Home | History | Annotate | Download | only in Unit
      1 //===-- mulsc3_test.c - Test __mulsc3 -------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file tests __mulsc3 for the compiler_rt library.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "int_lib.h"
     15 #include <math.h>
     16 #include <complex.h>
     17 #include <stdio.h>
     18 
     19 // Returns: the product of a + ib and c + id
     20 
     21 float _Complex __mulsc3(float __a, float __b, float __c, float __d);
     22 
     23 enum {zero, non_zero, inf, NaN, non_zero_nan};
     24 
     25 int
     26 classify(float _Complex x)
     27 {
     28     if (x == 0)
     29         return zero;
     30     if (isinf(crealf(x)) || isinf(cimagf(x)))
     31         return inf;
     32     if (isnan(crealf(x)) && isnan(cimagf(x)))
     33         return NaN;
     34     if (isnan(crealf(x)))
     35     {
     36         if (cimagf(x) == 0)
     37             return NaN;
     38         return non_zero_nan;
     39     }
     40     if (isnan(cimagf(x)))
     41     {
     42         if (crealf(x) == 0)
     43             return NaN;
     44         return non_zero_nan;
     45     }
     46     return non_zero;
     47 }
     48 
     49 int test__mulsc3(float a, float b, float c, float d)
     50 {
     51     float _Complex r = __mulsc3(a, b, c, d);
     52 //     printf("test__mulsc3(%f, %f, %f, %f) = %f + I%f\n",
     53 //             a, b, c, d, crealf(r), cimagf(r));
     54 	float _Complex dividend;
     55 	float _Complex divisor;
     56 
     57 	__real__ dividend = a;
     58 	__imag__ dividend = b;
     59 	__real__ divisor = c;
     60 	__imag__ divisor = d;
     61 
     62     switch (classify(dividend))
     63     {
     64     case zero:
     65         switch (classify(divisor))
     66         {
     67         case zero:
     68             if (classify(r) != zero)
     69                 return 1;
     70             break;
     71         case non_zero:
     72             if (classify(r) != zero)
     73                 return 1;
     74             break;
     75         case inf:
     76             if (classify(r) != NaN)
     77                 return 1;
     78             break;
     79         case NaN:
     80             if (classify(r) != NaN)
     81                 return 1;
     82             break;
     83         case non_zero_nan:
     84             if (classify(r) != NaN)
     85                 return 1;
     86             break;
     87         }
     88         break;
     89     case non_zero:
     90         switch (classify(divisor))
     91         {
     92         case zero:
     93             if (classify(r) != zero)
     94                 return 1;
     95             break;
     96         case non_zero:
     97             if (classify(r) != non_zero)
     98                 return 1;
     99             {
    100             float _Complex z = a * c - b * d + _Complex_I*(a * d + b * c);
    101             // relaxed tolerance to arbitrary (1.e-6) amount.
    102             if (cabsf((r-z)/r) > 1.e-6)
    103                 return 1;
    104             }
    105             break;
    106         case inf:
    107             if (classify(r) != inf)
    108                 return 1;
    109             break;
    110         case NaN:
    111             if (classify(r) != NaN)
    112                 return 1;
    113             break;
    114         case non_zero_nan:
    115             if (classify(r) != NaN)
    116                 return 1;
    117             break;
    118         }
    119         break;
    120     case inf:
    121         switch (classify(divisor))
    122         {
    123         case zero:
    124             if (classify(r) != NaN)
    125                 return 1;
    126             break;
    127         case non_zero:
    128             if (classify(r) != inf)
    129                 return 1;
    130             break;
    131         case inf:
    132             if (classify(r) != inf)
    133                 return 1;
    134             break;
    135         case NaN:
    136             if (classify(r) != NaN)
    137                 return 1;
    138             break;
    139         case non_zero_nan:
    140             if (classify(r) != inf)
    141                 return 1;
    142             break;
    143         }
    144         break;
    145     case NaN:
    146         switch (classify(divisor))
    147         {
    148         case zero:
    149             if (classify(r) != NaN)
    150                 return 1;
    151             break;
    152         case non_zero:
    153             if (classify(r) != NaN)
    154                 return 1;
    155             break;
    156         case inf:
    157             if (classify(r) != NaN)
    158                 return 1;
    159             break;
    160         case NaN:
    161             if (classify(r) != NaN)
    162                 return 1;
    163             break;
    164         case non_zero_nan:
    165             if (classify(r) != NaN)
