1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::VarTemplateSpecialization: 41 case Decl::VarTemplatePartialSpecialization: 42 case Decl::TemplateTypeParm: 43 case Decl::UnresolvedUsingValue: 44 case Decl::NonTypeTemplateParm: 45 case Decl::CXXMethod: 46 case Decl::CXXConstructor: 47 case Decl::CXXDestructor: 48 case Decl::CXXConversion: 49 case Decl::Field: 50 case Decl::MSProperty: 51 case Decl::IndirectField: 52 case Decl::ObjCIvar: 53 case Decl::ObjCAtDefsField: 54 case Decl::ParmVar: 55 case Decl::ImplicitParam: 56 case Decl::ClassTemplate: 57 case Decl::VarTemplate: 58 case Decl::FunctionTemplate: 59 case Decl::TypeAliasTemplate: 60 case Decl::TemplateTemplateParm: 61 case Decl::ObjCMethod: 62 case Decl::ObjCCategory: 63 case Decl::ObjCProtocol: 64 case Decl::ObjCInterface: 65 case Decl::ObjCCategoryImpl: 66 case Decl::ObjCImplementation: 67 case Decl::ObjCProperty: 68 case Decl::ObjCCompatibleAlias: 69 case Decl::AccessSpec: 70 case Decl::LinkageSpec: 71 case Decl::ObjCPropertyImpl: 72 case Decl::FileScopeAsm: 73 case Decl::Friend: 74 case Decl::FriendTemplate: 75 case Decl::Block: 76 case Decl::Captured: 77 case Decl::ClassScopeFunctionSpecialization: 78 case Decl::UsingShadow: 79 llvm_unreachable("Declaration should not be in declstmts!"); 80 case Decl::Function: // void X(); 81 case Decl::Record: // struct/union/class X; 82 case Decl::Enum: // enum X; 83 case Decl::EnumConstant: // enum ? { X = ? } 84 case Decl::CXXRecord: // struct/union/class X; [C++] 85 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 86 case Decl::Label: // __label__ x; 87 case Decl::Import: 88 case Decl::OMPThreadPrivate: 89 case Decl::Empty: 90 // None of these decls require codegen support. 91 return; 92 93 case Decl::NamespaceAlias: 94 if (CGDebugInfo *DI = getDebugInfo()) 95 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 96 return; 97 case Decl::Using: // using X; [C++] 98 if (CGDebugInfo *DI = getDebugInfo()) 99 DI->EmitUsingDecl(cast<UsingDecl>(D)); 100 return; 101 case Decl::UsingDirective: // using namespace X; [C++] 102 if (CGDebugInfo *DI = getDebugInfo()) 103 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 104 return; 105 case Decl::Var: { 106 const VarDecl &VD = cast<VarDecl>(D); 107 assert(VD.isLocalVarDecl() && 108 "Should not see file-scope variables inside a function!"); 109 return EmitVarDecl(VD); 110 } 111 112 case Decl::Typedef: // typedef int X; 113 case Decl::TypeAlias: { // using X = int; [C++0x] 114 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 115 QualType Ty = TD.getUnderlyingType(); 116 117 if (Ty->isVariablyModifiedType()) 118 EmitVariablyModifiedType(Ty); 119 } 120 } 121 } 122 123 /// EmitVarDecl - This method handles emission of any variable declaration 124 /// inside a function, including static vars etc. 125 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 126 if (D.isStaticLocal()) { 127 llvm::GlobalValue::LinkageTypes Linkage = 128 llvm::GlobalValue::InternalLinkage; 129 130 // If the variable is externally visible, it must have weak linkage so it 131 // can be uniqued. 132 if (D.isExternallyVisible()) { 133 Linkage = llvm::GlobalValue::LinkOnceODRLinkage; 134 135 // FIXME: We need to force the emission/use of a guard variable for 136 // some variables even if we can constant-evaluate them because 137 // we can't guarantee every translation unit will constant-evaluate them. 138 } 139 140 return EmitStaticVarDecl(D, Linkage); 141 } 142 143 if (D.hasExternalStorage()) 144 // Don't emit it now, allow it to be emitted lazily on its first use. 145 return; 146 147 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 148 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 149 150 assert(D.hasLocalStorage()); 151 return EmitAutoVarDecl(D); 152 } 153 154 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 155 const char *Separator) { 156 CodeGenModule &CGM = CGF.CGM; 157 if (CGF.getLangOpts().CPlusPlus) { 158 StringRef Name = CGM.getMangledName(&D); 159 return Name.str(); 160 } 161 162 std::string ContextName; 163 if (!CGF.CurFuncDecl) { 164 // Better be in a block declared in global scope. 165 const NamedDecl *ND = cast<NamedDecl>(&D); 166 const DeclContext *DC = ND->getDeclContext(); 167 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 168 MangleBuffer Name; 169 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 170 ContextName = Name.getString(); 171 } 172 else 173 llvm_unreachable("Unknown context for block static var decl"); 174 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 175 StringRef Name = CGM.getMangledName(FD); 176 ContextName = Name.str(); 177 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 178 ContextName = CGF.CurFn->getName(); 179 else 180 llvm_unreachable("Unknown context for static var decl"); 181 182 return ContextName + Separator + D.getNameAsString(); 183 } 184 185 llvm::GlobalVariable * 186 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 187 const char *Separator, 188 llvm::GlobalValue::LinkageTypes Linkage) { 189 QualType Ty = D.getType(); 190 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 191 192 // Use the label if the variable is renamed with the asm-label extension. 193 std::string Name; 194 if (D.hasAttr<AsmLabelAttr>()) 195 Name = CGM.getMangledName(&D); 196 else 197 Name = GetStaticDeclName(*this, D, Separator); 198 199 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 200 unsigned AddrSpace = 201 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 202 llvm::GlobalVariable *GV = 203 new llvm::GlobalVariable(CGM.getModule(), LTy, 204 Ty.isConstant(getContext()), Linkage, 205 CGM.EmitNullConstant(D.getType()), Name, 0, 206 llvm::GlobalVariable::NotThreadLocal, 207 AddrSpace); 208 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 209 CGM.setGlobalVisibility(GV, &D); 210 211 if (D.getTLSKind()) 212 CGM.setTLSMode(GV, D); 213 214 return GV; 215 } 216 217 /// hasNontrivialDestruction - Determine whether a type's destruction is 218 /// non-trivial. If so, and the variable uses static initialization, we must 219 /// register its destructor to run on exit. 220 static bool hasNontrivialDestruction(QualType T) { 221 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 222 return RD && !RD->hasTrivialDestructor(); 223 } 224 225 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 226 /// global variable that has already been created for it. If the initializer 227 /// has a different type than GV does, this may free GV and return a different 228 /// one. Otherwise it just returns GV. 229 llvm::GlobalVariable * 230 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 231 llvm::GlobalVariable *GV) { 232 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 233 234 // If constant emission failed, then this should be a C++ static 235 // initializer. 236 if (!Init) { 237 if (!getLangOpts().CPlusPlus) 238 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 239 else if (Builder.GetInsertBlock()) { 240 // Since we have a static initializer, this global variable can't 241 // be constant. 242 GV->setConstant(false); 243 244 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 245 } 246 return GV; 247 } 248 249 // The initializer may differ in type from the global. Rewrite 250 // the global to match the initializer. (We have to do this 251 // because some types, like unions, can't be completely represented 252 // in the LLVM type system.) 