Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 
     31 #include "ceres/residual_block.h"
     32 
     33 #include "gtest/gtest.h"
     34 #include "ceres/parameter_block.h"
     35 #include "ceres/sized_cost_function.h"
     36 #include "ceres/internal/eigen.h"
     37 #include "ceres/local_parameterization.h"
     38 
     39 namespace ceres {
     40 namespace internal {
     41 
     42 // Trivial cost function that accepts three arguments.
     43 class TernaryCostFunction: public CostFunction {
     44  public:
     45   TernaryCostFunction(int num_residuals,
     46                       int16 parameter_block1_size,
     47                       int16 parameter_block2_size,
     48                       int16 parameter_block3_size) {
     49     set_num_residuals(num_residuals);
     50     mutable_parameter_block_sizes()->push_back(parameter_block1_size);
     51     mutable_parameter_block_sizes()->push_back(parameter_block2_size);
     52     mutable_parameter_block_sizes()->push_back(parameter_block3_size);
     53   }
     54 
     55   virtual bool Evaluate(double const* const* parameters,
     56                         double* residuals,
     57                         double** jacobians) const {
     58     for (int i = 0; i < num_residuals(); ++i) {
     59       residuals[i] = i;
     60     }
     61     if (jacobians) {
     62       for (int k = 0; k < 3; ++k) {
     63         if (jacobians[k] != NULL) {
     64           MatrixRef jacobian(jacobians[k],
     65                              num_residuals(),
     66                              parameter_block_sizes()[k]);
     67           jacobian.setConstant(k);
     68         }
     69       }
     70     }
     71     return true;
     72   }
     73 };
     74 
     75 TEST(ResidualBlock, EvaluteWithNoLossFunctionOrLocalParameterizations) {
     76   double scratch[64];
     77 
     78   // Prepare the parameter blocks.
     79   double values_x[2];
     80   ParameterBlock x(values_x, 2, -1);
     81 
     82   double values_y[3];
     83   ParameterBlock y(values_y, 3, -1);
     84 
     85   double values_z[4];
     86   ParameterBlock z(values_z, 4, -1);
     87 
     88   vector<ParameterBlock*> parameters;
     89   parameters.push_back(&x);
     90   parameters.push_back(&y);
     91   parameters.push_back(&z);
     92 
     93   TernaryCostFunction cost_function(3, 2, 3, 4);
     94 
     95   // Create the object under tests.
     96   ResidualBlock residual_block(&cost_function, NULL, parameters, -1);
     97 
     98   // Verify getters.
     99   EXPECT_EQ(&cost_function, residual_block.cost_function());
    100   EXPECT_EQ(NULL, residual_block.loss_function());
    101   EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]);
    102   EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]);
    103   EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]);
    104   EXPECT_EQ(3, residual_block.NumScratchDoublesForEvaluate());
    105 
    106   // Verify cost-only evaluation.
    107   double cost;
    108   residual_block.Evaluate(true, &cost, NULL, NULL, scratch);
    109   EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
    110 
    111   // Verify cost and residual evaluation.
    112   double residuals[3];
    113   residual_block.Evaluate(true, &cost, residuals, NULL, scratch);
    114   EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
    115   EXPECT_EQ(0.0, residuals[0]);
    116   EXPECT_EQ(1.0, residuals[1]);
    117   EXPECT_EQ(2.0, residuals[2]);
    118 
    119   // Verify cost, residual, and jacobian evaluation.
    120   cost = 0.0;
    121   VectorRef(residuals, 3).setConstant(0.0);
    122 
    123   Matrix jacobian_rx(3, 2);
    124   Matrix jacobian_ry(3, 3);
    125   Matrix jacobian_rz(3, 4);
    126 
    127   jacobian_rx.setConstant(-1.0);
    128   jacobian_ry.setConstant(-1.0);
    129   jacobian_rz.setConstant(-1.0);
    130 
    131   double *jacobian_ptrs[3] = {
    132     jacobian_rx.data(),
    133     jacobian_ry.data(),
    134     jacobian_rz.data()
    135   };
    136 
    137   residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);
    138   EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
    139   EXPECT_EQ(0.0, residuals[0]);
    140   EXPECT_EQ(1.0, residuals[1]);
    141   EXPECT_EQ(2.0, residuals[2]);
    142 
    143   EXPECT_TRUE((jacobian_rx.array() == 0.0).all()) << "\n" << jacobian_rx;
    144   EXPECT_TRUE((jacobian_ry.array() == 1.0).all()) << "\n" << jacobian_ry;
    145   EXPECT_TRUE((jacobian_rz.array() == 2.0).all()) << "\n" << jacobian_rz;
    146 
    147   // Verify cost, residual, and partial jacobian evaluation.
