Builder.CreateAdd(Result, Offset); 1803 } 1804 return Result; 1805 } 1806 1807 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1808 /// argument of the sizeof expression as an integer. 1809 Value * 1810 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1811 const UnaryExprOrTypeTraitExpr *E) { 1812 QualType TypeToSize = E->getTypeOfArgument(); 1813 if (E->getKind() == UETT_SizeOf) { 1814 if (const VariableArrayType *VAT = 1815 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1816 if (E->isArgumentType()) { 1817 // sizeof(type) - make sure to emit the VLA size. 1818 CGF.EmitVariablyModifiedType(TypeToSize); 1819 } else { 1820 // C99 6.5.3.4p2: If the argument is an expression of type 1821 // VLA, it is evaluated. 1822 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1823 } 1824 1825 QualType eltType; 1826 llvm::Value *numElts; 1827 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT); 1828 1829 llvm::Value *size = numElts; 1830 1831 // Scale the number of non-VLA elements by the non-VLA element size. 1832 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1833 if (!eltSize.isOne()) 1834 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1835 1836 return size; 1837 } 1838 } 1839 1840 // If this isn't sizeof(vla), the result must be constant; use the constant 1841 // folding logic so we don't have to duplicate it here. 1842 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1843 } 1844 1845 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1846 Expr *Op = E->getSubExpr(); 1847 if (Op->getType()->isAnyComplexType()) { 1848 // If it's an l-value, load through the appropriate subobject l-value. 1849 // Note that we have to ask E because Op might be an l-value that 1850 // this won't work for, e.g. an Obj-C property. 1851 if (E->isGLValue()) 1852 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1853 1854 // Otherwise, calculate and project. 1855 return CGF.EmitComplexExpr(Op, false, true).first; 1856 } 1857 1858 return Visit(Op); 1859 } 1860 1861 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1862 Expr *Op = E->getSubExpr(); 1863 if (Op->getType()->isAnyComplexType()) { 1864 // If it's an l-value, load through the appropriate subobject l-value. 1865 // Note that we have to ask E because Op might be an l-value that 1866 // this won't work for, e.g. an Obj-C property. 1867 if (Op->isGLValue()) 1868 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1869 1870 // Otherwise, calculate and project. 1871 return CGF.EmitComplexExpr(Op, true, false).second; 1872 } 1873 1874 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1875 // effects are evaluated, but not the actual value. 1876 if (Op->isGLValue()) 1877 CGF.EmitLValue(Op); 1878 else 1879 CGF.EmitScalarExpr(Op, true); 1880 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1881 } 1882 1883 //===----------------------------------------------------------------------===// 1884 // Binary Operators 1885 //===----------------------------------------------------------------------===// 1886 1887 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1888 TestAndClearIgnoreResultAssign(); 1889 BinOpInfo Result; 1890 Result.LHS = Visit(E->getLHS()); 1891 Result.RHS = Visit(E->getRHS()); 1892 Result.Ty = E->getType(); 1893 Result.Opcode = E->getOpcode(); 1894 Result.FPContractable = E->isFPContractable(); 1895 Result.E = E; 1896 return Result; 1897 } 1898 1899 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1900 const CompoundAssignOperator *E, 1901 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1902 Value *&Result) { 1903 QualType LHSTy = E->getLHS()->getType(); 1904 BinOpInfo OpInfo; 1905 1906 if (E->getComputationResultType()->isAnyComplexType()) 1907 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 1908 1909 // Emit the RHS first. __block variables need to have the rhs evaluated 1910 // first, plus this should improve codegen a little. 1911 OpInfo.RHS = Visit(E->getRHS()); 1912 OpInfo.Ty = E->getComputationResultType(); 1913 OpInfo.Opcode = E->getOpcode(); 1914 OpInfo.FPContractable = false; 1915 OpInfo.E = E; 1916 // Load/convert the LHS. 1917 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1918 1919 llvm::PHINode *atomicPHI = 0; 1920 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 1921 QualType type = atomicTy->getValueType(); 1922 if (!type->isBooleanType() && type->isIntegerType() && 1923 !(type->isUnsignedIntegerType() && 1924 CGF.SanOpts->UnsignedIntegerOverflow) && 1925 CGF.getLangOpts().getSignedOverflowBehavior() != 1926 LangOptions::SOB_Trapping) { 1927 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 1928 switch (OpInfo.Opcode) { 1929 // We don't have atomicrmw operands for *, %, /, <<, >> 1930 case BO_MulAssign: case BO_DivAssign: 1931 case BO_RemAssign: 1932 case BO_ShlAssign: 1933 case BO_ShrAssign: 1934 break; 1935 case BO_AddAssign: 1936 aop = llvm::AtomicRMWInst::Add; 1937 break; 1938 case BO_SubAssign: 1939 aop = llvm::AtomicRMWInst::Sub; 1940 break; 1941 case BO_AndAssign: 1942 aop = llvm::AtomicRMWInst::And; 1943 break; 1944 case BO_XorAssign: 1945 aop = llvm::AtomicRMWInst::Xor; 1946 break; 1947 case BO_OrAssign: 1948 aop = llvm::AtomicRMWInst::Or; 1949 break; 1950 default: 1951 llvm_unreachable("Invalid compound assignment type"); 1952 } 1953 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 1954 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 1955 E->getRHS()->getType(), LHSTy), LHSTy); 1956 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 1957 llvm::SequentiallyConsistent); 1958 return LHSLV; 1959 } 1960 } 1961 // FIXME: For floating point types, we should be saving and restoring the 1962 // floating point environment in the loop. 1963 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1964 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1965 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1966 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 1967 Builder.CreateBr(opBB); 1968 Builder.SetInsertPoint(opBB); 1969 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 1970 atomicPHI->addIncoming(OpInfo.LHS, startBB); 1971 OpInfo.LHS = atomicPHI; 1972 } 1973 else 1974 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1975 1976 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1977 E->getComputationLHSType()); 1978 1979 // Expand the binary operator. 