253 if (GV->getType()->getElementType() != Init->getType()) { 254 llvm::GlobalVariable *OldGV = GV; 255 256 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 257 OldGV->isConstant(), 258 OldGV->getLinkage(), Init, "", 259 /*InsertBefore*/ OldGV, 260 OldGV->getThreadLocalMode(), 261 CGM.getContext().getTargetAddressSpace(D.getType())); 262 GV->setVisibility(OldGV->getVisibility()); 263 264 // Steal the name of the old global 265 GV->takeName(OldGV); 266 267 // Replace all uses of the old global with the new global 268 llvm::Constant *NewPtrForOldDecl = 269 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 270 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 271 272 // Erase the old global, since it is no longer used. 273 OldGV->eraseFromParent(); 274 } 275 276 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 277 GV->setInitializer(Init); 278 279 if (hasNontrivialDestruction(D.getType())) { 280 // We have a constant initializer, but a nontrivial destructor. We still 281 // need to perform a guarded "initialization" in order to register the 282 // destructor. 283 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 284 } 285 286 return GV; 287 } 288 289 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 290 llvm::GlobalValue::LinkageTypes Linkage) { 291 llvm::Value *&DMEntry = LocalDeclMap[&D]; 292 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 293 294 // Check to see if we already have a global variable for this 295 // declaration. This can happen when double-emitting function 296 // bodies, e.g. with complete and base constructors. 297 llvm::Constant *addr = 298 CGM.getStaticLocalDeclAddress(&D); 299 300 llvm::GlobalVariable *var; 301 if (addr) { 302 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 303 } else { 304 addr = var = CreateStaticVarDecl(D, ".", Linkage); 305 } 306 307 // Store into LocalDeclMap before generating initializer to handle 308 // circular references. 309 DMEntry = addr; 310 CGM.setStaticLocalDeclAddress(&D, addr); 311 312 // We can't have a VLA here, but we can have a pointer to a VLA, 313 // even though that doesn't really make any sense. 314 // Make sure to evaluate VLA bounds now so that we have them for later. 315 if (D.getType()->isVariablyModifiedType()) 316 EmitVariablyModifiedType(D.getType()); 317 318 // Save the type in case adding the initializer forces a type change. 319 llvm::Type *expectedType = addr->getType(); 320 321 // If this value has an initializer, emit it. 322 if (D.getInit()) 323 var = AddInitializerToStaticVarDecl(D, var); 324 325 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 326 327 if (D.hasAttr<AnnotateAttr>()) 328 CGM.AddGlobalAnnotations(&D, var); 329 330 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 331 var->setSection(SA->getName()); 332 333 if (D.hasAttr<UsedAttr>()) 334 CGM.AddUsedGlobal(var); 335 336 // We may have to cast the constant because of the initializer 337 // mismatch above. 338 // 339 // FIXME: It is really dangerous to store this in the map; if anyone 340 // RAUW's the GV uses of this constant will be invalid. 341 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); 342 DMEntry = castedAddr; 343 CGM.setStaticLocalDeclAddress(&D, castedAddr); 344 345 // Emit global variable debug descriptor for static vars. 346 CGDebugInfo *DI = getDebugInfo(); 347 if (DI && 348 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 349 DI->setLocation(D.getLocation()); 350 DI->EmitGlobalVariable(var, &D); 351 } 352 } 353 354 namespace { 355 struct DestroyObject : EHScopeStack::Cleanup { 356 DestroyObject(llvm::Value *addr, QualType type, 357 CodeGenFunction::Destroyer *destroyer, 358 bool useEHCleanupForArray) 359 : addr(addr), type(type), destroyer(destroyer), 360 useEHCleanupForArray(useEHCleanupForArray) {} 361 362 llvm::Value *addr; 363 QualType type; 364 CodeGenFunction::Destroyer *destroyer; 365 bool useEHCleanupForArray; 366 367 void Emit(CodeGenFunction &CGF, Flags flags) { 368 // Don't use an EH cleanup recursively from an EH cleanup. 369 bool useEHCleanupForArray = 370 flags.isForNormalCleanup() && this->useEHCleanupForArray; 371 372 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 373 } 374 }; 375 376 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 377 DestroyNRVOVariable(llvm::Value *addr, 378 const CXXDestructorDecl *Dtor, 379 llvm::Value *NRVOFlag) 380 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 381 382 const CXXDestructorDecl *Dtor; 383 llvm::Value *NRVOFlag; 384 llvm::Value *Loc; 385 386 void Emit(CodeGenFunction &CGF, Flags flags) { 387 // Along the exceptions path we always execute the dtor. 388 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 389 390 llvm::BasicBlock *SkipDtorBB = 0; 391 if (NRVO) { 392 // If we exited via NRVO, we skip the destructor call. 393 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 394 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 395 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 396 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 397 CGF.EmitBlock(RunDtorBB); 398 } 399 400 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 401 /*ForVirtualBase=*/false, 402 /*Delegating=*/false, 403 Loc); 404 405 if (NRVO) CGF.EmitBlock(SkipDtorBB); 406 } 407 }; 408 409 struct CallStackRestore : EHScopeStack::Cleanup { 410 llvm::Value *Stack; 411 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 412 void Emit(CodeGenFunction &CGF, Flags flags) { 413 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 414 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 415 CGF.Builder.CreateCall(F, V); 416 } 417 }; 418 419 struct ExtendGCLifetime : EHScopeStack::Cleanup { 420 const VarDecl &Var; 421 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 422 423 void Emit(CodeGenFunction &CGF, Flags flags) { 424 // Compute the address of the local variable, in case it's a 425 // byref or something. 426 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 427 Var.getType(), VK_LValue, SourceLocation()); 428 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 429 CGF.EmitExtendGCLifetime(value); 430 } 431 }; 432 433 struct CallCleanupFunction : EHScopeStack::Cleanup { 434 llvm::Constant *CleanupFn; 435 const CGFunctionInfo &FnInfo; 436 const VarDecl &Var; 437 438 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 439 const VarDecl *Var) 440 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 441 442 void Emit(CodeGenFunction &CGF, Flags flags) { 443 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 444 Var.getType(), VK_LValue, SourceLocation()); 445 // Compute the address of the local variable, in case it's a byref 446 // or something. 447 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 448 449 // In some cases, the type of the function argument will be different from 450 // the type of the pointer. An example of this is 451 // void f(void* arg); 452 // __attribute__((cleanup(f))) void *g; 453 // 454 // To fix this we insert a bitcast here. 455 QualType ArgTy = FnInfo.arg_begin()->type; 456 llvm::Value *Arg = 457 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 458 459 CallArgList Args; 460 Args.add(RValue::get(Arg), 461 CGF.getContext().getPointerType(Var.getType())); 462 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 463 } 464 }; 465 466 /// A cleanup to call @llvm.lifetime.end. 467 class CallLifetimeEnd : public EHScopeStack::Cleanup { 468 llvm::Value *Addr; 469 llvm::Value *Size; 470 public: 471 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 472 : Addr(addr), Size(size) {} 473 474 void Emit(CodeGenFunction &CGF, Flags flags) { 475 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 476 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 477 Size, castAddr) 478 ->setDoesNotThrow(); 479 } 480 }; 481 } 482 483 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 484 /// variable with lifetime. 