1 /* 2 ****************************************************************************** 3 * 4 * Copyright (C) 2000-2010, International Business Machines 5 * Corporation and others. All Rights Reserved. 6 * 7 ****************************************************************************** 8 * file name: ucnvmbcs.c 9 * encoding: US-ASCII 10 * tab size: 8 (not used) 11 * indentation:4 12 * 13 * created on: 2000jul03 14 * created by: Markus W. Scherer 15 * 16 * The current code in this file replaces the previous implementation 17 * of conversion code from multi-byte codepages to Unicode and back. 18 * This implementation supports the following: 19 * - legacy variable-length codepages with up to 4 bytes per character 20 * - all Unicode code points (up to 0x10ffff) 21 * - efficient distinction of unassigned vs. illegal byte sequences 22 * - it is possible in fromUnicode() to directly deal with simple 23 * stateful encodings (used for EBCDIC_STATEFUL) 24 * - it is possible to convert Unicode code points 25 * to a single zero byte (but not as a fallback except for SBCS) 26 * 27 * Remaining limitations in fromUnicode: 28 * - byte sequences must not have leading zero bytes 29 * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte 30 * - limitation to up to 4 bytes per character 31 * 32 * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these 33 * limitations and adds m:n character mappings and other features. 34 * See ucnv_ext.h for details. 35 * 36 * Change history: 37 * 38 * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U, 39 * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2 40 * macros to ucnvmbcs.h file 41 */ 42 43 #include "unicode/utypes.h" 44 45 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION 46 47 #include "unicode/ucnv.h" 48 #include "unicode/ucnv_cb.h" 49 #include "unicode/udata.h" 50 #include "unicode/uset.h" 51 #include "ucnv_bld.h" 52 #include "ucnvmbcs.h" 53 #include "ucnv_ext.h" 54 #include "ucnv_cnv.h" 55 #include "umutex.h" 56 #include "cmemory.h" 57 #include "cstring.h" 58 59 /* control optimizations according to the platform */ 60 #define MBCS_UNROLL_SINGLE_TO_BMP 1 61 #define MBCS_UNROLL_SINGLE_FROM_BMP 0 62 63 /* 64 * _MBCSHeader versions 5.3 & 4.3 65 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.) 66 * 67 * This version is optional. Version 5 is used for incompatible data format changes. 68 * makeconv will continue to generate version 4 files if possible. 69 * 70 * Changes from version 4: 71 * 72 * The main difference is an additional _MBCSHeader field with 73 * - the length (number of uint32_t) of the _MBCSHeader 74 * - flags for further incompatible data format changes 75 * - flags for further, backward compatible data format changes 76 * 77 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from 78 * the file and needs to be reconstituted at load time. 79 * This requires a utf8Friendly format with an additional mbcsIndex table for fast 80 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar. 81 * (For details about these structures see below, and see ucnvmbcs.h.) 82 * 83 * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order 84 * of the Unicode code points. (This requires that the .ucm file has the |0 etc. 85 * precision markers for all mappings.) 86 * 87 * All fallbacks have been moved to the extension table, leaving only roundtrips in the 88 * omitted data that can be reconstituted from the toUnicode data. 89 * 90 * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted. 91 * With only roundtrip mappings in the base fromUnicode data, this part is fully 92 * redundant with the mbcsIndex and will be reconstituted from that (also using the 93 * stage 1 table which contains the information about how stage 2 was compacted). 94 * 95 * The rest of the stage 2 table, the part for code points above maxFastUChar, 96 * is stored in the file and will be appended to the reconstituted part. 97 * 98 * The entire fromUBytes array is omitted from the file and will be reconstitued. 99 * This is done by enumerating all toUnicode roundtrip mappings, performing 100 * each mapping (using the stage 1 and reconstituted stage 2 tables) and 101 * writing instead of reading the byte values. 102 * 103 * _MBCSHeader version 4.3 104 * 105 * Change from version 4.2: 106 * - Optional utf8Friendly data structures, with 64-entry stage 3 block 107 * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS 108 * files which can be used instead of stages 1 & 2. 109 * Faster lookups for roundtrips from most commonly used characters, 110 * and lookups from UTF-8 byte sequences with a natural bit distribution. 111 * See ucnvmbcs.h for more details. 112 * 113 * Change from version 4.1: 114 * - Added an optional extension table structure at the end of the .cnv file. 115 * It is present if the upper bits of the header flags field contains a non-zero 116 * byte offset to it. 117 * Files that contain only a conversion table and no base table 118 * use the special outputType MBCS_OUTPUT_EXT_ONLY. 119 * These contain the base table name between the MBCS header and the extension 120 * data. 121 * 122 * Change from version 4.0: 123 * - Replace header.reserved with header.fromUBytesLength so that all 124 * fields in the data have length. 125 * 126 * Changes from version 3 (for performance improvements): 127 * - new bit distribution for state table entries 128 * - reordered action codes 129 * - new data structure for single-byte fromUnicode 130 * + stage 2 only contains indexes 131 * + stage 3 stores 16 bits per character with classification bits 15..8 132 * - no multiplier for stage 1 entries 133 * - stage 2 for non-single-byte codepages contains the index and the flags in 134 * one 32-bit value 135 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers 136 * 137 * For more details about old versions of the MBCS data structure, see 138 * the corresponding versions of this file. 139 * 140 * Converting stateless codepage data ---------------------------------------*** 141 * (or codepage data with simple states) to Unicode. 142 * 143 * Data structure and algorithm for converting from complex legacy codepages 144 * to Unicode. (Designed before 2000-may-22.) 145 * 146 * The basic idea is that the structure of legacy codepages can be described 147 * with state tables. 148 * When reading a byte stream, each input byte causes a state transition. 149 * Some transitions result in the output of a code point, some result in 150 * "unassigned" or "illegal" output. 151 * This is used here for character conversion. 152 * 153 * The data structure begins with a state table consisting of a row 154 * per state, with 256 entries (columns) per row for each possible input 155 * byte value. 156 * Each entry is 32 bits wide, with two formats distinguished by 157 * the sign bit (bit 31): 158 * 159 * One format for transitional entries (bit 31 not set) for non-final bytes, and 160 * one format for final entries (bit 31 set). 161 * Both formats contain the number of the next state in the same bit 162 * positions. 163 * State 0 is the initial state. 164 * 165 * Most of the time, the offset values of subsequent states are added 166 * up to a scalar value. This value will eventually be the index of 167 * the Unicode code point in a table that follows the state table. 168 * The effect is that the code points for final state table rows 169 * are contiguous. The code points of final state rows follow each other 170 * in the order of the references to those final states by previous 171 * states, etc. 172 * 173 * For some terminal states, the offset is itself the output Unicode 174 * code point (16 bits for a BMP code point or 20 bits for a supplementary 175 * code point (stored as code point minus 0x10000 so that 20 bits are enough). 176 * For others, the code point in the Unicode table is stored with either 177 * one or two code units: one for BMP code points, two for a pair of 178 * surrogates. 179 * All code points for a final state entry take up the same number of code 180 * units, regardless of whether they all actually _use_ the same number 181 * of code units. This is necessary for simple array access. 182 * 183 * An additional feature comes in with what in ICU is called "fallback" 184 * mappings: 185 * 186 * In addition to round-trippable, precise, 1:1 mappings, there are often 187 * mappings defined between similar, though not the same, characters. 188 * Typically, such mappings occur only in fromUnicode mapping tables because 189 * Unicode has a superset repertoire of most other codepages. However, it 190 * is possible to provide such mappings in the toUnicode tables, too. 191 * In this case, the fallback mappings are partly integrated into the 192 * general state tables because the structure of the encoding includes their 193 * byte sequences. 194 * For final entries in an initial state, fallback mappings are stored in 195 * the entry itself like with roundtrip mappings. 196 * For other final entries, they are stored in the code units table if 197 * the entry is for a pair of code units. 198 * For single-unit results in the code units table, there is no space to 199 * alternatively hold a fallback mapping; in this case, the code unit 200 * is stored as U+fffe (unassigned), and the fallback mapping needs to 201 * be looked up by the scalar offset value in a separate table. 202 * 203 * "Unassigned" state entries really mean "structurally unassigned", 204 * i.e., such a byte sequence will never have a mapping result. 205 * 206 * The interpretation of the bits in each entry is as follows: 207 * 208 * Bit 31 not set, not a terminal entry ("transitional"): 209 * 30..24 next state 210 * 23..0 offset delta, to be added up 211 * 212 * Bit 31 set, terminal ("final") entry: 213 * 30..24 next state (regardless of action code) 214 * 23..20 action code: 215 * action codes 0 and 1 result in precise-mapping Unicode code points 216 * 0 valid byte sequence 217 * 19..16 not used, 0 218 * 15..0 16-bit Unicode BMP code point 219 * never U+fffe or U+ffff 220 * 1 valid byte sequence 221 * 19..0 20-bit Unicode supplementary code point 222 * never U+fffe or U+ffff 223 * 224 * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points 225 * 2 valid byte sequence (fallback) 226 * 19..16 not used, 0 227 * 15..0 16-bit Unicode BMP code point as fallback result 228 * 3 valid byte sequence (fallback) 229 * 19..0 20-bit Unicode supplementary code point as fallback result 230 * 231 * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results 232 * depending on the code units they result in 233 * 4 valid byte sequence 234 * 19..9 not used, 0 235 * 8..0 final offset delta 236 * pointing to one 16-bit code unit which may be 237 * fffe unassigned -- look for a fallback for this offset 238 * ffff illegal 239 * 5 valid byte sequence 240 * 19..9 not used, 0 241 * 8..0 final offset delta 242 * pointing to two 16-bit code units 243 * (typically UTF-16 surrogates) 244 * the result depends on the first code unit as follows: 245 * 0000..d7ff roundtrip BMP code point (1st alone) 246 * d800..dbff roundtrip surrogate pair (1st, 2nd) 247 * dc00..dfff fallback surrogate pair (1st-400, 2nd) 248 * e000 roundtrip BMP code point (2nd alone) 249 * e001 fallback BMP code point (2nd alone) 250 * fffe unassigned 251 * ffff illegal 252 * (the final offset deltas are at most 255 * 2, 253 * times 2 because of storing code unit pairs) 254 * 255 * 6 unassigned byte sequence 256 * 19..16 not used, 0 257 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) 258 * this does not contain a final offset delta because the main 259 * purpose of this action code is to save scalar offset values; 260 * therefore, fallback values cannot be assigned to byte 261 * sequences that result in this action code 262 * 7 illegal byte sequence 263 * 19..16 not used, 0 264 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) 265 * 8 state change only 266 * 19..0 not used, 0 267 * useful for state changes in simple stateful encodings, 268 * at Shift-In/Shift-Out codes 269 * 270 * 271 * 9..15 reserved for future use 272 * current implementations will only perform a state change 273 * and ignore bits 19..0 274 * 275 * An encoding with contiguous ranges of unassigned byte sequences, like 276 * Shift-JIS and especially EUC-TW, can be stored efficiently by having 277 * at least two states for the trail bytes: 278 * One trail byte state that results in code points, and one that only 279 * has "unassigned" and "illegal" terminal states. 280 * 281 * Note: partly by accident, this data structure supports simple stateful 282 * encodings without any additional logic. 283 * Currently, only simple Shift-In/Shift-Out schemes are handled with 284 * appropriate state tables (especially EBCDIC_STATEFUL!). 285 * 286 * MBCS version 2 added: 287 * unassigned and illegal action codes have U+fffe and U+ffff 288 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() 289 * 290 * Converting from Unicode to codepage bytes --------------------------------*** 291 * 292 * The conversion data structure for fromUnicode is designed for the known 293 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to 294 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is 295 * a roundtrip mapping. 296 * 297 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 298 * like in the character properties table. 299 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 300 * with the resulting bytes is at offsetFromUBytes. 301 * 302 * Beginning with version 4, single-byte codepages have a significantly different 303 * trie compared to other codepages. 304 * In all cases, the entry in stage 1 is directly the index of the block of 305 * 64 entries in stage 2. 306 * 307 * Single-byte lookup: 308 * 309 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. 310 * Stage 3 contains one 16-bit word per result: 311 * Bits 15..8 indicate the kind of result: 312 * f roundtrip result 313 * c fallback result from private-use code point 314 * 8 fallback result from other code points 315 * 0 unassigned 316 * Bits 7..0 contain the codepage byte. A zero byte is always possible. 317 * 318 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly 319 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup 320 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. 321 * ASCII code points can be looked up with a linear array access into stage 3. 322 * See maxFastUChar and other details in ucnvmbcs.h. 323 * 324 * Multi-byte lookup: 325 * 326 * Stage 2 contains a 32-bit word for each 16-block in stage 3: 327 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results 328 * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) 329 * If this test is false, then a non-zero result will be interpreted as 330 * a fallback mapping. 331 * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char) 332 * 333 * Stage 3 contains 2, 3, or 4 bytes per result. 334 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, 335 * while 3 bytes are stored as bytes in big-endian order. 336 * Leading zero bytes are ignored, and the number of bytes is counted. 337 * A zero byte mapping result is possible as a roundtrip result. 338 * For some output types, the actual result is processed from this; 339 * see ucnv_MBCSFromUnicodeWithOffsets(). 340 * 341 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), 342 * or (version 3 and up) for BMP-only codepages, it contains 64 entries. 343 * 344 * In version 4.3, a utf8Friendly file contains an mbcsIndex table. 345 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup 346 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. 347 * ASCII code points can be looked up with a linear array access into stage 3. 348 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h. 349 * 350 * In version 3, stage 2 blocks may overlap by multiples of the multiplier 351 * for compaction. 352 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) 353 * may overlap by any number of entries. 354 * 355 * MBCS version 2 added: 356 * the converter checks for known output types, which allows 357 * adding new ones without crashing an unaware converter 358 */ 359 360 static const UConverterImpl _SBCSUTF8Impl; 361 static const UConverterImpl _DBCSUTF8Impl; 362 363 /* GB 18030 data ------------------------------------------------------------ */ 364 365 /* helper macros for linear values for GB 18030 four-byte sequences */ 366 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) 367 368 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) 369 370 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) 371 372 /* 373 * Some ranges of GB 18030 where both the Unicode code points and the 374 * GB four-byte sequences are contiguous and are handled algorithmically by 375 * the special callback functions below. 376 * The values are start & end of Unicode & GB codes. 377 * 378 * Note that single surrogates are not mapped by GB 18030 379 * as of the re-released mapping tables from 2000-nov-30. 380 */ 381 static const uint32_t 382 gb18030Ranges[13][4]={ 383 {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, 384 {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, 385 {0x0452, 0x200F, LINEAR(0x8130D330), LINEAR(0x8136A531)}, 386 {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, 387 {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, 388 {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, 389 {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, 390 {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, 391 {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, 392 {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, 393 {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, 394 {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, 395 {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} 396 }; 397 398 /* bit flag for UConverter.options indicating GB 18030 special handling */ 399 #define _MBCS_OPTION_GB18030 0x8000 400 401 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */ 402 #define _MBCS_OPTION_KEIS 0x01000 403 #define _MBCS_OPTION_JEF 0x02000 404 #define _MBCS_OPTION_JIPS 0x04000 405 406 #define KEIS_SO_CHAR_1 0x0A 407 #define KEIS_SO_CHAR_2 0x42 408 #define KEIS_SI_CHAR_1 0x0A 409 #define KEIS_SI_CHAR_2 0x41 410 411 #define JEF_SO_CHAR 0x28 412 #define JEF_SI_CHAR 0x29 413 414 #define JIPS_SO_CHAR_1 0x1A 415 #define JIPS_SO_CHAR_2 0x70 416 #define JIPS_SI_CHAR_1 0x1A 417 #define JIPS_SI_CHAR_2 0x71 418 419 enum SISO_Option { 420 SI, 421 SO 422 }; 423 typedef enum SISO_Option SISO_Option; 424 425 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) { 426 int32_t SISOLength = 0; 427 428 switch (option) { 429 case SI: 430 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { 431 value[0] = KEIS_SI_CHAR_1; 432 value[1] = KEIS_SI_CHAR_2; 433 SISOLength = 2; 434 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { 435 value[0] = JEF_SI_CHAR; 436 SISOLength = 1; 437 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { 438 value[0] = JIPS_SI_CHAR_1; 439 value[1] = JIPS_SI_CHAR_2; 440 SISOLength = 2; 441 } else { 442 value[0] = UCNV_SI; 443 SISOLength = 1; 444 } 445 break; 446 case SO: 447 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { 448 value[0] = KEIS_SO_CHAR_1; 449 value[1] = KEIS_SO_CHAR_2; 450 SISOLength = 2; 451 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { 452 value[0] = JEF_SO_CHAR; 453 SISOLength = 1; 454 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { 455 value[0] = JIPS_SO_CHAR_1; 456 value[1] = JIPS_SO_CHAR_2; 457 SISOLength = 2; 458 } else { 459 value[0] = UCNV_SO; 460 SISOLength = 1; 461 } 462 break; 463 default: 464 /* Should never happen. */ 465 break; 466 } 467 468 return SISOLength; 469 } 470 471 /* Miscellaneous ------------------------------------------------------------ */ 472 473 /** 474 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from 475 * consecutive sequences of bytes, starting from the one encoded in value, 476 * to Unicode code points. (Multiple mappings to reduce per-function call overhead.) 477 * Does not currently support m:n mappings or reverse fallbacks. 478 * This function will not be called for sequences of bytes with leading zeros. 479 * 480 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode() 481 * @param value contains 1..4 bytes of the first byte sequence, right-aligned 482 * @param codePoints resulting Unicode code points, or negative if a byte sequence does 483 * not map to anything 484 * @return TRUE to continue enumeration, FALSE to stop 485 */ 486 typedef UBool U_CALLCONV 487 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]); 488 489 /* similar to ucnv_MBCSGetNextUChar() but recursive */ 490 static UBool 491 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[], 492 int32_t state, uint32_t offset, 493 uint32_t value, 494 UConverterEnumToUCallback *callback, const void *context, 495 UErrorCode *pErrorCode) { 496 UChar32 codePoints[32]; 497 const int32_t *row; 498 const uint16_t *unicodeCodeUnits; 499 UChar32 anyCodePoints; 500 int32_t b, limit; 501 502 row=mbcsTable->stateTable[state]; 503 unicodeCodeUnits=mbcsTable->unicodeCodeUnits; 504 505 value<<=8; 506 anyCodePoints=-1; /* becomes non-negative if there is a mapping */ 507 508 b=(stateProps[state]&0x38)<<2; 509 if(b==0 && stateProps[state]>=0x40) { 510 /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */ 511 codePoints[0]=U_SENTINEL; 512 b=1; 513 } 514 limit=((stateProps[state]&7)+1)<<5; 515 while(b<limit) { 516 int32_t entry=row[b]; 517 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 518 int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry); 519 if(stateProps[nextState]>=0) { 520 /* recurse to a state with non-ignorable actions */ 521 if(!enumToU( 522 mbcsTable, stateProps, nextState, 523 offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), 524 value|(uint32_t)b, 525 callback, context, 526 pErrorCode)) { 527 return FALSE; 528 } 529 } 530 codePoints[b&0x1f]=U_SENTINEL; 531 } else { 532 UChar32 c; 533 int32_t action; 534 535 /* 536 * An if-else-if chain provides more reliable performance for 537 * the most common cases compared to a switch. 