1980 Result = (this->*Func)(OpInfo); 1981 1982 // Convert the result back to the LHS type. 1983 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 1984 1985 if (atomicPHI) { 1986 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1987 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1988 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI, 1989 CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent); 1990 atomicPHI->addIncoming(old, opBB); 1991 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1992 Builder.CreateCondBr(success, contBB, opBB); 1993 Builder.SetInsertPoint(contBB); 1994 return LHSLV; 1995 } 1996 1997 // Store the result value into the LHS lvalue. Bit-fields are handled 1998 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 1999 // 'An assignment expression has the value of the left operand after the 2000 // assignment...'. 2001 if (LHSLV.isBitField()) 2002 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2003 else 2004 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2005 2006 return LHSLV; 2007 } 2008 2009 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2010 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2011 bool Ignore = TestAndClearIgnoreResultAssign(); 2012 Value *RHS; 2013 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2014 2015 // If the result is clearly ignored, return now. 2016 if (Ignore) 2017 return 0; 2018 2019 // The result of an assignment in C is the assigned r-value. 2020 if (!CGF.getLangOpts().CPlusPlus) 2021 return RHS; 2022 2023 // If the lvalue is non-volatile, return the computed value of the assignment. 2024 if (!LHS.isVolatileQualified()) 2025 return RHS; 2026 2027 // Otherwise, reload the value. 2028 return EmitLoadOfLValue(LHS); 2029 } 2030 2031 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2032 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2033 llvm::Value *Cond = 0; 2034 2035 if (CGF.SanOpts->IntegerDivideByZero) 2036 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 2037 2038 if (CGF.SanOpts->SignedIntegerOverflow && 2039 Ops.Ty->hasSignedIntegerRepresentation()) { 2040 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2041 2042 llvm::Value *IntMin = 2043 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2044 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2045 2046 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2047 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2048 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2049 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 2050 } 2051 2052 if (Cond) 2053 EmitBinOpCheck(Cond, Ops); 2054 } 2055 2056 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2057 if ((CGF.SanOpts->IntegerDivideByZero || 2058 CGF.SanOpts->SignedIntegerOverflow) && 2059 Ops.Ty->isIntegerType()) { 2060 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2061 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2062 } else if (CGF.SanOpts->FloatDivideByZero && 2063 Ops.Ty->isRealFloatingType()) { 2064 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2065 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 2066 } 2067 2068 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2069 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2070 if (CGF.getLangOpts().OpenCL) { 2071 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2072 llvm::Type *ValTy = Val->getType(); 2073 if (ValTy->isFloatTy() || 2074 (isa<llvm::VectorType>(ValTy) && 2075 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2076 CGF.SetFPAccuracy(Val, 2.5); 2077 } 2078 return Val; 2079 } 2080 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2081 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2082 else 2083 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2084 } 2085 2086 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2087 // Rem in C can't be a floating point type: C99 6.5.5p2. 2088 if (CGF.SanOpts->IntegerDivideByZero) { 2089 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2090 2091 if (Ops.Ty->isIntegerType()) 2092 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2093 } 2094 2095 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2096 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2097 else 2098 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2099 } 2100 2101 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2102 unsigned IID; 2103 unsigned OpID = 0; 2104 2105 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2106 switch (Ops.Opcode) { 2107 case BO_Add: 2108 case BO_AddAssign: 2109 OpID = 1; 2110 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2111 llvm::Intrinsic::uadd_with_overflow; 2112 break; 2113 case BO_Sub: 2114 case BO_SubAssign: 2115 OpID = 2; 2116 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2117 llvm::Intrinsic::usub_with_overflow; 2118 break; 2119 case BO_Mul: 2120 case BO_MulAssign: 2121 OpID = 3; 2122 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2123 llvm::Intrinsic::umul_with_overflow; 2124 break; 2125 default: 2126 llvm_unreachable("Unsupported operation for overflow detection"); 2127 } 2128 OpID <<= 1; 2129 if (isSigned) 2130 OpID |= 1; 2131 2132 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2133 2134 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2135 2136 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2137 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2138 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2139 2140 // Handle overflow with llvm.trap if no custom handler has been specified. 2141 const std::string *handlerName = 2142 &CGF.getLangOpts().OverflowHandler; 2143 if (handlerName->empty()) { 2144 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2145 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2146 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) 2147 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2148 else 2149 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2150 return result; 2151 } 2152 2153 // Branch in case of overflow. 2154 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2155 llvm::Function::iterator insertPt = initialBB; 2156 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2157 llvm::next(insertPt)); 2158 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2159 2160 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2161 2162 // If an overflow handler is set, then we want to call it and then use its 2163 // result, if it returns. 2164 Builder.SetInsertPoint(overflowBB); 2165 2166 // Get the overflow handler. 2167 llvm::Type *Int8Ty = CGF.Int8Ty; 2168 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2169 llvm::FunctionType *handlerTy = 2170 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2171 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2172 2173 // Sign extend the args to 64-bit, so that we can use the same handler for 2174 // all types of overflow. 