485 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 486 llvm::Value *addr, 487 Qualifiers::ObjCLifetime lifetime) { 488 switch (lifetime) { 489 case Qualifiers::OCL_None: 490 llvm_unreachable("present but none"); 491 492 case Qualifiers::OCL_ExplicitNone: 493 // nothing to do 494 break; 495 496 case Qualifiers::OCL_Strong: { 497 CodeGenFunction::Destroyer *destroyer = 498 (var.hasAttr<ObjCPreciseLifetimeAttr>() 499 ? CodeGenFunction::destroyARCStrongPrecise 500 : CodeGenFunction::destroyARCStrongImprecise); 501 502 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 503 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 504 cleanupKind & EHCleanup); 505 break; 506 } 507 case Qualifiers::OCL_Autoreleasing: 508 // nothing to do 509 break; 510 511 case Qualifiers::OCL_Weak: 512 // __weak objects always get EH cleanups; otherwise, exceptions 513 // could cause really nasty crashes instead of mere leaks. 514 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 515 CodeGenFunction::destroyARCWeak, 516 /*useEHCleanup*/ true); 517 break; 518 } 519 } 520 521 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 522 if (const Expr *e = dyn_cast<Expr>(s)) { 523 // Skip the most common kinds of expressions that make 524 // hierarchy-walking expensive. 525 s = e = e->IgnoreParenCasts(); 526 527 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 528 return (ref->getDecl() == &var); 529 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 530 const BlockDecl *block = be->getBlockDecl(); 531 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 532 e = block->capture_end(); i != e; ++i) { 533 if (i->getVariable() == &var) 534 return true; 535 } 536 } 537 } 538 539 for (Stmt::const_child_range children = s->children(); children; ++children) 540 // children might be null; as in missing decl or conditional of an if-stmt. 541 if ((*children) && isAccessedBy(var, *children)) 542 return true; 543 544 return false; 545 } 546 547 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 548 if (!decl) return false; 549 if (!isa<VarDecl>(decl)) return false; 550 const VarDecl *var = cast<VarDecl>(decl); 551 return isAccessedBy(*var, e); 552 } 553 554 static void drillIntoBlockVariable(CodeGenFunction &CGF, 555 LValue &lvalue, 556 const VarDecl *var) { 557 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 558 } 559 560 void CodeGenFunction::EmitScalarInit(const Expr *init, 561 const ValueDecl *D, 562 LValue lvalue, 563 bool capturedByInit) { 564 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 565 if (!lifetime) { 566 llvm::Value *value = EmitScalarExpr(init); 567 if (capturedByInit) 568 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 569 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 570 return; 571 } 572 573 // If we're emitting a value with lifetime, we have to do the 574 // initialization *before* we leave the cleanup scopes. 575 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 576 enterFullExpression(ewc); 577 init = ewc->getSubExpr(); 578 } 579 CodeGenFunction::RunCleanupsScope Scope(*this); 580 581 // We have to maintain the illusion that the variable is 582 // zero-initialized. If the variable might be accessed in its 583 // initializer, zero-initialize before running the initializer, then 584 // actually perform the initialization with an assign. 585 bool accessedByInit = false; 586 if (lifetime != Qualifiers::OCL_ExplicitNone) 587 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 588 if (accessedByInit) { 589 LValue tempLV = lvalue; 590 // Drill down to the __block object if necessary. 591 if (capturedByInit) { 592 // We can use a simple GEP for this because it can't have been 593 // moved yet. 594 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 595 getByRefValueLLVMField(cast<VarDecl>(D)))); 596 } 597 598 llvm::PointerType *ty 599 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 600 ty = cast<llvm::PointerType>(ty->getElementType()); 601 602 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 603 604 // If __weak, we want to use a barrier under certain conditions. 605 if (lifetime == Qualifiers::OCL_Weak) 606 EmitARCInitWeak(tempLV.getAddress(), zero); 607 608 // Otherwise just do a simple store. 609 else 610 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 611 } 612 613 // Emit the initializer. 614 llvm::Value *value = 0; 615 616 switch (lifetime) { 617 case Qualifiers::OCL_None: 618 llvm_unreachable("present but none"); 619 620 case Qualifiers::OCL_ExplicitNone: 621 // nothing to do 622 value = EmitScalarExpr(init); 623 break; 624 625 case Qualifiers::OCL_Strong: { 626 value = EmitARCRetainScalarExpr(init); 627 break; 628 } 629 630 case Qualifiers::OCL_Weak: { 631 // No way to optimize a producing initializer into this. It's not 632 // worth optimizing for, because the value will immediately 633 // disappear in the common case. 634 value = EmitScalarExpr(init); 635 636 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 637 if (accessedByInit) 638 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 639 else 640 EmitARCInitWeak(lvalue.getAddress(), value); 641 return; 642 } 643 644 case Qualifiers::OCL_Autoreleasing: 645 value = EmitARCRetainAutoreleaseScalarExpr(init); 646 break; 647 } 648 649 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 650 651 // If the variable might have been accessed by its initializer, we 652 // might have to initialize with a barrier. We have to do this for 653 // both __weak and __strong, but __weak got filtered out above. 654 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 655 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 656 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 657 EmitARCRelease(oldValue, ARCImpreciseLifetime); 658 return; 659 } 660 661 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 662 } 663 664 /// EmitScalarInit - Initialize the given lvalue with the given object. 665 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 666 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 667 if (!lifetime) 668 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 669 670 switch (lifetime) { 671 case Qualifiers::OCL_None: 672 llvm_unreachable("present but none"); 673 674 case Qualifiers::OCL_ExplicitNone: 675 // nothing to do 676 break; 677 678 case Qualifiers::OCL_Strong: 679 init = EmitARCRetain(lvalue.getType(), init); 680 break; 681 682 case Qualifiers::OCL_Weak: 683 // Initialize and then skip the primitive store. 684 EmitARCInitWeak(lvalue.getAddress(), init); 685 return; 686 687 case Qualifiers::OCL_Autoreleasing: 688 init = EmitARCRetainAutorelease(lvalue.getType(), init); 689 break; 690 } 691 692 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 693 } 694 695 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 696 /// non-zero parts of the specified initializer with equal or fewer than 697 /// NumStores scalar stores. 698 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 699 unsigned &NumStores) { 700 // Zero and Undef never requires any extra stores. 701 if (isa<llvm::ConstantAggregateZero>(Init) || 702 isa<llvm::ConstantPointerNull>(Init) || 703 isa<llvm::UndefValue>(Init)) 704 return true; 705 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 706 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 707 isa<llvm::ConstantExpr>(Init)) 708 return Init->isNullValue() || NumStores--; 709 710 // See if we can emit each element. 