538 */ 539 action=MBCS_ENTRY_FINAL_ACTION(entry); 540 if(action==MBCS_STATE_VALID_DIRECT_16) { 541 /* output BMP code point */ 542 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 543 } else if(action==MBCS_STATE_VALID_16) { 544 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); 545 c=unicodeCodeUnits[finalOffset]; 546 if(c<0xfffe) { 547 /* output BMP code point */ 548 } else { 549 c=U_SENTINEL; 550 } 551 } else if(action==MBCS_STATE_VALID_16_PAIR) { 552 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); 553 c=unicodeCodeUnits[finalOffset++]; 554 if(c<0xd800) { 555 /* output BMP code point below 0xd800 */ 556 } else if(c<=0xdbff) { 557 /* output roundtrip or fallback supplementary code point */ 558 c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00); 559 } else if(c==0xe000) { 560 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ 561 c=unicodeCodeUnits[finalOffset]; 562 } else { 563 c=U_SENTINEL; 564 } 565 } else if(action==MBCS_STATE_VALID_DIRECT_20) { 566 /* output supplementary code point */ 567 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); 568 } else { 569 c=U_SENTINEL; 570 } 571 572 codePoints[b&0x1f]=c; 573 anyCodePoints&=c; 574 } 575 if(((++b)&0x1f)==0) { 576 if(anyCodePoints>=0) { 577 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) { 578 return FALSE; 579 } 580 anyCodePoints=-1; 581 } 582 } 583 } 584 return TRUE; 585 } 586 587 /* 588 * Only called if stateProps[state]==-1. 589 * A recursive call may do stateProps[state]|=0x40 if this state is the target of an 590 * MBCS_STATE_CHANGE_ONLY. 591 */ 592 static int8_t 593 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) { 594 const int32_t *row; 595 int32_t min, max, entry, nextState; 596 597 row=stateTable[state]; 598 stateProps[state]=0; 599 600 /* find first non-ignorable state */ 601 for(min=0;; ++min) { 602 entry=row[min]; 603 nextState=MBCS_ENTRY_STATE(entry); 604 if(stateProps[nextState]==-1) { 605 getStateProp(stateTable, stateProps, nextState); 606 } 607 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 608 if(stateProps[nextState]>=0) { 609 break; 610 } 611 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { 612 break; 613 } 614 if(min==0xff) { 615 stateProps[state]=-0x40; /* (int8_t)0xc0 */ 616 return stateProps[state]; 617 } 618 } 619 stateProps[state]|=(int8_t)((min>>5)<<3); 620 621 /* find last non-ignorable state */ 622 for(max=0xff; min<max; --max) { 623 entry=row[max]; 624 nextState=MBCS_ENTRY_STATE(entry); 625 if(stateProps[nextState]==-1) { 626 getStateProp(stateTable, stateProps, nextState); 627 } 628 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 629 if(stateProps[nextState]>=0) { 630 break; 631 } 632 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { 633 break; 634 } 635 } 636 stateProps[state]|=(int8_t)(max>>5); 637 638 /* recurse further and collect direct-state information */ 639 while(min<=max) { 640 entry=row[min]; 641 nextState=MBCS_ENTRY_STATE(entry); 642 if(stateProps[nextState]==-1) { 643 getStateProp(stateTable, stateProps, nextState); 644 } 645 if(MBCS_ENTRY_IS_FINAL(entry)) { 646 stateProps[nextState]|=0x40; 647 if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) { 648 stateProps[state]|=0x40; 649 } 650 } 651 ++min; 652 } 653 return stateProps[state]; 654 } 655 656 /* 657 * Internal function enumerating the toUnicode data of an MBCS converter. 658 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U 659 * table, but could also be used for a future ucnv_getUnicodeSet() option 660 * that includes reverse fallbacks (after updating this function's implementation). 661 * Currently only handles roundtrip mappings. 662 * Does not currently handle extensions. 663 */ 664 static void 665 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable, 666 UConverterEnumToUCallback *callback, const void *context, 667 UErrorCode *pErrorCode) { 668 /* 669 * Properties for each state, to speed up the enumeration. 670 * Ignorable actions are unassigned/illegal/state-change-only: 671 * They do not lead to mappings. 672 * 673 * Bits 7..6: 674 * 1 direct/initial state (stateful converters have multiple) 675 * 0 non-initial state with transitions or with non-ignorable result actions 676 * -1 final state with only ignorable actions 677 * 678 * Bits 5..3: 679 * The lowest byte value with non-ignorable actions is 680 * value<<5 (rounded down). 681 * 682 * Bits 2..0: 683 * The highest byte value with non-ignorable actions is 684 * (value<<5)&0x1f (rounded up). 685 */ 686 int8_t stateProps[MBCS_MAX_STATE_COUNT]; 687 int32_t state; 688 689 uprv_memset(stateProps, -1, sizeof(stateProps)); 690 691 /* recurse from state 0 and set all stateProps */ 692 getStateProp(mbcsTable->stateTable, stateProps, 0); 693 694 for(state=0; state<mbcsTable->countStates; ++state) { 695 /*if(stateProps[state]==-1) { 696 printf("unused/unreachable <icu:state> %d\n", state); 697 }*/ 698 if(stateProps[state]>=0x40) { 699 /* start from each direct state */ 700 enumToU( 701 mbcsTable, stateProps, state, 0, 0, 702 callback, context, 703 pErrorCode); 704 } 705 } 706 } 707 708 U_CFUNC void 709 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData, 710 const USetAdder *sa, 711 UConverterUnicodeSet which, 712 UConverterSetFilter filter, 713 UErrorCode *pErrorCode) { 714 const UConverterMBCSTable *mbcsTable; 715 const uint16_t *table; 716 717 uint32_t st3; 718 uint16_t st1, maxStage1, st2; 719 720 UChar32 c; 721 722 /* enumerate the from-Unicode trie table */ 723 mbcsTable=&sharedData->mbcs; 724 table=mbcsTable->fromUnicodeTable; 725 if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { 726 maxStage1=0x440; 727 } else { 728 maxStage1=0x40; 729 } 730 731 c=0; /* keep track of the current code point while enumerating */ 732 733 if(mbcsTable->outputType==MBCS_OUTPUT_1) { 734 const uint16_t *stage2, *stage3, *results; 735 uint16_t minValue; 736 737 results=(const uint16_t *)mbcsTable->fromUnicodeBytes; 738 739 /* 740 * Set a threshold variable for selecting which mappings to use. 741 * See ucnv_MBCSSingleFromBMPWithOffsets() and 742 * MBCS_SINGLE_RESULT_FROM_U() for details. 743 */ 744 if(which==UCNV_ROUNDTRIP_SET) { 745 /* use only roundtrips */ 746 minValue=0xf00; 747 } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ { 748 /* use all roundtrip and fallback results */ 749 minValue=0x800; 750 } 751 752 for(st1=0; st1<maxStage1; ++st1) { 753 st2=table[st1]; 754 if(st2>maxStage1) { 755 stage2=table+st2; 756 for(st2=0; st2<64; ++st2) { 757 if((st3=stage2[st2])!=0) { 758 /* read the stage 3 block */ 759 stage3=results+st3; 760 761 do { 762 if(*stage3++>=minValue) { 763 sa->add(sa->set, c); 764 } 765 } while((++c&0xf)!=0); 766 } else { 767 c+=16; /* empty stage 3 block */ 768 } 769 } 770 } else { 771 c+=1024; /* empty stage 2 block */ 772 } 773 } 774 } else { 775 const uint32_t *stage2; 776 const uint8_t *stage3, *bytes; 777 uint32_t st3Multiplier; 778 uint32_t value; 779 UBool useFallback; 780 781 bytes=mbcsTable->fromUnicodeBytes; 782 783 useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET); 784 785 switch(mbcsTable->outputType) { 786 case MBCS_OUTPUT_3: 787 case MBCS_OUTPUT_4_EUC: 788 st3Multiplier=3; 789 break; 790 case MBCS_OUTPUT_4: 791 st3Multiplier=4; 792 break; 793 default: 794 st3Multiplier=2; 795 break; 796 } 797 798 for(st1=0; st1<maxStage1; ++st1) { 799 st2=table[st1]; 800 if(st2>(maxStage1>>1)) { 801 stage2=(const uint32_t *)table+st2; 802 for(st2=0; st2<64; ++st2) { 803 if((st3=stage2[st2])!=0) { 804 /* read the stage 3 block */ 805 stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3; 806 807 /* get the roundtrip flags for the stage 3 block */ 808 st3>>=16; 809 810 /* 811 * Add code points for which the roundtrip flag is set, 812 * or which map to non-zero bytes if we use fallbacks. 813 * See ucnv_MBCSFromUnicodeWithOffsets() for details. 814 */ 815 switch(filter) { 816 case UCNV_SET_FILTER_NONE: 817 do { 818 if(st3&1) { 819 sa->add(sa->set, c); 820 stage3+=st3Multiplier; 821 } else if(useFallback) { 822 uint8_t b=0; 823 switch(st3Multiplier) { 824 case 4: 825 b|=*stage3++; 826 case 3: 827 b|=*stage3++; 828 case 2: 829 b|=stage3[0]|stage3[1]; 830 stage3+=2; 831 default: 832 break; 833 } 834 if(b!=0) { 835 sa->add(sa->set, c); 836 } 837 } 838 st3>>=1; 839 } while((++c&0xf)!=0); 840 break; 841 case UCNV_SET_FILTER_DBCS_ONLY: 842 /* Ignore single-byte results (<0x100). */ 843 do { 844 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) { 845 sa->add(sa->set, c); 846 } 847 st3>>=1; 848 stage3+=2; /* +=st3Multiplier */ 849 } while((++c&0xf)!=0); 850 break; 851 case UCNV_SET_FILTER_2022_CN: 852 /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */ 853 do { 854 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) { 855 sa->add(sa->set, c); 856 } 857 st3>>=1; 858 stage3+=3; /* +=st3Multiplier */ 859 } while((++c&0xf)!=0); 860 break; 861 case UCNV_SET_FILTER_SJIS: 862 /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */ 863 do { 864 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) { 865 sa->add(sa->set, c); 866 } 867 st3>>=1; 868 stage3+=2; /* +=st3Multiplier */ 869 } while((++c&0xf)!=0); 870 break; 871 case UCNV_SET_FILTER_GR94DBCS: 872 /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */ 873 do { 874 if( ((st3&1)!=0 || useFallback) && 875 (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) && 876 (uint8_t)(value-0xa1)<=(0xfe - 0xa1) 877 ) { 878 sa->add(sa->set, c); 879 } 880 st3>>=1; 881 stage3+=2; /* +=st3Multiplier */ 882 } while((++c&0xf)!=0); 883 break; 884 case UCNV_SET_FILTER_HZ: 885 /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */ 886 do { 887 if( ((st3&1)!=0 || useFallback) && 888 (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) && 889 (uint8_t)(value-0xa1)<=(0xfe - 0xa1) 890 ) { 891 sa->add(sa->set, c); 892 } 893 st3>>=1; 894 stage3+=2; /* +=st3Multiplier */ 895 } while((++c&0xf)!=0); 896 break; 897 default: 898 *pErrorCode=U_INTERNAL_PROGRAM_ERROR; 899 return; 900 } 901 } else { 902 c+=16; /* empty stage 3 block */ 903 } 904 } 905 } else { 906 c+=1024; /* empty stage 2 block */ 907 } 908 } 909 } 910 911 ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode); 912 } 913 914 U_CFUNC void 915 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData, 916 const USetAdder *sa, 917 UConverterUnicodeSet which, 918 UErrorCode *pErrorCode) { 919 ucnv_MBCSGetFilteredUnicodeSetForUnicode( 920 sharedData, sa, which, 921 sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ? 922 UCNV_SET_FILTER_DBCS_ONLY : 923 UCNV_SET_FILTER_NONE, 924 pErrorCode); 925 } 926 927 static void 928 ucnv_MBCSGetUnicodeSet(const UConverter *cnv, 929 const USetAdder *sa, 930 UConverterUnicodeSet which, 931 UErrorCode *pErrorCode) { 932 if(cnv->options&_MBCS_OPTION_GB18030) { 933 sa->addRange(sa->set, 0, 0xd7ff); 934 sa->addRange(sa->set, 0xe000, 0x10ffff); 935 } else { 936 ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode); 937 } 938 } 939 940 /* conversion extensions for input not in the main table -------------------- */ 941 942 /* 943 * Hardcoded extension handling for GB 18030. 944 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file. 945 * 946 * In the future, conversion extensions may handle m:n mappings and delta tables, 947 * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html 948 * 949 * If an input character cannot be mapped, then these functions set an error 950 * code. The framework will then call the callback function. 951 */ 952 953 /* 954 * @return if(U_FAILURE) return the code point for cnv->fromUChar32 955 * else return 0 after output has been written to the target 956 */ 957 static UChar32 958 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData, 959 UChar32 cp, 960 const UChar **source, const UChar *sourceLimit, 961 uint8_t **target, const uint8_t *targetLimit, 962 int32_t **offsets, int32_t sourceIndex, 963 UBool flush, 964 UErrorCode *pErrorCode) { 965 const int32_t *cx; 966 967 cnv->useSubChar1=FALSE; 968 969 if( (cx=sharedData->mbcs.extIndexes)!=NULL && 970 ucnv_extInitialMatchFromU( 971 cnv, cx, 972 cp, source, sourceLimit, 973 (char **)target, (char *)targetLimit, 974 offsets, sourceIndex, 975 flush, 976 pErrorCode) 977 ) { 978 return 0; /* an extension mapping handled the input */ 979 } 980 981 /* GB 18030 */ 982 if((cnv->options&_MBCS_OPTION_GB18030)!=0) { 983 const uint32_t *range; 984 int32_t i; 985 986 range=gb18030Ranges[0]; 987 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) { 988 if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) { 989 /* found the Unicode code point, output the four-byte sequence for it */ 990 uint32_t linear; 991 char bytes[4]; 992 993 /* get the linear value of the first GB 18030 code in this range */ 994 linear=range[2]-LINEAR_18030_BASE; 995 996 /* add the offset from the beginning of the range */ 997 linear+=((uint32_t)cp-range[0]); 998 999 /* turn this into a four-byte sequence */ 1000 bytes[3]=(char)(0x30+linear%10); linear/=10; 1001 bytes[2]=(char)(0x81+linear%126); linear/=126; 1002 bytes[1]=(char)(0x30+linear%10); linear/=10; 1003 bytes[0]=(char)(0x81+linear); 1004 1005 /* output this sequence */ 1006 ucnv_fromUWriteBytes(cnv, 1007 bytes, 4, (char **)target, (char *)targetLimit, 1008 offsets, sourceIndex, pErrorCode); 1009 return 0; 1010 } 1011 } 1012 } 1013 1014 /* no mapping */ 1015 *pErrorCode=U_INVALID_CHAR_FOUND; 1016 return cp; 1017 } 1018 1019 /* 1020 * Input sequence: cnv->toUBytes[0..length[ 1021 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input 1022 * else return 0 after output has been written to the target 1023 */ 1024 static int8_t 1025 _extToU(UConverter *cnv, const UConverterSharedData *sharedData, 1026 int8_t length, 1027 const uint8_t **source, const uint8_t *sourceLimit, 1028 UChar **target, const UChar *targetLimit, 1029 int32_t **offsets, int32_t sourceIndex, 1030 UBool flush, 1031 UErrorCode *pErrorCode) { 1032 const int32_t *cx; 1033 1034 if( (cx=sharedData->mbcs.extIndexes)!=NULL && 1035 ucnv_extInitialMatchToU( 1036 cnv, cx, 1037 length, (const char **)source, (const char *)sourceLimit, 1038 target, targetLimit, 1039 offsets, sourceIndex, 1040 flush, 1041 pErrorCode) 1042 ) { 1043 return 0; /* an extension mapping handled the input */ 1044 } 1045 1046 /* GB 18030 */ 1047 if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) { 1048 const uint32_t *range; 1049 uint32_t linear; 1050 int32_t i; 1051 1052 linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]); 1053 range=gb18030Ranges[0]; 1054 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) { 1055 if(range[2]<=linear && linear<=range[3]) { 1056 /* found the sequence, output the Unicode code point for it */ 1057 *pErrorCode=U_ZERO_ERROR; 1058 1059 /* add the linear difference between the input and start sequences to the start code point */ 1060 linear=range[0]+(linear-range[2]); 1061 1062 /* output this code point */ 1063 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode); 1064 1065 return 0; 1066 } 1067 } 1068 } 1069 1070 /* no mapping */ 1071 *pErrorCode=U_INVALID_CHAR_FOUND; 1072 return length; 1073 } 1074 1075 /* EBCDIC swap LF<->NL ------------------------------------------------------ */ 1076 1077 /* 1078 * This code modifies a standard EBCDIC<->Unicode mapping table for 1079 * OS/390 (z/OS) Unix System Services (Open Edition). 1080 * The difference is in the mapping of Line Feed and New Line control codes: 1081 * Standard EBCDIC maps 1082 * 1083 * <U000A> \x25 |0 1084 * <U0085> \x15 |0 1085 * 1086 * but OS/390 USS EBCDIC swaps the control codes for LF and NL, 1087 * mapping 1088 * 1089 * <U000A> \x15 |0 1090 * <U0085> \x25 |0 1091 * 1092 * This code modifies a loaded standard EBCDIC<->Unicode mapping table 1093 * by copying it into allocated memory and swapping the LF and NL values. 1094 * It allows to support the same EBCDIC charset in both versions without 1095 * duplicating the entire installed table. 1096 */ 1097 1098 /* standard EBCDIC codes */ 1099 #define EBCDIC_LF 0x25 1100 #define EBCDIC_NL 0x15 1101 1102 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */ 1103 #define EBCDIC_RT_LF 0xf25 1104 #define EBCDIC_RT_NL 0xf15 1105 1106 /* Unicode code points */ 1107 #define U_LF 0x0a 1108 #define U_NL 0x85 1109 1110 static UBool 1111 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { 1112 UConverterMBCSTable *mbcsTable; 1113 1114 const uint16_t *table, *results; 1115 const uint8_t *bytes; 1116 1117 int32_t (*newStateTable)[256]; 1118 uint16_t *newResults; 1119 uint8_t *p; 1120 char *name; 1121 1122 uint32_t stage2Entry; 1123 uint32_t size, sizeofFromUBytes; 1124 1125 mbcsTable=&sharedData->mbcs; 1126 1127 table=mbcsTable->fromUnicodeTable; 1128 bytes=mbcsTable->fromUnicodeBytes; 1129 results=(const uint16_t *)bytes; 1130 1131 /* 1132 * Check that this is an EBCDIC table with SBCS portion - 1133 * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. 1134 * 1135 * If not, ignore the option. Options are always ignored if they do not apply. 1136 */ 1137 if(!( 1138 (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) && 1139 mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) && 1140 mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL) 1141 )) { 1142 return FALSE; 1143 } 1144 1145 if(mbcsTable->outputType==MBCS_OUTPUT_1) { 1146 if(!( 1147 EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && 1148 EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) 1149 )) { 1150 return FALSE; 1151 } 1152 } else /* MBCS_OUTPUT_2_SISO */ { 1153 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); 1154 if(!( 1155 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && 1156 EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) 1157 )) { 1158 return FALSE; 1159 } 1160 1161 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); 1162 if(!( 1163 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && 1164 EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) 1165 )) { 1166 return FALSE; 1167 } 1168 } 1169 1170 if(mbcsTable->fromUBytesLength>0) { 1171 /* 1172 * We _know_ the number of bytes in the fromUnicodeBytes array 1173 * starting with header.version 4.1. 1174 */ 1175 sizeofFromUBytes=mbcsTable->fromUBytesLength; 1176 } else { 1177 /* 1178 * Otherwise: 1179 * There used to be code to enumerate the fromUnicode 1180 * trie and find the highest entry, but it was removed in ICU 3.2 1181 * because it was not tested and caused a low code coverage number. 1182 * See Jitterbug 3674. 1183 * This affects only some .cnv file formats with a header.version 1184 * below 4.1, and only when swaplfnl is requested. 1185 * 1186 * ucnvmbcs.c revision 1.99 is the last one with the 1187 * ucnv_MBCSSizeofFromUBytes() function. 1188 */ 1189 *pErrorCode=U_INVALID_FORMAT_ERROR; 1190 return FALSE; 1191 } 1192 1193 /* 1194 * The table has an appropriate format. 1195 * Allocate and build 1196 * - a modified to-Unicode state table 1197 * - a modified from-Unicode output array 1198 * - a converter name string with the swap option appended 1199 */ 1200 size= 1201 mbcsTable->countStates*1024+ 1202 sizeofFromUBytes+ 1203 UCNV_MAX_CONVERTER_NAME_LENGTH+20; 1204 p=(uint8_t *)uprv_malloc(size); 1205 if(p==NULL) { 1206 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; 1207 return FALSE; 1208 } 1209 1210 /* copy and modify the to-Unicode state table */ 1211 newStateTable=(int32_t (*)[256])p; 1212 uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024); 1213 1214 newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL); 1215 newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF); 1216 1217 /* copy and modify the from-Unicode result table */ 1218 newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; 1219 uprv_memcpy(newResults, bytes, sizeofFromUBytes); 1220 1221 /* conveniently, the table access macros work on the left side of expressions */ 1222 if(mbcsTable->outputType==MBCS_OUTPUT_1) { 1223 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; 1224 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; 1225 } else /* MBCS_OUTPUT_2_SISO */ { 1226 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); 1227 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; 1228 1229 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); 1230 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; 1231 } 1232 1233 /* set the canonical converter name */ 1234 name=(char *)newResults+sizeofFromUBytes; 1235 uprv_strcpy(name, sharedData->staticData->name); 1236 uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); 1237 1238 /* set the pointers */ 1239 umtx_lock(NULL); 1240 if(mbcsTable->swapLFNLStateTable==NULL) { 1241 mbcsTable->swapLFNLStateTable=newStateTable; 1242 mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; 1243 mbcsTable->swapLFNLName=name; 1244 1245 newStateTable=NULL; 1246 } 1247 umtx_unlock(NULL); 1248 1249 /* release the allocated memory if another thread beat us to it */ 1250 if(newStateTable!