Home | History | Annotate | Download | only in lib
      1 /* hash - hashing table processing.
      2 
      3    Copyright (C) 1998-2004, 2006-2007, 2009-2012 Free Software Foundation, Inc.
      4 
      5    Written by Jim Meyering, 1992.
      6 
      7    This program is free software: you can redistribute it and/or modify
      8    it under the terms of the GNU General Public License as published by
      9    the Free Software Foundation; either version 3 of the License, or
     10    (at your option) any later version.
     11 
     12    This program is distributed in the hope that it will be useful,
     13    but WITHOUT ANY WARRANTY; without even the implied warranty of
     14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15    GNU General Public License for more details.
     16 
     17    You should have received a copy of the GNU General Public License
     18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
     19 
     20 /* A generic hash table package.  */
     21 
     22 /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead
     23    of malloc.  If you change USE_OBSTACK, you have to recompile!  */
     24 
     25 #include <config.h>
     26 
     27 #include "hash.h"
     28 
     29 #include "bitrotate.h"
     30 #include "xalloc-oversized.h"
     31 
     32 #include <stdint.h>
     33 #include <stdio.h>
     34 #include <stdlib.h>
     35 
     36 #if USE_OBSTACK
     37 # include "obstack.h"
     38 # ifndef obstack_chunk_alloc
     39 #  define obstack_chunk_alloc malloc
     40 # endif
     41 # ifndef obstack_chunk_free
     42 #  define obstack_chunk_free free
     43 # endif
     44 #endif
     45 
     46 struct hash_entry
     47   {
     48     void *data;
     49     struct hash_entry *next;
     50   };
     51 
     52 struct hash_table
     53   {
     54     /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,
     55        for a possibility of N_BUCKETS.  Among those, N_BUCKETS_USED buckets
     56        are not empty, there are N_ENTRIES active entries in the table.  */
     57     struct hash_entry *bucket;
     58     struct hash_entry const *bucket_limit;
     59     size_t n_buckets;
     60     size_t n_buckets_used;
     61     size_t n_entries;
     62 
     63     /* Tuning arguments, kept in a physically separate structure.  */
     64     const Hash_tuning *tuning;
     65 
     66     /* Three functions are given to 'hash_initialize', see the documentation
     67        block for this function.  In a word, HASHER randomizes a user entry
     68        into a number up from 0 up to some maximum minus 1; COMPARATOR returns
     69        true if two user entries compare equally; and DATA_FREER is the cleanup
     70        function for a user entry.  */
     71     Hash_hasher hasher;
     72     Hash_comparator comparator;
     73     Hash_data_freer data_freer;
     74 
     75     /* A linked list of freed struct hash_entry structs.  */
     76     struct hash_entry *free_entry_list;
     77 
     78 #if USE_OBSTACK
     79     /* Whenever obstacks are used, it is possible to allocate all overflowed
     80        entries into a single stack, so they all can be freed in a single
     81        operation.  It is not clear if the speedup is worth the trouble.  */
     82     struct obstack entry_stack;
     83 #endif
     84   };
     85 
     86 /* A hash table contains many internal entries, each holding a pointer to
     87    some user-provided data (also called a user entry).  An entry indistinctly
     88    refers to both the internal entry and its associated user entry.  A user
     89    entry contents may be hashed by a randomization function (the hashing
     90    function, or just "hasher" for short) into a number (or "slot") between 0
     91    and the current table size.  At each slot position in the hash table,
     92    starts a linked chain of entries for which the user data all hash to this
     93    slot.  A bucket is the collection of all entries hashing to the same slot.
     94 
     95    A good "hasher" function will distribute entries rather evenly in buckets.
     96    In the ideal case, the length of each bucket is roughly the number of
     97    entries divided by the table size.  Finding the slot for a data is usually
     98    done in constant time by the "hasher", and the later finding of a precise
     99    entry is linear in time with the size of the bucket.  Consequently, a
    100    larger hash table size (that is, a larger number of buckets) is prone to
    101    yielding shorter chains, *given* the "hasher" function behaves properly.