    166                 return 1;
    167             break;
    168         }
    169         break;
    170     case non_zero_nan:
    171         switch (classify(divisor))
    172         {
    173         case zero:
    174             if (classify(r) != NaN)
    175                 return 1;
    176             break;
    177         case non_zero:
    178             if (classify(r) != NaN)
    179                 return 1;
    180             break;
    181         case inf:
    182             if (classify(r) != inf)
    183                 return 1;
    184             break;
    185         case NaN:
    186             if (classify(r) != NaN)
    187                 return 1;
    188             break;
    189         case non_zero_nan:
    190             if (classify(r) != NaN)
    191                 return 1;
    192             break;
    193         }
    194         break;
    195     }
    196 
    197     return 0;
    198 }
    199 
    200 float x[][2] =
    201 {
    202     { 1.e-6,  1.e-6},
    203     {-1.e-6,  1.e-6},
    204     {-1.e-6, -1.e-6},
    205     { 1.e-6, -1.e-6},
    206 
    207     { 1.e+6,  1.e-6},
    208     {-1.e+6,  1.e-6},
    209     {-1.e+6, -1.e-6},
    210     { 1.e+6, -1.e-6},
    211 
    212     { 1.e-6,  1.e+6},
    213     {-1.e-6,  1.e+6},
    214     {-1.e-6, -1.e+6},
    215     { 1.e-6, -1.e+6},
    216 
    217     { 1.e+6,  1.e+6},
    218     {-1.e+6,  1.e+6},
    219     {-1.e+6, -1.e+6},
    220     { 1.e+6, -1.e+6},
    221 
    222     {NAN, NAN},
    223     {-INFINITY, NAN},
    224     {-2, NAN},
    225     {-1, NAN},
    226     {-0.5, NAN},
    227     {-0., NAN},
    228     {+0., NAN},
    229     {0.5, NAN},
    230     {1, NAN},
    231     {2, NAN},
    232     {INFINITY, NAN},
    233 
    234     {NAN, -INFINITY},
    235     {-INFINITY, -INFINITY},
    236     {-2, -INFINITY},
    237     {-1, -INFINITY},
    238     {-0.5, -INFINITY},
    239     {-0., -INFINITY},
    240     {+0., -INFINITY},
    241     {0.5, -INFINITY},
    242     {1, -INFINITY},
    243     {2, -INFINITY},
    244     {INFINITY, -INFINITY},
    245 
    246     {NAN, -2},
    247     {-INFINITY, -2},
    248     {-2, -2},
    249     {-1, -2},
    250     {-0.5, -2},
    251     {-0., -2},
    252     {+0., -2},
    253     {0.5, -2},
    254     {1, -2},
    255     {2, -2},
    256     {INFINITY, -2},
    257 
    258     {NAN, -1},
    259     {-INFINITY, -1},
    260     {-2, -1},
    261     {-1, -1},
    262     {-0.5, -1},
    263     {-0., -1},
    264     {+0., -1},
    265     {0.5, -1},
    266     {1, -1},
    267     {2, -1},
    268     {INFINITY, -1},
    269 
    270     {NAN, -0.5},
    271     {-INFINITY, -0.5},
    272     {-2, -0.5},
    273     {-1, -0.5},
    274     {-0.5, -0.5},
    275     {-0., -0.5},
    276     {+0., -0.5},
    277     {0.5, -0.5},
    278     {1, -0.5},
    279     {2, -0.5},
    280     {INFINITY, -0.5},
    281 
    282     {NAN, -0.},
    283     {-INFINITY, -0.},
    284     {-2, -0.},
    285     {-1, -0.},
    286     {-0.5, -0.},
    287     {-0., -0.},
    288     {+0., -0.},
    289     {0.5, -0.},
    290     {1, -0.},
    291     {2, -0.},
    292     {INFINITY, -0.},
    293 
    294     {NAN, 0.},
    295     {-INFINITY, 0.},
    296     {-2, 0.},
    297     {-1, 0.},
    298     {-0.5, 0.},
    299     {-0., 0.},
    300     {+0., 0.},
    301     {0.5, 0.},
    302     {1, 0.},
    303     {2, 0.},
    304     {INFINITY, 0.},
    305 
    306     {NAN, 0.5},
    307     {-INFINITY, 0.5},
    308     {-2, 0.5},
    309     {-1, 0.5},
    310     {-0.5, 0.5},
    311     {-0., 0.5},
    312     {+0., 0.5},
    313     {0.5, 0.5},
    314     {1, 0.5},
    315     {2, 0.5},
    316     {INFINITY, 0.5},
    317 
    318     {NAN, 1},
    319     {-INFINITY, 1},
    320     {-2, 1},
    321     {-1, 1},
    322     {-0.5, 1},
    323     {-0., 1},
    324     {+0., 1},
    325     {0.5, 1},
    326     {1, 1},
    327     {2, 1},
    328     {INFINITY, 1},
    329 
    330     {NAN, 2},
    331     {-INFINITY, 2},
    332     {-2, 2},
    333     {-1, 2},
    334     {-0.5, 2},
    335     {-0., 2},
    336     {+0., 2},
    337     {0.5, 2},
    338     {1, 2},
    339     {2, 2},
    340     {INFINITY, 2},
    341 
    342     {NAN, INFINITY},
    343     {-INFINITY, INFINITY},
    344     {-2, INFINITY},
    345     {-1, INFINITY},
    346     {-0.5, INFINITY},
    347     {-0., INFINITY},
    348     {+0., INFINITY},
    349     {0.5, INFINITY},
    350     {1, INFINITY},
    351     {2, INFINITY},
    352     {INFINITY, INFINITY}
    353 
    354 };
    355 
    356 int main()
    357 {
    358     const unsigned N = sizeof(x) / sizeof(x[0]);
    359     unsigned i, j;
    360     for (i = 0; i < N; ++i)
    361     {
    362         for (j = 0; j < N; ++j)
    363         {
    364             if (test__mulsc3(x[i][0], x[i][1], x[j][0], x[j][1]))
    365                 return 1;
    366         }
    367     }
    368 
    369     return 0;
    370 }
    371