1 /* hash - hashing table processing. 2 3 Copyright (C) 1998-2004, 2006-2007, 2009-2012 Free Software Foundation, Inc. 4 5 Written by Jim Meyering, 1992. 6 7 This program is free software: you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 /* A generic hash table package. */ 21 22 /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead 23 of malloc. If you change USE_OBSTACK, you have to recompile! */ 24 25 #include <config.h> 26 27 #include "hash.h" 28 29 #include "bitrotate.h" 30 #include "xalloc-oversized.h" 31 32 #include <stdint.h> 33 #include <stdio.h> 34 #include <stdlib.h> 35 36 #if USE_OBSTACK 37 # include "obstack.h" 38 # ifndef obstack_chunk_alloc 39 # define obstack_chunk_alloc malloc 40 # endif 41 # ifndef obstack_chunk_free 42 # define obstack_chunk_free free 43 # endif 44 #endif 45 46 struct hash_entry 47 { 48 void *data; 49 struct hash_entry *next; 50 }; 51 52 struct hash_table 53 { 54 /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1, 55 for a possibility of N_BUCKETS. Among those, N_BUCKETS_USED buckets 56 are not empty, there are N_ENTRIES active entries in the table. */ 57 struct hash_entry *bucket; 58 struct hash_entry const *bucket_limit; 59 size_t n_buckets; 60 size_t n_buckets_used; 61 size_t n_entries; 62 63 /* Tuning arguments, kept in a physically separate structure. */ 64 const Hash_tuning *tuning; 65 66 /* Three functions are given to 'hash_initialize', see the documentation 67 block for this function. In a word, HASHER randomizes a user entry 68 into a number up from 0 up to some maximum minus 1; COMPARATOR returns 69 true if two user entries compare equally; and DATA_FREER is the cleanup 70 function for a user entry. */ 71 Hash_hasher hasher; 72 Hash_comparator comparator; 73 Hash_data_freer data_freer; 74 75 /* A linked list of freed struct hash_entry structs. */ 76 struct hash_entry *free_entry_list; 77 78 #if USE_OBSTACK 79 /* Whenever obstacks are used, it is possible to allocate all overflowed 80 entries into a single stack, so they all can be freed in a single 81 operation. It is not clear if the speedup is worth the trouble. */ 82 struct obstack entry_stack; 83 #endif 84 }; 85 86 /* A hash table contains many internal entries, each holding a pointer to 87 some user-provided data (also called a user entry). An entry indistinctly 88 refers to both the internal entry and its associated user entry. A user 89 entry contents may be hashed by a randomization function (the hashing 90 function, or just "hasher" for short) into a number (or "slot") between 0 91 and the current table size. At each slot position in the hash table, 92 starts a linked chain of entries for which the user data all hash to this 93 slot. A bucket is the collection of all entries hashing to the same slot. 94 95 A good "hasher" function will distribute entries rather evenly in buckets. 96 In the ideal case, the length of each bucket is roughly the number of 97 entries divided by the table size. Finding the slot for a data is usually 98 done in constant time by the "hasher", and the later finding of a precise 99 entry is linear in time with the size of the bucket. Consequently, a 100 larger hash table size (that is, a larger number of buckets) is prone to 101 yielding shorter chains, *given* the "hasher" function behaves properly. 102 103 Long buckets slow down the lookup algorithm. One might use big hash table 104 sizes in hope to reduce the average length of buckets, but this might 105 become inordinate, as unused slots in the hash table take some space. The 106 best bet is to make sure you are using a good "hasher" function (beware 107 that those are not that easy to write! :-), and to use a table size 108 larger than the actual number of entries. */ 109 110 /* If an insertion makes the ratio of nonempty buckets to table size larger 111 than the growth threshold (a number between 0.0 and 1.0), then increase 112 the table size by multiplying by the growth factor (a number greater than 113 1.0). The growth threshold defaults to 0.8, and the growth factor 114 defaults to 1.414, meaning that the table will have doubled its size 115 every second time 80% of the buckets get used. */ 116 #define DEFAULT_GROWTH_THRESHOLD 0.8f 117 #define DEFAULT_GROWTH_FACTOR 1.414f 118 119 /* If a deletion empties a bucket and causes the ratio of used buckets to 120 table size to become smaller than the shrink threshold (a number between 121 0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a 122 number greater than the shrink threshold but smaller than 1.0). The shrink 123 threshold and factor default to 0.0 and 1.0, meaning that the table never 124 shrinks. */ 125 #define DEFAULT_SHRINK_THRESHOLD 0.0f 126 #define DEFAULT_SHRINK_FACTOR 1.0f 127 128 /* Use this to initialize or reset a TUNING structure to 129 some sensible values. */ 130 static const Hash_tuning