2175 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2176 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2177 2178 // Call the handler with the two arguments, the operation, and the size of 2179 // the result. 2180 llvm::Value *handlerArgs[] = { 2181 lhs, 2182 rhs, 2183 Builder.getInt8(OpID), 2184 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2185 }; 2186 llvm::Value *handlerResult = 2187 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2188 2189 // Truncate the result back to the desired size. 2190 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2191 Builder.CreateBr(continueBB); 2192 2193 Builder.SetInsertPoint(continueBB); 2194 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2195 phi->addIncoming(result, initialBB); 2196 phi->addIncoming(handlerResult, overflowBB); 2197 2198 return phi; 2199 } 2200 2201 /// Emit pointer + index arithmetic. 2202 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2203 const BinOpInfo &op, 2204 bool isSubtraction) { 2205 // Must have binary (not unary) expr here. Unary pointer 2206 // increment/decrement doesn't use this path. 2207 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2208 2209 Value *pointer = op.LHS; 2210 Expr *pointerOperand = expr->getLHS(); 2211 Value *index = op.RHS; 2212 Expr *indexOperand = expr->getRHS(); 2213 2214 // In a subtraction, the LHS is always the pointer. 2215 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2216 std::swap(pointer, index); 2217 std::swap(pointerOperand, indexOperand); 2218 } 2219 2220 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2221 if (width != CGF.PointerWidthInBits) { 2222 // Zero-extend or sign-extend the pointer value according to 2223 // whether the index is signed or not. 2224 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2225 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2226 "idx.ext"); 2227 } 2228 2229 // If this is subtraction, negate the index. 2230 if (isSubtraction) 2231 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2232 2233 if (CGF.SanOpts->Bounds) 2234 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2235 /*Accessed*/ false); 2236 2237 const PointerType *pointerType 2238 = pointerOperand->getType()->getAs<PointerType>(); 2239 if (!pointerType) { 2240 QualType objectType = pointerOperand->getType() 2241 ->castAs<ObjCObjectPointerType>() 2242 ->getPointeeType(); 2243 llvm::Value *objectSize 2244 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2245 2246 index = CGF.Builder.CreateMul(index, objectSize); 2247 2248 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2249 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2250 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2251 } 2252 2253 QualType elementType = pointerType->getPointeeType(); 2254 if (const VariableArrayType *vla 2255 = CGF.getContext().getAsVariableArrayType(elementType)) { 2256 // The element count here is the total number of non-VLA elements. 2257 llvm::Value *numElements = CGF.getVLASize(vla).first; 2258 2259 // Effectively, the multiply by the VLA size is part of the GEP. 2260 // GEP indexes are signed, and scaling an index isn't permitted to 2261 // signed-overflow, so we use the same semantics for our explicit 2262 // multiply. We suppress this if overflow is not undefined behavior. 2263 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2264 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2265 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2266 } else { 2267 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2268 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2269 } 2270 return pointer; 2271 } 2272 2273 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2274 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2275 // future proof. 2276 if (elementType->isVoidType() || elementType->isFunctionType()) { 2277 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2278 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2279 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2280 } 2281 2282 if (CGF.getLangOpts().isSignedOverflowDefined()) 2283 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2284 2285 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2286 } 2287 2288 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2289 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2290 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2291 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2292 // efficient operations. 2293 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2294 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2295 bool negMul, bool negAdd) { 2296 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2297 2298 Value *MulOp0 = MulOp->getOperand(0); 2299 Value *MulOp1 = MulOp->getOperand(1); 2300 if (negMul) { 2301 MulOp0 = 2302 Builder.CreateFSub( 2303 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2304 "neg"); 2305 } else if (negAdd) { 2306 Addend = 2307 Builder.CreateFSub( 2308 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2309 "neg"); 2310 } 2311 2312 Value *FMulAdd = 2313 Builder.CreateCall3( 2314 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2315 MulOp0, MulOp1, Addend); 2316 MulOp->eraseFromParent(); 2317 2318 return FMulAdd; 2319 } 2320 2321 // Check whether it would be legal to emit an fmuladd intrinsic call to 2322 // represent op and if so, build the fmuladd. 2323 // 2324 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2325 // Does NOT check the type of the operation - it's assumed that this function 2326 // will be called from contexts where it's known that the type is contractable. 2327 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2328 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2329 bool isSub=false) { 2330 2331 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2332 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2333 "Only fadd/fsub can be the root of an fmuladd."); 2334 2335 // Check whether this op is marked as fusable. 2336 if (!op.FPContractable) 2337 return 0; 2338 2339 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2340 // either disabled, or handled entirely by the LLVM backend). 2341 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2342 return 0; 2343 2344 // We have a potentially fusable op. Look for a mul on one of the operands. 