Home | History | Annotate | Download | only in src
      1 // Copyright (c) 2000, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // ---
     31 // Author: Urs Holzle <opensource (at) google.com>
     32 
     33 #include "config.h"
     34 #include <errno.h>
     35 #ifdef HAVE_FCNTL_H
     36 #include <fcntl.h>
     37 #endif
     38 #ifdef HAVE_INTTYPES_H
     39 #include <inttypes.h>
     40 #endif
     41 // We only need malloc.h for struct mallinfo.
     42 #ifdef HAVE_STRUCT_MALLINFO
     43 // Malloc can be in several places on older versions of OS X.
     44 # if defined(HAVE_MALLOC_H)
     45 # include <malloc.h>
     46 # elif defined(HAVE_MALLOC_MALLOC_H)
     47 # include <malloc/malloc.h>
     48 # elif defined(HAVE_SYS_MALLOC_H)
     49 # include <sys/malloc.h>
     50 # endif
     51 #endif
     52 #ifdef HAVE_PTHREAD
     53 #include <pthread.h>
     54 #endif
     55 #include <stdarg.h>
     56 #include <stdio.h>
     57 #include <string.h>
     58 #ifdef HAVE_MMAP
     59 #include <sys/mman.h>
     60 #endif
     61 #include <sys/stat.h>
     62 #include <sys/types.h>
     63 #ifdef HAVE_UNISTD_H
     64 #include <unistd.h>
     65 #endif
     66 
     67 #include <gperftools/malloc_extension.h>
     68 #include <gperftools/malloc_hook.h>
     69 #include <gperftools/stacktrace.h>
     70 #include "addressmap-inl.h"
     71 #include "base/commandlineflags.h"
     72 #include "base/googleinit.h"
     73 #include "base/logging.h"
     74 #include "base/spinlock.h"
     75 #include "malloc_hook-inl.h"
     76 #include "symbolize.h"
     77 
     78 #define TCMALLOC_USING_DEBUGALLOCATION
     79 #include "tcmalloc.cc"
     80 
     81 // __THROW is defined in glibc systems.  It means, counter-intuitively,
     82 // "This function will never throw an exception."  It's an optional
     83 // optimization tool, but we may need to use it to match glibc prototypes.
     84 #ifndef __THROW    // I guess we're not on a glibc system
     85 # define __THROW   // __THROW is just an optimization, so ok to make it ""
     86 #endif
     87 
     88 // On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old
     89 // form of the name instead.
     90 #ifndef MAP_ANONYMOUS
     91 # define MAP_ANONYMOUS MAP_ANON
     92 #endif
     93 
     94 // ========================================================================= //
     95 
     96 DEFINE_bool(malloctrace,
     97             EnvToBool("TCMALLOC_TRACE", false),
     98             "Enables memory (de)allocation tracing to /tmp/google.alloc.");
     99 #ifdef HAVE_MMAP
    100 DEFINE_bool(malloc_page_fence,
    101             EnvToBool("TCMALLOC_PAGE_FENCE", false),
    102             "Enables putting of memory allocations at page boundaries "
    103             "with a guard page following the allocation (to catch buffer "
    104             "overruns right when they happen).");
    105 DEFINE_bool(malloc_page_fence_never_reclaim,
    106             EnvToBool("TCMALLOC_PAGE_FRANCE_NEVER_RECLAIM", false),
    107             "Enables making the virtual address space inaccessible "
    108             "upon a deallocation instead of returning it and reusing later.");
    109 #else
    110 DEFINE_bool(malloc_page_fence, false, "Not usable (requires mmap)");
    111 DEFINE_bool(malloc_page_fence_never_reclaim, false, "Not usable (required mmap)");
    112 #endif
    113 DEFINE_bool(malloc_reclaim_memory,
    114             EnvToBool("TCMALLOC_RECLAIM_MEMORY", true),
    115             "If set to false, we never return memory to malloc "
    116             "when an object is deallocated. This ensures that all "
    117             "heap object addresses are unique.");
    118 DEFINE_int32(max_free_queue_size,
    119              EnvToInt("TCMALLOC_MAX_FREE_QUEUE_SIZE", 10*1024*1024),
    120              "If greater than 0, keep freed blocks in a queue instead of "
    121              "releasing them to the allocator immediately.  Release them when "
    122              "the total size of all blocks in the queue would otherwise exceed "
    123              "this limit.");
    124 
    125 DEFINE_bool(symbolize_stacktrace,
    126             EnvToBool("TCMALLOC_SYMBOLIZE_STACKTRACE", true),
    127             "Symbolize the stack trace when provided (on some error exits)");
    128 
    129 // If we are LD_PRELOAD-ed against a non-pthreads app, then
    130 // pthread_once won't be defined.  We declare it here, for that
    131 // case (with weak linkage) which will cause the non-definition to
    132 // resolve to NULL.  We can then check for NULL or not in Instance.
    133 extern "C" int pthread_once(pthread_once_t *, void (*)(void))
    134     ATTRIBUTE_WEAK;
    135 
    136 // ========================================================================= //
    137 
    138 // A safe version of printf() that does not do any allocation and
    139 // uses very little stack space.
    140 static void TracePrintf(int fd, const char *fmt, ...)
    141   __attribute__ ((__format__ (__printf__, 2, 3)));
    142 
    143 // The do_* functions are defined in tcmalloc/tcmalloc.cc,
    144 // which is included before this file
    145 // when TCMALLOC_FOR_DEBUGALLOCATION is defined
    146 // TODO(csilvers): get rid of these now that we are tied to tcmalloc.
    147 #define BASE_MALLOC_NEW    do_malloc
    148 #define BASE_MALLOC        do_malloc
    149 #define BASE_FREE          do_free
    150 #define BASE_MALLOC_STATS  do_malloc_stats
    151 #define BASE_MALLOPT       do_mallopt
    152 #define BASE_MALLINFO      do_mallinfo
    153 
    154 // ========================================================================= //
    155 
    156 class MallocBlock;
    157 
    158 // A circular buffer to hold freed blocks of memory.  MallocBlock::Deallocate
    159 // (below) pushes blocks into this queue instead of returning them to the
    160 // underlying allocator immediately.  See MallocBlock::Deallocate for more
    161 // information.
    162 //
    163 // We can't use an STL class for this because we need to be careful not to
    164 // perform any heap de-allocations in any of the code in this class, since the
    165 // code in MallocBlock::Deallocate is not re-entrant.
    166 template <typename QueueEntry>
    167 class FreeQueue {
    168  public:
    169   FreeQueue() : q_front_(0), q_back_(0) {}
    170 
    171   bool Full() {
    172     return (q_front_ + 1) % kFreeQueueSize == q_back_;
    173   }
    174 
    175   void Push(const QueueEntry& block) {
    176     q_[q_front_] = block;
    177     q_front_ = (q_front_ + 1) % kFreeQueueSize;
    178   }
    179 
    180   QueueEntry Pop() {
    181     RAW_CHECK(q_back_ != q_front_, "Queue is empty");
    182     const QueueEntry& ret = q_[q_back_];
    183     q_back_ = (q_back_ + 1) % kFreeQueueSize;
    184     return ret;
    185   }
    186 
    187   size_t size() const {
    188     return (q_front_ - q_back_ + kFreeQueueSize) % kFreeQueueSize;
    189   }
    190 
    191  private:
    192   // Maximum number of blocks kept in the free queue before being freed.