default_tuning = 131 { 132 DEFAULT_SHRINK_THRESHOLD, 133 DEFAULT_SHRINK_FACTOR, 134 DEFAULT_GROWTH_THRESHOLD, 135 DEFAULT_GROWTH_FACTOR, 136 false 137 }; 138 139 /* Information and lookup. */ 140 141 /* The following few functions provide information about the overall hash 142 table organization: the number of entries, number of buckets and maximum 143 length of buckets. */ 144 145 /* Return the number of buckets in the hash table. The table size, the total 146 number of buckets (used plus unused), or the maximum number of slots, are 147 the same quantity. */ 148 149 size_t 150 hash_get_n_buckets (const Hash_table *table) 151 { 152 return table->n_buckets; 153 } 154 155 /* Return the number of slots in use (non-empty buckets). */ 156 157 size_t 158 hash_get_n_buckets_used (const Hash_table *table) 159 { 160 return table->n_buckets_used; 161 } 162 163 /* Return the number of active entries. */ 164 165 size_t 166 hash_get_n_entries (const Hash_table *table) 167 { 168 return table->n_entries; 169 } 170 171 /* Return the length of the longest chain (bucket). */ 172 173 size_t 174 hash_get_max_bucket_length (const Hash_table *table) 175 { 176 struct hash_entry const *bucket; 177 size_t max_bucket_length = 0; 178 179 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++) 180 { 181 if (bucket->data) 182 { 183 struct hash_entry const *cursor = bucket; 184 size_t bucket_length = 1; 185 186 while (cursor = cursor->next, cursor) 187 bucket_length++; 188 189 if (bucket_length > max_bucket_length) 190 max_bucket_length = bucket_length; 191 } 192 } 193 194 return max_bucket_length; 195 } 196 197 /* Do a mild validation of a hash table, by traversing it and checking two 198 statistics. */ 199 200 bool 201 hash_table_ok (const Hash_table *table) 202 { 203 struct hash_entry const *bucket; 204 size_t n_buckets_used = 0; 205 size_t n_entries = 0; 206 207 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++) 208 { 209 if (bucket->data) 210 { 211 struct hash_entry const *cursor = bucket; 212 213 /* Count bucket head. */ 214 n_buckets_used++; 215 n_entries++; 216 217 /* Count bucket overflow. */ 218 while (cursor = cursor->next, cursor) 219 n_entries++; 220 } 221 } 222 223 if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries) 224 return true; 225 226 return false; 227 } 228 229 void 230 hash_print_statistics (const Hash_table *table, FILE *stream) 231 { 232 size_t n_entries = hash_get_n_entries (table); 233 size_t n_buckets = hash_get_n_buckets (table); 234 size_t n_buckets_used = hash_get_n_buckets_used (table); 235 size_t max_bucket_length = hash_get_max_bucket_length (table); 236 237 fprintf (stream, "# entries: %lu\n", (unsigned long int) n_entries); 238 fprintf (stream, "# buckets: %lu\n", (unsigned long int) n_buckets); 239 fprintf (stream, "# buckets used: %lu (%.2f%%)\n", 240 (unsigned long int) n_buckets_used, 241 (100.0 * n_buckets_used) / n_buckets); 242 fprintf (stream, "max bucket length: %lu\n", 243 (unsigned long int) max_bucket_length); 244 } 245 246 /* Hash KEY and return a pointer to the selected bucket. 247 If TABLE->hasher misbehaves, abort. */ 248 static struct hash_entry * 249 safe_hasher (const Hash_table *table, const void *key) 250 { 251 size_t n = table->hasher (key, table->n_buckets); 252 if (! (n < table->n_buckets)) 253 abort (); 254 return table->bucket + n; 255 } 256 257 /* If ENTRY matches an entry already in the hash table, return the 258 entry from the table. Otherwise, return NULL. */ 259 260 void * 261 hash_lookup (const Hash_table *table, const void *entry) 262 { 263 struct hash_entry const *bucket = safe_hasher (table, entry); 264 struct hash_entry const *cursor; 265 266 if (bucket->data == NULL) 267 return NULL; 268 269 for (cursor = bucket; cursor; cursor = cursor->next) 270 if (entry == cursor->data || table->comparator (entry, cursor->data)) 271 return cursor->data; 272 273 return NULL; 274 } 275 276 /* Walking. */ 277 278 /* The functions in this page traverse the hash table and process the 279 contained entries. For the traversal to work properly, the hash table 280 should not be resized nor modified while any particular entry is being 281 processed. In particular, entries should not be added, and an entry 282 may be removed only if there is no shrink threshold and the entry being 283 removed has already been passed to hash_get_next. */ 284 285 /* Return the first data in the table, or NULL if the table is empty. */ 286 287 void * 288 hash_get_first (const Hash_table *table) 289 { 290 struct hash_entry const *bucket; 291 292 if (table->n_entries == 0) 293 return NULL; 294 295 for (bucket = table->bucket; ; bucket++) 296 if (! (bucket < table->bucket_limit)) 297 abort (); 298 else if (bucket->data) 299 return bucket->data; 300 } 301 302 /* Return the user data for the entry following ENTRY, where ENTRY has been 303 returned by a previous call to either 'hash_get_first' or 'hash_get_next'. 