2345 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2346 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2347 assert(LHSBinOp->getNumUses() == 0 && 2348 "Operations with multiple uses shouldn't be contracted."); 2349 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2350 } 2351 } else if (llvm::BinaryOperator* RHSBinOp = 2352 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2353 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2354 assert(RHSBinOp->getNumUses() == 0 && 2355 "Operations with multiple uses shouldn't be contracted."); 2356 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2357 } 2358 } 2359 2360 return 0; 2361 } 2362 2363 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2364 if (op.LHS->getType()->isPointerTy() || 2365 op.RHS->getType()->isPointerTy()) 2366 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2367 2368 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2369 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2370 case LangOptions::SOB_Defined: 2371 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2372 case LangOptions::SOB_Undefined: 2373 if (!CGF.SanOpts->SignedIntegerOverflow) 2374 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2375 // Fall through. 2376 case LangOptions::SOB_Trapping: 2377 return EmitOverflowCheckedBinOp(op); 2378 } 2379 } 2380 2381 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2382 return EmitOverflowCheckedBinOp(op); 2383 2384 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2385 // Try to form an fmuladd. 2386 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2387 return FMulAdd; 2388 2389 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2390 } 2391 2392 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2393 } 2394 2395 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2396 // The LHS is always a pointer if either side is. 2397 if (!op.LHS->getType()->isPointerTy()) { 2398 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2399 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2400 case LangOptions::SOB_Defined: 2401 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2402 case LangOptions::SOB_Undefined: 2403 if (!CGF.SanOpts->SignedIntegerOverflow) 2404 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2405 // Fall through. 2406 case LangOptions::SOB_Trapping: 2407 return EmitOverflowCheckedBinOp(op); 2408 } 2409 } 2410 2411 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2412 return EmitOverflowCheckedBinOp(op); 2413 2414 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2415 // Try to form an fmuladd. 2416 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2417 return FMulAdd; 2418 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2419 } 2420 2421 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2422 } 2423 2424 // If the RHS is not a pointer, then we have normal pointer 2425 // arithmetic. 2426 if (!op.RHS->getType()->isPointerTy()) 2427 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2428 2429 // Otherwise, this is a pointer subtraction. 2430 2431 // Do the raw subtraction part. 2432 llvm::Value *LHS 2433 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2434 llvm::Value *RHS 2435 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2436 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2437 2438 // Okay, figure out the element size. 2439 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2440 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2441 2442 llvm::Value *divisor = 0; 2443 2444 // For a variable-length array, this is going to be non-constant. 2445 if (const VariableArrayType *vla 2446 = CGF.getContext().getAsVariableArrayType(elementType)) { 2447 llvm::Value *numElements; 2448 llvm::tie(numElements, elementType) = CGF.getVLASize(vla); 2449 2450 divisor = numElements; 2451 2452 // Scale the number of non-VLA elements by the non-VLA element size. 2453 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2454 if (!eltSize.isOne()) 2455 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2456 2457 // For everything elese, we can just compute it, safe in the 2458 // assumption that Sema won't let anything through that we can't 2459 // safely compute the size of. 2460 } else { 2461 CharUnits elementSize; 2462 // Handle GCC extension for pointer arithmetic on void* and 2463 // function pointer types. 2464 if (elementType->isVoidType() || elementType->isFunctionType()) 2465 elementSize = CharUnits::One(); 2466 else 2467 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2468 2469 // Don't even emit the divide for element size of 1. 2470 if (elementSize.isOne()) 2471 return diffInChars; 2472 2473 divisor = CGF.CGM.getSize(elementSize); 2474 } 2475 2476 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2477 // pointer difference in C is only defined in the case where both operands 2478 // are pointing to elements of an array. 2479 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2480 } 2481 2482 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2483 llvm::IntegerType *Ty; 2484 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2485 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2486 else 2487 Ty = cast<llvm::IntegerType>(LHS->getType()); 2488 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2489 } 2490 2491 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2492 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2493 // RHS to the same size as the LHS. 2494 Value *RHS = Ops.RHS; 2495 if (Ops.LHS->getType() != RHS->getType()) 2496 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2497 2498 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2499 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2500 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2501 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2502 2503 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2504 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2505 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2506 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2507 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2508 2509 // Check whether we are shifting any non-zero bits off the top of the 2510 // integer. 2511 CGF.EmitBlock(CheckBitsShifted); 2512 llvm::Value *BitsShiftedOff = 2513 Builder.CreateLShr(Ops.LHS, 2514 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2515 /*NUW*/true, /*NSW*/true), 2516 "shl.check"); 2517 if (CGF.getLangOpts().CPlusPlus) { 2518 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2519 // Under C++11's rules, shifting a 1 bit into the sign bit is 2520 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2521 // define signed left shifts, so we use the C99 and C++11 rules there). 