    193   static const int kFreeQueueSize = 1024;
    194 
    195   QueueEntry q_[kFreeQueueSize];
    196   int q_front_;
    197   int q_back_;
    198 };
    199 
    200 struct MallocBlockQueueEntry {
    201   MallocBlockQueueEntry() : block(NULL), size(0),
    202                             num_deleter_pcs(0), deleter_threadid(0) {}
    203   MallocBlockQueueEntry(MallocBlock* b, size_t s) : block(b), size(s) {
    204     if (FLAGS_max_free_queue_size != 0 && b != NULL) {
    205       // Adjust the number of frames to skip (4) if you change the
    206       // location of this call.
    207       num_deleter_pcs =
    208           GetStackTrace(deleter_pcs,
    209                         sizeof(deleter_pcs) / sizeof(deleter_pcs[0]),
    210                         4);
    211       deleter_threadid = pthread_self();
    212     } else {
    213       num_deleter_pcs = 0;
    214       // Zero is an illegal pthread id by my reading of the pthread
    215       // implementation:
    216       deleter_threadid = 0;
    217     }
    218   }
    219 
    220   MallocBlock* block;
    221   size_t size;
    222 
    223   // When deleted and put in the free queue, we (flag-controlled)
    224   // record the stack so that if corruption is later found, we can
    225   // print the deleter's stack.  (These three vars add 144 bytes of
    226   // overhead under the LP64 data model.)
    227   void* deleter_pcs[16];
    228   int num_deleter_pcs;
    229   pthread_t deleter_threadid;
    230 };
    231 
    232 class MallocBlock {
    233  public:  // allocation type constants
    234 
    235   // Different allocation types we distinguish.
    236   // Note: The lower 4 bits are not random: we index kAllocName array
    237   // by these values masked with kAllocTypeMask;
    238   // the rest are "random" magic bits to help catch memory corruption.
    239   static const int kMallocType = 0xEFCDAB90;
    240   static const int kNewType = 0xFEBADC81;
    241   static const int kArrayNewType = 0xBCEADF72;
    242 
    243  private:  // constants
    244 
    245   // A mask used on alloc types above to get to 0, 1, 2
    246   static const int kAllocTypeMask = 0x3;
    247   // An additional bit to set in AllocType constants
    248   // to mark now deallocated regions.
    249   static const int kDeallocatedTypeBit = 0x4;
    250 
    251   // For better memory debugging, we initialize all storage to known
    252   // values, and overwrite the storage when it's deallocated:
    253   // Byte that fills uninitialized storage.
    254   static const int kMagicUninitializedByte = 0xAB;
    255   // Byte that fills deallocated storage.
    256   // NOTE: tcmalloc.cc depends on the value of kMagicDeletedByte
    257   //       to work around a bug in the pthread library.
    258   static const int kMagicDeletedByte = 0xCD;
    259   // A size_t (type of alloc_type_ below) in a deallocated storage
    260   // filled with kMagicDeletedByte.
    261   static const size_t kMagicDeletedSizeT =
    262       0xCDCDCDCD | (((size_t)0xCDCDCDCD << 16) << 16);
    263     // Initializer works for 32 and 64 bit size_ts;
    264     // "<< 16 << 16" is to fool gcc from issuing a warning
    265     // when size_ts are 32 bits.
    266 
    267   // NOTE: on Linux, you can enable malloc debugging support in libc by
    268   // setting the environment variable MALLOC_CHECK_ to 1 before you
    269   // start the program (see man malloc).
    270 
    271   // We use either BASE_MALLOC or mmap to make the actual allocation. In
    272   // order to remember which one of the two was used for any block, we store an
    273   // appropriate magic word next to the block.
    274   static const int kMagicMalloc = 0xDEADBEEF;
    275   static const int kMagicMMap = 0xABCDEFAB;
    276 
    277   // This array will be filled with 0xCD, for use with memcmp.
    278   static unsigned char kMagicDeletedBuffer[1024];
    279   static pthread_once_t deleted_buffer_initialized_;
    280   static bool deleted_buffer_initialized_no_pthreads_;
    281 
    282  private:  // data layout
    283 
    284                     // The four fields size1_,offset_,magic1_,alloc_type_
    285                     // should together occupy a multiple of 16 bytes. (At the
    286                     // moment, sizeof(size_t) == 4 or 8 depending on piii vs
    287                     // k8, and 4 of those sum to 16 or 32 bytes).
    288                     // This, combined with BASE_MALLOC's alignment guarantees,
    289                     // ensures that SSE types can be stored into the returned
    290                     // block, at &size2_.
    291   size_t size1_;
    292   size_t offset_;   // normally 0 unless memaligned memory
    293                     // see comments in memalign() and FromRawPointer().
    294   size_t magic1_;
    295   size_t alloc_type_;
    296   // here comes the actual data (variable length)
    297   // ...
    298   // then come the size2_ and magic2_, or a full page of mprotect-ed memory
    299   // if the malloc_page_fence feature is enabled.
    300   size_t size2_;
    301   int magic2_;
    302 
    303  private:  // static data and helpers
    304 
    305   // Allocation map: stores the allocation type for each allocated object,
    306   // or the type or'ed with kDeallocatedTypeBit
    307   // for each formerly allocated object.
    308   typedef AddressMap<int> AllocMap;
    309   static AllocMap* alloc_map_;
    310   // This protects alloc_map_ and consistent state of metadata
    311   // for each still-allocated object in it.
    312   // We use spin locks instead of pthread_mutex_t locks
    313   // to prevent crashes via calls to pthread_mutex_(un)lock
    314   // for the (de)allocations coming from pthreads initialization itself.
    315   static SpinLock alloc_map_lock_;
    316 
    317   // A queue of freed blocks.  Instead of releasing blocks to the allocator
    318   // immediately, we put them in a queue, freeing them only when necessary
    319   // to keep the total size of all the freed blocks below the limit set by
    320   // FLAGS_max_free_queue_size.
    321   static FreeQueue<MallocBlockQueueEntry>* free_queue_;
    322 
    323   static size_t free_queue_size_;  // total size of blocks in free_queue_
    324   // protects free_queue_ and free_queue_size_
    325   static SpinLock free_queue_lock_;
    326 
    327   // Names of allocation types (kMallocType, kNewType, kArrayNewType)
    328   static const char* const kAllocName[];
    329   // Names of corresponding deallocation types
    330   static const char* const kDeallocName[];
    331 
    332   static const char* AllocName(int type) {
    333     return kAllocName[type & kAllocTypeMask];
    334   }
    335 
    336   static const char* DeallocName(int type) {
    337     return kDeallocName[type & kAllocTypeMask];
    338   }
    339 
    340  private:  // helper accessors
    341 
    342   bool IsMMapped() const { return kMagicMMap == magic1_; }
    343 
    344   bool IsValidMagicValue(int value) const {
    345     return kMagicMMap == value  ||  kMagicMalloc == value;
    346   }
    347 
    348   static size_t real_malloced_size(size_t size) {
    349     return size + sizeof(MallocBlock);
    350   }
    351   static size_t real_mmapped_size(size_t size) {
    352     return size + MallocBlock::data_offset();
    353   }
    354 
    355   size_t real_size() {
    356     return IsMMapped() ? real_mmapped_size(size1_) : real_malloced_size(size1_);
    357   }
    358 
    359   // NOTE: if the block is mmapped (that is, we're using the
    360   // malloc_page_fence option) then there's no size2 or magic2
    361   // (instead, the guard page begins where size2 would be).