=NULL) { 1251 uprv_free(newStateTable); 1252 } 1253 return TRUE; 1254 } 1255 1256 /* reconstitute omitted fromUnicode data ------------------------------------ */ 1257 1258 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */ 1259 static UBool U_CALLCONV 1260 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) { 1261 UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context; 1262 const uint16_t *table; 1263 uint32_t *stage2; 1264 uint8_t *bytes, *p; 1265 UChar32 c; 1266 int32_t i, st3; 1267 1268 table=mbcsTable->fromUnicodeTable; 1269 bytes=(uint8_t *)mbcsTable->fromUnicodeBytes; 1270 1271 /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */ 1272 switch(mbcsTable->outputType) { 1273 case MBCS_OUTPUT_3_EUC: 1274 if(value<=0xffff) { 1275 /* short sequences are stored directly */ 1276 /* code set 0 or 1 */ 1277 } else if(value<=0x8effff) { 1278 /* code set 2 */ 1279 value&=0x7fff; 1280 } else /* first byte is 0x8f */ { 1281 /* code set 3 */ 1282 value&=0xff7f; 1283 } 1284 break; 1285 case MBCS_OUTPUT_4_EUC: 1286 if(value<=0xffffff) { 1287 /* short sequences are stored directly */ 1288 /* code set 0 or 1 */ 1289 } else if(value<=0x8effffff) { 1290 /* code set 2 */ 1291 value&=0x7fffff; 1292 } else /* first byte is 0x8f */ { 1293 /* code set 3 */ 1294 value&=0xff7fff; 1295 } 1296 break; 1297 default: 1298 break; 1299 } 1300 1301 for(i=0; i<=0x1f; ++value, ++i) { 1302 c=codePoints[i]; 1303 if(c<0) { 1304 continue; 1305 } 1306 1307 /* locate the stage 2 & 3 data */ 1308 stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f); 1309 p=bytes; 1310 st3=(int32_t)(uint16_t)*stage2*16+(c&0xf); 1311 1312 /* write the codepage bytes into stage 3 */ 1313 switch(mbcsTable->outputType) { 1314 case MBCS_OUTPUT_3: 1315 case MBCS_OUTPUT_4_EUC: 1316 p+=st3*3; 1317 p[0]=(uint8_t)(value>>16); 1318 p[1]=(uint8_t)(value>>8); 1319 p[2]=(uint8_t)value; 1320 break; 1321 case MBCS_OUTPUT_4: 1322 ((uint32_t *)p)[st3]=value; 1323 break; 1324 default: 1325 /* 2 bytes per character */ 1326 ((uint16_t *)p)[st3]=(uint16_t)value; 1327 break; 1328 } 1329 1330 /* set the roundtrip flag */ 1331 *stage2|=(1UL<<(16+(c&0xf))); 1332 } 1333 return TRUE; 1334 } 1335 1336 static void 1337 reconstituteData(UConverterMBCSTable *mbcsTable, 1338 uint32_t stage1Length, uint32_t stage2Length, 1339 uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */ 1340 UErrorCode *pErrorCode) { 1341 uint16_t *stage1; 1342 uint32_t *stage2; 1343 uint8_t *bytes; 1344 uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength; 1345 mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength); 1346 if(mbcsTable->reconstitutedData==NULL) { 1347 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; 1348 return; 1349 } 1350 uprv_memset(mbcsTable->reconstitutedData, 0, dataLength); 1351 1352 /* copy existing data and reroute the pointers */ 1353 stage1=(uint16_t *)mbcsTable->reconstitutedData; 1354 uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2); 1355 1356 stage2=(uint32_t *)(stage1+stage1Length); 1357 uprv_memcpy(stage2+(fullStage2Length-stage2Length), 1358 mbcsTable->fromUnicodeTable+stage1Length, 1359 stage2Length*4); 1360 1361 mbcsTable->fromUnicodeTable=stage1; 1362 mbcsTable->fromUnicodeBytes=bytes=(uint8_t *)(stage2+fullStage2Length); 1363 1364 /* indexes into stage 2 count from the bottom of the fromUnicodeTable */ 1365 stage2=(uint32_t *)stage1; 1366 1367 /* reconstitute the initial part of stage 2 from the mbcsIndex */ 1368 { 1369 int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6; 1370 int32_t stageUTF8Index=0; 1371 int32_t st1, st2, st3, i; 1372 1373 for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) { 1374 st2=stage1[st1]; 1375 if(st2!=stage1Length/2) { 1376 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */ 1377 for(i=0; i<16; ++i) { 1378 st3=mbcsTable->mbcsIndex[stageUTF8Index++]; 1379 if(st3!=0) { 1380 /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */ 1381 st3>>=4; 1382 /* 1383 * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are 1384 * allocated together as a single 64-block for access from the mbcsIndex 1385 */ 1386 stage2[st2++]=st3++; 1387 stage2[st2++]=st3++; 1388 stage2[st2++]=st3++; 1389 stage2[st2++]=st3; 1390 } else { 1391 /* no stage 3 block, skip */ 1392 st2+=4; 1393 } 1394 } 1395 } else { 1396 /* no stage 2 block, skip */ 1397 stageUTF8Index+=16; 1398 } 1399 } 1400 } 1401 1402 /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */ 1403 ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode); 1404 } 1405 1406 /* MBCS setup functions ----------------------------------------------------- */ 1407 1408 static void 1409 ucnv_MBCSLoad(UConverterSharedData *sharedData, 1410 UConverterLoadArgs *pArgs, 1411 const uint8_t *raw, 1412 UErrorCode *pErrorCode) { 1413 UDataInfo info; 1414 UConverterMBCSTable *mbcsTable=&sharedData->mbcs; 1415 _MBCSHeader *header=(_MBCSHeader *)raw; 1416 uint32_t offset; 1417 uint32_t headerLength; 1418 UBool noFromU=FALSE; 1419 1420 if(header->version[0]==4) { 1421 headerLength=MBCS_HEADER_V4_LENGTH; 1422 } else if(header->version[0]==5 && header->version[1]>=3 && 1423 (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) { 1424 headerLength=header->options&MBCS_OPT_LENGTH_MASK; 1425 noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0); 1426 } else { 1427 *pErrorCode=U_INVALID_TABLE_FORMAT; 1428 return; 1429 } 1430 1431 mbcsTable->outputType=(uint8_t)header->flags; 1432 if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) { 1433 *pErrorCode=U_INVALID_TABLE_FORMAT; 1434 return; 1435 } 1436 1437 /* extension data, header version 4.2 and higher */ 1438 offset=header->flags>>8; 1439 if(offset!=0) { 1440 mbcsTable->extIndexes=(const int32_t *)(raw+offset); 1441 } 1442 1443 if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) { 1444 UConverterLoadArgs args={ 0 }; 1445 UConverterSharedData *baseSharedData; 1446 const int32_t *extIndexes; 1447 const char *baseName; 1448 1449 /* extension-only file, load the base table and set values appropriately */ 1450 if((extIndexes=mbcsTable->extIndexes)==NULL) { 1451 /* extension-only file without extension */ 1452 *pErrorCode=U_INVALID_TABLE_FORMAT; 1453 return; 1454 } 1455 1456 if(pArgs->nestedLoads!=1) { 1457 /* an extension table must not be loaded as a base table */ 1458 *pErrorCode=U_INVALID_TABLE_FILE; 1459 return; 1460 } 1461 1462 /* load the base table */ 1463 baseName=(const char *)header+headerLength*4; 1464 if(0==uprv_strcmp(baseName, sharedData->staticData->name)) { 1465 /* forbid loading this same extension-only file */ 1466 *pErrorCode=U_INVALID_TABLE_FORMAT; 1467 return; 1468 } 1469 1470 /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */ 1471 args.size=sizeof(UConverterLoadArgs); 1472 args.nestedLoads=2; 1473 args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable; 1474 args.reserved=pArgs->reserved; 1475 args.options=pArgs->options; 1476 args.pkg=pArgs->pkg; 1477 args.name=baseName; 1478 baseSharedData=ucnv_load(&args, pErrorCode); 1479 if(U_FAILURE(*pErrorCode)) { 1480 return; 1481 } 1482 if( baseSharedData->staticData->conversionType!=UCNV_MBCS || 1483 baseSharedData->mbcs.baseSharedData!=NULL 1484 ) { 1485 ucnv_unload(baseSharedData); 1486 *pErrorCode=U_INVALID_TABLE_FORMAT; 1487 return; 1488 } 1489 if(pArgs->onlyTestIsLoadable) { 1490 /* 1491 * Exit as soon as we know that we can load the converter 1492 * and the format is valid and supported. 1493 * The worst that can happen in the following code is a memory 1494 * allocation error. 1495 */ 1496 ucnv_unload(baseSharedData); 1497 return; 1498 } 1499 1500 /* copy the base table data */ 1501 uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable)); 1502 1503 /* overwrite values with relevant ones for the extension converter */ 1504 mbcsTable->baseSharedData=baseSharedData; 1505 mbcsTable->extIndexes=extIndexes; 1506 1507 /* 1508 * It would be possible to share the swapLFNL data with a base converter, 1509 * but the generated name would have to be different, and the memory 1510 * would have to be free'd only once. 1511 * It is easier to just create the data for the extension converter 1512 * separately when it is requested. 1513 */ 1514 mbcsTable->swapLFNLStateTable=NULL; 1515 mbcsTable->swapLFNLFromUnicodeBytes=NULL; 1516 mbcsTable->swapLFNLName=NULL; 1517 1518 /* 1519 * The reconstitutedData must be deleted only when the base converter 1520 * is unloaded. 1521 */ 1522 mbcsTable->reconstitutedData=NULL; 1523 1524 /* 1525 * Set a special, runtime-only outputType if the extension converter 1526 * is a DBCS version of a base converter that also maps single bytes. 1527 */ 1528 if( sharedData->staticData->conversionType==UCNV_DBCS || 1529 (sharedData->staticData->conversionType==UCNV_MBCS && 1530 sharedData->staticData->minBytesPerChar>=2) 1531 ) { 1532 if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) { 1533 /* the base converter is SI/SO-stateful */ 1534 int32_t entry; 1535 1536 /* get the dbcs state from the state table entry for SO=0x0e */ 1537 entry=mbcsTable->stateTable[0][0xe]; 1538 if( MBCS_ENTRY_IS_FINAL(entry) && 1539 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY && 1540 MBCS_ENTRY_FINAL_STATE(entry)!=0 1541 ) { 1542 mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); 1543 1544 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; 1545 } 1546 } else if( 1547 baseSharedData->staticData->conversionType==UCNV_MBCS && 1548 baseSharedData->staticData->minBytesPerChar==1 && 1549 baseSharedData->staticData->maxBytesPerChar==2 && 1550 mbcsTable->countStates<=127 1551 ) { 1552 /* non-stateful base converter, need to modify the state table */ 1553 int32_t (*newStateTable)[256]; 1554 int32_t *state; 1555 int32_t i, count; 1556 1557 /* allocate a new state table and copy the base state table contents */ 1558 count=mbcsTable->countStates; 1559 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024); 1560 if(newStateTable==NULL) { 1561 ucnv_unload(baseSharedData); 1562 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; 1563 return; 1564 } 1565 1566 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024); 1567 1568 /* change all final single-byte entries to go to a new all-illegal state */ 1569 state=newStateTable[0]; 1570 for(i=0; i<256; ++i) { 1571 if(MBCS_ENTRY_IS_FINAL(state[i])) { 1572 state[i]=MBCS_ENTRY_TRANSITION(count, 0); 1573 } 1574 } 1575 1576 /* build the new all-illegal state */ 1577 state=newStateTable[count]; 1578 for(i=0; i<256; ++i) { 1579 state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0); 1580 } 1581 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable; 1582 mbcsTable->countStates=(uint8_t)(count+1); 1583 mbcsTable->stateTableOwned=TRUE; 1584 1585 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; 1586 } 1587 } 1588 1589 /* 1590 * unlike below for files with base tables, do not get the unicodeMask 1591 * from the sharedData; instead, use the base table's unicodeMask, 1592 * which we copied in the memcpy above; 1593 * this is necessary because the static data unicodeMask, especially 1594 * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data 1595 */ 1596 } else { 1597 /* conversion file with a base table; an additional extension table is optional */ 1598 /* make sure that the output type is known */ 1599 switch(mbcsTable->outputType) { 1600 case MBCS_OUTPUT_1: 1601 case MBCS_OUTPUT_2: 1602 case MBCS_OUTPUT_3: 1603 case MBCS_OUTPUT_4: 1604 case MBCS_OUTPUT_3_EUC: 1605 case MBCS_OUTPUT_4_EUC: 1606 case MBCS_OUTPUT_2_SISO: 1607 /* OK */ 1608 break; 1609 default: 1610 *pErrorCode=U_INVALID_TABLE_FORMAT; 1611 return; 1612 } 1613 if(pArgs->onlyTestIsLoadable) { 1614 /* 1615 * Exit as soon as we know that we can load the converter 1616 * and the format is valid and supported. 1617 * The worst that can happen in the following code is a memory 1618 * allocation error. 1619 */ 1620 return; 1621 } 1622 1623 mbcsTable->countStates=(uint8_t)header->countStates; 1624 mbcsTable->countToUFallbacks=header->countToUFallbacks; 1625 mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4); 1626 mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates); 1627 mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits); 1628 1629 mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable); 1630 mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes); 1631 mbcsTable->fromUBytesLength=header->fromUBytesLength; 1632 1633 /* 1634 * converter versions 6.1 and up contain a unicodeMask that is 1635 * used here to select the most efficient function implementations 1636 */ 1637 info.size=sizeof(UDataInfo); 1638 udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); 1639 if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) { 1640 /* mask off possible future extensions to be safe */ 1641 mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3); 1642 } else { 1643 /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */ 1644 mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; 1645 } 1646 1647 /* 1648 * _MBCSHeader.version 4.3 adds utf8Friendly data structures. 1649 * Check for the header version, SBCS vs. MBCS, and for whether the 1650 * data structures are optimized for code points as high as what the 1651 * runtime code is designed for. 1652 * The implementation does not handle mapping tables with entries for 1653 * unpaired surrogates. 1654 */ 1655 if( header->version[1]>=3 && 1656 (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 && 1657 (mbcsTable->countStates==1 ? 1658 (header->version[2]>=(SBCS_FAST_MAX>>8)) : 1659 (header->version[2]>=(MBCS_FAST_MAX>>8)) 1660 ) 1661 ) { 1662 mbcsTable->utf8Friendly=TRUE; 1663 1664 if(mbcsTable->countStates==1) { 1665 /* 1666 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher. 1667 * Build a table with indexes to each block, to be used instead of 1668 * the regular stage 1/2 table. 1669 */ 1670 int32_t i; 1671 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) { 1672 mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)]; 1673 } 1674 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */ 1675 mbcsTable->maxFastUChar=SBCS_FAST_MAX; 1676 } else { 1677 /* 1678 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher. 1679 * The .cnv file is prebuilt with an additional stage table with indexes 1680 * to each block. 1681 */ 1682 mbcsTable->mbcsIndex=(const uint16_t *) 1683 (mbcsTable->fromUnicodeBytes+ 1684 (noFromU ? 0 : mbcsTable->fromUBytesLength)); 1685 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff; 1686 } 1687 } 1688 1689 /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */ 1690 { 1691 uint32_t asciiRoundtrips=0xffffffff; 1692 int32_t i; 1693 1694 for(i=0; i<0x80; ++i) { 1695 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) { 1696 asciiRoundtrips&=~((uint32_t)1<<(i>>2)); 1697 } 1698 } 1699 mbcsTable->asciiRoundtrips=asciiRoundtrips; 1700 } 1701 1702 if(noFromU) { 1703 uint32_t stage1Length= 1704 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ? 1705 0x440 : 0x40; 1706 uint32_t stage2Length= 1707 (header->offsetFromUBytes-header->offsetFromUTable)/4- 1708 stage1Length/2; 1709 reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode); 1710 } 1711 } 1712 1713 /* Set the impl pointer here so that it is set for both extension-only and base tables. */ 1714 if(mbcsTable->utf8Friendly) { 1715 if(mbcsTable->countStates==1) { 1716 sharedData->impl=&_SBCSUTF8Impl; 1717 } else { 1718 if(mbcsTable->outputType==MBCS_OUTPUT_2) { 1719 sharedData->impl=&_DBCSUTF8Impl; 1720 } 1721 } 1722 } 1723 1724 if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) { 1725 /* 1726 * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip. 1727 * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly. 1728 */ 1729 mbcsTable->asciiRoundtrips=0; 1730 } 1731 } 1732 1733 static void 1734 ucnv_MBCSUnload(UConverterSharedData *sharedData) { 1735 UConverterMBCSTable *mbcsTable=&sharedData->mbcs; 1736 1737 if(mbcsTable->swapLFNLStateTable!=NULL) { 1738 uprv_free(mbcsTable->swapLFNLStateTable); 1739 } 1740 if(mbcsTable->stateTableOwned) { 1741 uprv_free((void *)mbcsTable->stateTable); 1742 } 1743 if(mbcsTable->baseSharedData!=NULL) { 1744 ucnv_unload(mbcsTable->baseSharedData); 1745 } 1746 if(mbcsTable->reconstitutedData!=NULL) { 1747 uprv_free(mbcsTable->reconstitutedData); 1748 } 1749 } 1750 1751 static void 1752 ucnv_MBCSOpen(UConverter *cnv, 1753 UConverterLoadArgs *pArgs, 1754 UErrorCode *pErrorCode) { 1755 UConverterMBCSTable *mbcsTable; 1756 const int32_t *extIndexes; 1757 uint8_t outputType; 1758 int8_t maxBytesPerUChar; 1759 1760 if(pArgs->onlyTestIsLoadable) { 1761 return; 1762 } 1763 1764 mbcsTable=&cnv->sharedData->mbcs; 1765 outputType=mbcsTable->outputType; 1766 1767 if(outputType==MBCS_OUTPUT_DBCS_ONLY) { 1768 /* the swaplfnl option does not apply, remove it */ 1769 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; 1770 } 1771 1772 if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) { 1773 /* do this because double-checked locking is broken */ 1774 UBool isCached; 1775 1776 umtx_lock(NULL); 1777 isCached=mbcsTable->swapLFNLStateTable!=NULL; 1778 umtx_unlock(NULL); 1779 1780 if(!isCached) { 1781 if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { 1782 if(U_FAILURE(*pErrorCode)) { 1783 return; /* something went wrong */ 1784 } 1785 1786 /* the option does not apply, remove it */ 1787 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; 1788 } 1789 } 1790 } 1791 1792 if(uprv_strstr(pArgs->name, "18030")!=NULL) { 1793 if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) { 1794 /* set a flag for GB 18030 mode, which changes the callback behavior */ 1795 cnv->options|=_MBCS_OPTION_GB18030; 1796 } 1797 } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) { 1798 /* set a flag for KEIS converter, which changes the SI/SO character sequence */ 1799 cnv->options|=_MBCS_OPTION_KEIS; 1800 } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) { 1801 /* set a flag for JEF converter, which changes the SI/SO character sequence */ 1802 cnv->options|=_MBCS_OPTION_JEF; 1803 } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) { 1804 /* set a flag for JIPS converter, which changes the SI/SO character sequence */ 1805 cnv->options|=_MBCS_OPTION_JIPS; 1806 } 1807 1808 /* fix maxBytesPerUChar depending on outputType and options etc. */ 1809 if(outputType==MBCS_OUTPUT_2_SISO) { 1810 cnv->maxBytesPerUChar=3; /* SO+DBCS */ 1811 } 1812 1813 extIndexes=mbcsTable->extIndexes; 1814 if(extIndexes!=NULL) { 1815 maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes); 1816 if(outputType==MBCS_OUTPUT_2_SISO) { 1817 ++maxBytesPerUChar; /* SO + multiple DBCS */ 1818 } 1819 1820 if(maxBytesPerUChar>cnv->maxBytesPerUChar) { 1821 cnv->maxBytesPerUChar=maxBytesPerUChar; 1822 } 1823 } 1824 1825 #if 0 1826 /* 1827 * documentation of UConverter fields used for status 1828 * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset() 1829 */ 1830 1831 /* toUnicode */ 1832 cnv->toUnicodeStatus=0; /* offset */ 1833 cnv->mode=0; /* state */ 1834 cnv->toULength=0; /* byteIndex */ 1835 1836 /* fromUnicode */ 1837 cnv->fromUChar32=0; 1838 cnv->fromUnicodeStatus=1; /* prevLength */ 1839 #endif 1840 } 1841 1842 static const char * 1843 ucnv_MBCSGetName(const UConverter *cnv) { 1844 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) { 1845 return cnv->sharedData->mbcs.swapLFNLName; 1846 } else { 1847 return cnv->sharedData->staticData->name; 1848 } 1849 } 1850 1851 /* MBCS-to-Unicode conversion functions ------------------------------------- */ 1852 1853 static UChar32 1854 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { 1855 const _MBCSToUFallback *toUFallbacks; 1856 uint32_t i, start, limit; 1857 1858 limit=mbcsTable->countToUFallbacks; 1859 if(limit>0) { 1860 /* do a binary search for the fallback mapping */ 1861 toUFallbacks=mbcsTable->toUFallbacks; 1862 start=0; 1863 while(start<limit-1) { 1864 i=(start+limit)/2; 1865 if(offset<toUFallbacks[i].offset) { 1866 limit=i; 1867 } else { 1868 start=i; 1869 } 1870 } 1871 1872 /* did we really find it? */ 1873 if(offset==toUFallbacks[start].offset) { 1874 return toUFallbacks[start].codePoint; 1875 } 1876 } 1877 1878 return 0xfffe; 1879 } 1880 1881 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */ 1882 static void 1883 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, 1884 UErrorCode *pErrorCode) { 1885 UConverter *cnv; 1886 const uint8_t *source, *sourceLimit; 1887 UChar *target; 1888 const UChar *targetLimit; 1889 int32_t *offsets; 1890 1891 const int32_t (*stateTable)[256]; 1892 1893 int32_t sourceIndex; 1894 1895 int32_t entry; 1896 UChar c; 1897 uint8_t action; 1898 1899 /* set up the local pointers */ 1900 cnv=pArgs->converter; 1901 source=(const uint8_t *)pArgs->source; 1902 sourceLimit=(const uint8_t *)pArgs->sourceLimit; 1903 target=pArgs->target; 1904 targetLimit=pArgs->targetLimit; 1905 offsets=pArgs->offsets; 1906 1907 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 1908 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; 1909 } else { 1910 stateTable=cnv->sharedData->mbcs.stateTable; 1911 } 1912 1913 /* sourceIndex=-1 if the current character began in the previous buffer */ 1914 sourceIndex=0; 1915 1916 /* conversion loop */ 1917 while(source<sourceLimit) { 1918 /* 1919 * This following test is to see if available input would overflow the output. 1920 * It does not catch output of more than one code unit that 1921 * overflows as a result of a surrogate pair or callback output 1922 * from the last source byte. 1923 * Therefore, those situations also test for overflows and will 1924 * then break the loop, too. 1925 */ 1926 if(target>=targetLimit) { 1927 /* target is full */ 1928 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 1929 break; 1930 } 1931 1932 entry=stateTable[0][*source++]; 1933 /* MBCS_ENTRY_IS_FINAL(entry) */ 1934 1935 /* test the most common case first */ 1936 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { 1937 /* output BMP code point */ 1938 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 1939 if(offsets!=NULL) { 1940 *offsets++=sourceIndex; 1941 } 1942 1943 /* normal end of action codes: prepare for a new character */ 1944 ++sourceIndex; 1945 continue; 1946 } 1947 1948 /* 1949 * An if-else-if chain provides more reliable performance for 1950 * the most common cases compared to a switch. 1951 */ 1952 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); 1953 if(action==MBCS_STATE_VALID_DIRECT_20 || 1954 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) 1955 ) { 1956 entry=MBCS_ENTRY_FINAL_VALUE(entry); 1957 /* output surrogate pair */ 1958 *target++=(UChar)(0xd800|(UChar)(entry>>10)); 1959 if(offsets!=NULL) { 1960 *offsets++=sourceIndex; 1961 } 1962 c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); 1963 if(target<targetLimit) { 1964 *target++=c; 1965 if(offsets!=NULL) { 1966 *offsets++=sourceIndex; 1967 } 1968 } else { 1969 /* target overflow */ 1970 cnv->UCharErrorBuffer[0]=c; 1971 cnv->UCharErrorBufferLength=1; 1972 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 1973 break; 1974 } 1975 1976 ++sourceIndex; 1977 continue; 1978 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { 1979 if(UCNV_TO_U_USE_FALLBACK(cnv)) { 1980 /* output BMP code point */ 1981 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 1982 if(offsets!