    148   cost = 0.0;
    149   VectorRef(residuals, 3).setConstant(0.0);
    150   jacobian_rx.setConstant(-1.0);
    151   jacobian_ry.setConstant(-1.0);
    152   jacobian_rz.setConstant(-1.0);
    153 
    154   jacobian_ptrs[1] = NULL;  // Don't compute the jacobian for y.
    155 
    156   residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);
    157   EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
    158   EXPECT_EQ(0.0, residuals[0]);
    159   EXPECT_EQ(1.0, residuals[1]);
    160   EXPECT_EQ(2.0, residuals[2]);
    161 
    162   EXPECT_TRUE((jacobian_rx.array() ==  0.0).all()) << "\n" << jacobian_rx;
    163   EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry;
    164   EXPECT_TRUE((jacobian_rz.array() ==  2.0).all()) << "\n" << jacobian_rz;
    165 }
    166 
    167 // Trivial cost function that accepts three arguments.
    168 class LocallyParameterizedCostFunction: public SizedCostFunction<3, 2, 3, 4> {
    169  public:
    170   virtual bool Evaluate(double const* const* parameters,
    171                         double* residuals,
    172                         double** jacobians) const {
    173     for (int i = 0; i < num_residuals(); ++i) {
    174       residuals[i] = i;
    175     }
    176     if (jacobians) {
    177       for (int k = 0; k < 3; ++k) {
    178         // The jacobians here are full sized, but they are transformed in the
    179         // evaluator into the "local" jacobian. In the tests, the "subset
    180         // constant" parameterization is used, which should pick out columns
    181         // from these jacobians. Put values in the jacobian that make this
    182         // obvious; in particular, make the jacobians like this:
    183         //
    184         //   0 1 2 3 4 ...
    185         //   0 1 2 3 4 ...
    186         //   0 1 2 3 4 ...
    187         //
    188         if (jacobians[k] != NULL) {
    189           MatrixRef jacobian(jacobians[k],
    190                              num_residuals(),
    191                              parameter_block_sizes()[k]);
    192           for (int j = 0; j < k + 2; ++j) {
    193             jacobian.col(j).setConstant(j);
    194           }
    195         }
    196       }
    197     }
    198     return true;
    199   }
    200 };
    201 
    202 TEST(ResidualBlock, EvaluteWithLocalParameterizations) {
    203   double scratch[64];
    204 
    205   // Prepare the parameter blocks.
    206   double values_x[2];
    207   ParameterBlock x(values_x, 2, -1);
    208 
    209   double values_y[3];
    210   ParameterBlock y(values_y, 3, -1);
    211 
    212   double values_z[4];
    213   ParameterBlock z(values_z, 4, -1);
    214 
    215   vector<ParameterBlock*> parameters;
    216   parameters.push_back(&x);
    217   parameters.push_back(&y);
    218   parameters.push_back(&z);
    219 
    220   // Make x have the first component fixed.
    221   vector<int> x_fixed;
    222   x_fixed.push_back(0);
    223   SubsetParameterization x_parameterization(2, x_fixed);
    224   x.SetParameterization(&x_parameterization);
    225 
    226   // Make z have the last and last component fixed.
    227   vector<int> z_fixed;
    228   z_fixed.push_back(2);
    229   SubsetParameterization z_parameterization(4, z_fixed);
    230   z.SetParameterization(&z_parameterization);
    231 
    232   LocallyParameterizedCostFunction cost_function;
    233 
    234   // Create the object under tests.
    235   ResidualBlock residual_block(&cost_function, NULL, parameters, -1);
    236 
    237   // Verify getters.