    362 
    363   size_t* size2_addr() { return (size_t*)((char*)&size2_ + size1_); }
    364   const size_t* size2_addr() const {
    365     return (const size_t*)((char*)&size2_ + size1_);
    366   }
    367 
    368   int* magic2_addr() { return (int*)(size2_addr() + 1); }
    369   const int* magic2_addr() const { return (const int*)(size2_addr() + 1); }
    370 
    371  private:  // other helpers
    372 
    373   void Initialize(size_t size, int type) {
    374     RAW_CHECK(IsValidMagicValue(magic1_), "");
    375     // record us as allocated in the map
    376     alloc_map_lock_.Lock();
    377     if (!alloc_map_) {
    378       void* p = BASE_MALLOC(sizeof(AllocMap));
    379       alloc_map_ = new(p) AllocMap(BASE_MALLOC, BASE_FREE);
    380     }
    381     alloc_map_->Insert(data_addr(), type);
    382     // initialize us
    383     size1_ = size;
    384     offset_ = 0;
    385     alloc_type_ = type;
    386     if (!IsMMapped()) {
    387       *magic2_addr() = magic1_;
    388       *size2_addr() = size;
    389     }
    390     alloc_map_lock_.Unlock();
    391     memset(data_addr(), kMagicUninitializedByte, size);
    392     if (!IsMMapped()) {
    393       RAW_CHECK(size1_ == *size2_addr(), "should hold");
    394       RAW_CHECK(magic1_ == *magic2_addr(), "should hold");
    395     }
    396   }
    397 
    398   size_t CheckAndClear(int type) {
    399     alloc_map_lock_.Lock();
    400     CheckLocked(type);
    401     if (!IsMMapped()) {
    402       RAW_CHECK(size1_ == *size2_addr(), "should hold");
    403     }
    404     // record us as deallocated in the map
    405     alloc_map_->Insert(data_addr(), type | kDeallocatedTypeBit);
    406     alloc_map_lock_.Unlock();
    407     // clear us
    408     const size_t size = real_size();
    409     memset(this, kMagicDeletedByte, size);
    410     return size;
    411   }
    412 
    413   void CheckLocked(int type) const {
    414     int map_type = 0;
    415     const int* found_type =
    416       alloc_map_ != NULL ? alloc_map_->Find(data_addr()) : NULL;
    417     if (found_type == NULL) {
    418       RAW_LOG(FATAL, "memory allocation bug: object at %p "
    419                      "has never been allocated", data_addr());
    420     } else {
    421       map_type = *found_type;
    422     }
    423     if ((map_type & kDeallocatedTypeBit) != 0) {
    424       RAW_LOG(FATAL, "memory allocation bug: object at %p "
    425                      "has been already deallocated (it was allocated with %s)",
    426                      data_addr(), AllocName(map_type & ~kDeallocatedTypeBit));
    427     }
    428     if (alloc_type_ == kMagicDeletedSizeT) {
    429       RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
    430                      "has been corrupted; or else the object has been already "
    431                      "deallocated and our memory map has been corrupted",
    432                      data_addr());
    433     }
    434     if (!IsValidMagicValue(magic1_)) {
    435       RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
    436                      "has been corrupted; "
    437                      "or else our memory map has been corrupted and this is a "
    438                      "deallocation for not (currently) heap-allocated object",
    439                      data_addr());
    440     }
    441     if (!IsMMapped()) {
    442       if (size1_ != *size2_addr()) {
    443         RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
    444                        "has been corrupted", data_addr());
    445       }
    446       if (!IsValidMagicValue(*magic2_addr())) {
    447         RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
    448                 "has been corrupted", data_addr());
    449       }
    450     }
    451     if (alloc_type_ != type) {
    452       if ((alloc_type_ != MallocBlock::kMallocType) &&
    453           (alloc_type_ != MallocBlock::kNewType)    &&
    454           (alloc_type_ != MallocBlock::kArrayNewType)) {
    455         RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
    456                        "has been corrupted", data_addr());
    457       }
    458       RAW_LOG(FATAL, "memory allocation/deallocation mismatch at %p: "
    459                      "allocated with %s being deallocated with %s",
    460                      data_addr(), AllocName(alloc_type_), DeallocName(type));
    461     }
    462     if (alloc_type_ != map_type) {
    463       RAW_LOG(FATAL, "memory stomping bug: our memory map has been corrupted : "
    464                      "allocation at %p made with %s "
    465                      "is recorded in the map to be made with %s",
    466                      data_addr(), AllocName(alloc_type_),  AllocName(map_type));
    467     }
    468   }
    469 
    470  public:  // public accessors
    471 
    472   void* data_addr() { return (void*)&size2_; }
    473   const void* data_addr() const { return (const void*)&size2_; }
    474 
    475   static size_t data_offset() { return OFFSETOF_MEMBER(MallocBlock, size2_); }
    476 
    477   size_t data_size() const { return size1_; }
    478 
    479   void set_offset(int offset) { this->offset_ = offset; }
    480 
    481  public:  // our main interface
    482 
    483   static MallocBlock* Allocate(size_t size, int type) {
    484     // Prevent an integer overflow / crash with large allocation sizes.
    485     // TODO - Note that for a e.g. 64-bit size_t, max_size_t may not actually
    486     // be the maximum value, depending on how the compiler treats ~0. The worst
    487     // practical effect is that allocations are limited to 4Gb or so, even if
    488     // the address space could take more.
    489     static size_t max_size_t = ~0;
    490     if (size > max_size_t - sizeof(MallocBlock)) {
    491       RAW_LOG(ERROR, "Massive size passed to malloc: %"PRIuS"", size);
    492       return NULL;
    493     }
    494     MallocBlock* b = NULL;
    495     const bool use_malloc_page_fence = FLAGS_malloc_page_fence;
    496 #ifdef HAVE_MMAP
    497     if (use_malloc_page_fence) {
    498       // Put the block towards the end of the page and make the next page
    499       // inaccessible. This will catch buffer overrun right when it happens.
    500       size_t sz = real_mmapped_size(size);
    501       int pagesize = getpagesize();
    502       int num_pages = (sz + pagesize - 1) / pagesize + 1;
    503       char* p = (char*) mmap(NULL, num_pages * pagesize, PROT_READ|PROT_WRITE,
    504                              MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    505       if (p == MAP_FAILED) {
    506         // If the allocation fails, abort rather than returning NULL to
    507         // malloc. This is because in most cases, the program will run out
    508         // of memory in this mode due to tremendous amount of wastage. There
    509         // is no point in propagating the error elsewhere.
    510         RAW_LOG(FATAL, "Out of memory: possibly due to page fence overhead: %s",
    511                 strerror(errno));
    512       }
    513       // Mark the page after the block inaccessible
    514       if (mprotect(p + (num_pages - 1) * pagesize, pagesize, PROT_NONE)) {
    515         RAW_LOG(FATAL, "Guard page setup failed: %s", strerror(errno));
    516       }
    517       b = (MallocBlock*) (p + (num_pages - 1) * pagesize - sz);
    518     } else {
    519       b = (MallocBlock*) (type == kMallocType ?
    520                           BASE_MALLOC(real_malloced_size(size)) :
    521                           BASE_MALLOC_NEW(real_malloced_size(size)));
    522     }
    523 #else
    524     b = (MallocBlock*) (type == kMallocType ?
    525                         BASE_MALLOC(real_malloced_size(size)) :
    526                         BASE_MALLOC_NEW(real_malloced_size(size)));
    527 #endif
    528 
    529     // It would be nice to output a diagnostic on allocation failure
    530     // here, but logging (other than FATAL) requires allocating
    531     // memory, which could trigger a nasty recursion. Instead, preserve
    532     // malloc semantics and return NULL on failure.