    102 
    103    Long buckets slow down the lookup algorithm.  One might use big hash table
    104    sizes in hope to reduce the average length of buckets, but this might
    105    become inordinate, as unused slots in the hash table take some space.  The
    106    best bet is to make sure you are using a good "hasher" function (beware
    107    that those are not that easy to write! :-), and to use a table size
    108    larger than the actual number of entries.  */
    109 
    110 /* If an insertion makes the ratio of nonempty buckets to table size larger
    111    than the growth threshold (a number between 0.0 and 1.0), then increase
    112    the table size by multiplying by the growth factor (a number greater than
    113    1.0).  The growth threshold defaults to 0.8, and the growth factor
    114    defaults to 1.414, meaning that the table will have doubled its size
    115    every second time 80% of the buckets get used.  */
    116 #define DEFAULT_GROWTH_THRESHOLD 0.8f
    117 #define DEFAULT_GROWTH_FACTOR 1.414f
    118 
    119 /* If a deletion empties a bucket and causes the ratio of used buckets to
    120    table size to become smaller than the shrink threshold (a number between
    121    0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
    122    number greater than the shrink threshold but smaller than 1.0).  The shrink
    123    threshold and factor default to 0.0 and 1.0, meaning that the table never
    124    shrinks.  */
    125 #define DEFAULT_SHRINK_THRESHOLD 0.0f
    126 #define DEFAULT_SHRINK_FACTOR 1.0f
    127 
    128 /* Use this to initialize or reset a TUNING structure to
    129    some sensible values. */
    130 static const Hash_tuning default_tuning =
    131   {
    132     DEFAULT_SHRINK_THRESHOLD,
    133     DEFAULT_SHRINK_FACTOR,
    134     DEFAULT_GROWTH_THRESHOLD,
    135     DEFAULT_GROWTH_FACTOR,
    136     false
    137   };
    138 
    139 /* Information and lookup.  */
    140 
    141 /* The following few functions provide information about the overall hash
    142    table organization: the number of entries, number of buckets and maximum
    143    length of buckets.  */
    144 
    145 /* Return the number of buckets in the hash table.  The table size, the total
    146    number of buckets (used plus unused), or the maximum number of slots, are
    147    the same quantity.  */
    148 
    149 size_t
    150 hash_get_n_buckets (const Hash_table *table)
    151 {
    152   return table->n_buckets;
    153 }
    154 
    155 /* Return the number of slots in use (non-empty buckets).  */
    156 
    157 size_t
    158 hash_get_n_buckets_used (const Hash_table *table)
    159 {
    160   return table->n_buckets_used;
    161 }
    162 
    163 /* Return the number of active entries.  */
    164 
    165 size_t
    166 hash_get_n_entries (const Hash_table *table)
    167 {
    168   return table->n_entries;
    169 }
    170 
    171 /* Return the length of the longest chain (bucket).  */
    172 
    173 size_t
    174 hash_get_max_bucket_length (const Hash_table *table)
    175 {
    176   struct hash_entry const *bucket;
    177   size_t max_bucket_length = 0;
    178 
    179   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    180     {
    181       if (bucket->data)
    182         {
    183           struct hash_entry const *cursor = bucket;
    184           size_t bucket_length = 1;
    185 
    186           while (cursor = cursor->next, cursor)
    187             bucket_length++;
    188 
    189           if (bucket_length > max_bucket_length)
    190             max_bucket_length = bucket_length;
    191         }
    192     }
    193 
    194   return max_bucket_length;
    195 }
    196 
    197 /* Do a mild validation of a hash table, by traversing it and checking two
    198    statistics.  */
    199 
    200 bool
    201 hash_table_ok (const Hash_table *table)
    202 {
    203   struct hash_entry const *bucket;
    204   size_t n_buckets_used = 0;
    205   size_t n_entries = 0;
    206 
    207   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    208     {
    209       if (bucket->data)
    210         {
    211           struct hash_entry const *cursor = bucket;
    212 
    213           /* Count bucket head.  */
    214           n_buckets_used++;
    215           n_entries++;
    216 
    217           /* Count bucket overflow.  */
    218           while (cursor = cursor->next, cursor)
    219             n_entries++;
    220         }
    221     }
    222 
    223   if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)
    224     return true;
    225 
    226   return false;
    227 }
    228 
    229 void
    230 hash_print_statistics (const Hash_table *table, FILE *stream)
    231 {
    232   size_t n_entries = hash_get_n_entries (table);
    233   size_t n_buckets = hash_get_n_buckets (table);
    234   size_t n_buckets_used = hash_get_n_buckets_used (table);
    235   size_t max_bucket_length = hash_get_max_bucket_length (table);
    236 
    237   fprintf (stream, "# entries:         %lu\n", (unsigned long int) n_entries);
    238   fprintf (stream, "# buckets:         %lu\n", (unsigned long int) n_buckets);
    239   fprintf (stream, "# buckets used:    %lu (%.2f%%)\n",
    240            (unsigned long int) n_buckets_used,
    241            (100.0 * n_buckets_used) / n_buckets);
    242   fprintf (stream, "max bucket length: %lu\n",
    243            (unsigned long int) max_bucket_length);
    244 }
    245 
    246 /* Hash KEY and return a pointer to the selected bucket.
    247    If TABLE->hasher misbehaves, abort.  */
    248 static struct hash_entry *
    249 safe_hasher (const Hash_table *table, const void *key)
    250 {
    251   size_t n = table->hasher (key, table->n_buckets);
    252   if (! (n < table->n_buckets))
    253     abort ();
    254   return table->bucket + n;
    255 }
    256 
    257 /* If ENTRY matches an entry already in the hash table, return the
    258    entry from the table.  Otherwise, return NULL.  */
    259 
    260 void *
    261 hash_lookup (const Hash_table *table, const void *entry)
    262 {
    263   struct hash_entry const *bucket = safe_hasher (table, entry);
    264   struct hash_entry const *cursor;
    265 
    266   if (bucket->data == NULL)
    267     return NULL;
    268 
    269   for (cursor = bucket; cursor; cursor = cursor->next)
    270     if (entry == cursor->data || table->comparator (entry, cursor->data))
    271       return cursor->data;
    272 
    273   return NULL;
    274 }
    275 
    276 /* Walking.  */
    277 
    278 /* The functions in this page traverse the hash table and process the
    279    contained entries.  For the traversal to work properly, the hash table
    280    should not be resized nor modified while any particular entry is being
    281    processed.  In particular, entries should not be added, and an entry
    282    may be removed only if there is no shrink threshold and the entry being
    283    removed has already been passed to hash_get_next.  */
    284 
    285 /* Return the first data in the table, or NULL if the table is empty.  */
    286 
    287 void *
    288 hash_get_first (const Hash_table *table)
    289 {
    290   struct hash_entry const *bucket;
    291 
    292   if (table->n_entries == 0)
    293     return NULL;
    294 
    295   for (bucket = table->bucket; ; bucket++)
    296     if (! (bucket < table->bucket_limit))
    297       abort ();
    298     else if (bucket->data)
    299       return bucket->data;
    300 }
    301 
    302 /* Return the user data for the entry following ENTRY, where ENTRY has been
    303    returned by a previous call to either 'hash_get_first' or 'hash_get_next'.
