Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //         sameeragarwal (at) google.com (Sameer Agarwal)
     31 //
     32 // System level tests for Ceres. The current suite of two tests. The
     33 // first test is a small test based on Powell's Function. It is a
     34 // scalar problem with 4 variables. The second problem is a bundle
     35 // adjustment problem with 16 cameras and two thousand cameras. The
     36 // first problem is to test the sanity test the factorization based
     37 // solvers. The second problem is used to test the various
     38 // combinations of solvers, orderings, preconditioners and
     39 // multithreading.
     40 
     41 #include <cmath>
     42 #include <cstdio>
     43 #include <cstdlib>
     44 #include <string>
     45 
     46 #include "ceres/autodiff_cost_function.h"
     47 #include "ceres/ordered_groups.h"
     48 #include "ceres/problem.h"
     49 #include "ceres/rotation.h"
     50 #include "ceres/solver.h"
     51 #include "ceres/stringprintf.h"
     52 #include "ceres/test_util.h"
     53 #include "ceres/types.h"
     54 #include "gflags/gflags.h"
     55 #include "glog/logging.h"
     56 #include "gtest/gtest.h"
     57 
     58 namespace ceres {
     59 namespace internal {
     60 
     61 const bool kAutomaticOrdering = true;
     62 const bool kUserOrdering = false;
     63 
     64 // Struct used for configuring the solver.
     65 struct SolverConfig {
     66   SolverConfig(LinearSolverType linear_solver_type,
     67                SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
     68                bool use_automatic_ordering)
     69       : linear_solver_type(linear_solver_type),
     70         sparse_linear_algebra_library_type(sparse_linear_algebra_library_type),
     71         use_automatic_ordering(use_automatic_ordering),
     72         preconditioner_type(IDENTITY),
     73         num_threads(1) {
     74   }
     75 
     76   SolverConfig(LinearSolverType linear_solver_type,
     77                SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
     78                bool use_automatic_ordering,
     79                PreconditionerType preconditioner_type)
     80       : linear_solver_type(linear_solver_type),
     81         sparse_linear_algebra_library_type(sparse_linear_algebra_library_type),
     82         use_automatic_ordering(use_automatic_ordering),
     83         preconditioner_type(preconditioner_type),
     84         num_threads(1) {
     85   }
     86 
     87   string ToString() const {
     88     return StringPrintf(
     89         "(%s, %s, %s, %s, %d)",
     90         LinearSolverTypeToString(linear_solver_type),
     91         SparseLinearAlgebraLibraryTypeToString(sparse_linear_algebra_library_type),
     92         use_automatic_ordering ? "AUTOMATIC" : "USER",
     93         PreconditionerTypeToString(preconditioner_type),
     94         num_threads);
     95   }
     96 
     97   LinearSolverType linear_solver_type;
     98   SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
     99   bool use_automatic_ordering;
    100   PreconditionerType preconditioner_type;
    101   int num_threads;
    102 };
    103 
    104 // Templated function that given a set of solver configurations,
    105 // instantiates a new copy of SystemTestProblem for each configuration
    106 // and solves it. The solutions are expected to have residuals with
    107 // coordinate-wise maximum absolute difference less than or equal to
    108 // max_abs_difference.
    109 //
    110 // The template parameter SystemTestProblem is expected to implement
    111 // the following interface.