    533     if (b != NULL) {
    534       b->magic1_ = use_malloc_page_fence ? kMagicMMap : kMagicMalloc;
    535       b->Initialize(size, type);
    536     }
    537     return b;
    538   }
    539 
    540   void Deallocate(int type) {
    541     if (IsMMapped()) {  // have to do this before CheckAndClear
    542 #ifdef HAVE_MMAP
    543       int size = CheckAndClear(type);
    544       int pagesize = getpagesize();
    545       int num_pages = (size + pagesize - 1) / pagesize + 1;
    546       char* p = (char*) this;
    547       if (FLAGS_malloc_page_fence_never_reclaim  ||
    548           !FLAGS_malloc_reclaim_memory) {
    549         mprotect(p - (num_pages - 1) * pagesize + size,
    550                  num_pages * pagesize, PROT_NONE);
    551       } else {
    552         munmap(p - (num_pages - 1) * pagesize + size, num_pages * pagesize);
    553       }
    554 #endif
    555     } else {
    556       const size_t size = CheckAndClear(type);
    557       if (FLAGS_malloc_reclaim_memory) {
    558         // Instead of freeing the block immediately, push it onto a queue of
    559         // recently freed blocks.  Free only enough blocks to keep from
    560         // exceeding the capacity of the queue or causing the total amount of
    561         // un-released memory in the queue from exceeding
    562         // FLAGS_max_free_queue_size.
    563         ProcessFreeQueue(this, size, FLAGS_max_free_queue_size);
    564       }
    565     }
    566   }
    567 
    568   static size_t FreeQueueSize() {
    569     SpinLockHolder l(&free_queue_lock_);
    570     return free_queue_size_;
    571   }
    572 
    573   static void ProcessFreeQueue(MallocBlock* b, size_t size,
    574                                int max_free_queue_size) {
    575     // MallocBlockQueueEntry are about 144 in size, so we can only
    576     // use a small array of them on the stack.
    577     MallocBlockQueueEntry entries[4];
    578     int num_entries = 0;
    579     MallocBlockQueueEntry new_entry(b, size);
    580     free_queue_lock_.Lock();
    581     if (free_queue_ == NULL)
    582       free_queue_ = new FreeQueue<MallocBlockQueueEntry>;
    583     RAW_CHECK(!free_queue_->Full(), "Free queue mustn't be full!");
    584 
    585     if (b != NULL) {
    586       free_queue_size_ += size + sizeof(MallocBlockQueueEntry);
    587       free_queue_->Push(new_entry);
    588     }
    589 
    590     // Free blocks until the total size of unfreed blocks no longer exceeds
    591     // max_free_queue_size, and the free queue has at least one free
    592     // space in it.
    593     while (free_queue_size_ > max_free_queue_size || free_queue_->Full()) {
    594       RAW_CHECK(num_entries < arraysize(entries), "entries array overflow");
    595       entries[num_entries] = free_queue_->Pop();
    596       free_queue_size_ -=
    597           entries[num_entries].size + sizeof(MallocBlockQueueEntry);
    598       num_entries++;
    599       if (num_entries == arraysize(entries)) {
    600         // The queue will not be full at this point, so it is ok to
    601         // release the lock.  The queue may still contain more than
    602         // max_free_queue_size, but this is not a strict invariant.
    603         free_queue_lock_.Unlock();
    604         for (int i = 0; i < num_entries; i++) {
    605           CheckForDanglingWrites(entries[i]);
    606           BASE_FREE(entries[i].block);
    607         }
    608         num_entries = 0;
    609         free_queue_lock_.Lock();
    610       }
    611     }
    612     RAW_CHECK(free_queue_size_ >= 0, "Free queue size went negative!");
    613     free_queue_lock_.Unlock();
    614     for (int i = 0; i < num_entries; i++) {
    615       CheckForDanglingWrites(entries[i]);
    616       BASE_FREE(entries[i].block);
    617     }
    618   }
    619 
    620   static void InitDeletedBuffer() {
    621     memset(kMagicDeletedBuffer, kMagicDeletedByte, sizeof(kMagicDeletedBuffer));
    622     deleted_buffer_initialized_no_pthreads_ = true;
    623   }
    624 
    625   static void CheckForDanglingWrites(const MallocBlockQueueEntry& queue_entry) {
    626     // Initialize the buffer if necessary.
    627     if (pthread_once)
    628       pthread_once(&deleted_buffer_initialized_, &InitDeletedBuffer);
    629     if (!deleted_buffer_initialized_no_pthreads_) {
    630       // This will be the case on systems that don't link in pthreads,
    631       // including on FreeBSD where pthread_once has a non-zero address
    632       // (but doesn't do anything) even when pthreads isn't linked in.
    633       InitDeletedBuffer();
    634     }
    635 
    636     const unsigned char* p =
    637         reinterpret_cast<unsigned char*>(queue_entry.block);
    638 
    639     static const size_t size_of_buffer = sizeof(kMagicDeletedBuffer);
    640     const size_t size = queue_entry.size;
    641     const size_t buffers = size / size_of_buffer;
    642     const size_t remainder = size % size_of_buffer;
    643     size_t buffer_idx;
    644     for (buffer_idx = 0; buffer_idx < buffers; ++buffer_idx) {
    645       CheckForCorruptedBuffer(queue_entry, buffer_idx, p, size_of_buffer);
    646       p += size_of_buffer;
    647     }
    648     CheckForCorruptedBuffer(queue_entry, buffer_idx, p, remainder);
    649   }
    650 
    651   static void CheckForCorruptedBuffer(const MallocBlockQueueEntry& queue_entry,
    652                                       size_t buffer_idx,
    653                                       const unsigned char* buffer,
    654                                       size_t size_of_buffer) {
    655     if (memcmp(buffer, kMagicDeletedBuffer, size_of_buffer) == 0) {
    656       return;
    657     }
    658 
    659     RAW_LOG(ERROR,
    660             "Found a corrupted memory buffer in MallocBlock (may be offset "
    661             "from user ptr): buffer index: %zd, buffer ptr: %p, size of "
    662             "buffer: %zd", buffer_idx, buffer, size_of_buffer);
    663 
    664     // The magic deleted buffer should only be 1024 bytes, but in case
    665     // this changes, let's put an upper limit on the number of debug
    666     // lines we'll output:
    667     if (size_of_buffer <= 1024) {
    668       for (int i = 0; i < size_of_buffer; ++i) {
    669         if (buffer[i] != kMagicDeletedByte) {
    670           RAW_LOG(ERROR, "Buffer byte %d is 0x%02x (should be 0x%02x).",
    671                   i, buffer[i], kMagicDeletedByte);
    672         }
    673       }
    674     } else {
    675       RAW_LOG(ERROR, "Buffer too large to print corruption.");
    676     }
    677 
    678     const MallocBlock* b = queue_entry.block;
    679     const size_t size = queue_entry.size;
    680     if (queue_entry.num_deleter_pcs > 0) {
    681       TracePrintf(STDERR_FILENO, "Deleted by thread %p\n",
    682                   reinterpret_cast<void*>(
    683                       PRINTABLE_PTHREAD(queue_entry.deleter_threadid)));
    684 
    685       // We don't want to allocate or deallocate memory here, so we use
    686       // placement-new.  It's ok that we don't destroy this, since we're
    687       // just going to error-exit below anyway.  Union is for alignment.