    304    Return NULL if there are no more entries.  */
    305 
    306 void *
    307 hash_get_next (const Hash_table *table, const void *entry)
    308 {
    309   struct hash_entry const *bucket = safe_hasher (table, entry);
    310   struct hash_entry const *cursor;
    311 
    312   /* Find next entry in the same bucket.  */
    313   cursor = bucket;
    314   do
    315     {
    316       if (cursor->data == entry && cursor->next)
    317         return cursor->next->data;
    318       cursor = cursor->next;
    319     }
    320   while (cursor != NULL);
    321 
    322   /* Find first entry in any subsequent bucket.  */
    323   while (++bucket < table->bucket_limit)
    324     if (bucket->data)
    325       return bucket->data;
    326 
    327   /* None found.  */
    328   return NULL;
    329 }
    330 
    331 /* Fill BUFFER with pointers to active user entries in the hash table, then
    332    return the number of pointers copied.  Do not copy more than BUFFER_SIZE
    333    pointers.  */
    334 
    335 size_t
    336 hash_get_entries (const Hash_table *table, void **buffer,
    337                   size_t buffer_size)
    338 {
    339   size_t counter = 0;
    340   struct hash_entry const *bucket;
    341   struct hash_entry const *cursor;
    342 
    343   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    344     {
    345       if (bucket->data)
    346         {
    347           for (cursor = bucket; cursor; cursor = cursor->next)
    348             {
    349               if (counter >= buffer_size)
    350                 return counter;
    351               buffer[counter++] = cursor->data;
    352             }
    353         }
    354     }
    355 
    356   return counter;
    357 }
    358 
    359 /* Call a PROCESSOR function for each entry of a hash table, and return the
    360    number of entries for which the processor function returned success.  A
    361    pointer to some PROCESSOR_DATA which will be made available to each call to
    362    the processor function.  The PROCESSOR accepts two arguments: the first is
    363    the user entry being walked into, the second is the value of PROCESSOR_DATA
    364    as received.  The walking continue for as long as the PROCESSOR function
    365    returns nonzero.  When it returns zero, the walking is interrupted.  */
    366 
    367 size_t
    368 hash_do_for_each (const Hash_table *table, Hash_processor processor,
    369                   void *processor_data)
    370 {
    371   size_t counter = 0;
    372   struct hash_entry const *bucket;
    373   struct hash_entry const *cursor;
    374 
    375   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    376     {
    377       if (bucket->data)
    378         {
    379           for (cursor = bucket; cursor; cursor = cursor->next)
    380             {
    381               if (! processor (cursor->data, processor_data))
    382                 return counter;
    383               counter++;
    384             }
    385         }
    386     }
    387 
    388   return counter;
    389 }
    390 
    391 /* Allocation and clean-up.  */
    392 
    393 /* Return a hash index for a NUL-terminated STRING between 0 and N_BUCKETS-1.
    394    This is a convenience routine for constructing other hashing functions.  */
    395 
    396 #if USE_DIFF_HASH
    397 
    398 /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see
    399    B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,
    400    Software--practice & experience 20, 2 (Feb 1990), 209-224.  Good hash
    401    algorithms tend to be domain-specific, so what's good for [diffutils'] io.c
    402    may not be good for your application."  */
    403 
    404 size_t
    405 hash_string (const char *string, size_t n_buckets)
    406 {
    407 # define HASH_ONE_CHAR(Value, Byte) \
    408   ((Byte) + rotl_sz (Value, 7))
    409 
    410   size_t value = 0;
    411   unsigned char ch;
    412 
    413   for (; (ch = *string); string++)
    414     value = HASH_ONE_CHAR (value, ch);
    415   return value % n_buckets;
    416 
    417 # undef HASH_ONE_CHAR
    418 }
    419 
    420 #else /* not USE_DIFF_HASH */
    421 
    422 /* This one comes from 'recode', and performs a bit better than the above as
    423    per a few experiments.  It is inspired from a hashing routine found in the
    424    very old Cyber 'snoop', itself written in typical Greg Mansfield style.
    425    (By the way, what happened to this excellent man?  Is he still alive?)  */
    426 
    427 size_t
    428 hash_string (const char *string, size_t n_buckets)
    429 {
    430   size_t value = 0;
    431   unsigned char ch;
    432 
    433   for (; (ch = *string); string++)
    434     value = (value * 31 + ch) % n_buckets;
    435   return value;
    436 }
    437 
    438 #endif /* not USE_DIFF_HASH */
    439 
    440 /* Return true if CANDIDATE is a prime number.  CANDIDATE should be an odd
    441    number at least equal to 11.  */
    442 
    443 static bool _GL_ATTRIBUTE_CONST
    444 is_prime (size_t candidate)
    445 {
    446   size_t divisor = 3;
    447   size_t square = divisor * divisor;
    448 
    449   while (square < candidate && (candidate % divisor))
    450     {
    451       divisor++;
    452       square += 4 * divisor;
    453       divisor++;
    454     }
    455 
    456   return (candidate % divisor ? true : false);
    457 }
    458 
    459 /* Round a given CANDIDATE number up to the nearest prime, and return that
    460    prime.  Primes lower than 10 are merely skipped.  */
    461 
    462 static size_t _GL_ATTRIBUTE_CONST
    463 next_prime (size_t candidate)
    464 {
    465   /* Skip small primes.  */
    466   if (candidate < 10)
    467     candidate = 10;
    468 
    469   /* Make it definitely odd.  */
    470   candidate |= 1;
    471 
    472   while (SIZE_MAX != candidate && !is_prime (candidate))
    473     candidate += 2;
    474 
    475   return candidate;
    476 }
    477 
    478 void
    479 hash_reset_tuning (Hash_tuning *tuning)
    480 {
    481   *tuning = default_tuning;
    482 }
    483 
    484 /* If the user passes a NULL hasher, we hash the raw pointer.  */
    485 static size_t
    486 raw_hasher (const void *data, size_t n)
    487 {
    488   /* When hashing unique pointers, it is often the case that they were
    489      generated by malloc and thus have the property that the low-order
    490      bits are 0.  As this tends to give poorer performance with small
    491      tables, we rotate the pointer value before performing division,
    492      in an attempt to improve hash quality.  */
    493   size_t val = rotr_sz ((size_t) data, 3);
    494   return val % n;
    495 }
    496 
    497 /* If the user passes a NULL comparator, we use pointer comparison.  */
    498 static bool
    499 raw_comparator (const void *a, const void *b)
    500 {
    501   return a == b;
    502 }
    503 
    504 
    505 /* For the given hash TABLE, check the user supplied tuning structure for
    506    reasonable values, and return true if there is no gross error with it.