304 Return NULL if there are no more entries. */ 305 306 void * 307 hash_get_next (const Hash_table *table, const void *entry) 308 { 309 struct hash_entry const *bucket = safe_hasher (table, entry); 310 struct hash_entry const *cursor; 311 312 /* Find next entry in the same bucket. */ 313 cursor = bucket; 314 do 315 { 316 if (cursor->data == entry && cursor->next) 317 return cursor->next->data; 318 cursor = cursor->next; 319 } 320 while (cursor != NULL); 321 322 /* Find first entry in any subsequent bucket. */ 323 while (++bucket < table->bucket_limit) 324 if (bucket->data) 325 return bucket->data; 326 327 /* None found. */ 328 return NULL; 329 } 330 331 /* Fill BUFFER with pointers to active user entries in the hash table, then 332 return the number of pointers copied. Do not copy more than BUFFER_SIZE 333 pointers. */ 334 335 size_t 336 hash_get_entries (const Hash_table *table, void **buffer, 337 size_t buffer_size) 338 { 339 size_t counter = 0; 340 struct hash_entry const *bucket; 341 struct hash_entry const *cursor; 342 343 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++) 344 { 345 if (bucket->data) 346 { 347 for (cursor = bucket; cursor; cursor = cursor->next) 348 { 349 if (counter >= buffer_size) 350 return counter; 351 buffer[counter++] = cursor->data; 352 } 353 } 354 } 355 356 return counter; 357 } 358 359 /* Call a PROCESSOR function for each entry of a hash table, and return the 360 number of entries for which the processor function returned success. A 361 pointer to some PROCESSOR_DATA which will be made available to each call to 362 the processor function. The PROCESSOR accepts two arguments: the first is 363 the user entry being walked into, the second is the value of PROCESSOR_DATA 364 as received. The walking continue for as long as the PROCESSOR function 365 returns nonzero. When it returns zero, the walking is interrupted. */ 366 367 size_t 368 hash_do_for_each (const Hash_table *table, Hash_processor processor, 369 void *processor_data) 370 { 371 size_t counter = 0; 372 struct hash_entry const *bucket; 373 struct hash_entry const *cursor; 374 375 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++) 376 { 377 if (bucket->data) 378 { 379 for (cursor = bucket; cursor; cursor = cursor->next) 380 { 381 if (! processor (cursor->data, processor_data)) 382 return counter; 383 counter++; 384 } 385 } 386 } 387 388 return counter; 389 } 390 391 /* Allocation and clean-up. */ 392 393 /* Return a hash index for a NUL-terminated STRING between 0 and N_BUCKETS-1. 394 This is a convenience routine for constructing other hashing functions. */ 395 396 #if USE_DIFF_HASH 397 398 /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see 399 B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm, 400 Software--practice & experience 20, 2 (Feb 1990), 209-224. Good hash 401 algorithms tend to be domain-specific, so what's good for [diffutils'] io.c 402 may not be good for your application." */ 403 404 size_t 405 hash_string (const char *string, size_t n_buckets) 406 { 407 # define HASH_ONE_CHAR(Value, Byte) \ 408 ((Byte) + rotl_sz (Value, 7)) 409 410 size_t value = 0; 411 unsigned char ch; 412 413 for (; (ch = *string); string++) 414 value = HASH_ONE_CHAR (value, ch); 415 return value % n_buckets; 416 417 # undef HASH_ONE_CHAR 418 } 419 420 #else /* not USE_DIFF_HASH */ 421 422 /* This one comes from 'recode', and performs a bit better than the above as 423 per a few experiments. It is inspired from a hashing routine found in the 424 very old Cyber 'snoop', itself written in typical Greg Mansfield style. 425 (By the way, what happened to this excellent man? Is he still alive?) */ 426 427 size_t 428 hash_string (const char *string, size_t n_buckets) 429 { 430 size_t value = 0; 431 unsigned char ch; 432 433 for (; (ch = *string); string++) 434 value = (value * 31 + ch) % n_buckets; 435 return value; 436 } 437 438 #endif /* not USE_DIFF_HASH */ 439 440 /* Return true if CANDIDATE is a prime number. CANDIDATE should be an odd 441 number at least equal to 11. */ 442 443 static bool _GL_ATTRIBUTE_CONST 444 is_prime (size_t candidate) 445 { 446 size_t divisor = 3; 447 size_t square = divisor * divisor; 448 449 while (square < candidate && (candidate % divisor)) 450 { 451 divisor++; 452 square += 4 * divisor; 453 divisor++; 454 } 455 456 return (candidate % divisor ? true : false); 457 } 458 459 /* Round a given CANDIDATE number up to the nearest prime, and return that 460 prime. Primes lower than 10 are merely skipped. */ 461 462 static size_t _GL_ATTRIBUTE_CONST 463 next_prime (size_t candidate) 464 { 465 /* Skip small primes. */ 466 if (candidate < 10) 467 candidate = 10; 468 469 /* Make it definitely odd. */ 470 candidate |= 1; 471 472 while (SIZE_MAX != candidate && !is_prime (candidate)) 473 candidate += 2; 474 475 return candidate; 476 } 477 478 void 479 hash_reset_tuning (Hash_tuning *tuning) 480 { 481 *tuning = default_tuning; 482 } 483 484 /* If the user passes a NULL hasher, we hash the raw pointer. */ 485 static size_t 486 raw_hasher (const void *data, size_t n) 487 { 488 /* When hashing unique pointers, it is often the case that they were 489 generated by malloc and thus have the property that the low-order 490 bits are 0. As this tends to give poorer performance with small 491 tables, we rotate the pointer value before performing division, 492 in an attempt to improve hash quality. */ 493 size_t val = rotr_sz ((size_t) data, 3); 494 return val % n; 495 } 496 497 /* If the user passes a NULL comparator, we use pointer comparison. */ 498 static bool 499 raw_comparator (const void *a, const void *b) 500 { 501 return a == b; 502 } 503 504 505 /* For the given hash TABLE, check the user supplied tuning structure for 506 reasonable values, and return true if there is no gross error with it. 507 Otherwise, definitively reset the TUNING field to some acceptable default 508 in the hash table (that is, the user loses the right of further modifying 509 tuning arguments), and return false. */ 510 511 static bool 512 check_tuning (Hash_table *table) 513 { 514 const Hash_tuning *tuning = table->tuning; 515 float epsilon; 516 if (tuning == &default_tuning) 517 return true; 518 519 /* Be a bit stricter than mathematics would require, so that 520 rounding errors in size calculations do not cause allocations to 521 fail to grow or shrink as they should. The smallest allocation 522 is 11 (due to next_prime's algorithm), so an epsilon of 0.1 523 should be good enough. */ 524 epsilon = 0.1f; 525 526 if (epsilon < tuning->growth_threshold 527 && tuning->growth_threshold < 1 - epsilon 528 && 1 + epsilon < tuning->growth_factor 529 && 0 <= tuning->shrink_threshold 530 && tuning->shrink_threshold + epsilon < tuning->shrink_factor 531 && tuning->shrink_factor <= 1 532 && tuning->shrink_threshold + epsilon < tuning->growth_threshold) 533 return true; 534 535 table->tuning = &default_tuning; 536 return false; 537 } 538 539 /* Compute the size of the bucket array for the given CANDIDATE and 540 TUNING, or return 0 if there is no possible way to allocate that 541 many entries. */ 542 543 static size_t _GL_ATTRIBUTE_PURE 544 compute_bucket_size (size_t candidate, const Hash_tuning *tuning) 545 { 546 if (!tuning->is_n_buckets) 547 { 548 float new_candidate = candidate / tuning->growth_threshold; 549 if (SIZE_MAX <= new_candidate) 550 return 0; 551 candidate = new_candidate; 552 } 553 candidate = next_prime (candidate); 554 if (xalloc_oversized (candidate, sizeof (struct hash_entry *))) 555 return 0; 556 return candidate; 557 } 558 559 /* Allocate and return a new hash table, or NULL upon failure. The initial 560 number of buckets is automatically selected so as to _guarantee_ that you 561 may insert at least CANDIDATE different user entries before any growth of 562 the hash table size occurs. So, if have a reasonably tight a-priori upper 563 bound on the number of entries you intend to insert in the hash table, you 564 may save some table memory and insertion time, by specifying it here. If 565 the IS_N_BUCKETS field of the TUNING structure is true, the CANDIDATE 566 argument has its meaning changed to the wanted number of buckets. 567 568 TUNING points to a structure of user-supplied values, in case some fine 569 tuning is wanted over the default behavior of the hasher. If TUNING is 570 NULL, the default tuning parameters are used instead. If TUNING is 571 provided but the values requested are out of bounds or might cause 572 rounding errors, return NULL. 573 574 The user-supplied HASHER function, when not NULL, accepts two 575 arguments ENTRY and TABLE_SIZE. It computes, by hashing ENTRY contents, a 576 slot number for that entry which should be in the range 0..TABLE_SIZE-1. 577 This slot number is then returned. 578 579 The user-supplied COMPARATOR function, when not NULL, accepts two 580 arguments pointing to user data, it then returns true for a pair of entries 581 that compare equal, or false otherwise. This function is internally called 582 on entries which are already known to hash to the same bucket index, 583 but which are distinct pointers. 584 585 The user-supplied DATA_FREER function, when not NULL, may be later called 586 with the user data as an argument, just before the entry containing the 587 data gets freed. This happens from within 'hash_free' or 'hash_clear'. 