    688       union { void* alignment; char buf[sizeof(SymbolTable)]; } tablebuf;
    689       SymbolTable* symbolization_table = new (tablebuf.buf) SymbolTable;
    690       for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
    691         // Symbolizes the previous address of pc because pc may be in the
    692         // next function.  This may happen when the function ends with
    693         // a call to a function annotated noreturn (e.g. CHECK).
    694         char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
    695         symbolization_table->Add(pc - 1);
    696       }
    697       if (FLAGS_symbolize_stacktrace)
    698         symbolization_table->Symbolize();
    699       for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
    700         char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
    701         TracePrintf(STDERR_FILENO, "    @ %p %s\n",
    702                     pc, symbolization_table->GetSymbol(pc - 1));
    703       }
    704     } else {
    705       RAW_LOG(ERROR,
    706               "Skipping the printing of the deleter's stack!  Its stack was "
    707               "not found; either the corruption occurred too early in "
    708               "execution to obtain a stack trace or --max_free_queue_size was "
    709               "set to 0.");
    710     }
    711 
    712     RAW_LOG(FATAL,
    713             "Memory was written to after being freed.  MallocBlock: %p, user "
    714             "ptr: %p, size: %zd.  If you can't find the source of the error, "
    715             "try using ASan (http://code.google.com/p/address-sanitizer/), "
    716             "Valgrind, or Purify, or study the "
    717             "output of the deleter's stack printed above.",
    718             b, b->data_addr(), size);
    719   }
    720 
    721   static MallocBlock* FromRawPointer(void* p) {
    722     const size_t data_offset = MallocBlock::data_offset();
    723     // Find the header just before client's memory.
    724     MallocBlock *mb = reinterpret_cast<MallocBlock *>(
    725                 reinterpret_cast<char *>(p) - data_offset);
    726     // If mb->alloc_type_ is kMagicDeletedSizeT, we're not an ok pointer.
    727     if (mb->alloc_type_ == kMagicDeletedSizeT) {
    728       RAW_LOG(FATAL, "memory allocation bug: object at %p has been already"
    729                      " deallocated; or else a word before the object has been"
    730                      " corrupted (memory stomping bug)", p);
    731     }
    732     // If mb->offset_ is zero (common case), mb is the real header.  If
    733     // mb->offset_ is non-zero, this block was allocated by memalign, and
    734     // mb->offset_ is the distance backwards to the real header from mb,
    735     // which is a fake header.  The following subtraction works for both zero
    736     // and non-zero values.
    737     return reinterpret_cast<MallocBlock *>(
    738                 reinterpret_cast<char *>(mb) - mb->offset_);
    739   }
    740   static const MallocBlock* FromRawPointer(const void* p) {
    741     // const-safe version: we just cast about
    742     return FromRawPointer(const_cast<void*>(p));
    743   }
    744 
    745   void Check(int type) const {
    746     alloc_map_lock_.Lock();
    747     CheckLocked(type);
    748     alloc_map_lock_.Unlock();
    749   }
    750 
    751   static bool CheckEverything() {
    752     alloc_map_lock_.Lock();
    753     if (alloc_map_ != NULL)  alloc_map_->Iterate(CheckCallback, 0);
    754     alloc_map_lock_.Unlock();
    755     return true;  // if we get here, we're okay
    756   }
    757 
    758   static bool MemoryStats(int* blocks, size_t* total,
    759                           int histogram[kMallocHistogramSize]) {
    760     memset(histogram, 0, kMallocHistogramSize * sizeof(int));
    761     alloc_map_lock_.Lock();
    762     stats_blocks_ = 0;
    763     stats_total_ = 0;
    764     stats_histogram_ = histogram;
    765     if (alloc_map_ != NULL) alloc_map_->Iterate(StatsCallback, 0);
    766     *blocks = stats_blocks_;
    767     *total = stats_total_;
    768     alloc_map_lock_.Unlock();
    769     return true;
    770   }
    771 
    772  private:  // helpers for CheckEverything and MemoryStats
    773 
    774   static void CheckCallback(const void* ptr, int* type, int dummy) {
    775     if ((*type & kDeallocatedTypeBit) == 0) {
    776       FromRawPointer(ptr)->CheckLocked(*type);
    777     }
    778   }
    779 
    780   // Accumulation variables for StatsCallback protected by alloc_map_lock_
    781   static int stats_blocks_;
    782   static size_t stats_total_;
    783   static int* stats_histogram_;
    784 
    785   static void StatsCallback(const void* ptr, int* type, int dummy) {
    786     if ((*type & kDeallocatedTypeBit) == 0) {
    787       const MallocBlock* b = FromRawPointer(ptr);
    788       b->CheckLocked(*type);
    789       ++stats_blocks_;
    790       size_t mysize = b->size1_;
    791       int entry = 0;
    792       stats_total_ += mysize;
    793       while (mysize) {
    794         ++entry;
    795         mysize >>= 1;
    796       }
    797       RAW_CHECK(entry < kMallocHistogramSize,
    798                 "kMallocHistogramSize should be at least as large as log2 "
    799                 "of the maximum process memory size");
    800       stats_histogram_[entry] += 1;
    801     }
    802   }
    803 };
    804 
    805 void DanglingWriteChecker() {
    806   // Clear out the remaining free queue to check for dangling writes.
    807   MallocBlock::ProcessFreeQueue(NULL, 0, 0);
    808 }
    809 
    810 // ========================================================================= //
    811 
    812 const int MallocBlock::kMagicMalloc;
    813 const int MallocBlock::kMagicMMap;
    814 
    815 MallocBlock::AllocMap* MallocBlock::alloc_map_ = NULL;
    816 SpinLock MallocBlock::alloc_map_lock_(SpinLock::LINKER_INITIALIZED);
    817 
    818 FreeQueue<MallocBlockQueueEntry>* MallocBlock::free_queue_ = NULL;
    819 size_t MallocBlock::free_queue_size_ = 0;
    820 SpinLock MallocBlock::free_queue_lock_(SpinLock::LINKER_INITIALIZED);
    821 
    822 unsigned char MallocBlock::kMagicDeletedBuffer[1024];
    823 pthread_once_t MallocBlock::deleted_buffer_initialized_ = PTHREAD_ONCE_INIT;
    824 bool MallocBlock::deleted_buffer_initialized_no_pthreads_ = false;
    825 
    826 const char* const MallocBlock::kAllocName[] = {
    827   "malloc",
    828   "new",
    829   "new []",
    830   NULL,
    831 };
    832 
    833 const char* const MallocBlock::kDeallocName[] = {
    834   "free",
    835   "delete",
    836   "delete []",
    837   NULL,
    838 };
    839 
    840 int MallocBlock::stats_blocks_;
    841 size_t MallocBlock::stats_total_;
    842 int* MallocBlock::stats_histogram_;
    843 
    844 // ========================================================================= //
    845 
    846 // The following cut-down version of printf() avoids
    847 // using stdio or ostreams.
    848 // This is to guarantee no recursive calls into
    849 // the allocator and to bound the stack space consumed.  (The pthread
    850 // manager thread in linuxthreads has a very small stack,
    851 // so fprintf can't be called.)