    507    Otherwise, definitively reset the TUNING field to some acceptable default
    508    in the hash table (that is, the user loses the right of further modifying
    509    tuning arguments), and return false.  */
    510 
    511 static bool
    512 check_tuning (Hash_table *table)
    513 {
    514   const Hash_tuning *tuning = table->tuning;
    515   float epsilon;
    516   if (tuning == &default_tuning)
    517     return true;
    518 
    519   /* Be a bit stricter than mathematics would require, so that
    520      rounding errors in size calculations do not cause allocations to
    521      fail to grow or shrink as they should.  The smallest allocation
    522      is 11 (due to next_prime's algorithm), so an epsilon of 0.1
    523      should be good enough.  */
    524   epsilon = 0.1f;
    525 
    526   if (epsilon < tuning->growth_threshold
    527       && tuning->growth_threshold < 1 - epsilon
    528       && 1 + epsilon < tuning->growth_factor
    529       && 0 <= tuning->shrink_threshold
    530       && tuning->shrink_threshold + epsilon < tuning->shrink_factor
    531       && tuning->shrink_factor <= 1
    532       && tuning->shrink_threshold + epsilon < tuning->growth_threshold)
    533     return true;
    534 
    535   table->tuning = &default_tuning;
    536   return false;
    537 }
    538 
    539 /* Compute the size of the bucket array for the given CANDIDATE and
    540    TUNING, or return 0 if there is no possible way to allocate that
    541    many entries.  */
    542 
    543 static size_t _GL_ATTRIBUTE_PURE
    544 compute_bucket_size (size_t candidate, const Hash_tuning *tuning)
    545 {
    546   if (!tuning->is_n_buckets)
    547     {
    548       float new_candidate = candidate / tuning->growth_threshold;
    549       if (SIZE_MAX <= new_candidate)
    550         return 0;
    551       candidate = new_candidate;
    552     }
    553   candidate = next_prime (candidate);
    554   if (xalloc_oversized (candidate, sizeof (struct hash_entry *)))
    555     return 0;
    556   return candidate;
    557 }
    558 
    559 /* Allocate and return a new hash table, or NULL upon failure.  The initial
    560    number of buckets is automatically selected so as to _guarantee_ that you
    561    may insert at least CANDIDATE different user entries before any growth of
    562    the hash table size occurs.  So, if have a reasonably tight a-priori upper
    563    bound on the number of entries you intend to insert in the hash table, you
    564    may save some table memory and insertion time, by specifying it here.  If
    565    the IS_N_BUCKETS field of the TUNING structure is true, the CANDIDATE
    566    argument has its meaning changed to the wanted number of buckets.
    567 
    568    TUNING points to a structure of user-supplied values, in case some fine
    569    tuning is wanted over the default behavior of the hasher.  If TUNING is
    570    NULL, the default tuning parameters are used instead.  If TUNING is
    571    provided but the values requested are out of bounds or might cause
    572    rounding errors, return NULL.
    573 
    574    The user-supplied HASHER function, when not NULL, accepts two
    575    arguments ENTRY and TABLE_SIZE.  It computes, by hashing ENTRY contents, a
    576    slot number for that entry which should be in the range 0..TABLE_SIZE-1.
    577    This slot number is then returned.
    578 
    579    The user-supplied COMPARATOR function, when not NULL, accepts two
    580    arguments pointing to user data, it then returns true for a pair of entries
    581    that compare equal, or false otherwise.  This function is internally called
    582    on entries which are already known to hash to the same bucket index,
    583    but which are distinct pointers.
    584 
    585    The user-supplied DATA_FREER function, when not NULL, may be later called
    586    with the user data as an argument, just before the entry containing the
    587    data gets freed.  This happens from within 'hash_free' or 'hash_clear'.