588 You should specify this function only if you want these functions to free 589 all of your 'data' data. This is typically the case when your data is 590 simply an auxiliary struct that you have malloc'd to aggregate several 591 values. */ 592 593 Hash_table * 594 hash_initialize (size_t candidate, const Hash_tuning *tuning, 595 Hash_hasher hasher, Hash_comparator comparator, 596 Hash_data_freer data_freer) 597 { 598 Hash_table *table; 599 600 if (hasher == NULL) 601 hasher = raw_hasher; 602 if (comparator == NULL) 603 comparator = raw_comparator; 604 605 table = malloc (sizeof *table); 606 if (table == NULL) 607 return NULL; 608 609 if (!tuning) 610 tuning = &default_tuning; 611 table->tuning = tuning; 612 if (!check_tuning (table)) 613 { 614 /* Fail if the tuning options are invalid. This is the only occasion 615 when the user gets some feedback about it. Once the table is created, 616 if the user provides invalid tuning options, we silently revert to 617 using the defaults, and ignore further request to change the tuning 618 options. */ 619 goto fail; 620 } 621 622 table->n_buckets = compute_bucket_size (candidate, tuning); 623 if (!table->n_buckets) 624 goto fail; 625 626 table->bucket = calloc (table->n_buckets, sizeof *table->bucket); 627 if (table->bucket == NULL) 628 goto fail; 629 table->bucket_limit = table->bucket + table->n_buckets; 630 table->n_buckets_used = 0; 631 table->n_entries = 0; 632 633 table->hasher = hasher; 634 table->comparator = comparator; 635 table->data_freer = data_freer; 636 637 table->free_entry_list = NULL; 638 #if USE_OBSTACK 639 obstack_init (&table->entry_stack); 640 #endif 641 return table; 642 643 fail: 644 free (table); 645 return NULL; 646 } 647 648 /* Make all buckets empty, placing any chained entries on the free list. 649 Apply the user-specified function data_freer (if any) to the datas of any 650 affected entries. */ 651 652 void 653 hash_clear (Hash_table *table) 654 { 655 struct hash_entry *bucket; 656 657 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++) 658 { 659 if (bucket->data) 660 { 661 struct hash_entry *cursor; 662 struct hash_entry *next; 663 664 /* Free the bucket overflow. */ 665 for (cursor = bucket->next; cursor; cursor = next) 666 { 667 if (table->data_freer) 668 table->data_freer (cursor->data); 669 cursor->data = NULL; 670 671 next = cursor->next; 672 /* Relinking is done one entry at a time, as it is to be expected 673 that overflows are either rare or short. */ 674 cursor->next = table->free_entry_list; 675 table->free_entry_list = cursor; 676 } 677 678 /* Free the bucket head. */ 679 if (table->data_freer) 680 table->data_freer (bucket->data); 681 bucket->data = NULL; 682 bucket->next = NULL; 683 } 684 } 685 686 table->n_buckets_used = 0; 687 table->n_entries = 0; 688 } 689 690 /* Reclaim all storage associated with a hash table. If a data_freer 691 function has been supplied by the user when the hash table was created, 692 this function applies it to the data of each entry before freeing that 693 entry. */ 694 695 void 696 hash_free (Hash_table *table) 697 { 698 struct hash_entry *bucket; 699 struct hash_entry *cursor; 700 struct hash_entry *next; 701 702 /* Call the user data_freer function. */ 703 if (table->data_freer && table->n_entries) 704 { 705 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++) 706 { 707 if (bucket->data) 708 { 709 for (cursor = bucket; cursor; cursor = cursor->next) 710 table->data_freer (cursor->data); 711 } 712 } 713 } 714 715 #if USE_OBSTACK 716 717 obstack_free (&table->entry_stack, NULL); 718 719 #else 720 721 /* Free all bucket overflowed entries. */ 722 for (bucket = table->bucket; bucket < table->bucket_limit; bucket++) 723 { 724 for (cursor = bucket->next; cursor; cursor = next) 725 { 726 next = cursor->next; 727 free (cursor); 728 } 729 } 730 731 /* Also reclaim the internal list of previously freed entries. */ 732 for (cursor = table->free_entry_list; cursor; cursor = next) 733 { 734 next = cursor->next; 735 free (cursor); 736 } 737 738 #endif 739 740 /* Free the remainder of the hash table structure. */ 741 free (table->bucket); 742 free (table); 743 } 744 745 /* Insertion and deletion. */ 746 747 /* Get a new hash entry for a bucket overflow, possibly by recycling a 748 previously freed one. If this is not possible, allocate a new one. */ 749 750 static struct hash_entry * 751 allocate_entry (Hash_table *table) 752 { 753 struct hash_entry *new; 754 755 if (table->free_entry_list) 756 { 757 new = table->free_entry_list; 758 table->free_entry_list = new->next; 759 } 760 else 761 { 762 #if USE_OBSTACK 763 new = obstack_alloc (&table->entry_stack, sizeof *new); 764 #else 765 new = malloc (sizeof *new); 766 #endif 767 } 768 769 return new; 770 } 771 772 /* Free a hash entry which was part of some bucket overflow, 773 saving it for later recycling. */ 774 775 static void 776 free_entry (Hash_table *table, struct hash_entry *entry) 777 { 778 entry->data = NULL; 779 entry->next = table->free_entry_list; 780 table->free_entry_list = entry; 781 } 782 783 /* This private function is used to help with insertion and deletion. When 784 ENTRY matches an entry in the table, return a pointer to the corresponding 785 user data and set *BUCKET_HEAD to the head of the selected bucket. 