711 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 712 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 713 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 714 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 715 return false; 716 } 717 return true; 718 } 719 720 if (llvm::ConstantDataSequential *CDS = 721 dyn_cast<llvm::ConstantDataSequential>(Init)) { 722 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 723 llvm::Constant *Elt = CDS->getElementAsConstant(i); 724 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 725 return false; 726 } 727 return true; 728 } 729 730 // Anything else is hard and scary. 731 return false; 732 } 733 734 /// emitStoresForInitAfterMemset - For inits that 735 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 736 /// stores that would be required. 737 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 738 bool isVolatile, CGBuilderTy &Builder) { 739 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 740 "called emitStoresForInitAfterMemset for zero or undef value."); 741 742 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 743 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 744 isa<llvm::ConstantExpr>(Init)) { 745 Builder.CreateStore(Init, Loc, isVolatile); 746 return; 747 } 748 749 if (llvm::ConstantDataSequential *CDS = 750 dyn_cast<llvm::ConstantDataSequential>(Init)) { 751 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 752 llvm::Constant *Elt = CDS->getElementAsConstant(i); 753 754 // If necessary, get a pointer to the element and emit it. 755 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 756 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 757 isVolatile, Builder); 758 } 759 return; 760 } 761 762 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 763 "Unknown value type!"); 764 765 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 766 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 767 768 // If necessary, get a pointer to the element and emit it. 769 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 770 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 771 isVolatile, Builder); 772 } 773 } 774 775 776 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 777 /// plus some stores to initialize a local variable instead of using a memcpy 778 /// from a constant global. It is beneficial to use memset if the global is all 779 /// zeros, or mostly zeros and large. 780 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 781 uint64_t GlobalSize) { 782 // If a global is all zeros, always use a memset. 783 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 784 785 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 786 // do it if it will require 6 or fewer scalar stores. 787 // TODO: Should budget depends on the size? Avoiding a large global warrants 788 // plopping in more stores. 789 unsigned StoreBudget = 6; 790 uint64_t SizeLimit = 32; 791 792 return GlobalSize > SizeLimit && 793 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 794 } 795 796 /// Should we use the LLVM lifetime intrinsics for the given local variable? 797 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 798 unsigned Size) { 799 // Always emit lifetime markers in -fsanitize=use-after-scope mode. 800 if (CGF.getLangOpts().Sanitize.UseAfterScope) 801 return true; 802 // For now, only in optimized builds. 803 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 804 return false; 805 806 // Limit the size of marked objects to 32 bytes. We don't want to increase 807 // compile time by marking tiny objects. 808 unsigned SizeThreshold = 32; 809 810 return Size > SizeThreshold; 811 } 812 813 814 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 815 /// variable declaration with auto, register, or no storage class specifier. 816 /// These turn into simple stack objects, or GlobalValues depending on target. 817 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 818 AutoVarEmission emission = EmitAutoVarAlloca(D); 819 EmitAutoVarInit(emission); 820 EmitAutoVarCleanups(emission); 821 } 822 823 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 824 /// local variable. Does not emit initalization or destruction. 825 CodeGenFunction::AutoVarEmission 826 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 827 QualType Ty = D.getType(); 828 829 AutoVarEmission emission(D); 830 831 bool isByRef = D.hasAttr<BlocksAttr>(); 832 emission.IsByRef = isByRef; 833 834 CharUnits alignment = getContext().getDeclAlign(&D); 835 emission.Alignment = alignment; 836 837 // If the type is variably-modified, emit all the VLA sizes for it. 838 if (Ty->isVariablyModifiedType()) 839 EmitVariablyModifiedType(Ty); 840 841 llvm::Value *DeclPtr; 842 if (Ty->isConstantSizeType()) { 843 bool NRVO = getLangOpts().ElideConstructors && 844 D.isNRVOVariable(); 845 846 // If this value is an array or struct with a statically determinable 847 // constant initializer, there are optimizations we can do. 848 // 849 // TODO: We should constant-evaluate the initializer of any variable, 850 // as long as it is initialized by a constant expression. Currently, 851 // isConstantInitializer produces wrong answers for structs with 852 // reference or bitfield members, and a few other cases, and checking 853 // for POD-ness protects us from some of these. 854 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 855 (D.isConstexpr() || 856 ((Ty.isPODType(getContext()) || 857 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 858 D.getInit()->isConstantInitializer(getContext(), false)))) { 859 860 // If the variable's a const type, and it's neither an NRVO 861 // candidate nor a __block variable and has no mutable members, 862 // emit it as a global instead. 863 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 864 CGM.isTypeConstant(Ty, true)) { 865 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 866 867 emission.Address = 0; // signal this condition to later callbacks 868 assert(emission.wasEmittedAsGlobal()); 869 return emission; 870 } 871 872 // Otherwise, tell the initialization code that we're in this case. 873 emission.IsConstantAggregate = true; 874 } 875 876 // A normal fixed sized variable becomes an alloca in the entry block, 877 // unless it's an NRVO variable. 878 llvm::Type *LTy = ConvertTypeForMem(Ty); 879 880 if (NRVO) { 881 // The named return value optimization: allocate this variable in the 882 // return slot, so that we can elide the copy when returning this 883 // variable (C++0x [class.copy]p34). 884 DeclPtr = ReturnValue; 885 886 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 887 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 888 // Create a flag that is used to indicate when the NRVO was applied 889 // to this variable. Set it to zero to indicate that NRVO was not 890 // applied. 891 llvm::Value *Zero = Builder.getFalse(); 892 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 893 EnsureInsertPoint(); 894 Builder.CreateStore(Zero, NRVOFlag); 895 896 // Record the NRVO flag for this variable. 897 NRVOFlags[&D] = NRVOFlag; 898 emission.NRVOFlag = NRVOFlag; 899 } 900 } 901 } else { 902 if (isByRef) 903 LTy = BuildByRefType(&D); 904 905 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 906 Alloc->setName(D.getName()); 907 908 CharUnits allocaAlignment = alignment; 909 if (isByRef) 910 allocaAlignment = std::max(allocaAlignment, 911 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 912 Alloc->setAlignment(allocaAlignment.getQuantity()); 913 DeclPtr = Alloc; 914 915 // Emit a lifetime intrinsic if meaningful. There's no point 916 // in doing this if we don't have a valid insertion point (?). 