    588    You should specify this function only if you want these functions to free
    589    all of your 'data' data.  This is typically the case when your data is
    590    simply an auxiliary struct that you have malloc'd to aggregate several
    591    values.  */
    592 
    593 Hash_table *
    594 hash_initialize (size_t candidate, const Hash_tuning *tuning,
    595                  Hash_hasher hasher, Hash_comparator comparator,
    596                  Hash_data_freer data_freer)
    597 {
    598   Hash_table *table;
    599 
    600   if (hasher == NULL)
    601     hasher = raw_hasher;
    602   if (comparator == NULL)
    603     comparator = raw_comparator;
    604 
    605   table = malloc (sizeof *table);
    606   if (table == NULL)
    607     return NULL;
    608 
    609   if (!tuning)
    610     tuning = &default_tuning;
    611   table->tuning = tuning;
    612   if (!check_tuning (table))
    613     {
    614       /* Fail if the tuning options are invalid.  This is the only occasion
    615          when the user gets some feedback about it.  Once the table is created,
    616          if the user provides invalid tuning options, we silently revert to
    617          using the defaults, and ignore further request to change the tuning
    618          options.  */
    619       goto fail;
    620     }
    621 
    622   table->n_buckets = compute_bucket_size (candidate, tuning);
    623   if (!table->n_buckets)
    624     goto fail;
    625 
    626   table->bucket = calloc (table->n_buckets, sizeof *table->bucket);
    627   if (table->bucket == NULL)
    628     goto fail;
    629   table->bucket_limit = table->bucket + table->n_buckets;
    630   table->n_buckets_used = 0;
    631   table->n_entries = 0;
    632 
    633   table->hasher = hasher;
    634   table->comparator = comparator;
    635   table->data_freer = data_freer;
    636 
    637   table->free_entry_list = NULL;
    638 #if USE_OBSTACK
    639   obstack_init (&table->entry_stack);
    640 #endif
    641   return table;
    642 
    643  fail:
    644   free (table);
    645   return NULL;
    646 }
    647 
    648 /* Make all buckets empty, placing any chained entries on the free list.
    649    Apply the user-specified function data_freer (if any) to the datas of any
    650    affected entries.  */
    651 
    652 void
    653 hash_clear (Hash_table *table)
    654 {
    655   struct hash_entry *bucket;
    656 
    657   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    658     {
    659       if (bucket->data)
    660         {
    661           struct hash_entry *cursor;
    662           struct hash_entry *next;
    663 
    664           /* Free the bucket overflow.  */
    665           for (cursor = bucket->next; cursor; cursor = next)
    666             {
    667               if (table->data_freer)
    668                 table->data_freer (cursor->data);
    669               cursor->data = NULL;
    670 
    671               next = cursor->next;
    672               /* Relinking is done one entry at a time, as it is to be expected
    673                  that overflows are either rare or short.  */
    674               cursor->next = table->free_entry_list;
    675               table->free_entry_list = cursor;
    676             }
    677 
    678           /* Free the bucket head.  */
    679           if (table->data_freer)
    680             table->data_freer (bucket->data);
    681           bucket->data = NULL;
    682           bucket->next = NULL;
    683         }
    684     }
    685 
    686   table->n_buckets_used = 0;
    687   table->n_entries = 0;
    688 }
    689 
    690 /* Reclaim all storage associated with a hash table.  If a data_freer
    691    function has been supplied by the user when the hash table was created,
    692    this function applies it to the data of each entry before freeing that
    693    entry.  */
    694 
    695 void
    696 hash_free (Hash_table *table)
    697 {
    698   struct hash_entry *bucket;
    699   struct hash_entry *cursor;
    700   struct hash_entry *next;
    701 
    702   /* Call the user data_freer function.  */
    703   if (table->data_freer && table->n_entries)
    704     {
    705       for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    706         {
    707           if (bucket->data)
    708             {
    709               for (cursor = bucket; cursor; cursor = cursor->next)
    710                 table->data_freer (cursor->data);
    711             }
    712         }
    713     }
    714 
    715 #if USE_OBSTACK
    716 
    717   obstack_free (&table->entry_stack, NULL);
    718 
    719 #else
    720 
    721   /* Free all bucket overflowed entries.  */
    722   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    723     {
    724       for (cursor = bucket->next; cursor; cursor = next)
    725         {
    726           next = cursor->next;
    727           free (cursor);
    728         }
    729     }
    730 
    731   /* Also reclaim the internal list of previously freed entries.  */
    732   for (cursor = table->free_entry_list; cursor; cursor = next)
    733     {
    734       next = cursor->next;
    735       free (cursor);
    736     }
    737 
    738 #endif
    739 
    740   /* Free the remainder of the hash table structure.  */
    741   free (table->bucket);
    742   free (table);
    743 }
    744 
    745 /* Insertion and deletion.  */
    746 
    747 /* Get a new hash entry for a bucket overflow, possibly by recycling a
    748    previously freed one.  If this is not possible, allocate a new one.  */
    749 
    750 static struct hash_entry *
    751 allocate_entry (Hash_table *table)
    752 {
    753   struct hash_entry *new;
    754 
    755   if (table->free_entry_list)
    756     {
    757       new = table->free_entry_list;
    758       table->free_entry_list = new->next;
    759     }
    760   else
    761     {
    762 #if USE_OBSTACK
    763       new = obstack_alloc (&table->entry_stack, sizeof *new);
    764 #else
    765       new = malloc (sizeof *new);
    766 #endif
    767     }
    768 
    769   return new;
    770 }
    771 
    772 /* Free a hash entry which was part of some bucket overflow,
    773    saving it for later recycling.  */
    774 
    775 static void
    776 free_entry (Hash_table *table, struct hash_entry *entry)
    777 {
    778   entry->data = NULL;
    779   entry->next = table->free_entry_list;
    780   table->free_entry_list = entry;
    781 }
    782 
    783 /* This private function is used to help with insertion and deletion.  When
    784    ENTRY matches an entry in the table, return a pointer to the corresponding
    785    user data and set *BUCKET_HEAD to the head of the selected bucket.