    112 //
    113 //   class SystemTestProblem {
    114 //     public:
    115 //       SystemTestProblem();
    116 //       Problem* mutable_problem();
    117 //       Solver::Options* mutable_solver_options();
    118 //   };
    119 template <typename SystemTestProblem>
    120 void RunSolversAndCheckTheyMatch(const vector<SolverConfig>& configurations,
    121                                  const double max_abs_difference) {
    122   int num_configurations = configurations.size();
    123   vector<SystemTestProblem*> problems;
    124   vector<vector<double> > final_residuals(num_configurations);
    125 
    126   for (int i = 0; i < num_configurations; ++i) {
    127     SystemTestProblem* system_test_problem = new SystemTestProblem();
    128 
    129     const SolverConfig& config = configurations[i];
    130 
    131     Solver::Options& options = *(system_test_problem->mutable_solver_options());
    132     options.linear_solver_type = config.linear_solver_type;
    133     options.sparse_linear_algebra_library_type =
    134         config.sparse_linear_algebra_library_type;
    135     options.preconditioner_type = config.preconditioner_type;
    136     options.num_threads = config.num_threads;
    137     options.num_linear_solver_threads = config.num_threads;
    138 
    139     if (config.use_automatic_ordering) {
    140       delete options.linear_solver_ordering;
    141       options.linear_solver_ordering = NULL;
    142     }
    143 
    144     LOG(INFO) << "Running solver configuration: "
    145               << config.ToString();
    146 
    147     Solver::Summary summary;
    148     Solve(options,
    149           system_test_problem->mutable_problem(),
    150           &summary);
    151 
    152     system_test_problem
    153         ->mutable_problem()
    154         ->Evaluate(Problem::EvaluateOptions(),
    155                    NULL,
    156                    &final_residuals[i],
    157                    NULL,
    158                    NULL);
    159 
    160     CHECK_NE(summary.termination_type, ceres::NUMERICAL_FAILURE)
    161         << "Solver configuration " << i << " failed.";
    162     problems.push_back(system_test_problem);
    163 
    164     // Compare the resulting solutions to each other. Arbitrarily take
    165     // SPARSE_NORMAL_CHOLESKY as the golden solve. We compare
    166     // solutions by comparing their residual vectors. We do not
    167     // compare parameter vectors because it is much more brittle and
    168     // error prone to do so, since the same problem can have nearly
    169     // the same residuals at two completely different positions in
    170     // parameter space.
    171     if (i > 0) {
    172       const vector<double>& reference_residuals = final_residuals[0];
    173       const vector<double>& current_residuals = final_residuals[i];
    174 
    175       for (int j = 0; j < reference_residuals.size(); ++j) {
    176         EXPECT_NEAR(current_residuals[j],
    177                     reference_residuals[j],
    178                     max_abs_difference)
    179             << "Not close enough residual:" << j
    180             << " reference " << reference_residuals[j]
    181             << " current " << current_residuals[j];
    182       }
    183     }
    184   }
    185 
    186   for (int i = 0; i < num_configurations; ++i) {
    187     delete problems[i];
    188   }
    189 }
    190 
    191 // This class implements the SystemTestProblem interface and provides
    192 // access to an implementation of Powell's singular function.
    193 //
    194 //   F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2)
    195 //
    196 //   f1 = x1 + 10*x2;
    197 //   f2 = sqrt(5) * (x3 - x4)
    198 //   f3 = (x2 - 2*x3)^2
    199 //   f4 = sqrt(10) * (x1 - x4)^2
    200 //
    201 // The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1.
    202 // The minimum is 0 at (x1, x2, x3, x4) = 0.
    203 //
    204 // From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S.
    205 // Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software,
    206 // Vol 7(1), March 1981.
    207 class PowellsFunction {
    208  public:
    209   PowellsFunction() {
    210     x_[0] =  3.0;
    211     x_[1] = -1.0;
    212     x_[2] =  0.0;
    213     x_[3] =  1.0;
    214 
    215     problem_.AddResidualBlock(
    216         new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x_[0], &x_[1]);
    217     problem_.AddResidualBlock(
    218         new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x_[2], &x_[3]);
    219     problem_.AddResidualBlock(
    220         new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x_[1], &x_[2]);
    221     problem_.AddResidualBlock(
    222         new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x_[0], &x_[3]);
    223 
    224     options_.max_num_iterations = 10;
    225   }
    226 
    227   Problem* mutable_problem() { return &problem_; }
    228   Solver::Options* mutable_solver_options() { return &options_; }
    229 
    230  private:
    231   // Templated functions used for automatically differentiated cost
    232   // functions.