2522 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2523 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2524 } 2525 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2526 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2527 CGF.EmitBlock(Cont); 2528 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2529 P->addIncoming(Valid, Orig); 2530 P->addIncoming(SecondCheck, CheckBitsShifted); 2531 Valid = P; 2532 } 2533 2534 EmitBinOpCheck(Valid, Ops); 2535 } 2536 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2537 if (CGF.getLangOpts().OpenCL) 2538 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2539 2540 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2541 } 2542 2543 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2544 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2545 // RHS to the same size as the LHS. 2546 Value *RHS = Ops.RHS; 2547 if (Ops.LHS->getType() != RHS->getType()) 2548 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2549 2550 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2551 isa<llvm::IntegerType>(Ops.LHS->getType())) 2552 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2553 2554 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2555 if (CGF.getLangOpts().OpenCL) 2556 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2557 2558 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2559 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2560 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2561 } 2562 2563 enum IntrinsicType { VCMPEQ, VCMPGT }; 2564 // return corresponding comparison intrinsic for given vector type 2565 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2566 BuiltinType::Kind ElemKind) { 2567 switch (ElemKind) { 2568 default: llvm_unreachable("unexpected element type"); 2569 case BuiltinType::Char_U: 2570 case BuiltinType::UChar: 2571 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2572 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2573 case BuiltinType::Char_S: 2574 case BuiltinType::SChar: 2575 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2576 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2577 case BuiltinType::UShort: 2578 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2579 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2580 case BuiltinType::Short: 2581 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2582 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2583 case BuiltinType::UInt: 2584 case BuiltinType::ULong: 2585 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2586 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2587 case BuiltinType::Int: 2588 case BuiltinType::Long: 2589 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2590 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2591 case BuiltinType::Float: 2592 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2593 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2594 } 2595 } 2596 2597 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2598 unsigned SICmpOpc, unsigned FCmpOpc) { 2599 TestAndClearIgnoreResultAssign(); 2600 Value *Result; 2601 QualType LHSTy = E->getLHS()->getType(); 2602 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2603 assert(E->getOpcode() == BO_EQ || 2604 E->getOpcode() == BO_NE); 2605 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2606 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2607 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2608 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2609 } else if (!LHSTy->isAnyComplexType()) { 2610 Value *LHS = Visit(E->getLHS()); 2611 Value *RHS = Visit(E->getRHS()); 2612 2613 // If AltiVec, the comparison results in a numeric type, so we use 2614 // intrinsics comparing vectors and giving 0 or 1 as a result 2615 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2616 // constants for mapping CR6 register bits to predicate result 2617 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2618 2619 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2620 2621 // in several cases vector arguments order will be reversed 2622 Value *FirstVecArg = LHS, 2623 *SecondVecArg = RHS; 2624 2625 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2626 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2627 BuiltinType::Kind ElementKind = BTy->getKind(); 2628 2629 switch(E->getOpcode()) { 2630 default: llvm_unreachable("is not a comparison operation"); 2631 case BO_EQ: 2632 CR6 = CR6_LT; 2633 ID = GetIntrinsic(VCMPEQ, ElementKind); 2634 break; 2635 case BO_NE: 2636 CR6 = CR6_EQ; 2637 ID = GetIntrinsic(VCMPEQ, ElementKind); 2638 break; 2639 case BO_LT: 2640 CR6 = CR6_LT; 2641 ID = GetIntrinsic(VCMPGT, ElementKind); 2642 std::swap(FirstVecArg, SecondVecArg); 2643 break; 2644 case BO_GT: 2645 CR6 = CR6_LT; 2646 ID = GetIntrinsic(VCMPGT, ElementKind); 2647 break; 2648 case BO_LE: 2649 if (ElementKind == BuiltinType::Float) { 2650 CR6 = CR6_LT; 2651 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2652 std::swap(FirstVecArg, SecondVecArg); 2653 } 2654 else { 2655 CR6 = CR6_EQ; 2656 ID = GetIntrinsic(VCMPGT, ElementKind); 2657 } 2658 break; 2659 case BO_GE: 2660 if (ElementKind == BuiltinType::Float) { 2661 CR6 = CR6_LT; 2662 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2663 } 2664 else { 2665 CR6 = CR6_EQ; 2666 ID = GetIntrinsic(VCMPGT, ElementKind); 2667 std::swap(FirstVecArg, SecondVecArg); 2668 } 2669 break; 2670 } 2671 2672 Value *CR6Param = Builder.getInt32(CR6); 2673 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2674 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2675 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2676 } 2677 2678 if (LHS->getType()->isFPOrFPVectorTy()) { 2679 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2680 LHS, RHS, "cmp"); 2681 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2682 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2683 LHS, RHS, "cmp"); 2684 } else { 2685 // Unsigned integers and pointers. 2686 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2687 LHS, RHS, "cmp"); 2688 } 2689 2690 // If this is a vector comparison, sign extend the result to the appropriate 2691 // vector integer type and return it (don't convert to bool). 2692 if (LHSTy->isVectorType()) 2693 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2694 2695 } else { 2696 // Complex Comparison: can only be an equality comparison. 