    786    Otherwise, return NULL.  When DELETE is true and ENTRY matches an entry in
    787    the table, unlink the matching entry.  */
    788 
    789 static void *
    790 hash_find_entry (Hash_table *table, const void *entry,
    791                  struct hash_entry **bucket_head, bool delete)
    792 {
    793   struct hash_entry *bucket = safe_hasher (table, entry);
    794   struct hash_entry *cursor;
    795 
    796   *bucket_head = bucket;
    797 
    798   /* Test for empty bucket.  */
    799   if (bucket->data == NULL)
    800     return NULL;
    801 
    802   /* See if the entry is the first in the bucket.  */
    803   if (entry == bucket->data || table->comparator (entry, bucket->data))
    804     {
    805       void *data = bucket->data;
    806 
    807       if (delete)
    808         {
    809           if (bucket->next)
    810             {
    811               struct hash_entry *next = bucket->next;
    812 
    813               /* Bump the first overflow entry into the bucket head, then save
    814                  the previous first overflow entry for later recycling.  */
    815               *bucket = *next;
    816               free_entry (table, next);
    817             }
    818           else
    819             {
    820               bucket->data = NULL;
    821             }
    822         }
    823 
    824       return data;
    825     }
    826 
    827   /* Scan the bucket overflow.  */
    828   for (cursor = bucket; cursor->next; cursor = cursor->next)
    829     {
    830       if (entry == cursor->next->data
    831           || table->comparator (entry, cursor->next->data))
    832         {
    833           void *data = cursor->next->data;
    834 
    835           if (delete)
    836             {
    837               struct hash_entry *next = cursor->next;
    838 
    839               /* Unlink the entry to delete, then save the freed entry for later
    840                  recycling.  */
    841               cursor->next = next->next;
    842               free_entry (table, next);
    843             }
    844 
    845           return data;
    846         }
    847     }
    848 
    849   /* No entry found.  */
    850   return NULL;
    851 }
    852 
    853 /* Internal helper, to move entries from SRC to DST.  Both tables must
    854    share the same free entry list.  If SAFE, only move overflow
    855    entries, saving bucket heads for later, so that no allocations will
    856    occur.  Return false if the free entry list is exhausted and an
    857    allocation fails.  */
    858 
    859 static bool
    860 transfer_entries (Hash_table *dst, Hash_table *src, bool safe)
    861 {
    862   struct hash_entry *bucket;
    863   struct hash_entry *cursor;
    864   struct hash_entry *next;
    865   for (bucket = src->bucket; bucket < src->bucket_limit; bucket++)
    866     if (bucket->data)
    867       {
    868         void *data;
    869         struct hash_entry *new_bucket;
    870 
    871         /* Within each bucket, transfer overflow entries first and
    872            then the bucket head, to minimize memory pressure.  After
    873            all, the only time we might allocate is when moving the
    874            bucket head, but moving overflow entries first may create
    875            free entries that can be recycled by the time we finally
    876            get to the bucket head.  */
    877         for (cursor = bucket->next; cursor; cursor = next)
    878           {
    879             data = cursor->data;
    880             new_bucket = safe_hasher (dst, data);
    881 
    882             next = cursor->next;
    883 
    884             if (new_bucket->data)
    885               {
    886                 /* Merely relink an existing entry, when moving from a
    887                    bucket overflow into a bucket overflow.  */
    888                 cursor->next = new_bucket->next;
    889                 new_bucket->next = cursor;
    890               }
    891             else
    892               {
    893                 /* Free an existing entry, when moving from a bucket
    894                    overflow into a bucket header.  */
    895                 new_bucket->data = data;
    896                 dst->n_buckets_used++;
    897                 free_entry (dst, cursor);
    898               }
    899           }
    900         /* Now move the bucket head.  Be sure that if we fail due to
    901            allocation failure that the src table is in a consistent
    902            state.  */
    903         data = bucket->data;
    904         bucket->next = NULL;
    905         if (safe)
    906           continue;
    907         new_bucket = safe_hasher (dst, data);
    908 
    909         if (new_bucket->data)
    910           {
    911             /* Allocate or recycle an entry, when moving from a bucket
    912                header into a bucket overflow.  */
    913             struct hash_entry *new_entry = allocate_entry (dst);
    914 
    915             if (new_entry == NULL)
    916               return false;
    917 
    918             new_entry->data = data;
    919             new_entry->next = new_bucket->next;
    920             new_bucket->next = new_entry;
    921           }
    922         else
    923           {
    924             /* Move from one bucket header to another.  */
    925             new_bucket->data = data;
    926             dst->n_buckets_used++;
    927           }
    928         bucket->data = NULL;
    929         src->n_buckets_used--;
    930       }
    931   return true;
    932 }
    933 
    934 /* For an already existing hash table, change the number of buckets through
    935    specifying CANDIDATE.  The contents of the hash table are preserved.  The
    936    new number of buckets is automatically selected so as to _guarantee_ that
    937    the table may receive at least CANDIDATE different user entries, including
    938    those already in the table, before any other growth of the hash table size
    939    occurs.  If TUNING->IS_N_BUCKETS is true, then CANDIDATE specifies the
    940    exact number of buckets desired.  Return true iff the rehash succeeded.  */
    941 
    942 bool
    943 hash_rehash (Hash_table *table, size_t candidate)
    944 {
    945   Hash_table storage;
    946   Hash_table *new_table;
    947   size_t new_size = compute_bucket_size (candidate, table->tuning);
    948 
    949   if (!new_size)
    950     return false;
    951   if (new_size == table->n_buckets)
    952     return true;
    953   new_table = &storage;
    954   new_table->bucket = calloc (new_size, sizeof *new_table->bucket);
    955   if (new_table->bucket == NULL)
    956     return false;
    957   new_table->n_buckets = new_size;
    958   new_table->bucket_limit = new_table->bucket + new_size;
    959   new_table->n_buckets_used = 0;
    960   new_table->n_entries = 0;
    961   new_table->tuning = table->tuning;
    962   new_table->hasher = table->hasher;
    963   new_table->comparator = table->comparator;
    964   new_table->data_freer = table->data_freer;
    965 
    966   /* In order for the transfer to successfully complete, we need
    967      additional overflow entries when distinct buckets in the old
    968      table collide into a common bucket in the new table.  The worst
    969      case possible is a hasher that gives a good spread with the old
    970      size, but returns a constant with the new size; if we were to
    971      guarantee table->n_buckets_used-1 free entries in advance, then
    972      the transfer would be guaranteed to not allocate memory.