=NULL) { 1983 *offsets++=sourceIndex; 1984 } 1985 1986 ++sourceIndex; 1987 continue; 1988 } 1989 } else if(action==MBCS_STATE_UNASSIGNED) { 1990 /* just fall through */ 1991 } else if(action==MBCS_STATE_ILLEGAL) { 1992 /* callback(illegal) */ 1993 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 1994 } else { 1995 /* reserved, must never occur */ 1996 ++sourceIndex; 1997 continue; 1998 } 1999 2000 if(U_FAILURE(*pErrorCode)) { 2001 /* callback(illegal) */ 2002 break; 2003 } else /* unassigned sequences indicated with byteIndex>0 */ { 2004 /* try an extension mapping */ 2005 pArgs->source=(const char *)source; 2006 cnv->toUBytes[0]=*(source-1); 2007 cnv->toULength=_extToU(cnv, cnv->sharedData, 2008 1, &source, sourceLimit, 2009 &target, targetLimit, 2010 &offsets, sourceIndex, 2011 pArgs->flush, 2012 pErrorCode); 2013 sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source); 2014 2015 if(U_FAILURE(*pErrorCode)) { 2016 /* not mappable or buffer overflow */ 2017 break; 2018 } 2019 } 2020 } 2021 2022 /* write back the updated pointers */ 2023 pArgs->source=(const char *)source; 2024 pArgs->target=target; 2025 pArgs->offsets=offsets; 2026 } 2027 2028 /* 2029 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages 2030 * that only map to and from the BMP. 2031 * In addition to single-byte optimizations, the offset calculations 2032 * become much easier. 2033 */ 2034 static void 2035 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, 2036 UErrorCode *pErrorCode) { 2037 UConverter *cnv; 2038 const uint8_t *source, *sourceLimit, *lastSource; 2039 UChar *target; 2040 int32_t targetCapacity, length; 2041 int32_t *offsets; 2042 2043 const int32_t (*stateTable)[256]; 2044 2045 int32_t sourceIndex; 2046 2047 int32_t entry; 2048 uint8_t action; 2049 2050 /* set up the local pointers */ 2051 cnv=pArgs->converter; 2052 source=(const uint8_t *)pArgs->source; 2053 sourceLimit=(const uint8_t *)pArgs->sourceLimit; 2054 target=pArgs->target; 2055 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); 2056 offsets=pArgs->offsets; 2057 2058 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 2059 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; 2060 } else { 2061 stateTable=cnv->sharedData->mbcs.stateTable; 2062 } 2063 2064 /* sourceIndex=-1 if the current character began in the previous buffer */ 2065 sourceIndex=0; 2066 lastSource=source; 2067 2068 /* 2069 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter 2070 * for the minimum of the sourceLength and targetCapacity 2071 */ 2072 length=(int32_t)(sourceLimit-source); 2073 if(length<targetCapacity) { 2074 targetCapacity=length; 2075 } 2076 2077 #if MBCS_UNROLL_SINGLE_TO_BMP 2078 /* unrolling makes it faster on Pentium III/Windows 2000 */ 2079 /* unroll the loop with the most common case */ 2080 unrolled: 2081 if(targetCapacity>=16) { 2082 int32_t count, loops, oredEntries; 2083 2084 loops=count=targetCapacity>>4; 2085 do { 2086 oredEntries=entry=stateTable[0][*source++]; 2087 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2088 oredEntries|=entry=stateTable[0][*source++]; 2089 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2090 oredEntries|=entry=stateTable[0][*source++]; 2091 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2092 oredEntries|=entry=stateTable[0][*source++]; 2093 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2094 oredEntries|=entry=stateTable[0][*source++]; 2095 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2096 oredEntries|=entry=stateTable[0][*source++]; 2097 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2098 oredEntries|=entry=stateTable[0][*source++]; 2099 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2100 oredEntries|=entry=stateTable[0][*source++]; 2101 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2102 oredEntries|=entry=stateTable[0][*source++]; 2103 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2104 oredEntries|=entry=stateTable[0][*source++]; 2105 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2106 oredEntries|=entry=stateTable[0][*source++]; 2107 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2108 oredEntries|=entry=stateTable[0][*source++]; 2109 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2110 oredEntries|=entry=stateTable[0][*source++]; 2111 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2112 oredEntries|=entry=stateTable[0][*source++]; 2113 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2114 oredEntries|=entry=stateTable[0][*source++]; 2115 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2116 oredEntries|=entry=stateTable[0][*source++]; 2117 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2118 2119 /* were all 16 entries really valid? */ 2120 if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { 2121 /* no, return to the first of these 16 */ 2122 source-=16; 2123 target-=16; 2124 break; 2125 } 2126 } while(--count>0); 2127 count=loops-count; 2128 targetCapacity-=16*count; 2129 2130 if(offsets!=NULL) { 2131 lastSource+=16*count; 2132 while(count>0) { 2133 *offsets++=sourceIndex++; 2134 *offsets++=sourceIndex++; 2135 *offsets++=sourceIndex++; 2136 *offsets++=sourceIndex++; 2137 *offsets++=sourceIndex++; 2138 *offsets++=sourceIndex++; 2139 *offsets++=sourceIndex++; 2140 *offsets++=sourceIndex++; 2141 *offsets++=sourceIndex++; 2142 *offsets++=sourceIndex++; 2143 *offsets++=sourceIndex++; 2144 *offsets++=sourceIndex++; 2145 *offsets++=sourceIndex++; 2146 *offsets++=sourceIndex++; 2147 *offsets++=sourceIndex++; 2148 *offsets++=sourceIndex++; 2149 --count; 2150 } 2151 } 2152 } 2153 #endif 2154 2155 /* conversion loop */ 2156 while(targetCapacity > 0 && source < sourceLimit) { 2157 entry=stateTable[0][*source++]; 2158 /* MBCS_ENTRY_IS_FINAL(entry) */ 2159 2160 /* test the most common case first */ 2161 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { 2162 /* output BMP code point */ 2163 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2164 --targetCapacity; 2165 continue; 2166 } 2167 2168 /* 2169 * An if-else-if chain provides more reliable performance for 2170 * the most common cases compared to a switch. 2171 */ 2172 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); 2173 if(action==MBCS_STATE_FALLBACK_DIRECT_16) { 2174 if(UCNV_TO_U_USE_FALLBACK(cnv)) { 2175 /* output BMP code point */ 2176 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2177 --targetCapacity; 2178 continue; 2179 } 2180 } else if(action==MBCS_STATE_UNASSIGNED) { 2181 /* just fall through */ 2182 } else if(action==MBCS_STATE_ILLEGAL) { 2183 /* callback(illegal) */ 2184 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2185 } else { 2186 /* reserved, must never occur */ 2187 continue; 2188 } 2189 2190 /* set offsets since the start or the last extension */ 2191 if(offsets!=NULL) { 2192 int32_t count=(int32_t)(source-lastSource); 2193 2194 /* predecrement: do not set the offset for the callback-causing character */ 2195 while(--count>0) { 2196 *offsets++=sourceIndex++; 2197 } 2198 /* offset and sourceIndex are now set for the current character */ 2199 } 2200 2201 if(U_FAILURE(*pErrorCode)) { 2202 /* callback(illegal) */ 2203 break; 2204 } else /* unassigned sequences indicated with byteIndex>0 */ { 2205 /* try an extension mapping */ 2206 lastSource=source; 2207 cnv->toUBytes[0]=*(source-1); 2208 cnv->toULength=_extToU(cnv, cnv->sharedData, 2209 1, &source, sourceLimit, 2210 &target, pArgs->targetLimit, 2211 &offsets, sourceIndex, 2212 pArgs->flush, 2213 pErrorCode); 2214 sourceIndex+=1+(int32_t)(source-lastSource); 2215 2216 if(U_FAILURE(*pErrorCode)) { 2217 /* not mappable or buffer overflow */ 2218 break; 2219 } 2220 2221 /* recalculate the targetCapacity after an extension mapping */ 2222 targetCapacity=(int32_t)(pArgs->targetLimit-target); 2223 length=(int32_t)(sourceLimit-source); 2224 if(length<targetCapacity) { 2225 targetCapacity=length; 2226 } 2227 } 2228 2229 #if MBCS_UNROLL_SINGLE_TO_BMP 2230 /* unrolling makes it faster on Pentium III/Windows 2000 */ 2231 goto unrolled; 2232 #endif 2233 } 2234 2235 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) { 2236 /* target is full */ 2237 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 2238 } 2239 2240 /* set offsets since the start or the last callback */ 2241 if(offsets!=NULL) { 2242 size_t count=source-lastSource; 2243 while(count>0) { 2244 *offsets++=sourceIndex++; 2245 --count; 2246 } 2247 } 2248 2249 /* write back the updated pointers */ 2250 pArgs->source=(const char *)source; 2251 pArgs->target=target; 2252 pArgs->offsets=offsets; 2253 } 2254 2255 static UBool 2256 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) { 2257 const int32_t *row=stateTable[state]; 2258 int32_t b, entry; 2259 /* First test for final entries in this state for some commonly valid byte values. */ 2260 entry=row[0xa1]; 2261 if( !MBCS_ENTRY_IS_TRANSITION(entry) && 2262 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL 2263 ) { 2264 return TRUE; 2265 } 2266 entry=row[0x41]; 2267 if( !MBCS_ENTRY_IS_TRANSITION(entry) && 2268 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL 2269 ) { 2270 return TRUE; 2271 } 2272 /* Then test for final entries in this state. */ 2273 for(b=0; b<=0xff; ++b) { 2274 entry=row[b]; 2275 if( !MBCS_ENTRY_IS_TRANSITION(entry) && 2276 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL 2277 ) { 2278 return TRUE; 2279 } 2280 } 2281 /* Then recurse for transition entries. */ 2282 for(b=0; b<=0xff; ++b) { 2283 entry=row[b]; 2284 if( MBCS_ENTRY_IS_TRANSITION(entry) && 2285 hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)) 2286 ) { 2287 return TRUE; 2288 } 2289 } 2290 return FALSE; 2291 } 2292 2293 /* 2294 * Is byte b a single/lead byte in this state? 2295 * Recurse for transition states, because here we don't want to say that 2296 * b is a lead byte if all byte sequences that start with b are illegal. 2297 */ 2298 static UBool 2299 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) { 2300 const int32_t *row=stateTable[state]; 2301 int32_t entry=row[b]; 2302 if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */ 2303 return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)); 2304 } else { 2305 uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); 2306 if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) { 2307 return FALSE; /* SI/SO are illegal for DBCS-only conversion */ 2308 } else { 2309 return action!=MBCS_STATE_ILLEGAL; 2310 } 2311 } 2312 } 2313 2314 U_CFUNC void 2315 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, 2316 UErrorCode *pErrorCode) { 2317 UConverter *cnv; 2318 const uint8_t *source, *sourceLimit; 2319 UChar *target; 2320 const UChar *targetLimit; 2321 int32_t *offsets; 2322 2323 const int32_t (*stateTable)[256]; 2324 const uint16_t *unicodeCodeUnits; 2325 2326 uint32_t offset; 2327 uint8_t state; 2328 int8_t byteIndex; 2329 uint8_t *bytes; 2330 2331 int32_t sourceIndex, nextSourceIndex; 2332 2333 int32_t entry; 2334 UChar c; 2335 uint8_t action; 2336 2337 /* use optimized function if possible */ 2338 cnv=pArgs->converter; 2339 2340 if(cnv->preToULength>0) { 2341 /* 2342 * pass sourceIndex=-1 because we continue from an earlier buffer 2343 * in the future, this may change with continuous offsets 2344 */ 2345 ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode); 2346 2347 if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) { 2348 return; 2349 } 2350 } 2351 2352 if(cnv->sharedData->mbcs.countStates==1) { 2353 if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { 2354 ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); 2355 } else { 2356 ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); 2357 } 2358 return; 2359 } 2360 2361 /* set up the local pointers */ 2362 source=(const uint8_t *)pArgs->source; 2363 sourceLimit=(const uint8_t *)pArgs->sourceLimit; 2364 target=pArgs->target; 2365 targetLimit=pArgs->targetLimit; 2366 offsets=pArgs->offsets; 2367 2368 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 2369 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; 2370 } else { 2371 stateTable=cnv->sharedData->mbcs.stateTable; 2372 } 2373 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; 2374 2375 /* get the converter state from UConverter */ 2376 offset=cnv->toUnicodeStatus; 2377 byteIndex=cnv->toULength; 2378 bytes=cnv->toUBytes; 2379 2380 /* 2381 * if we are in the SBCS state for a DBCS-only converter, 2382 * then load the DBCS state from the MBCS data 2383 * (dbcsOnlyState==0 if it is not a DBCS-only converter) 2384 */ 2385 if((state=(uint8_t)(cnv->mode))==0) { 2386 state=cnv->sharedData->mbcs.dbcsOnlyState; 2387 } 2388 2389 /* sourceIndex=-1 if the current character began in the previous buffer */ 2390 sourceIndex=byteIndex==0 ? 0 : -1; 2391 nextSourceIndex=0; 2392 2393 /* conversion loop */ 2394 while(source<sourceLimit) { 2395 /* 2396 * This following test is to see if available input would overflow the output. 2397 * It does not catch output of more than one code unit that 2398 * overflows as a result of a surrogate pair or callback output 2399 * from the last source byte. 2400 * Therefore, those situations also test for overflows and will 2401 * then break the loop, too. 2402 */ 2403 if(target>=targetLimit) { 2404 /* target is full */ 2405 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 2406 break; 2407 } 2408 2409 if(byteIndex==0) { 2410 /* optimized loop for 1/2-byte input and BMP output */ 2411 if(offsets==NULL) { 2412 do { 2413 entry=stateTable[state][*source]; 2414 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 2415 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); 2416 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); 2417 2418 ++source; 2419 if( source<sourceLimit && 2420 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && 2421 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && 2422 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe 2423 ) { 2424 ++source; 2425 *target++=c; 2426 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ 2427 offset=0; 2428 } else { 2429 /* set the state and leave the optimized loop */ 2430 bytes[0]=*(source-1); 2431 byteIndex=1; 2432 break; 2433 } 2434 } else { 2435 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { 2436 /* output BMP code point */ 2437 ++source; 2438 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2439 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ 2440 } else { 2441 /* leave the optimized loop */ 2442 break; 2443 } 2444 } 2445 } while(source<sourceLimit && target<targetLimit); 2446 } else /* offsets!=NULL */ { 2447 do { 2448 entry=stateTable[state][*source]; 2449 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 2450 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); 2451 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); 2452 2453 ++source; 2454 if( source<sourceLimit && 2455 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && 2456 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && 2457 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe 2458 ) { 2459 ++source; 2460 *target++=c; 2461 if(offsets!=NULL) { 2462 *offsets++=sourceIndex; 2463 sourceIndex=(nextSourceIndex+=2); 2464 } 2465 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ 2466 offset=0; 2467 } else { 2468 /* set the state and leave the optimized loop */ 2469 ++nextSourceIndex; 2470 bytes[0]=*(source-1); 2471 byteIndex=1; 2472 break; 2473 } 2474 } else { 2475 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { 2476 /* output BMP code point */ 2477 ++source; 2478 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2479 if(offsets!=NULL) { 2480 *offsets++=sourceIndex; 2481 sourceIndex=++nextSourceIndex; 2482 } 2483 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ 2484 } else { 2485 /* leave the optimized loop */ 2486 break; 2487 } 2488 } 2489 } while(source<sourceLimit && target<targetLimit); 2490 } 2491 2492 /* 2493 * these tests and break statements could be put inside the loop 2494 * if C had "break outerLoop" like Java 2495 */ 2496 if(source>=sourceLimit) { 2497 break; 2498 } 2499 if(target>=targetLimit) { 2500 /* target is full */ 2501 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 2502 break; 2503 } 2504 2505 ++nextSourceIndex; 2506 bytes[byteIndex++]=*source++; 2507 } else /* byteIndex>0 */ { 2508 ++nextSourceIndex; 2509 entry=stateTable[state][bytes[byteIndex++]=*source++]; 2510 } 2511 2512 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 2513 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); 2514 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); 2515 continue; 2516 } 2517 2518 /* save the previous state for proper extension mapping with SI/SO-stateful converters */ 2519 cnv->mode=state; 2520 2521 /* set the next state early so that we can reuse the entry variable */ 2522 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ 2523 2524 /* 2525 * An if-else-if chain provides more reliable performance for 2526 * the most common cases compared to a switch. 2527 */ 2528 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); 2529 if(action==MBCS_STATE_VALID_16) { 2530 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); 2531 c=unicodeCodeUnits[offset]; 2532 if(c<0xfffe) { 2533 /* output BMP code point */ 2534 *target++=c; 2535 if(offsets!=NULL) { 2536 *offsets++=sourceIndex; 2537 } 2538 byteIndex=0; 2539 } else if(c==0xfffe) { 2540 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { 2541 /* output fallback BMP code point */ 2542 *target++=(UChar)entry; 2543 if(offsets!=NULL) { 2544 *offsets++=sourceIndex; 2545 } 2546 byteIndex=0; 2547 } 2548 } else { 2549 /* callback(illegal) */ 2550 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2551 } 2552 } else if(action==MBCS_STATE_VALID_DIRECT_16) { 2553 /* output BMP code point */ 2554 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2555 if(offsets!=NULL) { 2556 *offsets++=sourceIndex; 2557 } 2558 byteIndex=0; 2559 } else if(action==MBCS_STATE_VALID_16_PAIR) { 2560 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); 2561 c=unicodeCodeUnits[offset++]; 2562 if(c<0xd800) { 2563 /* output BMP code point below 0xd800 */ 2564 *target++=c; 2565 if(offsets!=NULL) { 2566 *offsets++=sourceIndex; 2567 } 2568 byteIndex=0; 2569 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { 2570 /* output roundtrip or fallback surrogate pair */ 2571 *target++=(UChar)(c&0xdbff); 2572 if(offsets!=NULL) { 2573 *offsets++=sourceIndex; 2574 } 2575 byteIndex=0; 2576 if(target<targetLimit) { 2577 *target++=unicodeCodeUnits[offset]; 2578 if(offsets!=NULL) { 2579 *offsets++=sourceIndex; 2580 } 2581 } else { 2582 /* target overflow */ 2583 cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset]; 2584 cnv->UCharErrorBufferLength=1; 2585 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 2586 2587 offset=0; 2588 break; 2589 } 2590 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { 2591 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ 2592 *target++=unicodeCodeUnits[offset]; 2593 if(offsets!=NULL) { 2594 *offsets++=sourceIndex; 2595 } 2596 byteIndex=0; 2597 } else if(c==0xffff) { 2598 /* callback(illegal) */ 2599 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2600 } 2601 } else if(action==MBCS_STATE_VALID_DIRECT_20 || 2602 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) 2603 ) { 2604 entry=MBCS_ENTRY_FINAL_VALUE(entry); 2605 /* output surrogate pair */ 2606 *target++=(UChar)(0xd800|(UChar)(entry>>10)); 2607 if(offsets!=NULL) { 2608 *offsets++=sourceIndex; 2609 } 2610 byteIndex=0; 2611 c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); 2612 if(target<targetLimit) { 2613 *target++=c; 2614 if(offsets!=NULL) { 2615 *offsets++=sourceIndex; 2616 } 2617 } else { 2618 /* target overflow */ 2619 cnv->UCharErrorBuffer[0]=c; 2620 cnv->UCharErrorBufferLength=1; 2621 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 2622 2623 offset=0; 2624 break; 2625 } 2626 } else if(action==MBCS_STATE_CHANGE_ONLY) { 2627 /* 2628 * This serves as a state change without any output. 2629 * It is useful for reading simple stateful encodings, 2630 * for example using just Shift-In/Shift-Out codes. 2631 * The 21 unused bits may later be used for more sophisticated 2632 * state transitions. 2633 */ 2634 if(cnv->sharedData->mbcs.dbcsOnlyState==0) { 2635 byteIndex=0; 2636 } else { 2637 /* SI/SO are illegal for DBCS-only conversion */ 2638 state=(uint8_t)(cnv->mode); /* restore the previous state */ 2639 2640 /* callback(illegal) */ 2641 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2642 } 2643 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { 2644 if(UCNV_TO_U_USE_FALLBACK(cnv)) { 2645 /* output BMP code point */ 2646 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2647 if(offsets!=NULL) { 2648 *offsets++=sourceIndex; 2649 } 2650 byteIndex=0; 2651 } 2652 } else if(action==MBCS_STATE_UNASSIGNED) { 2653 /* just fall through */ 2654 } else if(action==MBCS_STATE_ILLEGAL) { 2655 /* callback(illegal) */ 2656 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2657 } else { 2658 /* reserved, must never occur */ 2659 byteIndex=0; 2660 } 2661 2662 /* end of action codes: prepare for a new character */ 2663 offset=0; 2664 2665 if(byteIndex==0) { 2666 sourceIndex=nextSourceIndex; 2667 } else if(U_FAILURE(*pErrorCode)) { 2668 /* callback(illegal) */ 2669 if(byteIndex>1) { 2670 /* 2671 * Ticket 5691: consistent illegal sequences: 2672 * - We include at least the first byte in the illegal sequence. 2673 * - If any of the non-initial bytes could be the start of a character, 2674 * we stop the illegal sequence before the first one of those. 2675 */ 2676 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); 2677 int8_t i; 2678 for(i=1; 2679 i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]); 2680 ++i) {} 2681 if(i<byteIndex) { 2682 /* Back out some bytes. */ 2683 int8_t backOutDistance=byteIndex-i; 2684 int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source); 2685 byteIndex=i; /* length of reported illegal byte sequence */ 2686 if(backOutDistance<=bytesFromThisBuffer) { 2687 source-=backOutDistance; 2688 } else { 2689 /* Back out bytes from the previous buffer: Need to replay them. */ 2690 cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); 2691 /* preToULength is negative! */ 2692 uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength); 2693 source=(const uint8_t *)pArgs->source; 2694 } 2695 } 2696 } 2697 break; 2698 } else /* unassigned sequences indicated with byteIndex>0 */ { 2699 /* try an extension mapping */ 2700 pArgs->source=(const char *)source; 2701 byteIndex=_extToU(cnv, cnv->sharedData, 2702 byteIndex, &source, sourceLimit, 2703 &target, targetLimit, 2704 &offsets, sourceIndex, 2705 pArgs->flush, 2706 pErrorCode); 2707 sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source); 2708 2709 if(U_FAILURE(*pErrorCode)) { 2710 /* not mappable or buffer overflow */ 2711 break; 2712 } 2713 } 2714 } 2715 2716 /* set the converter state back into UConverter */ 2717 cnv->toUnicodeStatus=offset; 2718 cnv->mode=state; 2719 cnv->toULength=byteIndex; 2720 2721 /* write back the updated pointers */ 2722 pArgs->source=(const char *)source; 2723 pArgs->target=target; 2724 pArgs->offsets=offsets; 2725 } 2726 2727 /* 2728 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages. 2729 * We still need a conversion loop in case we find reserved action codes, which are to be ignored. 