786 Otherwise, return NULL. When DELETE is true and ENTRY matches an entry in 787 the table, unlink the matching entry. */ 788 789 static void * 790 hash_find_entry (Hash_table *table, const void *entry, 791 struct hash_entry **bucket_head, bool delete) 792 { 793 struct hash_entry *bucket = safe_hasher (table, entry); 794 struct hash_entry *cursor; 795 796 *bucket_head = bucket; 797 798 /* Test for empty bucket. */ 799 if (bucket->data == NULL) 800 return NULL; 801 802 /* See if the entry is the first in the bucket. */ 803 if (entry == bucket->data || table->comparator (entry, bucket->data)) 804 { 805 void *data = bucket->data; 806 807 if (delete) 808 { 809 if (bucket->next) 810 { 811 struct hash_entry *next = bucket->next; 812 813 /* Bump the first overflow entry into the bucket head, then save 814 the previous first overflow entry for later recycling. */ 815 *bucket = *next; 816 free_entry (table, next); 817 } 818 else 819 { 820 bucket->data = NULL; 821 } 822 } 823 824 return data; 825 } 826 827 /* Scan the bucket overflow. */ 828 for (cursor = bucket; cursor->next; cursor = cursor->next) 829 { 830 if (entry == cursor->next->data 831 || table->comparator (entry, cursor->next->data)) 832 { 833 void *data = cursor->next->data; 834 835 if (delete) 836 { 837 struct hash_entry *next = cursor->next; 838 839 /* Unlink the entry to delete, then save the freed entry for later 840 recycling. */ 841 cursor->next = next->next; 842 free_entry (table, next); 843 } 844 845 return data; 846 } 847 } 848 849 /* No entry found. */ 850 return NULL; 851 } 852 853 /* Internal helper, to move entries from SRC to DST. Both tables must 854 share the same free entry list. If SAFE, only move overflow 855 entries, saving bucket heads for later, so that no allocations will 856 occur. Return false if the free entry list is exhausted and an 857 allocation fails. */ 858 859 static bool 860 transfer_entries (Hash_table *dst, Hash_table *src, bool safe) 861 { 862 struct hash_entry *bucket; 863 struct hash_entry *cursor; 864 struct hash_entry *next; 865 for (bucket = src->bucket; bucket < src->bucket_limit; bucket++) 866 if (bucket->data) 867 { 868 void *data; 869 struct hash_entry *new_bucket; 870 871 /* Within each bucket, transfer overflow entries first and 872 then the bucket head, to minimize memory pressure. After 873 all, the only time we might allocate is when moving the 874 bucket head, but moving overflow entries first may create 875 free entries that can be recycled by the time we finally 876 get to the bucket head. */ 877 for (cursor = bucket->next; cursor; cursor = next) 878 { 879 data = cursor->data; 880 new_bucket = safe_hasher (dst, data); 881 882 next = cursor->next; 883 884 if (new_bucket->data) 885 { 886 /* Merely relink an existing entry, when moving from a 887 bucket overflow into a bucket overflow. */ 888 cursor->next = new_bucket->next; 889 new_bucket->next = cursor; 890 } 891 else 892 { 893 /* Free an existing entry, when moving from a bucket 894 overflow into a bucket header. */ 895 new_bucket->data = data; 896 dst->n_buckets_used++; 897 free_entry (dst, cursor); 898 } 899 } 900 /* Now move the bucket head. Be sure that if we fail due to 901 allocation failure that the src table is in a consistent 902 state. */ 903 data = bucket->data; 904 bucket->next = NULL; 905 if (safe) 906 continue; 907 new_bucket = safe_hasher (dst, data); 908 909 if (new_bucket->data) 910 { 911 /* Allocate or recycle an entry, when moving from a bucket 912 header into a bucket overflow. */ 913 struct hash_entry *new_entry = allocate_entry (dst); 914 915 if (new_entry == NULL) 916 return false; 917 918 new_entry->data = data; 919 new_entry->next = new_bucket->next; 920 new_bucket->next = new_entry; 921 } 922 else 923 { 924 /* Move from one bucket header to another. */ 925 new_bucket->data = data; 926 dst->n_buckets_used++; 927 } 928 bucket->data = NULL; 929 src->n_buckets_used--; 930 } 931 return true; 932 } 933 934 /* For an already existing hash table, change the number of buckets through 935 specifying CANDIDATE. The contents of the hash table are preserved. The 936 new number of buckets is automatically selected so as to _guarantee_ that 937 the table may receive at least CANDIDATE different user entries, including 938 those already in the table, before any other growth of the hash table size 939 occurs. If TUNING->IS_N_BUCKETS is true, then CANDIDATE specifies the 940 exact number of buckets desired. Return true iff the rehash succeeded. */ 941 942 bool 943 hash_rehash (Hash_table *table, size_t candidate) 944 { 945 Hash_table storage; 946 Hash_table *new_table; 947 size_t new_size = compute_bucket_size (candidate, table->tuning); 948 949 if (!new_size) 950 return false; 