    973      However, for large tables, a guarantee of no further allocation
    974      introduces a lot of extra memory pressure, all for an unlikely
    975      corner case (most rehashes reduce, rather than increase, the
    976      number of overflow entries needed).  So, we instead ensure that
    977      the transfer process can be reversed if we hit a memory
    978      allocation failure mid-transfer.  */
    979 
    980   /* Merely reuse the extra old space into the new table.  */
    981 #if USE_OBSTACK
    982   new_table->entry_stack = table->entry_stack;
    983 #endif
    984   new_table->free_entry_list = table->free_entry_list;
    985 
    986   if (transfer_entries (new_table, table, false))
    987     {
    988       /* Entries transferred successfully; tie up the loose ends.  */
    989       free (table->bucket);
    990       table->bucket = new_table->bucket;
    991       table->bucket_limit = new_table->bucket_limit;
    992       table->n_buckets = new_table->n_buckets;
    993       table->n_buckets_used = new_table->n_buckets_used;
    994       table->free_entry_list = new_table->free_entry_list;
    995       /* table->n_entries and table->entry_stack already hold their value.  */
    996       return true;
    997     }
    998 
    999   /* We've allocated new_table->bucket (and possibly some entries),
   1000      exhausted the free list, and moved some but not all entries into
   1001      new_table.  We must undo the partial move before returning
   1002      failure.  The only way to get into this situation is if new_table
   1003      uses fewer buckets than the old table, so we will reclaim some
   1004      free entries as overflows in the new table are put back into
   1005      distinct buckets in the old table.
   1006 
   1007      There are some pathological cases where a single pass through the
   1008      table requires more intermediate overflow entries than using two
   1009      passes.  Two passes give worse cache performance and takes
   1010      longer, but at this point, we're already out of memory, so slow
   1011      and safe is better than failure.  */
   1012   table->free_entry_list = new_table->free_entry_list;
   1013   if (! (transfer_entries (table, new_table, true)
   1014          && transfer_entries (table, new_table, false)))
   1015     abort ();
   1016   /* table->n_entries already holds its value.  */
   1017   free (new_table->bucket);
   1018   return false;
   1019 }
   1020 
   1021 /* Insert ENTRY into hash TABLE if there is not already a matching entry.
   1022 
   1023    Return -1 upon memory allocation failure.
   1024    Return 1 if insertion succeeded.
   1025    Return 0 if there is already a matching entry in the table,
   1026    and in that case, if MATCHED_ENT is non-NULL, set *MATCHED_ENT
   1027    to that entry.
   1028 
   1029    This interface is easier to use than hash_insert when you must
   1030    distinguish between the latter two cases.  More importantly,
   1031    hash_insert is unusable for some types of ENTRY values.  When using
   1032    hash_insert, the only way to distinguish those cases is to compare
   1033    the return value and ENTRY.  That works only when you can have two
   1034    different ENTRY values that point to data that compares "equal".  Thus,
   1035    when the ENTRY value is a simple scalar, you must use
   1036    hash_insert_if_absent.  ENTRY must not be NULL.  */
   1037 int
   1038 hash_insert_if_absent (Hash_table *table, void const *entry,
   1039                        void const **matched_ent)
   1040 {
   1041   void *data;
   1042   struct hash_entry *bucket;
   1043 
   1044   /* The caller cannot insert a NULL entry, since hash_lookup returns NULL
   1045      to indicate "not found", and hash_find_entry uses "bucket->data == NULL"
   1046      to indicate an empty bucket.  */
   1047   if (! entry)
   1048     abort ();
   1049 
   1050   /* If there's a matching entry already in the table, return that.  */
   1051   if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)
   1052     {
   1053       if (matched_ent)
   1054         *matched_ent = data;
   1055       return 0;
   1056     }
   1057 
   1058   /* If the growth threshold of the buckets in use has been reached, increase
   1059      the table size and rehash.  There's no point in checking the number of
   1060      entries:  if the hashing function is ill-conditioned, rehashing is not
   1061      likely to improve it.  */
   1062 
   1063   if (table->n_buckets_used
   1064       > table->tuning->growth_threshold * table->n_buckets)
   1065     {
   1066       /* Check more fully, before starting real work.  If tuning arguments
   1067          became invalid, the second check will rely on proper defaults.  */
   1068       check_tuning (table);
   1069       if (table->n_buckets_used
   1070           > table->tuning->growth_threshold * table->n_buckets)
   1071         {
   1072           const Hash_tuning *tuning = table->tuning;
   1073           float candidate =
   1074             (tuning->is_n_buckets
   1075              ? (table->n_buckets * tuning->growth_factor)
   1076              : (table->n_buckets * tuning->growth_factor
   1077                 * tuning->growth_threshold));
   1078 
   1079           if (SIZE_MAX <= candidate)
   1080             return -1;
   1081 
   1082           /* If the rehash fails, arrange to return NULL.  */
   1083           if (!hash_rehash (table, candidate))
   1084             return -1;
   1085 
   1086           /* Update the bucket we are interested in.  */
   1087           if (hash_find_entry (table, entry, &bucket, false) != NULL)
   1088             abort ();
   1089         }
   1090     }
   1091 
   1092   /* ENTRY is not matched, it should be inserted.  */
   1093 
   1094   if (bucket->data)
   1095     {
   1096       struct hash_entry *new_entry = allocate_entry (table);
   1097 
   1098       if (new_entry == NULL)
   1099         return -1;
   1100 
   1101       /* Add ENTRY in the overflow of the bucket.  */
   1102 
   1103       new_entry->data = (void *) entry;
   1104       new_entry->next = bucket->next;
   1105       bucket->next = new_entry;
   1106       table->n_entries++;
   1107       return 1;
   1108     }
   1109 
   1110   /* Add ENTRY right in the bucket head.  */
   1111 
   1112   bucket->data = (void *) entry;
   1113   table->n_entries++;
   1114   table->n_buckets_used++;
   1115 
   1116   return 1;
   1117 }
   1118 
   1119 /* hash_insert0 is the deprecated name for hash_insert_if_absent.