917 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 918 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 919 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 920 921 emission.SizeForLifetimeMarkers = sizeV; 922 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 923 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 924 ->setDoesNotThrow(); 925 } else { 926 assert(!emission.useLifetimeMarkers()); 927 } 928 } 929 } else { 930 EnsureInsertPoint(); 931 932 if (!DidCallStackSave) { 933 // Save the stack. 934 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 935 936 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 937 llvm::Value *V = Builder.CreateCall(F); 938 939 Builder.CreateStore(V, Stack); 940 941 DidCallStackSave = true; 942 943 // Push a cleanup block and restore the stack there. 944 // FIXME: in general circumstances, this should be an EH cleanup. 945 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 946 } 947 948 llvm::Value *elementCount; 949 QualType elementType; 950 llvm::tie(elementCount, elementType) = getVLASize(Ty); 951 952 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 953 954 // Allocate memory for the array. 955 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 956 vla->setAlignment(alignment.getQuantity()); 957 958 DeclPtr = vla; 959 } 960 961 llvm::Value *&DMEntry = LocalDeclMap[&D]; 962 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 963 DMEntry = DeclPtr; 964 emission.Address = DeclPtr; 965 966 // Emit debug info for local var declaration. 967 if (HaveInsertPoint()) 968 if (CGDebugInfo *DI = getDebugInfo()) { 969 if (CGM.getCodeGenOpts().getDebugInfo() 970 >= CodeGenOptions::LimitedDebugInfo) { 971 DI->setLocation(D.getLocation()); 972 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 973 } 974 } 975 976 if (D.hasAttr<AnnotateAttr>()) 977 EmitVarAnnotations(&D, emission.Address); 978 979 return emission; 980 } 981 982 /// Determines whether the given __block variable is potentially 983 /// captured by the given expression. 984 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 985 // Skip the most common kinds of expressions that make 986 // hierarchy-walking expensive. 987 e = e->IgnoreParenCasts(); 988 989 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 990 const BlockDecl *block = be->getBlockDecl(); 991 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 992 e = block->capture_end(); i != e; ++i) { 993 if (i->getVariable() == &var) 994 return true; 995 } 996 997 // No need to walk into the subexpressions. 998 return false; 999 } 1000 1001 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1002 const CompoundStmt *CS = SE->getSubStmt(); 1003 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 1004 BE = CS->body_end(); BI != BE; ++BI) 1005 if (Expr *E = dyn_cast<Expr>((*BI))) { 1006 if (isCapturedBy(var, E)) 1007 return true; 1008 } 1009 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 1010 // special case declarations 1011 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 1012 I != E; ++I) { 1013 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 1014 Expr *Init = VD->getInit(); 1015 if (Init && isCapturedBy(var, Init)) 1016 return true; 1017 } 1018 } 1019 } 1020 else 1021 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1022 // Later, provide code to poke into statements for capture analysis. 1023 return true; 1024 return false; 1025 } 1026 1027 for (Stmt::const_child_range children = e->children(); children; ++children) 1028 if (isCapturedBy(var, cast<Expr>(*children))) 1029 return true; 1030 1031 return false; 1032 } 1033 1034 /// \brief Determine whether the given initializer is trivial in the sense 1035 /// that it requires no code to be generated. 1036 static bool isTrivialInitializer(const Expr *Init) { 1037 if (!Init) 1038 return true; 1039 1040 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1041 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1042 if (Constructor->isTrivial() && 1043 Constructor->isDefaultConstructor() && 1044 !Construct->requiresZeroInitialization()) 1045 return true; 1046 1047 return false; 1048 } 1049 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1050 assert(emission.Variable && "emission was not valid!"); 1051 1052 // If this was emitted as a global constant, we're done. 1053 if (emission.wasEmittedAsGlobal()) return; 1054 1055 const VarDecl &D = *emission.Variable; 1056 QualType type = D.getType(); 1057 1058 // If this local has an initializer, emit it now. 1059 const Expr *Init = D.getInit(); 1060 1061 // If we are at an unreachable point, we don't need to emit the initializer 1062 // unless it contains a label. 1063 if (!HaveInsertPoint()) { 1064 if (!Init || !ContainsLabel(Init)) return; 1065 EnsureInsertPoint(); 1066 } 1067 1068 // Initialize the structure of a __block variable. 1069 if (emission.IsByRef) 1070 emitByrefStructureInit(emission); 1071 1072 if (isTrivialInitializer(Init)) 1073 return; 1074 1075 CharUnits alignment = emission.Alignment; 1076 1077 // Check whether this is a byref variable that's potentially 1078 // captured and moved by its own initializer. If so, we'll need to 1079 // emit the initializer first, then copy into the variable. 1080 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1081 1082 llvm::Value *Loc = 1083 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1084 1085 llvm::Constant *constant = 0; 1086 if (emission.IsConstantAggregate || D.isConstexpr()) { 1087 assert(!capturedByInit && "constant init contains a capturing block?"); 1088 constant = CGM.EmitConstantInit(D, this); 1089 } 1090 1091 if (!constant) { 1092 LValue lv = MakeAddrLValue(Loc, type, alignment); 1093 lv.setNonGC(true); 1094 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1095 } 1096 1097 if (!emission.IsConstantAggregate) { 1098 // For simple scalar/complex initialization, store the value directly. 1099 LValue lv = MakeAddrLValue(Loc, type, alignment); 1100 lv.setNonGC(true); 1101 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1102 } 1103 1104 // If this is a simple aggregate initialization, we can optimize it 1105 // in various ways. 1106 bool isVolatile = type.isVolatileQualified(); 1107 1108 llvm::Value *SizeVal = 1109 llvm::ConstantInt::get(IntPtrTy, 1110 getContext().getTypeSizeInChars(type).getQuantity()); 1111 1112 llvm::Type *BP = Int8PtrTy; 1113 if (Loc->getType() != BP) 1114 Loc = Builder.CreateBitCast(Loc, BP); 1115 1116 // If the initializer is all or mostly zeros, codegen with memset then do 1117 // a few stores afterward. 1118 if (shouldUseMemSetPlusStoresToInitialize(constant, 1119 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1120 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1121 alignment.getQuantity(), isVolatile); 1122 // Zero and undef don't require a stores. 1123 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1124 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1125 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1126 } 1127 } else { 1128 // Otherwise, create a temporary global with the initializer then 1129 // memcpy from the global to the alloca. 