    852 static void TracePrintf(int fd, const char *fmt, ...) {
    853   char buf[64];
    854   int i = 0;
    855   va_list ap;
    856   va_start(ap, fmt);
    857   const char *p = fmt;
    858   char numbuf[25];
    859   numbuf[sizeof(numbuf)-1] = 0;
    860   while (*p != '\0') {              // until end of format string
    861     char *s = &numbuf[sizeof(numbuf)-1];
    862     if (p[0] == '%' && p[1] != 0) {  // handle % formats
    863       int64 l = 0;
    864       unsigned long base = 0;
    865       if (*++p == 's') {                            // %s
    866         s = va_arg(ap, char *);
    867       } else if (*p == 'l' && p[1] == 'd') {        // %ld
    868         l = va_arg(ap, long);
    869         base = 10;
    870         p++;
    871       } else if (*p == 'l' && p[1] == 'u') {        // %lu
    872         l = va_arg(ap, unsigned long);
    873         base = 10;
    874         p++;
    875       } else if (*p == 'z' && p[1] == 'u') {        // %zu
    876         l = va_arg(ap, size_t);
    877         base = 10;
    878         p++;
    879       } else if (*p == 'u') {                       // %u
    880         l = va_arg(ap, unsigned int);
    881         base = 10;
    882       } else if (*p == 'd') {                       // %d
    883         l = va_arg(ap, int);
    884         base = 10;
    885       } else if (*p == 'p') {                       // %p
    886         l = va_arg(ap, intptr_t);
    887         base = 16;
    888       } else {
    889         write(STDERR_FILENO, "Unimplemented TracePrintf format\n", 33);
    890         write(STDERR_FILENO, p, 2);
    891         write(STDERR_FILENO, "\n", 1);
    892         abort();
    893       }
    894       p++;
    895       if (base != 0) {
    896         bool minus = (l < 0 && base == 10);
    897         uint64 ul = minus? -l : l;
    898         do {
    899           *--s = "0123456789abcdef"[ul % base];
    900           ul /= base;
    901         } while (ul != 0);
    902         if (base == 16) {
    903           *--s = 'x';
    904           *--s = '0';
    905         } else if (minus) {
    906           *--s = '-';
    907         }
    908       }
    909     } else {                        // handle normal characters
    910       *--s = *p++;
    911     }
    912     while (*s != 0) {
    913       if (i == sizeof(buf)) {
    914         write(fd, buf, i);
    915         i = 0;
    916       }
    917       buf[i++] = *s++;
    918     }
    919   }
    920   if (i != 0) {
    921     write(fd, buf, i);
    922   }
    923   va_end(ap);
    924 }
    925 
    926 // Return the file descriptor we're writing a log to
    927 static int TraceFd() {
    928   static int trace_fd = -1;
    929   if (trace_fd == -1) {            // Open the trace file on the first call
    930     trace_fd = open("/tmp/google.alloc", O_CREAT|O_TRUNC|O_WRONLY, 0666);
    931     if (trace_fd == -1) {
    932       trace_fd = 2;
    933       TracePrintf(trace_fd,
    934                   "Can't open /tmp/google.alloc.  Logging to stderr.\n");
    935     }
    936     // Add a header to the log.
    937     TracePrintf(trace_fd, "Trace started: %lu\n",
    938                 static_cast<unsigned long>(time(NULL)));
    939     TracePrintf(trace_fd,
    940                 "func\tsize\tptr\tthread_id\tstack pcs for tools/symbolize\n");
    941   }
    942   return trace_fd;
    943 }
    944 
    945 // Print the hex stack dump on a single line.   PCs are separated by tabs.
    946 static void TraceStack(void) {
    947   void *pcs[16];
    948   int n = GetStackTrace(pcs, sizeof(pcs)/sizeof(pcs[0]), 0);
    949   for (int i = 0; i != n; i++) {
    950     TracePrintf(TraceFd(), "\t%p", pcs[i]);
    951   }
    952 }
    953 
    954 // This protects MALLOC_TRACE, to make sure its info is atomically written.
    955 static SpinLock malloc_trace_lock(SpinLock::LINKER_INITIALIZED);
    956 
    957 #define MALLOC_TRACE(name, size, addr)                                  \
    958   do {                                                                  \
    959     if (FLAGS_malloctrace) {                                            \
    960       SpinLockHolder l(&malloc_trace_lock);                             \
    961       TracePrintf(TraceFd(), "%s\t%"PRIuS"\t%p\t%"GPRIuPTHREAD,         \
    962                   name, size, addr, PRINTABLE_PTHREAD(pthread_self())); \
    963       TraceStack();                                                     \
    964       TracePrintf(TraceFd(), "\n");                                     \
    965     }                                                                   \
    966   } while (0)
    967 
    968 // ========================================================================= //
    969 
    970 // Write the characters buf[0, ..., size-1] to
    971 // the malloc trace buffer.
    972 // This function is intended for debugging,
    973 // and is not declared in any header file.
    974 // You must insert a declaration of it by hand when you need
    975 // to use it.
    976 void __malloctrace_write(const char *buf, size_t size) {
    977   if (FLAGS_malloctrace) {
    978     write(TraceFd(), buf, size);
    979   }
    980 }
    981 
    982 // ========================================================================= //
    983 
    984 // General debug allocation/deallocation
    985 
    986 static inline void* DebugAllocate(size_t size, int type) {
    987   MallocBlock* ptr = MallocBlock::Allocate(size, type);
    988   if (ptr == NULL)  return NULL;
    989   MALLOC_TRACE("malloc", size, ptr->data_addr());
    990   return ptr->data_addr();
    991 }
    992 
    993 static inline void DebugDeallocate(void* ptr, int type) {
    994   MALLOC_TRACE("free",
    995                (ptr != 0 ? MallocBlock::FromRawPointer(ptr)->data_size() : 0),
    996                ptr);
    997   if (ptr)  MallocBlock::FromRawPointer(ptr)->Deallocate(type);
    998 }
    999 
   1000 // ========================================================================= //
   1001 
   1002 // The following functions may be called via MallocExtension::instance()
   1003 // for memory verification and statistics.
   1004 class DebugMallocImplementation : public TCMallocImplementation {
   1005  public:
   1006   virtual bool GetNumericProperty(const char* name, size_t* value) {
   1007     bool result = TCMallocImplementation::GetNumericProperty(name, value);
   1008     if (result && (strcmp(name, "generic.current_allocated_bytes") == 0)) {
   1009       // Subtract bytes kept in the free queue
   1010       size_t qsize = MallocBlock::FreeQueueSize();
   1011       if (*value >= qsize) {
   1012         *value -= qsize;
   1013       }
   1014     }
   1015     return result;
   1016   }
   1017 
   1018   virtual bool VerifyNewMemory(const void* p) {
   1019     if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kNewType);
   1020     return true;
   1021   }
   1022 
   1023   virtual bool VerifyArrayNewMemory(const void* p) {
   1024     if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kArrayNewType);
   1025     return true;
   1026   }
   1027 
   1028   virtual bool VerifyMallocMemory(const void* p) {
   1029     if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kMallocType);
   1030     return true;
   1031   }
   1032 
   1033   virtual bool VerifyAllMemory() {
   1034     return MallocBlock::CheckEverything();
   1035   }
   1036 
   1037   virtual bool MallocMemoryStats(int* blocks, size_t* total,
   1038                                  int histogram[kMallocHistogramSize]) {
   1039     return MallocBlock::MemoryStats(blocks, total, histogram);
   1040   }
   1041 
   1042   virtual size_t GetEstimatedAllocatedSize(size_t size) {
   1043     return size;
   1044   }
   1045 
   1046   virtual size_t GetAllocatedSize(const void* p) {
   1047     if (p) {
   1048       RAW_CHECK(GetOwnership(p) != MallocExtension::kNotOwned,
   1049                 "ptr not allocated by tcmalloc");
   1050       return MallocBlock::FromRawPointer(p)->data_size();
   1051     }
   1052     return 0;
   1053   }
   1054 
   1055   virtual MallocExtension::Ownership GetOwnership(const void* p) {
   1056     if (p) {
   1057       const MallocBlock* mb = MallocBlock::FromRawPointer(p);
   1058       return TCMallocImplementation::GetOwnership(mb);
   1059     }
   1060     return MallocExtension::kNotOwned;   // nobody owns NULL
   1061   }
   1062 
   1063   virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
   1064     static const char* kDebugFreeQueue = "debug.free_queue";
   1065 
   1066     TCMallocImplementation::GetFreeListSizes(v);
   1067 
   1068     MallocExtension::FreeListInfo i;
   1069     i.type = kDebugFreeQueue;
   1070     i.min_object_size = 0;
   1071     i.max_object_size = numeric_limits<size_t>::max();
   1072     i.total_bytes_free = MallocBlock::FreeQueueSize();
   1073     v->push_back(i);
   1074   }
   1075 
   1076  };
   1077 
   1078 static DebugMallocImplementation debug_malloc_implementation;
   1079 
   1080 REGISTER_MODULE_INITIALIZER(debugallocation, {
   1081   // Either we or valgrind will control memory management.  We
   1082   // register our extension if we're the winner. Otherwise let
   1083   // Valgrind use its own malloc (so don't register our extension).