    233   class F1 {
    234    public:
    235     template <typename T> bool operator()(const T* const x1,
    236                                           const T* const x2,
    237                                           T* residual) const {
    238       // f1 = x1 + 10 * x2;
    239       *residual = *x1 + T(10.0) * *x2;
    240       return true;
    241     }
    242   };
    243 
    244   class F2 {
    245    public:
    246     template <typename T> bool operator()(const T* const x3,
    247                                           const T* const x4,
    248                                           T* residual) const {
    249       // f2 = sqrt(5) (x3 - x4)
    250       *residual = T(sqrt(5.0)) * (*x3 - *x4);
    251       return true;
    252     }
    253   };
    254 
    255   class F3 {
    256    public:
    257     template <typename T> bool operator()(const T* const x2,
    258                                           const T* const x4,
    259                                           T* residual) const {
    260       // f3 = (x2 - 2 x3)^2
    261       residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]);
    262       return true;
    263     }
    264   };
    265 
    266   class F4 {
    267    public:
    268     template <typename T> bool operator()(const T* const x1,
    269                                           const T* const x4,
    270                                           T* residual) const {
    271       // f4 = sqrt(10) (x1 - x4)^2
    272       residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
    273       return true;
    274     }
    275   };
    276 
    277   double x_[4];
    278   Problem problem_;
    279   Solver::Options options_;
    280 };
    281 
    282 TEST(SystemTest, PowellsFunction) {
    283   vector<SolverConfig> configs;
    284 #define CONFIGURE(linear_solver, sparse_linear_algebra_library_type, ordering) \
    285   configs.push_back(SolverConfig(linear_solver,                         \
    286                                  sparse_linear_algebra_library_type,    \
    287                                  ordering))
    288 
    289   CONFIGURE(DENSE_QR,               SUITE_SPARSE, kAutomaticOrdering);
    290   CONFIGURE(DENSE_NORMAL_CHOLESKY,  SUITE_SPARSE, kAutomaticOrdering);
    291   CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kAutomaticOrdering);
    292 
    293 #ifndef CERES_NO_SUITESPARSE
    294   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering);
    295 #endif  // CERES_NO_SUITESPARSE
    296 
    297 #ifndef CERES_NO_CXSPARSE
    298   CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE,    kAutomaticOrdering);
    299 #endif  // CERES_NO_CXSPARSE
    300 
    301   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering);
    302 
    303 #undef CONFIGURE
    304 
    305   const double kMaxAbsoluteDifference = 1e-8;
    306   RunSolversAndCheckTheyMatch<PowellsFunction>(configs, kMaxAbsoluteDifference);
    307 }
    308 
    309 // This class implements the SystemTestProblem interface and provides
    310 // access to a bundle adjustment problem. It is based on
    311 // examples/bundle_adjustment_example.cc. Currently a small 16 camera
    312 // problem is hard coded in the constructor. Going forward we may
    313 // extend this to a larger number of problems.
    314 class BundleAdjustmentProblem {
    315  public:
    316   BundleAdjustmentProblem() {
    317     const string input_file = TestFileAbsolutePath("problem-16-22106-pre.txt");
    318     ReadData(input_file);
    319     BuildProblem();
    320   }
    321 
    322   ~BundleAdjustmentProblem() {
    323     delete []point_index_;
    324     delete []camera_index_;
    325     delete []observations_;
    326     delete []parameters_;
    327   }
    328 
    329   Problem* mutable_problem() { return &problem_; }
    330   Solver::Options* mutable_solver_options() { return &options_; }
    331 
    332   int num_cameras()            const { return num_cameras_;        }
    333   int num_points()             const { return num_points_;         }
    334   int num_observations()       const { return num_observations_;   }
    335   const int* point_index()     const { return point_index_;  }
    336   const int* camera_index()    const { return camera_index_; }
    337   const double* observations() const { return observations_; }
    338   double* mutable_cameras() { return parameters_; }
    339   double* mutable_points() { return parameters_  + 9 * num_cameras_; }
    340 
    341  private:
    342   void ReadData(const string& filename) {
    343     FILE * fptr = fopen(filename.c_str(), "r");
    344 
    345     if (!fptr) {
    346       LOG(FATAL) << "File Error: unable to open file " << filename;
    347     };
    348 
    349     // This will die horribly on invalid files. Them's the breaks.