1130 std::string Name = GetStaticDeclName(*this, D, "."); 1131 llvm::GlobalVariable *GV = 1132 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1133 llvm::GlobalValue::PrivateLinkage, 1134 constant, Name); 1135 GV->setAlignment(alignment.getQuantity()); 1136 GV->setUnnamedAddr(true); 1137 1138 llvm::Value *SrcPtr = GV; 1139 if (SrcPtr->getType() != BP) 1140 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1141 1142 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1143 isVolatile); 1144 } 1145 } 1146 1147 /// Emit an expression as an initializer for a variable at the given 1148 /// location. The expression is not necessarily the normal 1149 /// initializer for the variable, and the address is not necessarily 1150 /// its normal location. 1151 /// 1152 /// \param init the initializing expression 1153 /// \param var the variable to act as if we're initializing 1154 /// \param loc the address to initialize; its type is a pointer 1155 /// to the LLVM mapping of the variable's type 1156 /// \param alignment the alignment of the address 1157 /// \param capturedByInit true if the variable is a __block variable 1158 /// whose address is potentially changed by the initializer 1159 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1160 const ValueDecl *D, 1161 LValue lvalue, 1162 bool capturedByInit) { 1163 QualType type = D->getType(); 1164 1165 if (type->isReferenceType()) { 1166 RValue rvalue = EmitReferenceBindingToExpr(init); 1167 if (capturedByInit) 1168 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1169 EmitStoreThroughLValue(rvalue, lvalue, true); 1170 return; 1171 } 1172 switch (getEvaluationKind(type)) { 1173 case TEK_Scalar: 1174 EmitScalarInit(init, D, lvalue, capturedByInit); 1175 return; 1176 case TEK_Complex: { 1177 ComplexPairTy complex = EmitComplexExpr(init); 1178 if (capturedByInit) 1179 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1180 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1181 return; 1182 } 1183 case TEK_Aggregate: 1184 if (type->isAtomicType()) { 1185 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1186 } else { 1187 // TODO: how can we delay here if D is captured by its initializer? 1188 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1189 AggValueSlot::IsDestructed, 1190 AggValueSlot::DoesNotNeedGCBarriers, 1191 AggValueSlot::IsNotAliased)); 1192 } 1193 return; 1194 } 1195 llvm_unreachable("bad evaluation kind"); 1196 } 1197 1198 /// Enter a destroy cleanup for the given local variable. 1199 void CodeGenFunction::emitAutoVarTypeCleanup( 1200 const CodeGenFunction::AutoVarEmission &emission, 1201 QualType::DestructionKind dtorKind) { 1202 assert(dtorKind != QualType::DK_none); 1203 1204 // Note that for __block variables, we want to destroy the 1205 // original stack object, not the possibly forwarded object. 1206 llvm::Value *addr = emission.getObjectAddress(*this); 1207 1208 const VarDecl *var = emission.Variable; 1209 QualType type = var->getType(); 1210 1211 CleanupKind cleanupKind = NormalAndEHCleanup; 1212 CodeGenFunction::Destroyer *destroyer = 0; 1213 1214 switch (dtorKind) { 1215 case QualType::DK_none: 1216 llvm_unreachable("no cleanup for trivially-destructible variable"); 1217 1218 case QualType::DK_cxx_destructor: 1219 // If there's an NRVO flag on the emission, we need a different 1220 // cleanup. 1221 if (emission.NRVOFlag) { 1222 assert(!type->isArrayType()); 1223 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1224 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1225 emission.NRVOFlag); 1226 return; 1227 } 1228 break; 1229 1230 case QualType::DK_objc_strong_lifetime: 1231 // Suppress cleanups for pseudo-strong variables. 1232 if (var->isARCPseudoStrong()) return; 1233 1234 // Otherwise, consider whether to use an EH cleanup or not. 1235 cleanupKind = getARCCleanupKind(); 1236 1237 // Use the imprecise destroyer by default. 1238 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1239 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1240 break; 1241 1242 case QualType::DK_objc_weak_lifetime: 1243 break; 1244 } 1245 1246 // If we haven't chosen a more specific destroyer, use the default. 1247 if (!destroyer) destroyer = getDestroyer(dtorKind); 1248 1249 // Use an EH cleanup in array destructors iff the destructor itself 1250 // is being pushed as an EH cleanup. 1251 bool useEHCleanup = (cleanupKind & EHCleanup); 1252 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1253 useEHCleanup); 1254 } 1255 1256 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1257 assert(emission.Variable && "emission was not valid!"); 1258 1259 // If this was emitted as a global constant, we're done. 1260 if (emission.wasEmittedAsGlobal()) return; 1261 1262 // If we don't have an insertion point, we're done. Sema prevents 1263 // us from jumping into any of these scopes anyway. 1264 if (!HaveInsertPoint()) return; 1265 1266 const VarDecl &D = *emission.Variable; 1267 1268 // Make sure we call @llvm.lifetime.end. This needs to happen 1269 // *last*, so the cleanup needs to be pushed *first*. 1270 if (emission.useLifetimeMarkers()) { 1271 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1272 emission.getAllocatedAddress(), 1273 emission.getSizeForLifetimeMarkers()); 1274 } 1275 1276 // Check the type for a cleanup. 1277 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1278 emitAutoVarTypeCleanup(emission, dtorKind); 1279 1280 // In GC mode, honor objc_precise_lifetime. 1281 if (getLangOpts().getGC() != LangOptions::NonGC && 1282 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1283 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1284 } 1285 1286 // Handle the cleanup attribute. 1287 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1288 const FunctionDecl *FD = CA->getFunctionDecl(); 1289 1290 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1291 assert(F && "Could not find function!"); 1292 1293 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1294 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1295 } 1296 1297 // If this is a block variable, call _Block_object_destroy 1298 // (on the unforwarded address). 1299 if (emission.IsByRef) 1300 enterByrefCleanup(emission); 1301 } 1302 1303 CodeGenFunction::Destroyer * 1304 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1305 switch (kind) { 1306 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1307 case QualType::DK_cxx_destructor: 1308 return destroyCXXObject; 1309 case QualType::DK_objc_strong_lifetime: 1310 return destroyARCStrongPrecise; 1311 case QualType::DK_objc_weak_lifetime: 1312 return destroyARCWeak; 1313 } 1314 llvm_unreachable("Unknown DestructionKind"); 1315 } 1316 1317 /// pushEHDestroy - Push the standard destructor for the given type as 1318 /// an EH-only cleanup. 1319 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1320 llvm::Value *addr, QualType type) { 1321 assert(dtorKind && "cannot push destructor for trivial type"); 1322 assert(needsEHCleanup(dtorKind)); 1323 1324 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1325 } 1326 1327 /// pushDestroy - Push the standard destructor for the given type as 1328 /// at least a normal cleanup. 1329 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1330 llvm::Value *addr, QualType type) { 1331 assert(dtorKind && "cannot push destructor for trivial type"); 1332 1333 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1334 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1335 cleanupKind & EHCleanup); 1336 } 1337 1338 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1339 QualType type, Destroyer *destroyer, 1340 bool useEHCleanupForArray) { 1341 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1342 destroyer, useEHCleanupForArray); 1343 } 1344 1345 void CodeGenFunction::pushLifetimeExtendedDestroy( 1346 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1347 Destroyer *destroyer, bool useEHCleanupForArray) { 1348 assert(!isInConditionalBranch() && 1349 "performing lifetime extension from within conditional"); 1350 1351 // Push an EH-only cleanup for the object now. 1352 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1353 // around in case a temporary's destructor throws an exception. 