   1084   if (!RunningOnValgrind()) {
   1085     MallocExtension::Register(&debug_malloc_implementation);
   1086   }
   1087 });
   1088 
   1089 REGISTER_MODULE_DESTRUCTOR(debugallocation, {
   1090   if (!RunningOnValgrind()) {
   1091     // When the program exits, check all blocks still in the free
   1092     // queue for corruption.
   1093     DanglingWriteChecker();
   1094   }
   1095 });
   1096 
   1097 // ========================================================================= //
   1098 
   1099 // This is mostly the same a cpp_alloc in tcmalloc.cc.
   1100 // TODO(csilvers): change Allocate() above to call cpp_alloc, so we
   1101 // don't have to reproduce the logic here.  To make tc_new_mode work
   1102 // properly, I think we'll need to separate out the logic of throwing
   1103 // from the logic of calling the new-handler.
   1104 inline void* debug_cpp_alloc(size_t size, int new_type, bool nothrow) {
   1105   for (;;) {
   1106     void* p = DebugAllocate(size, new_type);
   1107 #ifdef PREANSINEW
   1108     return p;
   1109 #else
   1110     if (p == NULL) {  // allocation failed
   1111       // Get the current new handler.  NB: this function is not
   1112       // thread-safe.  We make a feeble stab at making it so here, but
   1113       // this lock only protects against tcmalloc interfering with
   1114       // itself, not with other libraries calling set_new_handler.
   1115       std::new_handler nh;
   1116       {
   1117         SpinLockHolder h(&set_new_handler_lock);
   1118         nh = std::set_new_handler(0);
   1119         (void) std::set_new_handler(nh);
   1120       }
   1121 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1122       if (nh) {
   1123         // Since exceptions are disabled, we don't really know if new_handler
   1124         // failed.  Assume it will abort if it fails.
   1125         (*nh)();
   1126         continue;
   1127       }
   1128       return 0;
   1129 #else
   1130       // If no new_handler is established, the allocation failed.
   1131       if (!nh) {
   1132         if (nothrow) return 0;
   1133         throw std::bad_alloc();
   1134       }
   1135       // Otherwise, try the new_handler.  If it returns, retry the
   1136       // allocation.  If it throws std::bad_alloc, fail the allocation.
   1137       // if it throws something else, don't interfere.
   1138       try {
   1139         (*nh)();
   1140       } catch (const std::bad_alloc&) {
   1141         if (!nothrow) throw;
   1142         return p;
   1143       }
   1144 #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1145     } else {  // allocation success
   1146       return p;
   1147     }
   1148 #endif  // PREANSINEW
   1149   }
   1150 }
   1151 
   1152 inline void* do_debug_malloc_or_debug_cpp_alloc(size_t size) {
   1153   return tc_new_mode ? debug_cpp_alloc(size, MallocBlock::kMallocType, true)
   1154                      : DebugAllocate(size, MallocBlock::kMallocType);
   1155 }
   1156 
   1157 // Exported routines
   1158 
   1159 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
   1160   void* ptr = do_debug_malloc_or_debug_cpp_alloc(size);
   1161   MallocHook::InvokeNewHook(ptr, size);
   1162   return ptr;
   1163 }
   1164 
   1165 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
   1166   MallocHook::InvokeDeleteHook(ptr);
   1167   DebugDeallocate(ptr, MallocBlock::kMallocType);
   1168 }
   1169 
   1170 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t count, size_t size) __THROW {
   1171   // Overflow check
   1172   const size_t total_size = count * size;
   1173   if (size != 0 && total_size / size != count) return NULL;
   1174 
   1175   void* block = do_debug_malloc_or_debug_cpp_alloc(total_size);
   1176   MallocHook::InvokeNewHook(block, total_size);
   1177   if (block)  memset(block, 0, total_size);
   1178   return block;
   1179 }
   1180 
   1181 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
   1182   MallocHook::InvokeDeleteHook(ptr);
   1183   DebugDeallocate(ptr, MallocBlock::kMallocType);
   1184 }
   1185 
   1186 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* ptr, size_t size) __THROW {
   1187   if (ptr == NULL) {
   1188     ptr = do_debug_malloc_or_debug_cpp_alloc(size);
   1189     MallocHook::InvokeNewHook(ptr, size);
   1190     return ptr;
   1191   }
   1192   if (size == 0) {
   1193     MallocHook::InvokeDeleteHook(ptr);
   1194     DebugDeallocate(ptr, MallocBlock::kMallocType);
   1195     return NULL;
   1196   }
   1197   MallocBlock* old = MallocBlock::FromRawPointer(ptr);
   1198   old->Check(MallocBlock::kMallocType);
   1199   MallocBlock* p = MallocBlock::Allocate(size, MallocBlock::kMallocType);
   1200 
   1201   // If realloc fails we are to leave the old block untouched and
   1202   // return null
   1203   if (p == NULL)  return NULL;
   1204 
   1205   memcpy(p->data_addr(), old->data_addr(),
   1206          (old->data_size() < size) ? old->data_size() : size);
   1207   MallocHook::InvokeDeleteHook(ptr);
   1208   MallocHook::InvokeNewHook(p->data_addr(), size);
   1209   DebugDeallocate(ptr, MallocBlock::kMallocType);
   1210   MALLOC_TRACE("realloc", p->data_size(), p->data_addr());
   1211   return p->data_addr();
   1212 }
   1213 
   1214 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
   1215   void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, false);
   1216   MallocHook::InvokeNewHook(ptr, size);
   1217   if (ptr == NULL) {
   1218     RAW_LOG(FATAL, "Unable to allocate %"PRIuS" bytes: new failed.", size);
   1219   }
   1220   return ptr;
   1221 }
   1222 
   1223 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
   1224   void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, true);
   1225   MallocHook::InvokeNewHook(ptr, size);
   1226   return ptr;
   1227 }
   1228 
   1229 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
   1230   MallocHook::InvokeDeleteHook(p);
   1231   DebugDeallocate(p, MallocBlock::kNewType);
   1232 }
   1233 
   1234 // Some STL implementations explicitly invoke this.
   1235 // It is completely equivalent to a normal delete (delete never throws).