    350     FscanfOrDie(fptr, "%d", &num_cameras_);
    351     FscanfOrDie(fptr, "%d", &num_points_);
    352     FscanfOrDie(fptr, "%d", &num_observations_);
    353 
    354     VLOG(1) << "Header: " << num_cameras_
    355             << " " << num_points_
    356             << " " << num_observations_;
    357 
    358     point_index_ = new int[num_observations_];
    359     camera_index_ = new int[num_observations_];
    360     observations_ = new double[2 * num_observations_];
    361 
    362     num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
    363     parameters_ = new double[num_parameters_];
    364 
    365     for (int i = 0; i < num_observations_; ++i) {
    366       FscanfOrDie(fptr, "%d", camera_index_ + i);
    367       FscanfOrDie(fptr, "%d", point_index_ + i);
    368       for (int j = 0; j < 2; ++j) {
    369         FscanfOrDie(fptr, "%lf", observations_ + 2*i + j);
    370       }
    371     }
    372 
    373     for (int i = 0; i < num_parameters_; ++i) {
    374       FscanfOrDie(fptr, "%lf", parameters_ + i);
    375     }
    376   }
    377 
    378   void BuildProblem() {
    379     double* points = mutable_points();
    380     double* cameras = mutable_cameras();
    381 
    382     for (int i = 0; i < num_observations(); ++i) {
    383       // Each Residual block takes a point and a camera as input and
    384       // outputs a 2 dimensional residual.
    385       CostFunction* cost_function =
    386           new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>(
    387               new BundlerResidual(observations_[2*i + 0],
    388                                   observations_[2*i + 1]));
    389 
    390       // Each observation correponds to a pair of a camera and a point
    391       // which are identified by camera_index()[i] and
    392       // point_index()[i] respectively.
    393       double* camera = cameras + 9 * camera_index_[i];
    394       double* point = points + 3 * point_index()[i];
    395       problem_.AddResidualBlock(cost_function, NULL, camera, point);
    396     }
    397 
    398     options_.linear_solver_ordering = new ParameterBlockOrdering;
    399 
    400     // The points come before the cameras.
    401     for (int i = 0; i < num_points_; ++i) {
    402       options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0);
    403     }
    404 
    405     for (int i = 0; i < num_cameras_; ++i) {
    406       options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1);
    407     }
    408 
    409     options_.max_num_iterations = 25;
    410     options_.function_tolerance = 1e-10;
    411     options_.gradient_tolerance = 1e-10;
    412     options_.parameter_tolerance = 1e-10;
    413   }
    414 
    415   template<typename T>
    416   void FscanfOrDie(FILE *fptr, const char *format, T *value) {
    417     int num_scanned = fscanf(fptr, format, value);
    418     if (num_scanned != 1) {
    419       LOG(FATAL) << "Invalid UW data file.";
    420     }
    421   }
    422 
    423   // Templated pinhole camera model.  The camera is parameterized
    424   // using 9 parameters. 3 for rotation, 3 for translation, 1 for
    425   // focal length and 2 for radial distortion. The principal point is
    426   // not modeled (i.e. it is assumed be located at the image center).
    427   struct BundlerResidual {
    428     // (u, v): the position of the observation with respect to the image
    429     // center point.
    430     BundlerResidual(double u, double v): u(u), v(v) {}
    431 
    432     template <typename T>
    433     bool operator()(const T* const camera,
    434                     const T* const point,
    435                     T* residuals) const {
    436       T p[3];
    437       AngleAxisRotatePoint(camera, point, p);
    438 
    439       // Add the translation vector
    440       p[0] += camera[3];
    441       p[1] += camera[4];
    442       p[2] += camera[5];
    443 
    444       const T& focal = camera[6];
    445       const T& l1 = camera[7];
    446       const T& l2 = camera[8];
    447 
    448       // Compute the center of distortion.  The sign change comes from
    449       // the camera model that Noah Snavely's Bundler assumes, whereby
    450       // the camera coordinate system has a negative z axis.