951 if (new_size == table->n_buckets) 952 return true; 953 new_table = &storage; 954 new_table->bucket = calloc (new_size, sizeof *new_table->bucket); 955 if (new_table->bucket == NULL) 956 return false; 957 new_table->n_buckets = new_size; 958 new_table->bucket_limit = new_table->bucket + new_size; 959 new_table->n_buckets_used = 0; 960 new_table->n_entries = 0; 961 new_table->tuning = table->tuning; 962 new_table->hasher = table->hasher; 963 new_table->comparator = table->comparator; 964 new_table->data_freer = table->data_freer; 965 966 /* In order for the transfer to successfully complete, we need 967 additional overflow entries when distinct buckets in the old 968 table collide into a common bucket in the new table. The worst 969 case possible is a hasher that gives a good spread with the old 970 size, but returns a constant with the new size; if we were to 971 guarantee table->n_buckets_used-1 free entries in advance, then 972 the transfer would be guaranteed to not allocate memory. 973 However, for large tables, a guarantee of no further allocation 974 introduces a lot of extra memory pressure, all for an unlikely 975 corner case (most rehashes reduce, rather than increase, the 976 number of overflow entries needed). So, we instead ensure that 977 the transfer process can be reversed if we hit a memory 978 allocation failure mid-transfer. */ 979 980 /* Merely reuse the extra old space into the new table. */ 981 #if USE_OBSTACK 982 new_table->entry_stack = table->entry_stack; 983 #endif 984 new_table->free_entry_list = table->free_entry_list; 985 986 if (transfer_entries (new_table, table, false)) 987 { 988 /* Entries transferred successfully; tie up the loose ends. */ 989 free (table->bucket); 990 table->bucket = new_table->bucket; 991 table->bucket_limit = new_table->bucket_limit; 992 table->n_buckets = new_table->n_buckets; 993 table->n_buckets_used = new_table->n_buckets_used; 994 table->free_entry_list = new_table->free_entry_list; 995 /* table->n_entries and table->entry_stack already hold their value. */ 996 return true; 997 } 998 999 /* We've allocated new_table->bucket (and possibly some entries), 1000 exhausted the free list, and moved some but not all entries into 1001 new_table. We must undo the partial move before returning 1002 failure. The only way to get into this situation is if new_table 1003 uses fewer buckets than the old table, so we will reclaim some 1004 free entries as overflows in the new table are put back into 1005 distinct buckets in the old table. 1006 1007 There are some pathological cases where a single pass through the 1008 table requires more intermediate overflow entries than using two 1009 passes. Two passes give worse cache performance and takes 1010 longer, but at this point, we're already out of memory, so slow 1011 and safe is better than failure. */ 1012 table->free_entry_list = new_table->free_entry_list; 1013 if (! (transfer_entries (table, new_table, true) 1014 && transfer_entries (table, new_table, false))) 1015 abort (); 1016 /* table->n_entries already holds its value. */ 1017 free (new_table->bucket); 1018 return false; 1019 } 1020 1021 /* Insert ENTRY into hash TABLE if there is not already a matching entry. 1022 1023 Return -1 upon memory allocation failure. 1024 Return 1 if insertion succeeded. 1025 Return 0 if there is already a matching entry in the table, 1026 and in that case, if MATCHED_ENT is non-NULL, set *MATCHED_ENT 1027 to that entry. 1028 1029 This interface is easier to use than hash_insert when you must 1030 distinguish between the latter two cases. More importantly, 1031 hash_insert is unusable for some types of ENTRY values. When using 1032 hash_insert, the only way to distinguish those cases is to compare 1033 the return value and ENTRY. That works only when you can have two 1034 different ENTRY values that point to data that compares "equal". Thus, 1035 when the ENTRY value is a simple scalar, you must use 1036 hash_insert_if_absent. ENTRY must not be NULL. */ 1037 int 1038 hash_insert_if_absent (Hash_table *table, void const *entry, 1039 void const **matched_ent) 1040 { 1041 void *data; 1042 struct hash_entry *bucket; 1043 1044 /* The caller cannot insert a NULL entry, since hash_lookup returns NULL 1045 to indicate "not found", and hash_find_entry uses "bucket->data == NULL" 1046 to indicate an empty bucket. */ 1047 if (! entry) 1048 abort (); 1049 1050 /* If there's a matching entry already in the table, return that. */ 1051 if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL) 1052 { 1053 if (matched_ent) 1054 *matched_ent = data; 1055 return 0; 1056 } 1057 1058 /* If the growth threshold of the buckets in use has been reached, increase 1059 the table size and rehash. There's no point in checking the number of 1060 entries: if the hashing function is ill-conditioned, rehashing is not 