2697 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2698 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2699 2700 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2701 2702 Value *ResultR, *ResultI; 2703 if (CETy->isRealFloatingType()) { 2704 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2705 LHS.first, RHS.first, "cmp.r"); 2706 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2707 LHS.second, RHS.second, "cmp.i"); 2708 } else { 2709 // Complex comparisons can only be equality comparisons. As such, signed 2710 // and unsigned opcodes are the same. 2711 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2712 LHS.first, RHS.first, "cmp.r"); 2713 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2714 LHS.second, RHS.second, "cmp.i"); 2715 } 2716 2717 if (E->getOpcode() == BO_EQ) { 2718 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2719 } else { 2720 assert(E->getOpcode() == BO_NE && 2721 "Complex comparison other than == or != ?"); 2722 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2723 } 2724 } 2725 2726 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2727 } 2728 2729 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2730 bool Ignore = TestAndClearIgnoreResultAssign(); 2731 2732 Value *RHS; 2733 LValue LHS; 2734 2735 switch (E->getLHS()->getType().getObjCLifetime()) { 2736 case Qualifiers::OCL_Strong: 2737 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2738 break; 2739 2740 case Qualifiers::OCL_Autoreleasing: 2741 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E); 2742 break; 2743 2744 case Qualifiers::OCL_Weak: 2745 RHS = Visit(E->getRHS()); 2746 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2747 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2748 break; 2749 2750 // No reason to do any of these differently. 2751 case Qualifiers::OCL_None: 2752 case Qualifiers::OCL_ExplicitNone: 2753 // __block variables need to have the rhs evaluated first, plus 2754 // this should improve codegen just a little. 2755 RHS = Visit(E->getRHS()); 2756 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2757 2758 // Store the value into the LHS. Bit-fields are handled specially 2759 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2760 // 'An assignment expression has the value of the left operand after 2761 // the assignment...'. 2762 if (LHS.isBitField()) 2763 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2764 else 2765 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2766 } 2767 2768 // If the result is clearly ignored, return now. 2769 if (Ignore) 2770 return 0; 2771 2772 // The result of an assignment in C is the assigned r-value. 2773 if (!CGF.getLangOpts().CPlusPlus) 2774 return RHS; 2775 2776 // If the lvalue is non-volatile, return the computed value of the assignment. 2777 if (!LHS.isVolatileQualified()) 2778 return RHS; 2779 2780 // Otherwise, reload the value. 2781 return EmitLoadOfLValue(LHS); 2782 } 2783 2784 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2785 // Perform vector logical and on comparisons with zero vectors. 2786 if (E->getType()->isVectorType()) { 2787 Value *LHS = Visit(E->getLHS()); 2788 Value *RHS = Visit(E->getRHS()); 2789 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2790 if (LHS->getType()->isFPOrFPVectorTy()) { 2791 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2792 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2793 } else { 2794 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2795 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2796 } 2797 Value *And = Builder.CreateAnd(LHS, RHS); 2798 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2799 } 2800 2801 llvm::Type *ResTy = ConvertType(E->getType()); 2802 2803 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2804 // If we have 1 && X, just emit X without inserting the control flow. 2805 bool LHSCondVal; 2806 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2807 if (LHSCondVal) { // If we have 1 && X, just emit X. 2808 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2809 // ZExt result to int or bool. 2810 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2811 } 2812 2813 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2814 if (!CGF.ContainsLabel(E->getRHS())) 2815 return llvm::Constant::getNullValue(ResTy); 2816 } 2817 2818 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2819 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2820 2821 CodeGenFunction::ConditionalEvaluation eval(CGF); 2822 2823 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2824 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 2825 2826 // Any edges into the ContBlock are now from an (indeterminate number of) 2827 // edges from this first condition. All of these values will be false. Start 2828 // setting up the PHI node in the Cont Block for this. 2829 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2830 "", ContBlock); 2831 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2832 PI != PE; ++PI) 2833 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2834 2835 eval.begin(CGF); 2836 CGF.EmitBlock(RHSBlock); 2837 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2838 eval.end(CGF); 2839 2840 // Reaquire the RHS block, as there may be subblocks inserted. 2841 RHSBlock = Builder.GetInsertBlock(); 2842 2843 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2844 // into the phi node for the edge with the value of RHSCond. 2845 if (CGF.getDebugInfo()) 2846 // There is no need to emit line number for unconditional branch. 2847 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2848 CGF.EmitBlock(ContBlock); 2849 PN->addIncoming(RHSCond, RHSBlock); 2850 2851 // ZExt result to int. 2852 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2853 } 2854 2855 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2856 // Perform vector logical or on comparisons with zero vectors. 2857 if (E->getType()->isVectorType()) { 2858 Value *LHS = Visit(E->getLHS()); 2859 Value *RHS = Visit(E->getRHS()); 2860 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2861 if (LHS->getType()->isFPOrFPVectorTy()) { 2862 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2863 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2864 } else { 2865 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2866 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2867 } 2868 Value *Or = Builder.CreateOr(LHS, RHS); 2869 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 2870 } 2871 2872 llvm::Type *ResTy = ConvertType(E->getType()); 2873 2874 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2875 // If we have 0 || X, just emit X without inserting the control flow. 2876 bool LHSCondVal; 2877 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2878 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2879 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2880 // ZExt result to int or bool. 2881 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2882 } 2883 2884 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2885 if (!CGF.ContainsLabel(E->getRHS())) 2886 return llvm::ConstantInt::get(ResTy, 1); 2887 } 2888 2889 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2890 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2891 2892 CodeGenFunction::ConditionalEvaluation eval(CGF); 2893 2894 // Branch on the LHS first. If it is true, go to the success (cont) block. 