    451       T xp = - focal * p[0] / p[2];
    452       T yp = - focal * p[1] / p[2];
    453 
    454       // Apply second and fourth order radial distortion.
    455       T r2 = xp*xp + yp*yp;
    456       T distortion = T(1.0) + r2  * (l1 + l2  * r2);
    457 
    458       residuals[0] = distortion * xp - T(u);
    459       residuals[1] = distortion * yp - T(v);
    460 
    461       return true;
    462     }
    463 
    464     double u;
    465     double v;
    466   };
    467 
    468 
    469   Problem problem_;
    470   Solver::Options options_;
    471 
    472   int num_cameras_;
    473   int num_points_;
    474   int num_observations_;
    475   int num_parameters_;
    476 
    477   int* point_index_;
    478   int* camera_index_;
    479   double* observations_;
    480   // The parameter vector is laid out as follows
    481   // [camera_1, ..., camera_n, point_1, ..., point_m]
    482   double* parameters_;
    483 };
    484 
    485 TEST(SystemTest, BundleAdjustmentProblem) {
    486   vector<SolverConfig> configs;
    487 
    488 #define CONFIGURE(linear_solver, sparse_linear_algebra_library_type, ordering, preconditioner) \
    489   configs.push_back(SolverConfig(linear_solver,                         \
    490                                  sparse_linear_algebra_library_type,    \
    491                                  ordering,                              \
    492                                  preconditioner))
    493 
    494 #ifndef CERES_NO_SUITESPARSE
    495   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
    496   CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kUserOrdering,      IDENTITY);
    497 
    498   CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
    499   CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, kUserOrdering,      IDENTITY);
    500 #endif  // CERES_NO_SUITESPARSE
    501 
    502 #ifndef CERES_NO_CXSPARSE
    503   CONFIGURE(SPARSE_SCHUR,           CX_SPARSE,    kAutomaticOrdering, IDENTITY);
    504   CONFIGURE(SPARSE_SCHUR,           CX_SPARSE,    kUserOrdering,      IDENTITY);
    505 #endif  // CERES_NO_CXSPARSE
    506 
    507   CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
    508   CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kUserOrdering,      IDENTITY);
    509 
    510   CONFIGURE(CGNR,                   SUITE_SPARSE, kAutomaticOrdering, JACOBI);
    511   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      JACOBI);
    512   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      SCHUR_JACOBI);
    513 
    514 #ifndef CERES_NO_SUITESPARSE
    515 
    516   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      CLUSTER_JACOBI);
    517   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      CLUSTER_TRIDIAGONAL);
    518 #endif  // CERES_NO_SUITESPARSE
    519 
    520   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, JACOBI);
    521   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, SCHUR_JACOBI);
    522 
    523 #ifndef CERES_NO_SUITESPARSE
    524 
    525   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, CLUSTER_JACOBI);
    526   CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, CLUSTER_TRIDIAGONAL);
    527 #endif  // CERES_NO_SUITESPARSE
    528 
    529 #undef CONFIGURE
    530 
    531   // Single threaded evaluators and linear solvers.
    532   const double kMaxAbsoluteDifference = 1e-4;
    533   RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs,
    534                                                        kMaxAbsoluteDifference);
    535 
    536 #ifdef CERES_USE_OPENMP
    537   // Multithreaded evaluators and linear solvers.
    538   for (int i = 0; i < configs.size(); ++i) {
    539     configs[i].num_threads = 2;
    540   }
    541   RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs,
    542                                                        kMaxAbsoluteDifference);
    543 #endif  // CERES_USE_OPENMP
    544 }
    545 
    546 }  // namespace internal
    547 }  // namespace ceres
    548