2730 */ 2731 static UChar32 2732 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, 2733 UErrorCode *pErrorCode) { 2734 UConverter *cnv; 2735 const int32_t (*stateTable)[256]; 2736 const uint8_t *source, *sourceLimit; 2737 2738 int32_t entry; 2739 uint8_t action; 2740 2741 /* set up the local pointers */ 2742 cnv=pArgs->converter; 2743 source=(const uint8_t *)pArgs->source; 2744 sourceLimit=(const uint8_t *)pArgs->sourceLimit; 2745 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 2746 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; 2747 } else { 2748 stateTable=cnv->sharedData->mbcs.stateTable; 2749 } 2750 2751 /* conversion loop */ 2752 while(source<sourceLimit) { 2753 entry=stateTable[0][*source++]; 2754 /* MBCS_ENTRY_IS_FINAL(entry) */ 2755 2756 /* write back the updated pointer early so that we can return directly */ 2757 pArgs->source=(const char *)source; 2758 2759 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { 2760 /* output BMP code point */ 2761 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2762 } 2763 2764 /* 2765 * An if-else-if chain provides more reliable performance for 2766 * the most common cases compared to a switch. 2767 */ 2768 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); 2769 if( action==MBCS_STATE_VALID_DIRECT_20 || 2770 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) 2771 ) { 2772 /* output supplementary code point */ 2773 return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); 2774 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { 2775 if(UCNV_TO_U_USE_FALLBACK(cnv)) { 2776 /* output BMP code point */ 2777 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2778 } 2779 } else if(action==MBCS_STATE_UNASSIGNED) { 2780 /* just fall through */ 2781 } else if(action==MBCS_STATE_ILLEGAL) { 2782 /* callback(illegal) */ 2783 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2784 } else { 2785 /* reserved, must never occur */ 2786 continue; 2787 } 2788 2789 if(U_FAILURE(*pErrorCode)) { 2790 /* callback(illegal) */ 2791 break; 2792 } else /* unassigned sequence */ { 2793 /* defer to the generic implementation */ 2794 pArgs->source=(const char *)source-1; 2795 return UCNV_GET_NEXT_UCHAR_USE_TO_U; 2796 } 2797 } 2798 2799 /* no output because of empty input or only state changes */ 2800 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 2801 return 0xffff; 2802 } 2803 2804 /* 2805 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character 2806 * conversion without offset handling. 2807 * 2808 * When a character does not have a mapping to Unicode, then we return to the 2809 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback 2810 * handling. 2811 * We also defer to the generic code in other complicated cases and have them 2812 * ultimately handled by _MBCSToUnicodeWithOffsets() itself. 2813 * 2814 * All normal mappings and errors are handled here. 2815 */ 2816 static UChar32 2817 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, 2818 UErrorCode *pErrorCode) { 2819 UConverter *cnv; 2820 const uint8_t *source, *sourceLimit, *lastSource; 2821 2822 const int32_t (*stateTable)[256]; 2823 const uint16_t *unicodeCodeUnits; 2824 2825 uint32_t offset; 2826 uint8_t state; 2827 2828 int32_t entry; 2829 UChar32 c; 2830 uint8_t action; 2831 2832 /* use optimized function if possible */ 2833 cnv=pArgs->converter; 2834 2835 if(cnv->preToULength>0) { 2836 /* use the generic code in ucnv_getNextUChar() to continue with a partial match */ 2837 return UCNV_GET_NEXT_UCHAR_USE_TO_U; 2838 } 2839 2840 if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { 2841 /* 2842 * Using the generic ucnv_getNextUChar() code lets us deal correctly 2843 * with the rare case of a codepage that maps single surrogates 2844 * without adding the complexity to this already complicated function here. 2845 */ 2846 return UCNV_GET_NEXT_UCHAR_USE_TO_U; 2847 } else if(cnv->sharedData->mbcs.countStates==1) { 2848 return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode); 2849 } 2850 2851 /* set up the local pointers */ 2852 source=lastSource=(const uint8_t *)pArgs->source; 2853 sourceLimit=(const uint8_t *)pArgs->sourceLimit; 2854 2855 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 2856 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; 2857 } else { 2858 stateTable=cnv->sharedData->mbcs.stateTable; 2859 } 2860 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; 2861 2862 /* get the converter state from UConverter */ 2863 offset=cnv->toUnicodeStatus; 2864 2865 /* 2866 * if we are in the SBCS state for a DBCS-only converter, 2867 * then load the DBCS state from the MBCS data 2868 * (dbcsOnlyState==0 if it is not a DBCS-only converter) 2869 */ 2870 if((state=(uint8_t)(cnv->mode))==0) { 2871 state=cnv->sharedData->mbcs.dbcsOnlyState; 2872 } 2873 2874 /* conversion loop */ 2875 c=U_SENTINEL; 2876 while(source<sourceLimit) { 2877 entry=stateTable[state][*source++]; 2878 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 2879 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); 2880 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); 2881 2882 /* optimization for 1/2-byte input and BMP output */ 2883 if( source<sourceLimit && 2884 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && 2885 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && 2886 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe 2887 ) { 2888 ++source; 2889 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ 2890 /* output BMP code point */ 2891 break; 2892 } 2893 } else { 2894 /* save the previous state for proper extension mapping with SI/SO-stateful converters */ 2895 cnv->mode=state; 2896 2897 /* set the next state early so that we can reuse the entry variable */ 2898 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ 2899 2900 /* 2901 * An if-else-if chain provides more reliable performance for 2902 * the most common cases compared to a switch. 2903 */ 2904 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); 2905 if(action==MBCS_STATE_VALID_DIRECT_16) { 2906 /* output BMP code point */ 2907 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2908 break; 2909 } else if(action==MBCS_STATE_VALID_16) { 2910 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); 2911 c=unicodeCodeUnits[offset]; 2912 if(c<0xfffe) { 2913 /* output BMP code point */ 2914 break; 2915 } else if(c==0xfffe) { 2916 if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { 2917 break; 2918 } 2919 } else { 2920 /* callback(illegal) */ 2921 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2922 } 2923 } else if(action==MBCS_STATE_VALID_16_PAIR) { 2924 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); 2925 c=unicodeCodeUnits[offset++]; 2926 if(c<0xd800) { 2927 /* output BMP code point below 0xd800 */ 2928 break; 2929 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { 2930 /* output roundtrip or fallback supplementary code point */ 2931 c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00); 2932 break; 2933 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { 2934 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ 2935 c=unicodeCodeUnits[offset]; 2936 break; 2937 } else if(c==0xffff) { 2938 /* callback(illegal) */ 2939 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2940 } 2941 } else if(action==MBCS_STATE_VALID_DIRECT_20 || 2942 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) 2943 ) { 2944 /* output supplementary code point */ 2945 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); 2946 break; 2947 } else if(action==MBCS_STATE_CHANGE_ONLY) { 2948 /* 2949 * This serves as a state change without any output. 2950 * It is useful for reading simple stateful encodings, 2951 * for example using just Shift-In/Shift-Out codes. 2952 * The 21 unused bits may later be used for more sophisticated 2953 * state transitions. 2954 */ 2955 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) { 2956 /* SI/SO are illegal for DBCS-only conversion */ 2957 state=(uint8_t)(cnv->mode); /* restore the previous state */ 2958 2959 /* callback(illegal) */ 2960 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2961 } 2962 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { 2963 if(UCNV_TO_U_USE_FALLBACK(cnv)) { 2964 /* output BMP code point */ 2965 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 2966 break; 2967 } 2968 } else if(action==MBCS_STATE_UNASSIGNED) { 2969 /* just fall through */ 2970 } else if(action==MBCS_STATE_ILLEGAL) { 2971 /* callback(illegal) */ 2972 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 2973 } else { 2974 /* reserved (must never occur), or only state change */ 2975 offset=0; 2976 lastSource=source; 2977 continue; 2978 } 2979 2980 /* end of action codes: prepare for a new character */ 2981 offset=0; 2982 2983 if(U_FAILURE(*pErrorCode)) { 2984 /* callback(illegal) */ 2985 break; 2986 } else /* unassigned sequence */ { 2987 /* defer to the generic implementation */ 2988 cnv->toUnicodeStatus=0; 2989 cnv->mode=state; 2990 pArgs->source=(const char *)lastSource; 2991 return UCNV_GET_NEXT_UCHAR_USE_TO_U; 2992 } 2993 } 2994 } 2995 2996 if(c<0) { 2997 if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) { 2998 /* incomplete character byte sequence */ 2999 uint8_t *bytes=cnv->toUBytes; 3000 cnv->toULength=(int8_t)(source-lastSource); 3001 do { 3002 *bytes++=*lastSource++; 3003 } while(lastSource<source); 3004 *pErrorCode=U_TRUNCATED_CHAR_FOUND; 3005 } else if(U_FAILURE(*pErrorCode)) { 3006 /* callback(illegal) */ 3007 /* 3008 * Ticket 5691: consistent illegal sequences: 3009 * - We include at least the first byte in the illegal sequence. 3010 * - If any of the non-initial bytes could be the start of a character, 3011 * we stop the illegal sequence before the first one of those. 3012 */ 3013 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); 3014 uint8_t *bytes=cnv->toUBytes; 3015 *bytes++=*lastSource++; /* first byte */ 3016 if(lastSource==source) { 3017 cnv->toULength=1; 3018 } else /* lastSource<source: multi-byte character */ { 3019 int8_t i; 3020 for(i=1; 3021 lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource); 3022 ++i 3023 ) { 3024 *bytes++=*lastSource++; 3025 } 3026 cnv->toULength=i; 3027 source=lastSource; 3028 } 3029 } else { 3030 /* no output because of empty input or only state changes */ 3031 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 3032 } 3033 c=0xffff; 3034 } 3035 3036 /* set the converter state back into UConverter, ready for a new character */ 3037 cnv->toUnicodeStatus=0; 3038 cnv->mode=state; 3039 3040 /* write back the updated pointer */ 3041 pArgs->source=(const char *)source; 3042 return c; 3043 } 3044 3045 #if 0 3046 /* 3047 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus 3048 * Removal improves code coverage. 3049 */ 3050 /** 3051 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages. 3052 * It does not handle the EBCDIC swaplfnl option (set in UConverter). 3053 * It does not handle conversion extensions (_extToU()). 3054 */ 3055 U_CFUNC UChar32 3056 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData, 3057 uint8_t b, UBool useFallback) { 3058 int32_t entry; 3059 uint8_t action; 3060 3061 entry=sharedData->mbcs.stateTable[0][b]; 3062 /* MBCS_ENTRY_IS_FINAL(entry) */ 3063 3064 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { 3065 /* output BMP code point */ 3066 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 3067 } 3068 3069 /* 3070 * An if-else-if chain provides more reliable performance for 3071 * the most common cases compared to a switch. 3072 */ 3073 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); 3074 if(action==MBCS_STATE_VALID_DIRECT_20) { 3075 /* output supplementary code point */ 3076 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); 3077 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { 3078 if(!TO_U_USE_FALLBACK(useFallback)) { 3079 return 0xfffe; 3080 } 3081 /* output BMP code point */ 3082 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 3083 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { 3084 if(!TO_U_USE_FALLBACK(useFallback)) { 3085 return 0xfffe; 3086 } 3087 /* output supplementary code point */ 3088 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); 3089 } else if(action==MBCS_STATE_UNASSIGNED) { 3090 return 0xfffe; 3091 } else if(action==MBCS_STATE_ILLEGAL) { 3092 return 0xffff; 3093 } else { 3094 /* reserved, must never occur */ 3095 return 0xffff; 3096 } 3097 } 3098 #endif 3099 3100 /* 3101 * This is a simple version of _MBCSGetNextUChar() that is used 3102 * by other converter implementations. 3103 * It only returns an "assigned" result if it consumes the entire input. 3104 * It does not use state from the converter, nor error codes. 3105 * It does not handle the EBCDIC swaplfnl option (set in UConverter). 3106 * It handles conversion extensions but not GB 18030. 3107 * 3108 * Return value: 3109 * U+fffe unassigned 3110 * U+ffff illegal 3111 * otherwise the Unicode code point 3112 */ 3113 U_CFUNC UChar32 3114 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData, 3115 const char *source, int32_t length, 3116 UBool useFallback) { 3117 const int32_t (*stateTable)[256]; 3118 const uint16_t *unicodeCodeUnits; 3119 3120 uint32_t offset; 3121 uint8_t state, action; 3122 3123 UChar32 c; 3124 int32_t i, entry; 3125 3126 if(length<=0) { 3127 /* no input at all: "illegal" */ 3128 return 0xffff; 3129 } 3130 3131 #if 0 3132 /* 3133 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus 3134 * TODO In future releases, verify that this function is never called for SBCS 3135 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true. 3136 * Removal improves code coverage. 3137 */ 3138 /* use optimized function if possible */ 3139 if(sharedData->mbcs.countStates==1) { 3140 if(length==1) { 3141 return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback); 3142 } else { 3143 return 0xffff; /* illegal: more than a single byte for an SBCS converter */ 3144 } 3145 } 3146 #endif 3147 3148 /* set up the local pointers */ 3149 stateTable=sharedData->mbcs.stateTable; 3150 unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits; 3151 3152 /* converter state */ 3153 offset=0; 3154 state=sharedData->mbcs.dbcsOnlyState; 3155 3156 /* conversion loop */ 3157 for(i=0;;) { 3158 entry=stateTable[state][(uint8_t)source[i++]]; 3159 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 3160 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); 3161 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); 3162 3163 if(i==length) { 3164 return 0xffff; /* truncated character */ 3165 } 3166 } else { 3167 /* 3168 * An if-else-if chain provides more reliable performance for 3169 * the most common cases compared to a switch. 3170 */ 3171 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); 3172 if(action==MBCS_STATE_VALID_16) { 3173 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); 3174 c=unicodeCodeUnits[offset]; 3175 if(c!=0xfffe) { 3176 /* done */ 3177 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) { 3178 c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset); 3179 /* else done with 0xfffe */ 3180 } 3181 break; 3182 } else if(action==MBCS_STATE_VALID_DIRECT_16) { 3183 /* output BMP code point */ 3184 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 3185 break; 3186 } else if(action==MBCS_STATE_VALID_16_PAIR) { 3187 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); 3188 c=unicodeCodeUnits[offset++]; 3189 if(c<0xd800) { 3190 /* output BMP code point below 0xd800 */ 3191 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { 3192 /* output roundtrip or fallback supplementary code point */ 3193 c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00)); 3194 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { 3195 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ 3196 c=unicodeCodeUnits[offset]; 3197 } else if(c==0xffff) { 3198 return 0xffff; 3199 } else { 3200 c=0xfffe; 3201 } 3202 break; 3203 } else if(action==MBCS_STATE_VALID_DIRECT_20) { 3204 /* output supplementary code point */ 3205 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); 3206 break; 3207 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { 3208 if(!TO_U_USE_FALLBACK(useFallback)) { 3209 c=0xfffe; 3210 break; 3211 } 3212 /* output BMP code point */ 3213 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); 3214 break; 3215 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { 3216 if(!TO_U_USE_FALLBACK(useFallback)) { 3217 c=0xfffe; 3218 break; 3219 } 3220 /* output supplementary code point */ 3221 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); 3222 break; 3223 } else if(action==MBCS_STATE_UNASSIGNED) { 3224 c=0xfffe; 3225 break; 3226 } 3227 3228 /* 3229 * forbid MBCS_STATE_CHANGE_ONLY for this function, 3230 * and MBCS_STATE_ILLEGAL and reserved action codes 3231 */ 3232 return 0xffff; 3233 } 3234 } 3235 3236 if(i!=length) { 3237 /* illegal for this function: not all input consumed */ 3238 return 0xffff; 3239 } 3240 3241 if(c==0xfffe) { 3242 /* try an extension mapping */ 3243 const int32_t *cx=sharedData->mbcs.extIndexes; 3244 if(cx!=NULL) { 3245 return ucnv_extSimpleMatchToU(cx, source, length, useFallback); 3246 } 3247 } 3248 3249 return c; 3250 } 3251 3252 /* MBCS-from-Unicode conversion functions ----------------------------------- */ 3253 3254 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */ 3255 static void 3256 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, 3257 UErrorCode *pErrorCode) { 3258 UConverter *cnv; 3259 const UChar *source, *sourceLimit; 3260 uint8_t *target; 3261 int32_t targetCapacity; 3262 int32_t *offsets; 3263 3264 const uint16_t *table; 3265 const uint16_t *mbcsIndex; 3266 const uint8_t *bytes; 3267 3268 UChar32 c; 3269 3270 int32_t sourceIndex, nextSourceIndex; 3271 3272 uint32_t stage2Entry; 3273 uint32_t asciiRoundtrips; 3274 uint32_t value; 3275 uint8_t unicodeMask; 3276 3277 /* use optimized function if possible */ 3278 cnv=pArgs->converter; 3279 unicodeMask=cnv->sharedData->mbcs.unicodeMask; 3280 3281 /* set up the local pointers */ 3282 source=pArgs->source; 3283 sourceLimit=pArgs->sourceLimit; 3284 target=(uint8_t *)pArgs->target; 3285 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); 3286 offsets=pArgs->offsets; 3287 3288 table=cnv->sharedData->mbcs.fromUnicodeTable; 3289 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; 3290 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 3291 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; 3292 } else { 3293 bytes=cnv->sharedData->mbcs.fromUnicodeBytes; 3294 } 3295 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; 3296 3297 /* get the converter state from UConverter */ 3298 c=cnv->fromUChar32; 3299 3300 /* sourceIndex=-1 if the current character began in the previous buffer */ 3301 sourceIndex= c==0 ? 0 : -1; 3302 nextSourceIndex=0; 3303 3304 /* conversion loop */ 3305 if(c!=0 && targetCapacity>0) { 3306 goto getTrail; 3307 } 3308 3309 while(source<sourceLimit) { 3310 /* 3311 * This following test is to see if available input would overflow the output. 3312 * It does not catch output of more than one byte that 3313 * overflows as a result of a multi-byte character or callback output 3314 * from the last source character. 3315 * Therefore, those situations also test for overflows and will 3316 * then break the loop, too. 3317 */ 3318 if(targetCapacity>0) { 3319 /* 3320 * Get a correct Unicode code point: 3321 * a single UChar for a BMP code point or 3322 * a matched surrogate pair for a "supplementary code point". 3323 */ 3324 c=*source++; 3325 ++nextSourceIndex; 3326 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { 3327 *target++=(uint8_t)c; 3328 if(offsets!=NULL) { 3329 *offsets++=sourceIndex; 3330 sourceIndex=nextSourceIndex; 3331 } 3332 --targetCapacity; 3333 c=0; 3334 continue; 3335 } 3336 /* 3337 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX 3338 * to avoid dealing with surrogates. 3339 * MBCS_FAST_MAX must be >=0xd7ff. 3340 */ 3341 if(c<=0xd7ff) { 3342 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c); 3343 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ 3344 if(value==0) { 3345 goto unassigned; 3346 } 3347 /* output the value */ 3348 } else { 3349 /* 3350 * This also tests if the codepage maps single surrogates. 3351 * If it does, then surrogates are not paired but mapped separately. 3352 * Note that in this case unmatched surrogates are not detected. 3353 */ 3354 if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { 3355 if(UTF_IS_SURROGATE_FIRST(c)) { 3356 getTrail: 3357 if(source<sourceLimit) { 3358 /* test the following code unit */ 3359 UChar trail=*source; 3360 if(UTF_IS_SECOND_SURROGATE(trail)) { 3361 ++source; 3362 ++nextSourceIndex; 3363 c=UTF16_GET_PAIR_VALUE(c, trail); 3364 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { 3365 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ 3366 /* callback(unassigned) */ 3367 goto unassigned; 3368 } 3369 /* convert this supplementary code point */ 3370 /* exit this condition tree */ 3371 } else { 3372 /* this is an unmatched lead code unit (1st surrogate) */ 3373 /* callback(illegal) */ 3374 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 3375 break; 3376 } 3377 } else { 3378 /* no more input */ 3379 break; 3380 } 3381 } else { 3382 /* this is an unmatched trail code unit (2nd surrogate) */ 3383 /* callback(illegal) */ 3384 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 3385 break; 3386 } 3387 } 3388 3389 /* convert the Unicode code point in c into codepage bytes */ 3390 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); 3391 3392 /* get the bytes and the length for the output */ 3393 /* MBCS_OUTPUT_2 */ 3394 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); 3395 3396 /* is this code point assigned, or do we use fallbacks? */ 3397 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || 3398 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) 3399 ) { 3400 /* 3401 * We allow a 0 byte output if the "assigned" bit is set for this entry. 