    238   EXPECT_EQ(&cost_function, residual_block.cost_function());
    239   EXPECT_EQ(NULL, residual_block.loss_function());
    240   EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]);
    241   EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]);
    242   EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]);
    243   EXPECT_EQ(3*(2 + 4) + 3, residual_block.NumScratchDoublesForEvaluate());
    244 
    245   // Verify cost-only evaluation.
    246   double cost;
    247   residual_block.Evaluate(true, &cost, NULL, NULL, scratch);
    248   EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
    249 
    250   // Verify cost and residual evaluation.
    251   double residuals[3];
    252   residual_block.Evaluate(true, &cost, residuals, NULL, scratch);
    253   EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
    254   EXPECT_EQ(0.0, residuals[0]);
    255   EXPECT_EQ(1.0, residuals[1]);
    256   EXPECT_EQ(2.0, residuals[2]);
    257 
    258   // Verify cost, residual, and jacobian evaluation.
    259   cost = 0.0;
    260   VectorRef(residuals, 3).setConstant(0.0);
    261 
    262   Matrix jacobian_rx(3, 1);  // Since the first element is fixed.
    263   Matrix jacobian_ry(3, 3);
    264   Matrix jacobian_rz(3, 3);  // Since the third element is fixed.
    265 
    266   jacobian_rx.setConstant(-1.0);
    267   jacobian_ry.setConstant(-1.0);
    268   jacobian_rz.setConstant(-1.0);
    269 
    270   double *jacobian_ptrs[3] = {
    271     jacobian_rx.data(),
    272     jacobian_ry.data(),
    273     jacobian_rz.data()
    274   };
    275 
    276   residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);
    277   EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
    278   EXPECT_EQ(0.0, residuals[0]);
    279   EXPECT_EQ(1.0, residuals[1]);
    280   EXPECT_EQ(2.0, residuals[2]);
    281 
    282   Matrix expected_jacobian_rx(3, 1);
    283   expected_jacobian_rx << 1.0, 1.0, 1.0;
    284 
    285   Matrix expected_jacobian_ry(3, 3);
    286   expected_jacobian_ry << 0.0, 1.0, 2.0,
    287                           0.0, 1.0, 2.0,
    288                           0.0, 1.0, 2.0;
    289 
    290   Matrix expected_jacobian_rz(3, 3);
    291   expected_jacobian_rz << 0.0, 1.0, /* 2.0, */ 3.0,  // 3rd parameter constant.
    292                           0.0, 1.0, /* 2.0, */ 3.0,
    293                           0.0, 1.0, /* 2.0, */ 3.0;
    294 
    295   EXPECT_EQ(expected_jacobian_rx, jacobian_rx)
    296       << "\nExpected:\n" << expected_jacobian_rx
    297       << "\nActual:\n"   << jacobian_rx;
    298   EXPECT_EQ(expected_jacobian_ry, jacobian_ry)
    299       << "\nExpected:\n" << expected_jacobian_ry
    300       << "\nActual:\n"   << jacobian_ry;
    301   EXPECT_EQ(expected_jacobian_rz, jacobian_rz)
    302       << "\nExpected:\n " << expected_jacobian_rz
    303       << "\nActual:\n"   << jacobian_rz;
    304 
    305   // Verify cost, residual, and partial jacobian evaluation.
    306   cost = 0.0;
    307   VectorRef(residuals, 3).setConstant(0.0);
    308   jacobian_rx.setConstant(-1.0);
    309   jacobian_ry.setConstant(-1.0);
    310   jacobian_rz.setConstant(-1.0);
    311 
    312   jacobian_ptrs[1] = NULL;  // Don't compute the jacobian for y.
    313 
    314   residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);
    315   EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
    316   EXPECT_EQ(0.0, residuals[0]);
    317   EXPECT_EQ(1.0, residuals[1]);
    318   EXPECT_EQ(2.0, residuals[2]);
    319 
    320   EXPECT_EQ(expected_jacobian_rx, jacobian_rx);
    321   EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry;
    322   EXPECT_EQ(expected_jacobian_rz, jacobian_rz);
    323 }
    324 
    325 }  // namespace internal
    326 }  // namespace ceres
    327