   1236 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
   1237   MallocHook::InvokeDeleteHook(p);
   1238   DebugDeallocate(p, MallocBlock::kNewType);
   1239 }
   1240 
   1241 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
   1242   void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, false);
   1243   MallocHook::InvokeNewHook(ptr, size);
   1244   if (ptr == NULL) {
   1245     RAW_LOG(FATAL, "Unable to allocate %"PRIuS" bytes: new[] failed.", size);
   1246   }
   1247   return ptr;
   1248 }
   1249 
   1250 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
   1251     __THROW {
   1252   void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, true);
   1253   MallocHook::InvokeNewHook(ptr, size);
   1254   return ptr;
   1255 }
   1256 
   1257 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
   1258   MallocHook::InvokeDeleteHook(p);
   1259   DebugDeallocate(p, MallocBlock::kArrayNewType);
   1260 }
   1261 
   1262 // Some STL implementations explicitly invoke this.
   1263 // It is completely equivalent to a normal delete (delete never throws).
   1264 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
   1265   MallocHook::InvokeDeleteHook(p);
   1266   DebugDeallocate(p, MallocBlock::kArrayNewType);
   1267 }
   1268 
   1269 // Round "value" up to next "alignment" boundary.
   1270 // Requires that "alignment" be a power of two.
   1271 static intptr_t RoundUp(intptr_t value, intptr_t alignment) {
   1272   return (value + alignment - 1) & ~(alignment - 1);
   1273 }
   1274 
   1275 // This is mostly the same as do_memalign in tcmalloc.cc.
   1276 static void *do_debug_memalign(size_t alignment, size_t size) {
   1277   // Allocate >= size bytes aligned on "alignment" boundary
   1278   // "alignment" is a power of two.
   1279   void *p = 0;
   1280   RAW_CHECK((alignment & (alignment-1)) == 0, "must be power of two");
   1281   const size_t data_offset = MallocBlock::data_offset();
   1282   // Allocate "alignment-1" extra bytes to ensure alignment is possible, and
   1283   // a further data_offset bytes for an additional fake header.
   1284   size_t extra_bytes = data_offset + alignment - 1;
   1285   if (size + extra_bytes < size) return NULL;         // Overflow
   1286   p = DebugAllocate(size + extra_bytes, MallocBlock::kMallocType);
   1287   if (p != 0) {
   1288     intptr_t orig_p = reinterpret_cast<intptr_t>(p);
   1289     // Leave data_offset bytes for fake header, and round up to meet
   1290     // alignment.
   1291     p = reinterpret_cast<void *>(RoundUp(orig_p + data_offset, alignment));
   1292     // Create a fake header block with an offset_ that points back to the
   1293     // real header.  FromRawPointer uses this value.
   1294     MallocBlock *fake_hdr = reinterpret_cast<MallocBlock *>(
   1295                 reinterpret_cast<char *>(p) - data_offset);
   1296     // offset_ is distance between real and fake headers.
   1297     // p is now end of fake header (beginning of client area),
   1298     // and orig_p is the end of the real header, so offset_
   1299     // is their difference.
   1300     fake_hdr->set_offset(reinterpret_cast<intptr_t>(p) - orig_p);
   1301   }
   1302   return p;
   1303 }
   1304 
   1305 // This is mostly the same as cpp_memalign in tcmalloc.cc.
   1306 static void* debug_cpp_memalign(size_t align, size_t size) {
   1307   for (;;) {
   1308     void* p = do_debug_memalign(align, size);
   1309 #ifdef PREANSINEW
   1310     return p;
   1311 #else
   1312     if (p == NULL) {  // allocation failed
   1313       // Get the current new handler.  NB: this function is not
   1314       // thread-safe.  We make a feeble stab at making it so here, but
   1315       // this lock only protects against tcmalloc interfering with
   1316       // itself, not with other libraries calling set_new_handler.
   1317       std::new_handler nh;
   1318       {
   1319         SpinLockHolder h(&set_new_handler_lock);
   1320         nh = std::set_new_handler(0);
   1321         (void) std::set_new_handler(nh);
   1322       }
   1323 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1324       if (nh) {
   1325         // Since exceptions are disabled, we don't really know if new_handler
   1326         // failed.  Assume it will abort if it fails.
   1327         (*nh)();
   1328         continue;
   1329       }
   1330       return 0;
   1331 #else
   1332       // If no new_handler is established, the allocation failed.
   1333       if (!nh)
   1334         return 0;
   1335 
   1336       // Otherwise, try the new_handler.  If it returns, retry the
   1337       // allocation.  If it throws std::bad_alloc, fail the allocation.
   1338       // if it throws something else, don't interfere.
   1339       try {
   1340         (*nh)();
   1341       } catch (const std::bad_alloc&) {
   1342         return p;
   1343       }
   1344 #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1345     } else {  // allocation success
   1346       return p;
   1347     }
   1348 #endif  // PREANSINEW
   1349   }
   1350 }
   1351 
   1352 inline void* do_debug_memalign_or_debug_cpp_memalign(size_t align,
   1353                                                      size_t size) {
   1354   return tc_new_mode ? debug_cpp_memalign(align, size)
   1355                      : do_debug_memalign(align, size);
   1356 }
   1357 
   1358 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, size_t size) __THROW {
   1359   void *p = do_debug_memalign_or_debug_cpp_memalign(align, size);
   1360   MallocHook::InvokeNewHook(p, size);
   1361   return p;
   1362 }
   1363 
   1364 // Implementation taken from tcmalloc/tcmalloc.cc
   1365 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(void** result_ptr, size_t align, size_t size)
   1366     __THROW {
   1367   if (((align % sizeof(void*)) != 0) ||
   1368       ((align & (align - 1)) != 0) ||
   1369       (align == 0)) {
   1370     return EINVAL;
   1371   }
   1372 
   1373   void* result = do_debug_memalign_or_debug_cpp_memalign(align, size);
   1374   MallocHook::InvokeNewHook(result, size);
   1375   if (result == NULL) {
   1376     return ENOMEM;
   1377   } else {
   1378     *result_ptr = result;
   1379     return 0;
   1380   }
   1381 }
   1382 
   1383 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
   1384   // Allocate >= size bytes starting on a page boundary
   1385   void *p = do_debug_memalign_or_debug_cpp_memalign(getpagesize(), size);
   1386   MallocHook::InvokeNewHook(p, size);
   1387   return p;
   1388 }
   1389 
   1390 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
   1391   // Round size up to a multiple of pages
   1392   // then allocate memory on a page boundary
   1393   int pagesize = getpagesize();
   1394   size = RoundUp(size, pagesize);
   1395   if (size == 0) {     // pvalloc(0) should allocate one page, according to
   1396     size = pagesize;   // http://man.free4web.biz/man3/libmpatrol.3.html
   1397   }
   1398   void *p = do_debug_memalign_or_debug_cpp_memalign(pagesize, size);
   1399   MallocHook::InvokeNewHook(p, size);
   1400   return p;
   1401 }
   1402 
   1403 // malloc_stats just falls through to the base implementation.
   1404 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
   1405   BASE_MALLOC_STATS();
   1406 }
   1407 
   1408 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
   1409   return BASE_MALLOPT(cmd, value);
   1410 }
   1411 
   1412 #ifdef HAVE_STRUCT_MALLINFO
   1413 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
   1414   return BASE_MALLINFO();
   1415 }
   1416 #endif
   1417 
   1418 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
   1419   return MallocExtension::instance()->GetAllocatedSize(ptr);
   1420 }
   1421