3402 * There is no way with this data structure for fallback output 3403 * to be a zero byte. 3404 */ 3405 3406 unassigned: 3407 /* try an extension mapping */ 3408 pArgs->source=source; 3409 c=_extFromU(cnv, cnv->sharedData, 3410 c, &source, sourceLimit, 3411 &target, target+targetCapacity, 3412 &offsets, sourceIndex, 3413 pArgs->flush, 3414 pErrorCode); 3415 nextSourceIndex+=(int32_t)(source-pArgs->source); 3416 3417 if(U_FAILURE(*pErrorCode)) { 3418 /* not mappable or buffer overflow */ 3419 break; 3420 } else { 3421 /* a mapping was written to the target, continue */ 3422 3423 /* recalculate the targetCapacity after an extension mapping */ 3424 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); 3425 3426 /* normal end of conversion: prepare for a new character */ 3427 sourceIndex=nextSourceIndex; 3428 continue; 3429 } 3430 } 3431 } 3432 3433 /* write the output character bytes from value and length */ 3434 /* from the first if in the loop we know that targetCapacity>0 */ 3435 if(value<=0xff) { 3436 /* this is easy because we know that there is enough space */ 3437 *target++=(uint8_t)value; 3438 if(offsets!=NULL) { 3439 *offsets++=sourceIndex; 3440 } 3441 --targetCapacity; 3442 } else /* length==2 */ { 3443 *target++=(uint8_t)(value>>8); 3444 if(2<=targetCapacity) { 3445 *target++=(uint8_t)value; 3446 if(offsets!=NULL) { 3447 *offsets++=sourceIndex; 3448 *offsets++=sourceIndex; 3449 } 3450 targetCapacity-=2; 3451 } else { 3452 if(offsets!=NULL) { 3453 *offsets++=sourceIndex; 3454 } 3455 cnv->charErrorBuffer[0]=(char)value; 3456 cnv->charErrorBufferLength=1; 3457 3458 /* target overflow */ 3459 targetCapacity=0; 3460 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 3461 c=0; 3462 break; 3463 } 3464 } 3465 3466 /* normal end of conversion: prepare for a new character */ 3467 c=0; 3468 sourceIndex=nextSourceIndex; 3469 continue; 3470 } else { 3471 /* target is full */ 3472 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 3473 break; 3474 } 3475 } 3476 3477 /* set the converter state back into UConverter */ 3478 cnv->fromUChar32=c; 3479 3480 /* write back the updated pointers */ 3481 pArgs->source=source; 3482 pArgs->target=(char *)target; 3483 pArgs->offsets=offsets; 3484 } 3485 3486 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */ 3487 static void 3488 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, 3489 UErrorCode *pErrorCode) { 3490 UConverter *cnv; 3491 const UChar *source, *sourceLimit; 3492 uint8_t *target; 3493 int32_t targetCapacity; 3494 int32_t *offsets; 3495 3496 const uint16_t *table; 3497 const uint16_t *results; 3498 3499 UChar32 c; 3500 3501 int32_t sourceIndex, nextSourceIndex; 3502 3503 uint16_t value, minValue; 3504 UBool hasSupplementary; 3505 3506 /* set up the local pointers */ 3507 cnv=pArgs->converter; 3508 source=pArgs->source; 3509 sourceLimit=pArgs->sourceLimit; 3510 target=(uint8_t *)pArgs->target; 3511 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); 3512 offsets=pArgs->offsets; 3513 3514 table=cnv->sharedData->mbcs.fromUnicodeTable; 3515 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 3516 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; 3517 } else { 3518 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; 3519 } 3520 3521 if(cnv->useFallback) { 3522 /* use all roundtrip and fallback results */ 3523 minValue=0x800; 3524 } else { 3525 /* use only roundtrips and fallbacks from private-use characters */ 3526 minValue=0xc00; 3527 } 3528 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); 3529 3530 /* get the converter state from UConverter */ 3531 c=cnv->fromUChar32; 3532 3533 /* sourceIndex=-1 if the current character began in the previous buffer */ 3534 sourceIndex= c==0 ? 0 : -1; 3535 nextSourceIndex=0; 3536 3537 /* conversion loop */ 3538 if(c!=0 && targetCapacity>0) { 3539 goto getTrail; 3540 } 3541 3542 while(source<sourceLimit) { 3543 /* 3544 * This following test is to see if available input would overflow the output. 3545 * It does not catch output of more than one byte that 3546 * overflows as a result of a multi-byte character or callback output 3547 * from the last source character. 3548 * Therefore, those situations also test for overflows and will 3549 * then break the loop, too. 3550 */ 3551 if(targetCapacity>0) { 3552 /* 3553 * Get a correct Unicode code point: 3554 * a single UChar for a BMP code point or 3555 * a matched surrogate pair for a "supplementary code point". 3556 */ 3557 c=*source++; 3558 ++nextSourceIndex; 3559 if(UTF_IS_SURROGATE(c)) { 3560 if(UTF_IS_SURROGATE_FIRST(c)) { 3561 getTrail: 3562 if(source<sourceLimit) { 3563 /* test the following code unit */ 3564 UChar trail=*source; 3565 if(UTF_IS_SECOND_SURROGATE(trail)) { 3566 ++source; 3567 ++nextSourceIndex; 3568 c=UTF16_GET_PAIR_VALUE(c, trail); 3569 if(!hasSupplementary) { 3570 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ 3571 /* callback(unassigned) */ 3572 goto unassigned; 3573 } 3574 /* convert this supplementary code point */ 3575 /* exit this condition tree */ 3576 } else { 3577 /* this is an unmatched lead code unit (1st surrogate) */ 3578 /* callback(illegal) */ 3579 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 3580 break; 3581 } 3582 } else { 3583 /* no more input */ 3584 break; 3585 } 3586 } else { 3587 /* this is an unmatched trail code unit (2nd surrogate) */ 3588 /* callback(illegal) */ 3589 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 3590 break; 3591 } 3592 } 3593 3594 /* convert the Unicode code point in c into codepage bytes */ 3595 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); 3596 3597 /* is this code point assigned, or do we use fallbacks? */ 3598 if(value>=minValue) { 3599 /* assigned, write the output character bytes from value and length */ 3600 /* length==1 */ 3601 /* this is easy because we know that there is enough space */ 3602 *target++=(uint8_t)value; 3603 if(offsets!=NULL) { 3604 *offsets++=sourceIndex; 3605 } 3606 --targetCapacity; 3607 3608 /* normal end of conversion: prepare for a new character */ 3609 c=0; 3610 sourceIndex=nextSourceIndex; 3611 } else { /* unassigned */ 3612 unassigned: 3613 /* try an extension mapping */ 3614 pArgs->source=source; 3615 c=_extFromU(cnv, cnv->sharedData, 3616 c, &source, sourceLimit, 3617 &target, target+targetCapacity, 3618 &offsets, sourceIndex, 3619 pArgs->flush, 3620 pErrorCode); 3621 nextSourceIndex+=(int32_t)(source-pArgs->source); 3622 3623 if(U_FAILURE(*pErrorCode)) { 3624 /* not mappable or buffer overflow */ 3625 break; 3626 } else { 3627 /* a mapping was written to the target, continue */ 3628 3629 /* recalculate the targetCapacity after an extension mapping */ 3630 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); 3631 3632 /* normal end of conversion: prepare for a new character */ 3633 sourceIndex=nextSourceIndex; 3634 } 3635 } 3636 } else { 3637 /* target is full */ 3638 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 3639 break; 3640 } 3641 } 3642 3643 /* set the converter state back into UConverter */ 3644 cnv->fromUChar32=c; 3645 3646 /* write back the updated pointers */ 3647 pArgs->source=source; 3648 pArgs->target=(char *)target; 3649 pArgs->offsets=offsets; 3650 } 3651 3652 /* 3653 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages 3654 * that map only to and from the BMP. 3655 * In addition to single-byte/state optimizations, the offset calculations 3656 * become much easier. 3657 * It would be possible to use the sbcsIndex for UTF-8-friendly tables, 3658 * but measurements have shown that this diminishes performance 3659 * in more cases than it improves it. 3660 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches 3661 * for various MBCS and SBCS optimizations. 3662 */ 3663 static void 3664 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, 3665 UErrorCode *pErrorCode) { 3666 UConverter *cnv; 3667 const UChar *source, *sourceLimit, *lastSource; 3668 uint8_t *target; 3669 int32_t targetCapacity, length; 3670 int32_t *offsets; 3671 3672 const uint16_t *table; 3673 const uint16_t *results; 3674 3675 UChar32 c; 3676 3677 int32_t sourceIndex; 3678 3679 uint32_t asciiRoundtrips; 3680 uint16_t value, minValue; 3681 3682 /* set up the local pointers */ 3683 cnv=pArgs->converter; 3684 source=pArgs->source; 3685 sourceLimit=pArgs->sourceLimit; 3686 target=(uint8_t *)pArgs->target; 3687 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); 3688 offsets=pArgs->offsets; 3689 3690 table=cnv->sharedData->mbcs.fromUnicodeTable; 3691 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 3692 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; 3693 } else { 3694 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; 3695 } 3696 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; 3697 3698 if(cnv->useFallback) { 3699 /* use all roundtrip and fallback results */ 3700 minValue=0x800; 3701 } else { 3702 /* use only roundtrips and fallbacks from private-use characters */ 3703 minValue=0xc00; 3704 } 3705 3706 /* get the converter state from UConverter */ 3707 c=cnv->fromUChar32; 3708 3709 /* sourceIndex=-1 if the current character began in the previous buffer */ 3710 sourceIndex= c==0 ? 0 : -1; 3711 lastSource=source; 3712 3713 /* 3714 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter 3715 * for the minimum of the sourceLength and targetCapacity 3716 */ 3717 length=(int32_t)(sourceLimit-source); 3718 if(length<targetCapacity) { 3719 targetCapacity=length; 3720 } 3721 3722 /* conversion loop */ 3723 if(c!=0 && targetCapacity>0) { 3724 goto getTrail; 3725 } 3726 3727 #if MBCS_UNROLL_SINGLE_FROM_BMP 3728 /* unrolling makes it slower on Pentium III/Windows 2000?! */ 3729 /* unroll the loop with the most common case */ 3730 unrolled: 3731 if(targetCapacity>=4) { 3732 int32_t count, loops; 3733 uint16_t andedValues; 3734 3735 loops=count=targetCapacity>>2; 3736 do { 3737 c=*source++; 3738 andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); 3739 *target++=(uint8_t)value; 3740 c=*source++; 3741 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); 3742 *target++=(uint8_t)value; 3743 c=*source++; 3744 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); 3745 *target++=(uint8_t)value; 3746 c=*source++; 3747 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); 3748 *target++=(uint8_t)value; 3749 3750 /* were all 4 entries really valid? */ 3751 if(andedValues<minValue) { 3752 /* no, return to the first of these 4 */ 3753 source-=4; 3754 target-=4; 3755 break; 3756 } 3757 } while(--count>0); 3758 count=loops-count; 3759 targetCapacity-=4*count; 3760 3761 if(offsets!=NULL) { 3762 lastSource+=4*count; 3763 while(count>0) { 3764 *offsets++=sourceIndex++; 3765 *offsets++=sourceIndex++; 3766 *offsets++=sourceIndex++; 3767 *offsets++=sourceIndex++; 3768 --count; 3769 } 3770 } 3771 3772 c=0; 3773 } 3774 #endif 3775 3776 while(targetCapacity>0) { 3777 /* 3778 * Get a correct Unicode code point: 3779 * a single UChar for a BMP code point or 3780 * a matched surrogate pair for a "supplementary code point". 3781 */ 3782 c=*source++; 3783 /* 3784 * Do not immediately check for single surrogates: 3785 * Assume that they are unassigned and check for them in that case. 3786 * This speeds up the conversion of assigned characters. 3787 */ 3788 /* convert the Unicode code point in c into codepage bytes */ 3789 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { 3790 *target++=(uint8_t)c; 3791 --targetCapacity; 3792 c=0; 3793 continue; 3794 } 3795 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); 3796 /* is this code point assigned, or do we use fallbacks? */ 3797 if(value>=minValue) { 3798 /* assigned, write the output character bytes from value and length */ 3799 /* length==1 */ 3800 /* this is easy because we know that there is enough space */ 3801 *target++=(uint8_t)value; 3802 --targetCapacity; 3803 3804 /* normal end of conversion: prepare for a new character */ 3805 c=0; 3806 continue; 3807 } else if(!UTF_IS_SURROGATE(c)) { 3808 /* normal, unassigned BMP character */ 3809 } else if(UTF_IS_SURROGATE_FIRST(c)) { 3810 getTrail: 3811 if(source<sourceLimit) { 3812 /* test the following code unit */ 3813 UChar trail=*source; 3814 if(UTF_IS_SECOND_SURROGATE(trail)) { 3815 ++source; 3816 c=UTF16_GET_PAIR_VALUE(c, trail); 3817 /* this codepage does not map supplementary code points */ 3818 /* callback(unassigned) */ 3819 } else { 3820 /* this is an unmatched lead code unit (1st surrogate) */ 3821 /* callback(illegal) */ 3822 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 3823 break; 3824 } 3825 } else { 3826 /* no more input */ 3827 if (pArgs->flush) { 3828 *pErrorCode=U_TRUNCATED_CHAR_FOUND; 3829 } 3830 break; 3831 } 3832 } else { 3833 /* this is an unmatched trail code unit (2nd surrogate) */ 3834 /* callback(illegal) */ 3835 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 3836 break; 3837 } 3838 3839 /* c does not have a mapping */ 3840 3841 /* get the number of code units for c to correctly advance sourceIndex */ 3842 length=U16_LENGTH(c); 3843 3844 /* set offsets since the start or the last extension */ 3845 if(offsets!=NULL) { 3846 int32_t count=(int32_t)(source-lastSource); 3847 3848 /* do not set the offset for this character */ 3849 count-=length; 3850 3851 while(count>0) { 3852 *offsets++=sourceIndex++; 3853 --count; 3854 } 3855 /* offsets and sourceIndex are now set for the current character */ 3856 } 3857 3858 /* try an extension mapping */ 3859 lastSource=source; 3860 c=_extFromU(cnv, cnv->sharedData, 3861 c, &source, sourceLimit, 3862 &target, (const uint8_t *)(pArgs->targetLimit), 3863 &offsets, sourceIndex, 3864 pArgs->flush, 3865 pErrorCode); 3866 sourceIndex+=length+(int32_t)(source-lastSource); 3867 lastSource=source; 3868 3869 if(U_FAILURE(*pErrorCode)) { 3870 /* not mappable or buffer overflow */ 3871 break; 3872 } else { 3873 /* a mapping was written to the target, continue */ 3874 3875 /* recalculate the targetCapacity after an extension mapping */ 3876 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); 3877 length=(int32_t)(sourceLimit-source); 3878 if(length<targetCapacity) { 3879 targetCapacity=length; 3880 } 3881 } 3882 3883 #if MBCS_UNROLL_SINGLE_FROM_BMP 3884 /* unrolling makes it slower on Pentium III/Windows 2000?! */ 3885 goto unrolled; 3886 #endif 3887 } 3888 3889 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) { 3890 /* target is full */ 3891 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 3892 } 3893 3894 /* set offsets since the start or the last callback */ 3895 if(offsets!=NULL) { 3896 size_t count=source-lastSource; 3897 if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) { 3898 /* 3899 Caller gave us a partial supplementary character, 3900 which this function couldn't convert in any case. 3901 The callback will handle the offset. 3902 */ 3903 count--; 3904 } 3905 while(count>0) { 3906 *offsets++=sourceIndex++; 3907 --count; 3908 } 3909 } 3910 3911 /* set the converter state back into UConverter */ 3912 cnv->fromUChar32=c; 3913 3914 /* write back the updated pointers */ 3915 pArgs->source=source; 3916 pArgs->target=(char *)target; 3917 pArgs->offsets=offsets; 3918 } 3919 3920 U_CFUNC void 3921 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, 3922 UErrorCode *pErrorCode) { 3923 UConverter *cnv; 3924 const UChar *source, *sourceLimit; 3925 uint8_t *target; 3926 int32_t targetCapacity; 3927 int32_t *offsets; 3928 3929 const uint16_t *table; 3930 const uint16_t *mbcsIndex; 3931 const uint8_t *p, *bytes; 3932 uint8_t outputType; 3933 3934 UChar32 c; 3935 3936 int32_t prevSourceIndex, sourceIndex, nextSourceIndex; 3937 3938 uint32_t stage2Entry; 3939 uint32_t asciiRoundtrips; 3940 uint32_t value; 3941 uint8_t si_value[2] = {0, 0}; 3942 uint8_t so_value[2] = {0, 0}; 3943 uint8_t si_value_length, so_value_length; 3944 int32_t length = 0, prevLength; 3945 uint8_t unicodeMask; 3946 3947 cnv=pArgs->converter; 3948 3949 if(cnv->preFromUFirstCP>=0) { 3950 /* 3951 * pass sourceIndex=-1 because we continue from an earlier buffer 3952 * in the future, this may change with continuous offsets 3953 */ 3954 ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode); 3955 3956 if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) { 3957 return; 3958 } 3959 } 3960 3961 /* use optimized function if possible */ 3962 outputType=cnv->sharedData->mbcs.outputType; 3963 unicodeMask=cnv->sharedData->mbcs.unicodeMask; 3964 if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) { 3965 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { 3966 ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode); 3967 } else { 3968 ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode); 3969 } 3970 return; 3971 } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) { 3972 ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode); 3973 return; 3974 } 3975 3976 /* set up the local pointers */ 3977 source=pArgs->source; 3978 sourceLimit=pArgs->sourceLimit; 3979 target=(uint8_t *)pArgs->target; 3980 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); 3981 offsets=pArgs->offsets; 3982 3983 table=cnv->sharedData->mbcs.fromUnicodeTable; 3984 if(cnv->sharedData->mbcs.utf8Friendly) { 3985 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; 3986 } else { 3987 mbcsIndex=NULL; 3988 } 3989 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 3990 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; 3991 } else { 3992 bytes=cnv->sharedData->mbcs.fromUnicodeBytes; 3993 } 3994 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; 3995 3996 /* get the converter state from UConverter */ 3997 c=cnv->fromUChar32; 3998 3999 if(outputType==MBCS_OUTPUT_2_SISO) { 4000 prevLength=cnv->fromUnicodeStatus; 4001 if(prevLength==0) { 4002 /* set the real value */ 4003 prevLength=1; 4004 } 4005 } else { 4006 /* prevent fromUnicodeStatus from being set to something non-0 */ 4007 prevLength=0; 4008 } 4009 4010 /* sourceIndex=-1 if the current character began in the previous buffer */ 4011 prevSourceIndex=-1; 4012 sourceIndex= c==0 ? 0 : -1; 4013 nextSourceIndex=0; 4014 4015 /* Get the SI/SO character for the converter */ 4016 si_value_length = getSISOBytes(SI, cnv->options, si_value); 4017 so_value_length = getSISOBytes(SO, cnv->options, so_value); 4018 4019 /* conversion loop */ 4020 /* 4021 * This is another piece of ugly code: 4022 * A goto into the loop if the converter state contains a first surrogate 4023 * from the previous function call. 4024 * It saves me to check in each loop iteration a check of if(c==0) 4025 * and duplicating the trail-surrogate-handling code in the else 4026 * branch of that check. 4027 * I could not find any other way to get around this other than 4028 * using a function call for the conversion and callback, which would 4029 * be even more inefficient. 4030 * 4031 * Markus Scherer 2000-jul-19 4032 */ 4033 if(c!=0 && targetCapacity>0) { 4034 goto getTrail; 4035 } 4036 4037 while(source<sourceLimit) { 4038 /* 4039 * This following test is to see if available input would overflow the output. 4040 * It does not catch output of more than one byte that 4041 * overflows as a result of a multi-byte character or callback output 4042 * from the last source character. 4043 * Therefore, those situations also test for overflows and will 4044 * then break the loop, too. 4045 */ 4046 if(targetCapacity>0) { 4047 /* 4048 * Get a correct Unicode code point: 4049 * a single UChar for a BMP code point or 4050 * a matched surrogate pair for a "supplementary code point". 4051 */ 4052 c=*source++; 4053 ++nextSourceIndex; 4054 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { 4055 *target++=(uint8_t)c; 4056 if(offsets!=NULL) { 4057 *offsets++=sourceIndex; 4058 prevSourceIndex=sourceIndex; 4059 sourceIndex=nextSourceIndex; 4060 } 4061 --targetCapacity; 4062 c=0; 4063 continue; 4064 } 4065 /* 4066 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX 4067 * to avoid dealing with surrogates. 4068 * MBCS_FAST_MAX must be >=0xd7ff. 4069 */ 4070 if(c<=0xd7ff && mbcsIndex!=NULL) { 4071 value=mbcsIndex[c>>6]; 4072 4073 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */ 4074 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ 4075 switch(outputType) { 4076 case MBCS_OUTPUT_2: 4077 value=((const uint16_t *)bytes)[value +(c&0x3f)]; 4078 if(value<=0xff) { 4079 if(value==0) { 4080 goto unassigned; 4081 } else { 4082 length=1; 4083 } 4084 } else { 4085 length=2; 4086 } 4087 break; 4088 case MBCS_OUTPUT_2_SISO: 4089 /* 1/2-byte stateful with Shift-In/Shift-Out */ 4090 /* 4091 * Save the old state in the converter object 4092 * right here, then change the local prevLength state variable if necessary. 4093 * Then, if this character turns out to be unassigned or a fallback that 4094 * is not taken, the callback code must not save the new state in the converter 4095 * because the new state is for a character that is not output. 4096 * However, the callback must still restore the state from the converter 4097 * in case the callback function changed it for its output. 