1354 if (cleanupKind & EHCleanup) 1355 EHStack.pushCleanup<DestroyObject>( 1356 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1357 destroyer, useEHCleanupForArray); 1358 1359 // Remember that we need to push a full cleanup for the object at the 1360 // end of the full-expression. 1361 pushCleanupAfterFullExpr<DestroyObject>( 1362 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1363 } 1364 1365 /// emitDestroy - Immediately perform the destruction of the given 1366 /// object. 1367 /// 1368 /// \param addr - the address of the object; a type* 1369 /// \param type - the type of the object; if an array type, all 1370 /// objects are destroyed in reverse order 1371 /// \param destroyer - the function to call to destroy individual 1372 /// elements 1373 /// \param useEHCleanupForArray - whether an EH cleanup should be 1374 /// used when destroying array elements, in case one of the 1375 /// destructions throws an exception 1376 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1377 Destroyer *destroyer, 1378 bool useEHCleanupForArray) { 1379 const ArrayType *arrayType = getContext().getAsArrayType(type); 1380 if (!arrayType) 1381 return destroyer(*this, addr, type); 1382 1383 llvm::Value *begin = addr; 1384 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1385 1386 // Normally we have to check whether the array is zero-length. 1387 bool checkZeroLength = true; 1388 1389 // But if the array length is constant, we can suppress that. 1390 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1391 // ...and if it's constant zero, we can just skip the entire thing. 1392 if (constLength->isZero()) return; 1393 checkZeroLength = false; 1394 } 1395 1396 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1397 emitArrayDestroy(begin, end, type, destroyer, 1398 checkZeroLength, useEHCleanupForArray); 1399 } 1400 1401 /// emitArrayDestroy - Destroys all the elements of the given array, 1402 /// beginning from last to first. The array cannot be zero-length. 1403 /// 1404 /// \param begin - a type* denoting the first element of the array 1405 /// \param end - a type* denoting one past the end of the array 1406 /// \param type - the element type of the array 1407 /// \param destroyer - the function to call to destroy elements 1408 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1409 /// the remaining elements in case the destruction of a single 1410 /// element throws 1411 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1412 llvm::Value *end, 1413 QualType type, 1414 Destroyer *destroyer, 1415 bool checkZeroLength, 1416 bool useEHCleanup) { 1417 assert(!type->isArrayType()); 1418 1419 // The basic structure here is a do-while loop, because we don't 1420 // need to check for the zero-element case. 1421 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1422 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1423 1424 if (checkZeroLength) { 1425 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1426 "arraydestroy.isempty"); 1427 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1428 } 1429 1430 // Enter the loop body, making that address the current address. 1431 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1432 EmitBlock(bodyBB); 1433 llvm::PHINode *elementPast = 1434 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1435 elementPast->addIncoming(end, entryBB); 1436 1437 // Shift the address back by one element. 1438 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1439 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1440 "arraydestroy.element"); 1441 1442 if (useEHCleanup) 1443 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1444 1445 // Perform the actual destruction there. 1446 destroyer(*this, element, type); 1447 1448 if (useEHCleanup) 1449 PopCleanupBlock(); 1450 1451 // Check whether we've reached the end. 1452 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1453 Builder.CreateCondBr(done, doneBB, bodyBB); 1454 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1455 1456 // Done. 1457 EmitBlock(doneBB); 1458 } 1459 1460 /// Perform partial array destruction as if in an EH cleanup. Unlike 1461 /// emitArrayDestroy, the element type here may still be an array type. 1462 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1463 llvm::Value *begin, llvm::Value *end, 1464 QualType type, 1465 CodeGenFunction::Destroyer *destroyer) { 1466 // If the element type is itself an array, drill down. 1467 unsigned arrayDepth = 0; 1468 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1469 // VLAs don't require a GEP index to walk into. 1470 if (!isa<VariableArrayType>(arrayType)) 1471 arrayDepth++; 1472 type = arrayType->getElementType(); 1473 } 1474 1475 if (arrayDepth) { 1476 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1477 1478 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1479 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1480 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1481 } 1482 1483 // Destroy the array. We don't ever need an EH cleanup because we 1484 // assume that we're in an EH cleanup ourselves, so a throwing 1485 // destructor causes an immediate terminate. 1486 CGF.emitArrayDestroy(begin, end, type, destroyer, 1487 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1488 } 1489 1490 namespace { 1491 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1492 /// array destroy where the end pointer is regularly determined and 1493 /// does not need to be loaded from a local. 1494 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1495 llvm::Value *ArrayBegin; 1496 llvm::Value *ArrayEnd; 1497 QualType ElementType; 1498 CodeGenFunction::Destroyer *Destroyer; 1499 public: 1500 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1501 QualType elementType, 1502 CodeGenFunction::Destroyer *destroyer) 1503 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1504 ElementType(elementType), Destroyer(destroyer) {} 1505 1506 void Emit(CodeGenFunction &CGF, Flags flags) { 1507 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1508 ElementType, Destroyer); 1509 } 1510 }; 1511 1512 /// IrregularPartialArrayDestroy - a cleanup which performs a 1513 /// partial array destroy where the end pointer is irregularly 1514 /// determined and must be loaded from a local. 