2895 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 2896 2897 // Any edges into the ContBlock are now from an (indeterminate number of) 2898 // edges from this first condition. All of these values will be true. Start 2899 // setting up the PHI node in the Cont Block for this. 2900 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2901 "", ContBlock); 2902 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2903 PI != PE; ++PI) 2904 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 2905 2906 eval.begin(CGF); 2907 2908 // Emit the RHS condition as a bool value. 2909 CGF.EmitBlock(RHSBlock); 2910 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2911 2912 eval.end(CGF); 2913 2914 // Reaquire the RHS block, as there may be subblocks inserted. 2915 RHSBlock = Builder.GetInsertBlock(); 2916 2917 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2918 // into the phi node for the edge with the value of RHSCond. 2919 CGF.EmitBlock(ContBlock); 2920 PN->addIncoming(RHSCond, RHSBlock); 2921 2922 // ZExt result to int. 2923 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 2924 } 2925 2926 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 2927 CGF.EmitIgnoredExpr(E->getLHS()); 2928 CGF.EnsureInsertPoint(); 2929 return Visit(E->getRHS()); 2930 } 2931 2932 //===----------------------------------------------------------------------===// 2933 // Other Operators 2934 //===----------------------------------------------------------------------===// 2935 2936 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 2937 /// expression is cheap enough and side-effect-free enough to evaluate 2938 /// unconditionally instead of conditionally. This is used to convert control 2939 /// flow into selects in some cases. 2940 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 2941 CodeGenFunction &CGF) { 2942 E = E->IgnoreParens(); 2943 2944 // Anything that is an integer or floating point constant is fine. 2945 if (E->isEvaluatable(CGF.getContext())) 2946 return true; 2947 2948 // Non-volatile automatic variables too, to get "cond ? X : Y" where 2949 // X and Y are local variables. 2950 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 2951 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2952 if (VD->hasLocalStorage() && !(CGF.getContext() 2953 .getCanonicalType(VD->getType()) 2954 .isVolatileQualified())) 2955 return true; 2956 2957 return false; 2958 } 2959 2960 2961 Value *ScalarExprEmitter:: 2962 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 2963 TestAndClearIgnoreResultAssign(); 2964 2965 // Bind the common expression if necessary. 2966 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 2967 2968 Expr *condExpr = E->getCond(); 2969 Expr *lhsExpr = E->getTrueExpr(); 2970 Expr *rhsExpr = E->getFalseExpr(); 2971 2972 // If the condition constant folds and can be elided, try to avoid emitting 2973 // the condition and the dead arm. 2974 bool CondExprBool; 2975 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2976 Expr *live = lhsExpr, *dead = rhsExpr; 2977 if (!CondExprBool) std::swap(live, dead); 2978 2979 // If the dead side doesn't have labels we need, just emit the Live part. 2980 if (!CGF.ContainsLabel(dead)) { 2981 Value *Result = Visit(live); 2982 2983 // If the live part is a throw expression, it acts like it has a void 2984 // type, so evaluating it returns a null Value*. However, a conditional 2985 // with non-void type must return a non-null Value*. 2986 if (!Result && !E->getType()->isVoidType()) 2987 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 2988 2989 return Result; 2990 } 2991 } 2992 2993 // OpenCL: If the condition is a vector, we can treat this condition like 2994 // the select function. 2995 if (CGF.getLangOpts().OpenCL 2996 && condExpr->getType()->isVectorType()) { 2997 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 2998 llvm::Value *LHS = Visit(lhsExpr); 2999 llvm::Value *RHS = Visit(rhsExpr); 3000 3001 llvm::Type *condType = ConvertType(condExpr->getType()); 3002 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3003 3004 unsigned numElem = vecTy->getNumElements(); 3005 llvm::Type *elemType = vecTy->getElementType(); 3006 3007 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3008 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3009 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3010 llvm::VectorType::get(elemType, 3011 numElem), 3012 "sext"); 3013 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3014 3015 // Cast float to int to perform ANDs if necessary. 3016 llvm::Value *RHSTmp = RHS; 3017 llvm::Value *LHSTmp = LHS; 3018 bool wasCast = false; 3019 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3020 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3021 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3022 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3023 wasCast = true; 3024 } 3025 3026 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3027 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3028 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3029 if (wasCast) 3030 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3031 3032 return tmp5; 3033 } 3034 3035 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3036 // select instead of as control flow. We can only do this if it is cheap and 3037 // safe to evaluate the LHS and RHS unconditionally. 3038 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3039 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3040 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3041 llvm::Value *LHS = Visit(lhsExpr); 3042 llvm::Value *RHS = Visit(rhsExpr); 3043 if (!LHS) { 3044 // If the conditional has void type, make sure we return a null Value*. 3045 assert(!RHS && "LHS and RHS types must match"); 3046 return 0; 3047 } 3048 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3049 } 3050 3051 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3052 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3053 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3054 3055 CodeGenFunction::ConditionalEvaluation eval(CGF); 3056 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); 3057 3058 CGF.EmitBlock(LHSBlock); 3059 eval.begin(CGF); 3060 Value *LHS = Visit(lhsExpr); 3061 eval.end(CGF); 3062 3063 LHSBlock = Builder.GetInsertBlock(); 3064 Builder.CreateBr(ContBlock); 3065 3066 CGF.EmitBlock(RHSBlock); 3067 eval.begin(CGF); 3068 Value *RHS = Visit(rhsExpr); 3069 eval.end(CGF); 3070 3071 RHSBlock = Builder.GetInsertBlock(); 3072 CGF.EmitBlock(ContBlock); 3073 3074 // If the LHS or RHS is a throw expression, it will be legitimately null. 3075 if (!LHS) 3076 return RHS; 3077 if (!RHS) 3078 return LHS; 3079 3080 // Create a PHI node for the real part. 3081 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3082 PN->addIncoming(LHS, LHSBlock); 3083 PN->addIncoming(RHS, RHSBlock); 3084 return PN; 3085 } 3086 3087 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3088 return Visit(E->getChosenSubExpr()); 3089 } 3090 3091 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3092 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3093 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3094 3095 // If EmitVAArg fails, we fall back to the LLVM instruction. 