   1120    .  */
   1121 int
   1122 hash_insert0 (Hash_table *table, void const *entry, void const **matched_ent)
   1123 {
   1124   return hash_insert_if_absent (table, entry, matched_ent);
   1125 }
   1126 
   1127 /* If ENTRY matches an entry already in the hash table, return the pointer
   1128    to the entry from the table.  Otherwise, insert ENTRY and return ENTRY.
   1129    Return NULL if the storage required for insertion cannot be allocated.
   1130    This implementation does not support duplicate entries or insertion of
   1131    NULL.  */
   1132 
   1133 void *
   1134 hash_insert (Hash_table *table, void const *entry)
   1135 {
   1136   void const *matched_ent;
   1137   int err = hash_insert_if_absent (table, entry, &matched_ent);
   1138   return (err == -1
   1139           ? NULL
   1140           : (void *) (err == 0 ? matched_ent : entry));
   1141 }
   1142 
   1143 /* If ENTRY is already in the table, remove it and return the just-deleted
   1144    data (the user may want to deallocate its storage).  If ENTRY is not in the
   1145    table, don't modify the table and return NULL.  */
   1146 
   1147 void *
   1148 hash_delete (Hash_table *table, const void *entry)
   1149 {
   1150   void *data;
   1151   struct hash_entry *bucket;
   1152 
   1153   data = hash_find_entry (table, entry, &bucket, true);
   1154   if (!data)
   1155     return NULL;
   1156 
   1157   table->n_entries--;
   1158   if (!bucket->data)
   1159     {
   1160       table->n_buckets_used--;
   1161 
   1162       /* If the shrink threshold of the buckets in use has been reached,
   1163          rehash into a smaller table.  */
   1164 
   1165       if (table->n_buckets_used
   1166           < table->tuning->shrink_threshold * table->n_buckets)
   1167         {
   1168           /* Check more fully, before starting real work.  If tuning arguments
   1169              became invalid, the second check will rely on proper defaults.  */
   1170           check_tuning (table);
   1171           if (table->n_buckets_used
   1172               < table->tuning->shrink_threshold * table->n_buckets)
   1173             {
   1174               const Hash_tuning *tuning = table->tuning;
   1175               size_t candidate =
   1176                 (tuning->is_n_buckets
   1177                  ? table->n_buckets * tuning->shrink_factor
   1178                  : (table->n_buckets * tuning->shrink_factor
   1179                     * tuning->growth_threshold));
   1180 
   1181               if (!hash_rehash (table, candidate))
   1182                 {
   1183                   /* Failure to allocate memory in an attempt to
   1184                      shrink the table is not fatal.  But since memory
   1185                      is low, we can at least be kind and free any
   1186                      spare entries, rather than keeping them tied up
   1187                      in the free entry list.  */
   1188 #if ! USE_OBSTACK
   1189                   struct hash_entry *cursor = table->free_entry_list;
   1190                   struct hash_entry *next;
   1191                   while (cursor)
   1192                     {
   1193                       next = cursor->next;
   1194                       free (cursor);
   1195                       cursor = next;
   1196                     }
   1197                   table->free_entry_list = NULL;
   1198 #endif
   1199                 }
   1200             }
   1201         }
   1202     }
   1203 
   1204   return data;
   1205 }
   1206 
   1207 /* Testing.  */
   1208 
   1209 #if TESTING
   1210 
   1211 void
   1212 hash_print (const Hash_table *table)
   1213 {
   1214   struct hash_entry *bucket = (struct hash_entry *) table->bucket;
   1215 
   1216   for ( ; bucket < table->bucket_limit; bucket++)
   1217     {
   1218       struct hash_entry *cursor;
   1219 
   1220       if (bucket)
   1221         printf ("%lu:\n", (unsigned long int) (bucket - table->bucket));
   1222 
   1223       for (cursor = bucket; cursor; cursor = cursor->next)
   1224         {
   1225           char const *s = cursor->data;
   1226           /* FIXME */
   1227           if (s)
   1228             printf ("  %s\n", s);
   1229         }
   1230     }
   1231 }
   1232 
   1233 #endif /* TESTING */
   1234