1061 likely to improve it. */ 1062 1063 if (table->n_buckets_used 1064 > table->tuning->growth_threshold * table->n_buckets) 1065 { 1066 /* Check more fully, before starting real work. If tuning arguments 1067 became invalid, the second check will rely on proper defaults. */ 1068 check_tuning (table); 1069 if (table->n_buckets_used 1070 > table->tuning->growth_threshold * table->n_buckets) 1071 { 1072 const Hash_tuning *tuning = table->tuning; 1073 float candidate = 1074 (tuning->is_n_buckets 1075 ? (table->n_buckets * tuning->growth_factor) 1076 : (table->n_buckets * tuning->growth_factor 1077 * tuning->growth_threshold)); 1078 1079 if (SIZE_MAX <= candidate) 1080 return -1; 1081 1082 /* If the rehash fails, arrange to return NULL. */ 1083 if (!hash_rehash (table, candidate)) 1084 return -1; 1085 1086 /* Update the bucket we are interested in. */ 1087 if (hash_find_entry (table, entry, &bucket, false) != NULL) 1088 abort (); 1089 } 1090 } 1091 1092 /* ENTRY is not matched, it should be inserted. */ 1093 1094 if (bucket->data) 1095 { 1096 struct hash_entry *new_entry = allocate_entry (table); 1097 1098 if (new_entry == NULL) 1099 return -1; 1100 1101 /* Add ENTRY in the overflow of the bucket. */ 1102 1103 new_entry->data = (void *) entry; 1104 new_entry->next = bucket->next; 1105 bucket->next = new_entry; 1106 table->n_entries++; 1107 return 1; 1108 } 1109 1110 /* Add ENTRY right in the bucket head. */ 1111 1112 bucket->data = (void *) entry; 1113 table->n_entries++; 1114 table->n_buckets_used++; 1115 1116 return 1; 1117 } 1118 1119 /* hash_insert0 is the deprecated name for hash_insert_if_absent. 1120 . */ 1121 int 1122 hash_insert0 (Hash_table *table, void const *entry, void const **matched_ent) 1123 { 1124 return hash_insert_if_absent (table, entry, matched_ent); 1125 } 1126 1127 /* If ENTRY matches an entry already in the hash table, return the pointer 1128 to the entry from the table. Otherwise, insert ENTRY and return ENTRY. 1129 Return NULL if the storage required for insertion cannot be allocated. 1130 This implementation does not support duplicate entries or insertion of 1131 NULL. */ 1132 1133 void * 1134 hash_insert (Hash_table *table, void const *entry) 1135 { 1136 void const *matched_ent; 1137 int err = hash_insert_if_absent (table, entry, &matched_ent); 1138 return (err == -1 1139 ? NULL 1140 : (void *) (err == 0 ? matched_ent : entry)); 1141 } 1142 1143 /* If ENTRY is already in the table, remove it and return the just-deleted 1144 data (the user may want to deallocate its storage). If ENTRY is not in the 1145 table, don't modify the table and return NULL. */ 1146 1147 void * 1148 hash_delete (Hash_table *table, const void *entry) 1149 { 1150 void *data; 1151 struct hash_entry *bucket; 1152 1153 data = hash_find_entry (table, entry, &bucket, true); 1154 if (!data) 1155 return NULL; 1156 1157 table->n_entries--; 1158 if (!bucket->data) 1159 { 1160 table->n_buckets_used--; 1161 1162 /* If the shrink threshold of the buckets in use has been reached, 1163 rehash into a smaller table. */ 1164 1165 if (table->n_buckets_used 1166 < table->tuning->shrink_threshold * table->n_buckets) 1167 { 1168 /* Check more fully, before starting real work. If tuning arguments 1169 became invalid, the second check will rely on proper defaults. */ 1170 check_tuning (table); 1171 if (table->n_buckets_used 1172 < table->tuning->shrink_threshold * table->n_buckets) 1173 { 1174 const Hash_tuning *tuning = table->tuning; 1175 size_t candidate = 1176 (tuning->is_n_buckets 1177 ? table->n_buckets * tuning->shrink_factor 1178 : (table->n_buckets * tuning->shrink_factor 1179 * tuning->growth_threshold)); 1180 1181 if (!hash_rehash (table, candidate)) 1182 { 1183 /* Failure to allocate memory in an attempt to 1184 shrink the table is not fatal. But since memory 1185 is low, we can at least be kind and free any 1186 spare entries, rather than keeping them tied up 1187 in the free entry list. */ 1188 #if ! USE_OBSTACK 1189 struct hash_entry *cursor = table->free_entry_list; 1190 struct hash_entry *next; 1191 while (cursor) 1192 { 1193 next = cursor->next; 1194 free (cursor); 1195 cursor = next; 1196 } 1197 table->free_entry_list = NULL; 1198 #endif 1199 } 1200 } 1201 } 1202 } 1203 1204 return data; 1205 } 1206 1207 /* Testing. */ 1208 1209 #if TESTING 1210 1211 void 1212 hash_print (const Hash_table *table) 1213 { 1214 struct hash_entry *bucket = (struct hash_entry *) table->bucket; 1215 1216 for ( ; bucket < table->bucket_limit; bucket++) 1217 { 1218 struct hash_entry *cursor; 1219 1220 if (bucket) 1221 printf ("%lu:\n", (unsigned long int) (bucket - table->bucket)); 1222 1223 for (cursor = bucket; cursor; cursor = cursor->next) 1224 { 1225 char const *s = cursor->data; 1226 /* FIXME */ 1227 if (s) 1228 printf (" %s\n", s); 1229 } 1230 } 1231 } 1232 1233 #endif /* TESTING */ 1234