3096 if (!ArgPtr) 3097 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 3098 3099 // FIXME Volatility. 3100 return Builder.CreateLoad(ArgPtr); 3101 } 3102 3103 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3104 return CGF.EmitBlockLiteral(block); 3105 } 3106 3107 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3108 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3109 llvm::Type *DstTy = ConvertType(E->getType()); 3110 3111 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3112 // a shuffle vector instead of a bitcast. 3113 llvm::Type *SrcTy = Src->getType(); 3114 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3115 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3116 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3117 if ((numElementsDst == 3 && numElementsSrc == 4) 3118 || (numElementsDst == 4 && numElementsSrc == 3)) { 3119 3120 3121 // In the case of going from int4->float3, a bitcast is needed before 3122 // doing a shuffle. 3123 llvm::Type *srcElemTy = 3124 cast<llvm::VectorType>(SrcTy)->getElementType(); 3125 llvm::Type *dstElemTy = 3126 cast<llvm::VectorType>(DstTy)->getElementType(); 3127 3128 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3129 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3130 // Create a float type of the same size as the source or destination. 3131 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3132 numElementsSrc); 3133 3134 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3135 } 3136 3137 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3138 3139 SmallVector<llvm::Constant*, 3> Args; 3140 Args.push_back(Builder.getInt32(0)); 3141 Args.push_back(Builder.getInt32(1)); 3142 Args.push_back(Builder.getInt32(2)); 3143 3144 if (numElementsDst == 4) 3145 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3146 3147 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3148 3149 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3150 } 3151 } 3152 3153 return Builder.CreateBitCast(Src, DstTy, "astype"); 3154 } 3155 3156 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3157 return CGF.EmitAtomicExpr(E).getScalarVal(); 3158 } 3159 3160 //===----------------------------------------------------------------------===// 3161 // Entry Point into this File 3162 //===----------------------------------------------------------------------===// 3163 3164 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3165 /// type, ignoring the result. 3166 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3167 assert(E && hasScalarEvaluationKind(E->getType()) && 3168 "Invalid scalar expression to emit"); 3169 3170 if (isa<CXXDefaultArgExpr>(E)) 3171 disableDebugInfo(); 3172 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3173 .Visit(const_cast<Expr*>(E)); 3174 if (isa<CXXDefaultArgExpr>(E)) 3175 enableDebugInfo(); 3176 return V; 3177 } 3178 3179 /// EmitScalarConversion - Emit a conversion from the specified type to the 3180 /// specified destination type, both of which are LLVM scalar types. 3181 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3182 QualType DstTy) { 3183 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3184 "Invalid scalar expression to emit"); 3185 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3186 } 3187 3188 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3189 /// type to the specified destination type, where the destination type is an 3190 /// LLVM scalar type. 3191 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3192 QualType SrcTy, 3193 QualType DstTy) { 3194 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3195 "Invalid complex -> scalar conversion"); 3196 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3197 DstTy); 3198 } 3199 3200 3201 llvm::Value *CodeGenFunction:: 3202 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3203 bool isInc, bool isPre) { 3204 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3205 } 3206 3207 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3208 llvm::Value *V; 3209 // object->isa or (*object).isa 3210 // Generate code as for: *(Class*)object 3211 // build Class* type 3212 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3213 3214 Expr *BaseExpr = E->getBase(); 3215 if (BaseExpr->isRValue()) { 3216 V = CreateMemTemp(E->getType(), "resval"); 3217 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3218 Builder.CreateStore(Src, V); 3219 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3220 MakeNaturalAlignAddrLValue(V, E->getType())); 3221 } else { 3222 if (E->isArrow()) 3223 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3224 else 3225 V = EmitLValue(BaseExpr).getAddress(); 3226 } 3227 3228 // build Class* type 3229 ClassPtrTy = ClassPtrTy->getPointerTo(); 3230 V = Builder.CreateBitCast(V, ClassPtrTy); 3231 return MakeNaturalAlignAddrLValue(V, E->getType()); 3232 } 3233 3234 3235 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3236 const CompoundAssignOperator *E) { 3237 ScalarExprEmitter Scalar(*this); 3238 Value *Result = 0; 3239 switch (E->getOpcode()) { 3240 #define COMPOUND_OP(Op) \ 3241 case BO_##Op##Assign: \ 3242 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3243 Result) 3244 COMPOUND_OP(Mul); 3245 COMPOUND_OP(Div); 3246 COMPOUND_OP(Rem); 3247 COMPOUND_OP(Add); 3248 COMPOUND_OP(Sub); 3249 COMPOUND_OP(Shl); 3250 COMPOUND_OP(Shr); 3251 COMPOUND_OP(And); 3252 COMPOUND_OP(Xor); 3253 COMPOUND_OP(Or); 3254 #undef COMPOUND_OP 3255 3256 case BO_PtrMemD: 3257 case BO_PtrMemI: 3258 case BO_Mul: 3259 case BO_Div: 3260 case BO_Rem: 3261 case BO_Add: 3262 case BO_Sub: 3263 case BO_Shl: 3264 case BO_Shr: 3265 case BO_LT: 3266 case BO_GT: 3267 case BO_LE: 3268 case BO_GE: 3269 case BO_EQ: 3270 case BO_NE: 3271 case BO_And: 3272 case BO_Xor: 3273 case BO_Or: 3274 case BO_LAnd: 3275 case BO_LOr: 3276 case BO_Assign: 3277 case BO_Comma: 3278 llvm_unreachable("Not valid compound assignment operators"); 3279 } 3280 3281 llvm_unreachable("Unhandled compound assignment operator"); 3282 } 3283