4098 */ 4099 cnv->fromUnicodeStatus=prevLength; /* save the old state */ 4100 value=((const uint16_t *)bytes)[value +(c&0x3f)]; 4101 if(value<=0xff) { 4102 if(value==0) { 4103 goto unassigned; 4104 } else if(prevLength<=1) { 4105 length=1; 4106 } else { 4107 /* change from double-byte mode to single-byte */ 4108 if (si_value_length == 1) { 4109 value|=(uint32_t)si_value[0]<<8; 4110 length = 2; 4111 } else if (si_value_length == 2) { 4112 value|=(uint32_t)si_value[1]<<8; 4113 value|=(uint32_t)si_value[0]<<16; 4114 length = 3; 4115 } 4116 prevLength=1; 4117 } 4118 } else { 4119 if(prevLength==2) { 4120 length=2; 4121 } else { 4122 /* change from single-byte mode to double-byte */ 4123 if (so_value_length == 1) { 4124 value|=(uint32_t)so_value[0]<<16; 4125 length = 3; 4126 } else if (so_value_length == 2) { 4127 value|=(uint32_t)so_value[1]<<16; 4128 value|=(uint32_t)so_value[0]<<24; 4129 length = 4; 4130 } 4131 prevLength=2; 4132 } 4133 } 4134 break; 4135 case MBCS_OUTPUT_DBCS_ONLY: 4136 /* table with single-byte results, but only DBCS mappings used */ 4137 value=((const uint16_t *)bytes)[value +(c&0x3f)]; 4138 if(value<=0xff) { 4139 /* no mapping or SBCS result, not taken for DBCS-only */ 4140 goto unassigned; 4141 } else { 4142 length=2; 4143 } 4144 break; 4145 case MBCS_OUTPUT_3: 4146 p=bytes+(value+(c&0x3f))*3; 4147 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; 4148 if(value<=0xff) { 4149 if(value==0) { 4150 goto unassigned; 4151 } else { 4152 length=1; 4153 } 4154 } else if(value<=0xffff) { 4155 length=2; 4156 } else { 4157 length=3; 4158 } 4159 break; 4160 case MBCS_OUTPUT_4: 4161 value=((const uint32_t *)bytes)[value +(c&0x3f)]; 4162 if(value<=0xff) { 4163 if(value==0) { 4164 goto unassigned; 4165 } else { 4166 length=1; 4167 } 4168 } else if(value<=0xffff) { 4169 length=2; 4170 } else if(value<=0xffffff) { 4171 length=3; 4172 } else { 4173 length=4; 4174 } 4175 break; 4176 case MBCS_OUTPUT_3_EUC: 4177 value=((const uint16_t *)bytes)[value +(c&0x3f)]; 4178 /* EUC 16-bit fixed-length representation */ 4179 if(value<=0xff) { 4180 if(value==0) { 4181 goto unassigned; 4182 } else { 4183 length=1; 4184 } 4185 } else if((value&0x8000)==0) { 4186 value|=0x8e8000; 4187 length=3; 4188 } else if((value&0x80)==0) { 4189 value|=0x8f0080; 4190 length=3; 4191 } else { 4192 length=2; 4193 } 4194 break; 4195 case MBCS_OUTPUT_4_EUC: 4196 p=bytes+(value+(c&0x3f))*3; 4197 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; 4198 /* EUC 16-bit fixed-length representation applied to the first two bytes */ 4199 if(value<=0xff) { 4200 if(value==0) { 4201 goto unassigned; 4202 } else { 4203 length=1; 4204 } 4205 } else if(value<=0xffff) { 4206 length=2; 4207 } else if((value&0x800000)==0) { 4208 value|=0x8e800000; 4209 length=4; 4210 } else if((value&0x8000)==0) { 4211 value|=0x8f008000; 4212 length=4; 4213 } else { 4214 length=3; 4215 } 4216 break; 4217 default: 4218 /* must not occur */ 4219 /* 4220 * To avoid compiler warnings that value & length may be 4221 * used without having been initialized, we set them here. 4222 * In reality, this is unreachable code. 4223 * Not having a default branch also causes warnings with 4224 * some compilers. 4225 */ 4226 value=0; 4227 length=0; 4228 break; 4229 } 4230 /* output the value */ 4231 } else { 4232 /* 4233 * This also tests if the codepage maps single surrogates. 4234 * If it does, then surrogates are not paired but mapped separately. 4235 * Note that in this case unmatched surrogates are not detected. 4236 */ 4237 if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { 4238 if(UTF_IS_SURROGATE_FIRST(c)) { 4239 getTrail: 4240 if(source<sourceLimit) { 4241 /* test the following code unit */ 4242 UChar trail=*source; 4243 if(UTF_IS_SECOND_SURROGATE(trail)) { 4244 ++source; 4245 ++nextSourceIndex; 4246 c=UTF16_GET_PAIR_VALUE(c, trail); 4247 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { 4248 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ 4249 cnv->fromUnicodeStatus=prevLength; /* save the old state */ 4250 /* callback(unassigned) */ 4251 goto unassigned; 4252 } 4253 /* convert this supplementary code point */ 4254 /* exit this condition tree */ 4255 } else { 4256 /* this is an unmatched lead code unit (1st surrogate) */ 4257 /* callback(illegal) */ 4258 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 4259 break; 4260 } 4261 } else { 4262 /* no more input */ 4263 break; 4264 } 4265 } else { 4266 /* this is an unmatched trail code unit (2nd surrogate) */ 4267 /* callback(illegal) */ 4268 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 4269 break; 4270 } 4271 } 4272 4273 /* convert the Unicode code point in c into codepage bytes */ 4274 4275 /* 4276 * The basic lookup is a triple-stage compact array (trie) lookup. 4277 * For details see the beginning of this file. 4278 * 4279 * Single-byte codepages are handled with a different data structure 4280 * by _MBCSSingle... functions. 4281 * 4282 * The result consists of a 32-bit value from stage 2 and 4283 * a pointer to as many bytes as are stored per character. 4284 * The pointer points to the character's bytes in stage 3. 4285 * Bits 15..0 of the stage 2 entry contain the stage 3 index 4286 * for that pointer, while bits 31..16 are flags for which of 4287 * the 16 characters in the block are roundtrip-assigned. 4288 * 4289 * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t 4290 * respectively as uint32_t, in the platform encoding. 4291 * For 3-byte codepages, the bytes are always stored in big-endian order. 4292 * 4293 * For EUC encodings that use only either 0x8e or 0x8f as the first 4294 * byte of their longest byte sequences, the first two bytes in 4295 * this third stage indicate with their 7th bits whether these bytes 4296 * are to be written directly or actually need to be preceeded by 4297 * one of the two Single-Shift codes. With this, the third stage 4298 * stores one byte fewer per character than the actual maximum length of 4299 * EUC byte sequences. 4300 * 4301 * Other than that, leading zero bytes are removed and the other 4302 * bytes output. A single zero byte may be output if the "assigned" 4303 * bit in stage 2 was on. 4304 * The data structure does not support zero byte output as a fallback, 4305 * and also does not allow output of leading zeros. 4306 */ 4307 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); 4308 4309 /* get the bytes and the length for the output */ 4310 switch(outputType) { 4311 case MBCS_OUTPUT_2: 4312 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); 4313 if(value<=0xff) { 4314 length=1; 4315 } else { 4316 length=2; 4317 } 4318 break; 4319 case MBCS_OUTPUT_2_SISO: 4320 /* 1/2-byte stateful with Shift-In/Shift-Out */ 4321 /* 4322 * Save the old state in the converter object 4323 * right here, then change the local prevLength state variable if necessary. 4324 * Then, if this character turns out to be unassigned or a fallback that 4325 * is not taken, the callback code must not save the new state in the converter 4326 * because the new state is for a character that is not output. 4327 * However, the callback must still restore the state from the converter 4328 * in case the callback function changed it for its output. 4329 */ 4330 cnv->fromUnicodeStatus=prevLength; /* save the old state */ 4331 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); 4332 if(value<=0xff) { 4333 if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) { 4334 /* no mapping, leave value==0 */ 4335 length=0; 4336 } else if(prevLength<=1) { 4337 length=1; 4338 } else { 4339 /* change from double-byte mode to single-byte */ 4340 if (si_value_length == 1) { 4341 value|=(uint32_t)si_value[0]<<8; 4342 length = 2; 4343 } else if (si_value_length == 2) { 4344 value|=(uint32_t)si_value[1]<<8; 4345 value|=(uint32_t)si_value[0]<<16; 4346 length = 3; 4347 } 4348 prevLength=1; 4349 } 4350 } else { 4351 if(prevLength==2) { 4352 length=2; 4353 } else { 4354 /* change from single-byte mode to double-byte */ 4355 if (so_value_length == 1) { 4356 value|=(uint32_t)so_value[0]<<16; 4357 length = 3; 4358 } else if (so_value_length == 2) { 4359 value|=(uint32_t)so_value[1]<<16; 4360 value|=(uint32_t)so_value[0]<<24; 4361 length = 4; 4362 } 4363 prevLength=2; 4364 } 4365 } 4366 break; 4367 case MBCS_OUTPUT_DBCS_ONLY: 4368 /* table with single-byte results, but only DBCS mappings used */ 4369 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); 4370 if(value<=0xff) { 4371 /* no mapping or SBCS result, not taken for DBCS-only */ 4372 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ 4373 length=0; 4374 } else { 4375 length=2; 4376 } 4377 break; 4378 case MBCS_OUTPUT_3: 4379 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); 4380 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; 4381 if(value<=0xff) { 4382 length=1; 4383 } else if(value<=0xffff) { 4384 length=2; 4385 } else { 4386 length=3; 4387 } 4388 break; 4389 case MBCS_OUTPUT_4: 4390 value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c); 4391 if(value<=0xff) { 4392 length=1; 4393 } else if(value<=0xffff) { 4394 length=2; 4395 } else if(value<=0xffffff) { 4396 length=3; 4397 } else { 4398 length=4; 4399 } 4400 break; 4401 case MBCS_OUTPUT_3_EUC: 4402 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); 4403 /* EUC 16-bit fixed-length representation */ 4404 if(value<=0xff) { 4405 length=1; 4406 } else if((value&0x8000)==0) { 4407 value|=0x8e8000; 4408 length=3; 4409 } else if((value&0x80)==0) { 4410 value|=0x8f0080; 4411 length=3; 4412 } else { 4413 length=2; 4414 } 4415 break; 4416 case MBCS_OUTPUT_4_EUC: 4417 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); 4418 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; 4419 /* EUC 16-bit fixed-length representation applied to the first two bytes */ 4420 if(value<=0xff) { 4421 length=1; 4422 } else if(value<=0xffff) { 4423 length=2; 4424 } else if((value&0x800000)==0) { 4425 value|=0x8e800000; 4426 length=4; 4427 } else if((value&0x8000)==0) { 4428 value|=0x8f008000; 4429 length=4; 4430 } else { 4431 length=3; 4432 } 4433 break; 4434 default: 4435 /* must not occur */ 4436 /* 4437 * To avoid compiler warnings that value & length may be 4438 * used without having been initialized, we set them here. 4439 * In reality, this is unreachable code. 4440 * Not having a default branch also causes warnings with 4441 * some compilers. 4442 */ 4443 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ 4444 length=0; 4445 break; 4446 } 4447 4448 /* is this code point assigned, or do we use fallbacks? */ 4449 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 || 4450 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) 4451 ) { 4452 /* 4453 * We allow a 0 byte output if the "assigned" bit is set for this entry. 4454 * There is no way with this data structure for fallback output 4455 * to be a zero byte. 4456 */ 4457 4458 unassigned: 4459 /* try an extension mapping */ 4460 pArgs->source=source; 4461 c=_extFromU(cnv, cnv->sharedData, 4462 c, &source, sourceLimit, 4463 &target, target+targetCapacity, 4464 &offsets, sourceIndex, 4465 pArgs->flush, 4466 pErrorCode); 4467 nextSourceIndex+=(int32_t)(source-pArgs->source); 4468 prevLength=cnv->fromUnicodeStatus; /* restore SISO state */ 4469 4470 if(U_FAILURE(*pErrorCode)) { 4471 /* not mappable or buffer overflow */ 4472 break; 4473 } else { 4474 /* a mapping was written to the target, continue */ 4475 4476 /* recalculate the targetCapacity after an extension mapping */ 4477 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); 4478 4479 /* normal end of conversion: prepare for a new character */ 4480 if(offsets!=NULL) { 4481 prevSourceIndex=sourceIndex; 4482 sourceIndex=nextSourceIndex; 4483 } 4484 continue; 4485 } 4486 } 4487 } 4488 4489 /* write the output character bytes from value and length */ 4490 /* from the first if in the loop we know that targetCapacity>0 */ 4491 if(length<=targetCapacity) { 4492 if(offsets==NULL) { 4493 switch(length) { 4494 /* each branch falls through to the next one */ 4495 case 4: 4496 *target++=(uint8_t)(value>>24); 4497 case 3: 4498 *target++=(uint8_t)(value>>16); 4499 case 2: 4500 *target++=(uint8_t)(value>>8); 4501 case 1: 4502 *target++=(uint8_t)value; 4503 default: 4504 /* will never occur */ 4505 break; 4506 } 4507 } else { 4508 switch(length) { 4509 /* each branch falls through to the next one */ 4510 case 4: 4511 *target++=(uint8_t)(value>>24); 4512 *offsets++=sourceIndex; 4513 case 3: 4514 *target++=(uint8_t)(value>>16); 4515 *offsets++=sourceIndex; 4516 case 2: 4517 *target++=(uint8_t)(value>>8); 4518 *offsets++=sourceIndex; 4519 case 1: 4520 *target++=(uint8_t)value; 4521 *offsets++=sourceIndex; 4522 default: 4523 /* will never occur */ 4524 break; 4525 } 4526 } 4527 targetCapacity-=length; 4528 } else { 4529 uint8_t *charErrorBuffer; 4530 4531 /* 4532 * We actually do this backwards here: 4533 * In order to save an intermediate variable, we output 4534 * first to the overflow buffer what does not fit into the 4535 * regular target. 4536 */ 4537 /* we know that 1<=targetCapacity<length<=4 */ 4538 length-=targetCapacity; 4539 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer; 4540 switch(length) { 4541 /* each branch falls through to the next one */ 4542 case 3: 4543 *charErrorBuffer++=(uint8_t)(value>>16); 4544 case 2: 4545 *charErrorBuffer++=(uint8_t)(value>>8); 4546 case 1: 4547 *charErrorBuffer=(uint8_t)value; 4548 default: 4549 /* will never occur */ 4550 break; 4551 } 4552 cnv->charErrorBufferLength=(int8_t)length; 4553 4554 /* now output what fits into the regular target */ 4555 value>>=8*length; /* length was reduced by targetCapacity */ 4556 switch(targetCapacity) { 4557 /* each branch falls through to the next one */ 4558 case 3: 4559 *target++=(uint8_t)(value>>16); 4560 if(offsets!=NULL) { 4561 *offsets++=sourceIndex; 4562 } 4563 case 2: 4564 *target++=(uint8_t)(value>>8); 4565 if(offsets!=NULL) { 4566 *offsets++=sourceIndex; 4567 } 4568 case 1: 4569 *target++=(uint8_t)value; 4570 if(offsets!=NULL) { 4571 *offsets++=sourceIndex; 4572 } 4573 default: 4574 /* will never occur */ 4575 break; 4576 } 4577 4578 /* target overflow */ 4579 targetCapacity=0; 4580 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 4581 c=0; 4582 break; 4583 } 4584 4585 /* normal end of conversion: prepare for a new character */ 4586 c=0; 4587 if(offsets!=NULL) { 4588 prevSourceIndex=sourceIndex; 4589 sourceIndex=nextSourceIndex; 4590 } 4591 continue; 4592 } else { 4593 /* target is full */ 4594 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 4595 break; 4596 } 4597 } 4598 4599 /* 4600 * the end of the input stream and detection of truncated input 4601 * are handled by the framework, but for EBCDIC_STATEFUL conversion 4602 * we need to emit an SI at the very end 4603 * 4604 * conditions: 4605 * successful 4606 * EBCDIC_STATEFUL in DBCS mode 4607 * end of input and no truncated input 4608 */ 4609 if( U_SUCCESS(*pErrorCode) && 4610 outputType==MBCS_OUTPUT_2_SISO && prevLength==2 && 4611 pArgs->flush && source>=sourceLimit && c==0 4612 ) { 4613 /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */ 4614 if(targetCapacity>0) { 4615 *target++=(uint8_t)si_value[0]; 4616 if (si_value_length == 2) { 4617 if (targetCapacity<2) { 4618 cnv->charErrorBuffer[0]=(uint8_t)si_value[1]; 4619 cnv->charErrorBufferLength=1; 4620 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 4621 } else { 4622 *target++=(uint8_t)si_value[1]; 4623 } 4624 } 4625 if(offsets!=NULL) { 4626 /* set the last source character's index (sourceIndex points at sourceLimit now) */ 4627 *offsets++=prevSourceIndex; 4628 } 4629 } else { 4630 /* target is full */ 4631 cnv->charErrorBuffer[0]=(uint8_t)si_value[0]; 4632 if (si_value_length == 2) { 4633 cnv->charErrorBuffer[1]=(uint8_t)si_value[1]; 4634 } 4635 cnv->charErrorBufferLength=si_value_length; 4636 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 4637 } 4638 prevLength=1; /* we switched into SBCS */ 4639 } 4640 4641 /* set the converter state back into UConverter */ 4642 cnv->fromUChar32=c; 4643 cnv->fromUnicodeStatus=prevLength; 4644 4645 /* write back the updated pointers */ 4646 pArgs->source=source; 4647 pArgs->target=(char *)target; 4648 pArgs->offsets=offsets; 4649 } 4650 4651 /* 4652 * This is another simple conversion function for internal use by other 4653 * conversion implementations. 4654 * It does not use the converter state nor call callbacks. 4655 * It does not handle the EBCDIC swaplfnl option (set in UConverter). 4656 * It handles conversion extensions but not GB 18030. 4657 * 4658 * It converts one single Unicode code point into codepage bytes, encoded 4659 * as one 32-bit value. The function returns the number of bytes in *pValue: 4660 * 1..4 the number of bytes in *pValue 4661 * 0 unassigned (*pValue undefined) 4662 * -1 illegal (currently not used, *pValue undefined) 4663 * 4664 * *pValue will contain the resulting bytes with the last byte in bits 7..0, 4665 * the second to last byte in bits 15..8, etc. 4666 * Currently, the function assumes but does not check that 0<=c<=0x10ffff. 4667 */ 4668 U_CFUNC int32_t 4669 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData, 4670 UChar32 c, uint32_t *pValue, 4671 UBool useFallback) { 4672 const int32_t *cx; 4673 const uint16_t *table; 4674 #if 0 4675 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ 4676 const uint8_t *p; 4677 #endif 4678 uint32_t stage2Entry; 4679 uint32_t value; 4680 int32_t length; 4681 4682 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ 4683 if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { 4684 table=sharedData->mbcs.fromUnicodeTable; 4685 4686 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ 4687 if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) { 4688 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); 4689 /* is this code point assigned, or do we use fallbacks? */ 4690 if(useFallback ? value>=0x800 : value>=0xc00) { 4691 *pValue=value&0xff; 4692 return 1; 4693 } 4694 } else /* outputType!=MBCS_OUTPUT_1 */ { 4695 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); 4696 4697 /* get the bytes and the length for the output */ 4698 switch(sharedData->mbcs.outputType) { 4699 case MBCS_OUTPUT_2: 4700 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); 4701 if(value<=0xff) { 4702 length=1; 4703 } else { 4704 length=2; 4705 } 4706 break; 4707 #if 0 4708 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ 4709 case MBCS_OUTPUT_DBCS_ONLY: 4710 /* table with single-byte results, but only DBCS mappings used */ 4711 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); 4712 if(value<=0xff) { 4713 /* no mapping or SBCS result, not taken for DBCS-only */ 4714 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ 4715 length=0; 4716 } else { 4717 length=2; 4718 } 4719 break; 4720 case MBCS_OUTPUT_3: 4721 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); 4722 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; 4723 if(value<=0xff) { 4724 length=1; 4725 } else if(value<=0xffff) { 4726 length=2; 4727 } else { 4728 length=3; 4729 } 4730 break; 4731 case MBCS_OUTPUT_4: 4732 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); 4733 if(value<=0xff) { 4734 length=1; 4735 } else if(value<=0xffff) { 4736 length=2; 4737 } else if(value<=0xffffff) { 4738 length=3; 4739 } else { 4740 length=4; 4741 } 4742 break; 4743 case MBCS_OUTPUT_3_EUC: 4744 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); 4745 /* EUC 16-bit fixed-length representation */ 4746 if(value<=0xff) { 4747 length=1; 4748 } else if((value&0x8000)==0) { 4749 value|=0x8e8000; 4750 length=3; 4751 } else if((value&0x80)==0) { 4752 value|=0x8f0080; 4753 length=3; 4754 } else { 4755 length=2; 4756 } 4757 break; 4758 case MBCS_OUTPUT_4_EUC: 4759 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); 4760 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; 4761 /* EUC 16-bit fixed-length representation applied to the first two bytes */ 4762 if(value<=0xff) { 4763 length=1; 4764 } else if(value<=0xffff) { 4765 length=2; 4766 } else if((value&0x800000)==0) { 4767 value|=0x8e800000; 4768 length=4; 4769 } else if((value&0x8000)==0) { 4770 value|=0x8f008000; 4771 length=4; 4772 } else { 4773 length=3; 4774 } 4775 break; 4776 #endif 4777 default: 4778 /* must not occur */ 4779 return -1; 4780 } 4781 4782 /* is this code point assigned, or do we use fallbacks? */ 4783 if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || 4784 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0) 4785 ) { 4786 /* 4787 * We allow a 0 byte output if the "assigned" bit is set for this entry. 4788 * There is no way with this data structure for fallback output 4789 * to be a zero byte. 4790 */ 4791 /* assigned */ 4792 *pValue=value; 4793 return length; 4794 } 4795 } 4796 } 4797 4798 cx=sharedData->mbcs.extIndexes; 4799 if(cx!=NULL) { 4800 length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback); 4801 return length>=0 ? length : -length; /* return abs(length); */ 4802 } 4803 4804 /* unassigned */ 4805 return 0; 4806 } 4807 4808 4809 #if 0 4810 /* 4811 * This function has been moved to ucnv2022.c for inlining. 4812 * This implementation is here only for documentation purposes 4813 */ 4814 4815 /** 4816 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages. 4817 * It does not handle the EBCDIC swaplfnl option (set in UConverter). 4818 * It does not handle conversion extensions (_extFromU()). 4819 * 4820 * It returns the codepage byte for the code point, or -1 if it is unassigned. 4821 */ 4822 U_CFUNC int32_t 4823 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData, 4824 UChar32 c, 4825 UBool useFallback) { 4826 const uint16_t *table; 4827 int32_t value; 4828 4829 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ 4830 if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { 4831 return -1; 4832 } 4833 4834 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ 4835 table=sharedData->mbcs.fromUnicodeTable; 4836 4837 /* get the byte for the output */ 4838 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); 4839 /* is this code point assigned, or do we use fallbacks? */ 4840 if(useFallback ? value>=0x800 : value>=0xc00) { 4841 return value&0xff; 4842 } else { 4843 return -1; 4844 } 4845 } 4846 #endif 4847 4848 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */ 4849 4850 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */ 4851 static const UChar32 4852 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 }; 4853 4854 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */ 4855 static const UChar32 4856 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 }; 4857 4858 static void 4859 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, 4860 UConverterToUnicodeArgs *pToUArgs, 4861 UErrorCode *pErrorCode) { 4862 UConverter *utf8, *cnv; 4863 const uint8_t *source, *sourceLimit; 4864 uint8_t *target; 4865 int32_t targetCapacity; 4866 4867 const uint16_t *table, *sbcsIndex; 4868 const uint16_t *results; 4869 4870 int8_t oldToULength, toULength, toULimit; 4871 4872 UChar32 c; 4873 uint8_t b, t1, t2; 4874 4875 uint32_t asciiRoundtrips; 4876 uint16_t value, minValue; 4877 UBool hasSupplementary; 4878 4879 /* set up the local pointers */ 4880 utf8=pToUArgs->converter; 4881 cnv=pFromUArgs->converter; 4882 source=(uint8_t *)pToUArgs->source; 4883 sourceLimit=(uint8_t *)pToUArgs->sourceLimit; 4884 target=(uint8_t *)pFromUArgs->target; 4885 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); 4886 4887 table=cnv->sharedData->mbcs.fromUnicodeTable; 4888 sbcsIndex=cnv->sharedData->mbcs.sbcsIndex; 4889 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 4890 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; 4891 } else { 4892 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; 4893 } 4894 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; 4895 4896 if(cnv->useFallback) { 4897 /* use all roundtrip and fallback results */ 4898 minValue=0x800; 4899 } else { 4900 /* use only roundtrips and fallbacks from private-use characters */ 4901 minValue=0xc00; 4902 } 4903 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); 4904 4905 /* get the converter state from the UTF-8 UConverter */ 4906 c=(UChar32)utf8->toUnicodeStatus; 4907 if(c!