1515 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1516 llvm::Value *ArrayBegin; 1517 llvm::Value *ArrayEndPointer; 1518 QualType ElementType; 1519 CodeGenFunction::Destroyer *Destroyer; 1520 public: 1521 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1522 llvm::Value *arrayEndPointer, 1523 QualType elementType, 1524 CodeGenFunction::Destroyer *destroyer) 1525 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1526 ElementType(elementType), Destroyer(destroyer) {} 1527 1528 void Emit(CodeGenFunction &CGF, Flags flags) { 1529 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1530 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1531 ElementType, Destroyer); 1532 } 1533 }; 1534 } 1535 1536 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1537 /// already-constructed elements of the given array. The cleanup 1538 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1539 /// 1540 /// \param elementType - the immediate element type of the array; 1541 /// possibly still an array type 1542 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1543 llvm::Value *arrayEndPointer, 1544 QualType elementType, 1545 Destroyer *destroyer) { 1546 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1547 arrayBegin, arrayEndPointer, 1548 elementType, destroyer); 1549 } 1550 1551 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1552 /// already-constructed elements of the given array. The cleanup 1553 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1554 /// 1555 /// \param elementType - the immediate element type of the array; 1556 /// possibly still an array type 1557 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1558 llvm::Value *arrayEnd, 1559 QualType elementType, 1560 Destroyer *destroyer) { 1561 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1562 arrayBegin, arrayEnd, 1563 elementType, destroyer); 1564 } 1565 1566 /// Lazily declare the @llvm.lifetime.start intrinsic. 1567 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1568 if (LifetimeStartFn) return LifetimeStartFn; 1569 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1570 llvm::Intrinsic::lifetime_start); 1571 return LifetimeStartFn; 1572 } 1573 1574 /// Lazily declare the @llvm.lifetime.end intrinsic. 1575 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1576 if (LifetimeEndFn) return LifetimeEndFn; 1577 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1578 llvm::Intrinsic::lifetime_end); 1579 return LifetimeEndFn; 1580 } 1581 1582 namespace { 1583 /// A cleanup to perform a release of an object at the end of a 1584 /// function. This is used to balance out the incoming +1 of a 1585 /// ns_consumed argument when we can't reasonably do that just by 1586 /// not doing the initial retain for a __block argument. 1587 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1588 ConsumeARCParameter(llvm::Value *param, 1589 ARCPreciseLifetime_t precise) 1590 : Param(param), Precise(precise) {} 1591 1592 llvm::Value *Param; 1593 ARCPreciseLifetime_t Precise; 1594 1595 void Emit(CodeGenFunction &CGF, Flags flags) { 1596 CGF.EmitARCRelease(Param, Precise); 1597 } 1598 }; 1599 } 1600 1601 /// Emit an alloca (or GlobalValue depending on target) 1602 /// for the specified parameter and set up LocalDeclMap. 1603 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1604 unsigned ArgNo) { 1605 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1606 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1607 "Invalid argument to EmitParmDecl"); 1608 1609 Arg->setName(D.getName()); 1610 1611 QualType Ty = D.getType(); 1612 1613 // Use better IR generation for certain implicit parameters. 1614 if (isa<ImplicitParamDecl>(D)) { 1615 // The only implicit argument a block has is its literal. 1616 if (BlockInfo) { 1617 LocalDeclMap[&D] = Arg; 1618 llvm::Value *LocalAddr = 0; 1619 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1620 // Allocate a stack slot to let the debug info survive the RA. 1621 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1622 D.getName() + ".addr"); 1623 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1624 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1625 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1626 LocalAddr = Builder.CreateLoad(Alloc); 1627 } 1628 1629 if (CGDebugInfo *DI = getDebugInfo()) { 1630 if (CGM.getCodeGenOpts().getDebugInfo() 1631 >= CodeGenOptions::LimitedDebugInfo) { 1632 DI->setLocation(D.getLocation()); 1633 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1634 } 1635 } 1636 1637 return; 1638 } 1639 } 1640 1641 llvm::Value *DeclPtr; 1642 bool HasNonScalarEvalKind = !CodeGenFunction::hasScalarEvaluationKind(Ty); 1643 // If this is an aggregate or variable sized value, reuse the input pointer. 1644 if (HasNonScalarEvalKind || !Ty->isConstantSizeType()) { 1645 DeclPtr = Arg; 1646 // Push a destructor cleanup for this parameter if the ABI requires it. 1647 if (HasNonScalarEvalKind && 1648 getTarget().getCXXABI().isArgumentDestroyedByCallee()) { 1649 if (const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl()) { 1650 if (RD->hasNonTrivialDestructor()) 1651 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1652 } 1653 } 1654 } else { 1655 // Otherwise, create a temporary to hold the value. 1656 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1657 D.getName() + ".addr"); 1658 CharUnits Align = getContext().getDeclAlign(&D); 1659 Alloc->setAlignment(Align.getQuantity()); 1660 DeclPtr = Alloc; 1661 1662 bool doStore = true; 1663 1664 Qualifiers qs = Ty.getQualifiers(); 1665 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1666 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1667 // We honor __attribute__((ns_consumed)) for types with lifetime. 1668 // For __strong, it's handled by just skipping the initial retain; 1669 // otherwise we have to balance out the initial +1 with an extra 1670 // cleanup to do the release at the end of the function. 1671 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1672 1673 // 'self' is always formally __strong, but if this is not an 1674 // init method then we don't want to retain it. 1675 if (D.isARCPseudoStrong()) { 1676 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1677 assert(&D == method->getSelfDecl()); 1678 assert(lt == Qualifiers::OCL_Strong); 1679 assert(qs.hasConst()); 1680 assert(method->getMethodFamily() != OMF_init); 1681 (void) method; 1682 lt = Qualifiers::OCL_ExplicitNone; 1683 } 1684 1685 if (lt == Qualifiers::OCL_Strong) { 1686 if (!isConsumed) { 1687 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1688 // use objc_storeStrong(&dest, value) for retaining the 1689 // object. But first, store a null into 'dest' because 1690 // objc_storeStrong attempts to release its old value. 1691 llvm::Value * Null = CGM.EmitNullConstant(D.getType()); 1692 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1693 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1694 doStore = false; 1695 } 1696 else 1697 // Don't use objc_retainBlock for block pointers, because we 1698 // don't want to Block_copy something just because we got it 1699 // as a parameter. 1700 Arg = EmitARCRetainNonBlock(Arg); 1701 } 1702 } else { 1703 // Push the cleanup for a consumed parameter. 1704 if (isConsumed) { 1705 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1706 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1707 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1708 precise); 1709 } 1710 1711 if (lt == Qualifiers::OCL_Weak) { 1712 EmitARCInitWeak(DeclPtr, Arg); 1713 doStore = false; // The weak init is a store, no need to do two. 1714 } 1715 } 1716 1717 // Enter the cleanup scope. 1718 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1719 } 1720 1721 // Store the initial value into the alloca. 1722 if (doStore) 1723 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1724 } 1725 1726 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1727 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1728 DMEntry = DeclPtr; 1729 1730 // Emit debug info for param declaration. 1731 if (CGDebugInfo *DI = getDebugInfo()) { 1732 if (CGM.getCodeGenOpts().getDebugInfo() 1733 >= CodeGenOptions::LimitedDebugInfo) { 1734 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1735 } 1736 } 1737 1738 if (D.hasAttr<AnnotateAttr>()) 1739 EmitVarAnnotations(&D, DeclPtr); 1740 } 1741