=0) { 4908 toULength=oldToULength=utf8->toULength; 4909 toULimit=(int8_t)utf8->mode; 4910 } else { 4911 toULength=oldToULength=toULimit=0; 4912 } 4913 4914 /* 4915 * Make sure that the last byte sequence before sourceLimit is complete 4916 * or runs into a lead byte. 4917 * Do not go back into the bytes that will be read for finishing a partial 4918 * sequence from the previous buffer. 4919 * In the conversion loop compare source with sourceLimit only once 4920 * per multi-byte character. 4921 */ 4922 { 4923 int32_t i, length; 4924 4925 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); 4926 for(i=0; i<3 && i<length;) { 4927 b=*(sourceLimit-i-1); 4928 if(U8_IS_TRAIL(b)) { 4929 ++i; 4930 } else { 4931 if(i<utf8_countTrailBytes[b]) { 4932 /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ 4933 sourceLimit-=i+1; 4934 } 4935 break; 4936 } 4937 } 4938 } 4939 4940 if(c!=0 && targetCapacity>0) { 4941 utf8->toUnicodeStatus=0; 4942 utf8->toULength=0; 4943 goto moreBytes; 4944 /* 4945 * Note: We could avoid the goto by duplicating some of the moreBytes 4946 * code, but only up to the point of collecting a complete UTF-8 4947 * sequence; then recurse for the toUBytes[toULength] 4948 * and then continue with normal conversion. 4949 * 4950 * If so, move this code to just after initializing the minimum 4951 * set of local variables for reading the UTF-8 input 4952 * (utf8, source, target, limits but not cnv, table, minValue, etc.). 4953 * 4954 * Potential advantages: 4955 * - avoid the goto 4956 * - oldToULength could become a local variable in just those code blocks 4957 * that deal with buffer boundaries 4958 * - possibly faster if the goto prevents some compiler optimizations 4959 * (this would need measuring to confirm) 4960 * Disadvantage: 4961 * - code duplication 4962 */ 4963 } 4964 4965 /* conversion loop */ 4966 while(source<sourceLimit) { 4967 if(targetCapacity>0) { 4968 b=*source++; 4969 if((int8_t)b>=0) { 4970 /* convert ASCII */ 4971 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { 4972 *target++=(uint8_t)b; 4973 --targetCapacity; 4974 continue; 4975 } else { 4976 c=b; 4977 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c); 4978 } 4979 } else { 4980 if(b<0xe0) { 4981 if( /* handle U+0080..U+07FF inline */ 4982 b>=0xc2 && 4983 (t1=(uint8_t)(*source-0x80)) <= 0x3f 4984 ) { 4985 c=b&0x1f; 4986 ++source; 4987 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1); 4988 if(value>=minValue) { 4989 *target++=(uint8_t)value; 4990 --targetCapacity; 4991 continue; 4992 } else { 4993 c=(c<<6)|t1; 4994 } 4995 } else { 4996 c=-1; 4997 } 4998 } else if(b==0xe0) { 4999 if( /* handle U+0800..U+0FFF inline */ 5000 (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 && 5001 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f 5002 ) { 5003 c=t1; 5004 source+=2; 5005 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2); 5006 if(value>=minValue) { 5007 *target++=(uint8_t)value; 5008 --targetCapacity; 5009 continue; 5010 } else { 5011 c=(c<<6)|t2; 5012 } 5013 } else { 5014 c=-1; 5015 } 5016 } else { 5017 c=-1; 5018 } 5019 5020 if(c<0) { 5021 /* handle "complicated" and error cases, and continuing partial characters */ 5022 oldToULength=0; 5023 toULength=1; 5024 toULimit=utf8_countTrailBytes[b]+1; 5025 c=b; 5026 moreBytes: 5027 while(toULength<toULimit) { 5028 /* 5029 * The sourceLimit may have been adjusted before the conversion loop 5030 * to stop before a truncated sequence. 5031 * Here we need to use the real limit in case we have two truncated 5032 * sequences at the end. 5033 * See ticket #7492. 5034 */ 5035 if(source<(uint8_t *)pToUArgs->sourceLimit) { 5036 b=*source; 5037 if(U8_IS_TRAIL(b)) { 5038 ++source; 5039 ++toULength; 5040 c=(c<<6)+b; 5041 } else { 5042 break; /* sequence too short, stop with toULength<toULimit */ 5043 } 5044 } else { 5045 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ 5046 source-=(toULength-oldToULength); 5047 while(oldToULength<toULength) { 5048 utf8->toUBytes[oldToULength++]=*source++; 5049 } 5050 utf8->toUnicodeStatus=c; 5051 utf8->toULength=toULength; 5052 utf8->mode=toULimit; 5053 pToUArgs->source=(char *)source; 5054 pFromUArgs->target=(char *)target; 5055 return; 5056 } 5057 } 5058 5059 if( toULength==toULimit && /* consumed all trail bytes */ 5060 (toULength==3 || toULength==2) && /* BMP */ 5061 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && 5062 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ 5063 ) { 5064 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); 5065 } else if( 5066 toULength==toULimit && toULength==4 && 5067 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) 5068 ) { 5069 /* supplementary code point */ 5070 if(!hasSupplementary) { 5071 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ 5072 value=0; 5073 } else { 5074 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); 5075 } 5076 } else { 5077 /* error handling: illegal UTF-8 byte sequence */ 5078 source-=(toULength-oldToULength); 5079 while(oldToULength<toULength) { 5080 utf8->toUBytes[oldToULength++]=*source++; 5081 } 5082 utf8->toULength=toULength; 5083 pToUArgs->source=(char *)source; 5084 pFromUArgs->target=(char *)target; 5085 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 5086 return; 5087 } 5088 } 5089 } 5090 5091 if(value>=minValue) { 5092 /* output the mapping for c */ 5093 *target++=(uint8_t)value; 5094 --targetCapacity; 5095 } else { 5096 /* value<minValue means c is unassigned (unmappable) */ 5097 /* 5098 * Try an extension mapping. 5099 * Pass in no source because we don't have UTF-16 input. 5100 * If we have a partial match on c, we will return and revert 5101 * to UTF-8->UTF-16->charset conversion. 5102 */ 5103 static const UChar nul=0; 5104 const UChar *noSource=&nul; 5105 c=_extFromU(cnv, cnv->sharedData, 5106 c, &noSource, noSource, 5107 &target, target+targetCapacity, 5108 NULL, -1, 5109 pFromUArgs->flush, 5110 pErrorCode); 5111 5112 if(U_FAILURE(*pErrorCode)) { 5113 /* not mappable or buffer overflow */ 5114 cnv->fromUChar32=c; 5115 break; 5116 } else if(cnv->preFromUFirstCP>=0) { 5117 /* 5118 * Partial match, return and revert to pivoting. 5119 * In normal from-UTF-16 conversion, we would just continue 5120 * but then exit the loop because the extension match would 5121 * have consumed the source. 5122 */ 5123 break; 5124 } else { 5125 /* a mapping was written to the target, continue */ 5126 5127 /* recalculate the targetCapacity after an extension mapping */ 5128 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); 5129 } 5130 } 5131 } else { 5132 /* target is full */ 5133 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 5134 break; 5135 } 5136 } 5137 5138 /* 5139 * The sourceLimit may have been adjusted before the conversion loop 5140 * to stop before a truncated sequence. 5141 * If so, then collect the truncated sequence now. 5142 */ 5143 if(U_SUCCESS(*pErrorCode) && source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { 5144 c=utf8->toUBytes[0]=b=*source++; 5145 toULength=1; 5146 toULimit=utf8_countTrailBytes[b]+1; 5147 while(source<sourceLimit) { 5148 utf8->toUBytes[toULength++]=b=*source++; 5149 c=(c<<6)+b; 5150 } 5151 utf8->toUnicodeStatus=c; 5152 utf8->toULength=toULength; 5153 utf8->mode=toULimit; 5154 } 5155 5156 /* write back the updated pointers */ 5157 pToUArgs->source=(char *)source; 5158 pFromUArgs->target=(char *)target; 5159 } 5160 5161 static void 5162 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, 5163 UConverterToUnicodeArgs *pToUArgs, 5164 UErrorCode *pErrorCode) { 5165 UConverter *utf8, *cnv; 5166 const uint8_t *source, *sourceLimit; 5167 uint8_t *target; 5168 int32_t targetCapacity; 5169 5170 const uint16_t *table, *mbcsIndex; 5171 const uint16_t *results; 5172 5173 int8_t oldToULength, toULength, toULimit; 5174 5175 UChar32 c; 5176 uint8_t b, t1, t2; 5177 5178 uint32_t stage2Entry; 5179 uint32_t asciiRoundtrips; 5180 uint16_t value, minValue; 5181 UBool hasSupplementary; 5182 5183 /* set up the local pointers */ 5184 utf8=pToUArgs->converter; 5185 cnv=pFromUArgs->converter; 5186 source=(uint8_t *)pToUArgs->source; 5187 sourceLimit=(uint8_t *)pToUArgs->sourceLimit; 5188 target=(uint8_t *)pFromUArgs->target; 5189 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); 5190 5191 table=cnv->sharedData->mbcs.fromUnicodeTable; 5192 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; 5193 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { 5194 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; 5195 } else { 5196 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; 5197 } 5198 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; 5199 5200 if(cnv->useFallback) { 5201 /* use all roundtrip and fallback results */ 5202 minValue=0x800; 5203 } else { 5204 /* use only roundtrips and fallbacks from private-use characters */ 5205 minValue=0xc00; 5206 } 5207 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); 5208 5209 /* get the converter state from the UTF-8 UConverter */ 5210 c=(UChar32)utf8->toUnicodeStatus; 5211 if(c!=0) { 5212 toULength=oldToULength=utf8->toULength; 5213 toULimit=(int8_t)utf8->mode; 5214 } else { 5215 toULength=oldToULength=toULimit=0; 5216 } 5217 5218 /* 5219 * Make sure that the last byte sequence before sourceLimit is complete 5220 * or runs into a lead byte. 5221 * Do not go back into the bytes that will be read for finishing a partial 5222 * sequence from the previous buffer. 5223 * In the conversion loop compare source with sourceLimit only once 5224 * per multi-byte character. 5225 */ 5226 { 5227 int32_t i, length; 5228 5229 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); 5230 for(i=0; i<3 && i<length;) { 5231 b=*(sourceLimit-i-1); 5232 if(U8_IS_TRAIL(b)) { 5233 ++i; 5234 } else { 5235 if(i<utf8_countTrailBytes[b]) { 5236 /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ 5237 sourceLimit-=i+1; 5238 } 5239 break; 5240 } 5241 } 5242 } 5243 5244 if(c!=0 && targetCapacity>0) { 5245 utf8->toUnicodeStatus=0; 5246 utf8->toULength=0; 5247 goto moreBytes; 5248 /* See note in ucnv_SBCSFromUTF8() about this goto. */ 5249 } 5250 5251 /* conversion loop */ 5252 while(source<sourceLimit) { 5253 if(targetCapacity>0) { 5254 b=*source++; 5255 if((int8_t)b>=0) { 5256 /* convert ASCII */ 5257 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { 5258 *target++=b; 5259 --targetCapacity; 5260 continue; 5261 } else { 5262 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b); 5263 if(value==0) { 5264 c=b; 5265 goto unassigned; 5266 } 5267 } 5268 } else { 5269 if(b>0xe0) { 5270 if( /* handle U+1000..U+D7FF inline */ 5271 (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) || 5272 (b==0xed && (t1 <= 0x1f))) && 5273 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f 5274 ) { 5275 c=((b&0xf)<<6)|t1; 5276 source+=2; 5277 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2); 5278 if(value==0) { 5279 c=(c<<6)|t2; 5280 goto unassigned; 5281 } 5282 } else { 5283 c=-1; 5284 } 5285 } else if(b<0xe0) { 5286 if( /* handle U+0080..U+07FF inline */ 5287 b>=0xc2 && 5288 (t1=(uint8_t)(*source-0x80)) <= 0x3f 5289 ) { 5290 c=b&0x1f; 5291 ++source; 5292 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1); 5293 if(value==0) { 5294 c=(c<<6)|t1; 5295 goto unassigned; 5296 } 5297 } else { 5298 c=-1; 5299 } 5300 } else { 5301 c=-1; 5302 } 5303 5304 if(c<0) { 5305 /* handle "complicated" and error cases, and continuing partial characters */ 5306 oldToULength=0; 5307 toULength=1; 5308 toULimit=utf8_countTrailBytes[b]+1; 5309 c=b; 5310 moreBytes: 5311 while(toULength<toULimit) { 5312 /* 5313 * The sourceLimit may have been adjusted before the conversion loop 5314 * to stop before a truncated sequence. 5315 * Here we need to use the real limit in case we have two truncated 5316 * sequences at the end. 5317 * See ticket #7492. 5318 */ 5319 if(source<(uint8_t *)pToUArgs->sourceLimit) { 5320 b=*source; 5321 if(U8_IS_TRAIL(b)) { 5322 ++source; 5323 ++toULength; 5324 c=(c<<6)+b; 5325 } else { 5326 break; /* sequence too short, stop with toULength<toULimit */ 5327 } 5328 } else { 5329 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ 5330 source-=(toULength-oldToULength); 5331 while(oldToULength<toULength) { 5332 utf8->toUBytes[oldToULength++]=*source++; 5333 } 5334 utf8->toUnicodeStatus=c; 5335 utf8->toULength=toULength; 5336 utf8->mode=toULimit; 5337 pToUArgs->source=(char *)source; 5338 pFromUArgs->target=(char *)target; 5339 return; 5340 } 5341 } 5342 5343 if( toULength==toULimit && /* consumed all trail bytes */ 5344 (toULength==3 || toULength==2) && /* BMP */ 5345 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && 5346 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ 5347 ) { 5348 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); 5349 } else if( 5350 toULength==toULimit && toULength==4 && 5351 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) 5352 ) { 5353 /* supplementary code point */ 5354 if(!hasSupplementary) { 5355 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ 5356 stage2Entry=0; 5357 } else { 5358 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); 5359 } 5360 } else { 5361 /* error handling: illegal UTF-8 byte sequence */ 5362 source-=(toULength-oldToULength); 5363 while(oldToULength<toULength) { 5364 utf8->toUBytes[oldToULength++]=*source++; 5365 } 5366 utf8->toULength=toULength; 5367 pToUArgs->source=(char *)source; 5368 pFromUArgs->target=(char *)target; 5369 *pErrorCode=U_ILLEGAL_CHAR_FOUND; 5370 return; 5371 } 5372 5373 /* get the bytes and the length for the output */ 5374 /* MBCS_OUTPUT_2 */ 5375 value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c); 5376 5377 /* is this code point assigned, or do we use fallbacks? */ 5378 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || 5379 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) 5380 ) { 5381 goto unassigned; 5382 } 5383 } 5384 } 5385 5386 /* write the output character bytes from value and length */ 5387 /* from the first if in the loop we know that targetCapacity>0 */ 5388 if(value<=0xff) { 5389 /* this is easy because we know that there is enough space */ 5390 *target++=(uint8_t)value; 5391 --targetCapacity; 5392 } else /* length==2 */ { 5393 *target++=(uint8_t)(value>>8); 5394 if(2<=targetCapacity) { 5395 *target++=(uint8_t)value; 5396 targetCapacity-=2; 5397 } else { 5398 cnv->charErrorBuffer[0]=(char)value; 5399 cnv->charErrorBufferLength=1; 5400 5401 /* target overflow */ 5402 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 5403 break; 5404 } 5405 } 5406 continue; 5407 5408 unassigned: 5409 { 5410 /* 5411 * Try an extension mapping. 5412 * Pass in no source because we don't have UTF-16 input. 5413 * If we have a partial match on c, we will return and revert 5414 * to UTF-8->UTF-16->charset conversion. 5415 */ 5416 static const UChar nul=0; 5417 const UChar *noSource=&nul; 5418 c=_extFromU(cnv, cnv->sharedData, 5419 c, &noSource, noSource, 5420 &target, target+targetCapacity, 5421 NULL, -1, 5422 pFromUArgs->flush, 5423 pErrorCode); 5424 5425 if(U_FAILURE(*pErrorCode)) { 5426 /* not mappable or buffer overflow */ 5427 cnv->fromUChar32=c; 5428 break; 5429 } else if(cnv->preFromUFirstCP>=0) { 5430 /* 5431 * Partial match, return and revert to pivoting. 5432 * In normal from-UTF-16 conversion, we would just continue 5433 * but then exit the loop because the extension match would 5434 * have consumed the source. 5435 */ 5436 break; 5437 } else { 5438 /* a mapping was written to the target, continue */ 5439 5440 /* recalculate the targetCapacity after an extension mapping */ 5441 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); 5442 continue; 5443 } 5444 } 5445 } else { 5446 /* target is full */ 5447 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 5448 break; 5449 } 5450 } 5451 5452 /* 5453 * The sourceLimit may have been adjusted before the conversion loop 5454 * to stop before a truncated sequence. 5455 * If so, then collect the truncated sequence now. 5456 */ 5457 if(U_SUCCESS(*pErrorCode) && source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { 5458 c=utf8->toUBytes[0]=b=*source++; 5459 toULength=1; 5460 toULimit=utf8_countTrailBytes[b]+1; 5461 while(source<sourceLimit) { 5462 utf8->toUBytes[toULength++]=b=*source++; 5463 c=(c<<6)+b; 5464 } 5465 utf8->toUnicodeStatus=c; 5466 utf8->toULength=toULength; 5467 utf8->mode=toULimit; 5468 } 5469 5470 /* write back the updated pointers */ 5471 pToUArgs->source=(char *)source; 5472 pFromUArgs->target=(char *)target; 5473 } 5474 5475 /* miscellaneous ------------------------------------------------------------ */ 5476 5477 static void 5478 ucnv_MBCSGetStarters(const UConverter* cnv, 5479 UBool starters[256], 5480 UErrorCode *pErrorCode) { 5481 const int32_t *state0; 5482 int i; 5483 5484 state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState]; 5485 for(i=0; i<256; ++i) { 5486 /* all bytes that cause a state transition from state 0 are lead bytes */ 5487 starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]); 5488 } 5489 } 5490 5491 /* 5492 * This is an internal function that allows other converter implementations 5493 * to check whether a byte is a lead byte. 5494 */ 5495 U_CFUNC UBool 5496 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) { 5497 return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]); 5498 } 5499 5500 static void 5501 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, 5502 int32_t offsetIndex, 5503 UErrorCode *pErrorCode) { 5504 UConverter *cnv=pArgs->converter; 5505 char *p, *subchar; 5506 char buffer[4]; 5507 int32_t length; 5508 5509 /* first, select between subChar and subChar1 */ 5510 if( cnv->subChar1!=0 && 5511 (cnv->sharedData->mbcs.extIndexes!=NULL ? 5512 cnv->useSubChar1 : 5513 (cnv->invalidUCharBuffer[0]<=0xff)) 5514 ) { 5515 /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */ 5516 subchar=(char *)&cnv->subChar1; 5517 length=1; 5518 } else { 5519 /* select subChar in all other cases */ 5520 subchar=(char *)cnv->subChars; 5521 length=cnv->subCharLen; 5522 } 5523 5524 /* reset the selector for the next code point */ 5525 cnv->useSubChar1=FALSE; 5526 5527 if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) { 5528 p=buffer; 5529 5530 /* fromUnicodeStatus contains prevLength */ 5531 switch(length) { 5532 case 1: 5533 if(cnv->fromUnicodeStatus==2) { 5534 /* DBCS mode and SBCS sub char: change to SBCS */ 5535 cnv->fromUnicodeStatus=1; 5536 *p++=UCNV_SI; 5537 } 5538 *p++=subchar[0]; 5539 break; 5540 case 2: 5541 if(cnv->fromUnicodeStatus<=1) { 5542 /* SBCS mode and DBCS sub char: change to DBCS */ 5543 cnv->fromUnicodeStatus=2; 5544 *p++=UCNV_SO; 5545 } 5546 *p++=subchar[0]; 5547 *p++=subchar[1]; 5548 break; 5549 default: 5550 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 5551 return; 5552 } 5553 subchar=buffer; 5554 length=(int32_t)(p-buffer); 5555 } 5556 5557 ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode); 5558 } 5559 5560 U_CFUNC UConverterType 5561 ucnv_MBCSGetType(const UConverter* converter) { 5562 /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */ 5563 if(converter->sharedData->mbcs.countStates==1) { 5564 return (UConverterType)UCNV_SBCS; 5565 } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) { 5566 return (UConverterType)UCNV_EBCDIC_STATEFUL; 5567 } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) { 5568 return (UConverterType)UCNV_DBCS; 5569 } 5570 return (UConverterType)UCNV_MBCS; 5571 } 5572 5573 static const UConverterImpl _SBCSUTF8Impl={ 5574 UCNV_MBCS, 5575 5576 ucnv_MBCSLoad, 5577 ucnv_MBCSUnload, 5578 5579 ucnv_MBCSOpen, 5580 NULL, 5581 NULL, 5582 5583 ucnv_MBCSToUnicodeWithOffsets, 5584 ucnv_MBCSToUnicodeWithOffsets, 5585 ucnv_MBCSFromUnicodeWithOffsets, 5586 ucnv_MBCSFromUnicodeWithOffsets, 5587 ucnv_MBCSGetNextUChar, 5588 5589 ucnv_MBCSGetStarters, 5590 ucnv_MBCSGetName, 5591 ucnv_MBCSWriteSub, 5592 NULL, 5593 ucnv_MBCSGetUnicodeSet, 5594 5595 NULL, 5596 ucnv_SBCSFromUTF8 5597 }; 5598 5599 static const UConverterImpl _DBCSUTF8Impl={ 5600 UCNV_MBCS, 5601 5602 ucnv_MBCSLoad, 5603 ucnv_MBCSUnload, 5604 5605 ucnv_MBCSOpen, 5606 NULL, 5607 NULL, 5608 5609 ucnv_MBCSToUnicodeWithOffsets, 5610 ucnv_MBCSToUnicodeWithOffsets, 5611 ucnv_MBCSFromUnicodeWithOffsets, 5612 ucnv_MBCSFromUnicodeWithOffsets, 5613 ucnv_MBCSGetNextUChar, 5614 5615 ucnv_MBCSGetStarters, 5616 ucnv_MBCSGetName, 5617 ucnv_MBCSWriteSub, 5618 NULL, 5619 ucnv_MBCSGetUnicodeSet, 5620 5621 NULL, 5622 ucnv_DBCSFromUTF8 5623 }; 5624 5625 static const UConverterImpl _MBCSImpl={ 5626 UCNV_MBCS, 5627 5628 ucnv_MBCSLoad, 5629 ucnv_MBCSUnload, 5630 5631 ucnv_MBCSOpen, 5632 NULL, 5633 NULL, 5634 5635 ucnv_MBCSToUnicodeWithOffsets, 5636 ucnv_MBCSToUnicodeWithOffsets, 5637 ucnv_MBCSFromUnicodeWithOffsets, 5638 ucnv_MBCSFromUnicodeWithOffsets, 5639 ucnv_MBCSGetNextUChar, 5640 5641 ucnv_MBCSGetStarters, 5642 ucnv_MBCSGetName, 5643 ucnv_MBCSWriteSub, 5644 NULL, 5645 ucnv_MBCSGetUnicodeSet 5646 }; 5647 5648 5649 /* Static data is in tools/makeconv/ucnvstat.c for data-based 5650 * converters. Be sure to update it as well. 5651 */ 5652 5653 const UConverterSharedData _MBCSData={ 5654 sizeof(UConverterSharedData), 1, 5655 NULL, NULL, NULL, FALSE, &_MBCSImpl, 5656 0 5657 }; 5658 5659 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ 5660