1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. Eigen itself is part of the KDE project. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway 11 12 namespace Eigen { 13 14 /** \geometry_module \ingroup Geometry_Module 15 * 16 * \class Scaling 17 * 18 * \brief Represents a possibly non uniform scaling transformation 19 * 20 * \param _Scalar the scalar type, i.e., the type of the coefficients. 21 * \param _Dim the dimension of the space, can be a compile time value or Dynamic 22 * 23 * \note This class is not aimed to be used to store a scaling transformation, 24 * but rather to make easier the constructions and updates of Transform objects. 25 * 26 * \sa class Translation, class Transform 27 */ 28 template<typename _Scalar, int _Dim> 29 class Scaling 30 { 31 public: 32 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) 33 /** dimension of the space */ 34 enum { Dim = _Dim }; 35 /** the scalar type of the coefficients */ 36 typedef _Scalar Scalar; 37 /** corresponding vector type */ 38 typedef Matrix<Scalar,Dim,1> VectorType; 39 /** corresponding linear transformation matrix type */ 40 typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; 41 /** corresponding translation type */ 42 typedef Translation<Scalar,Dim> TranslationType; 43 /** corresponding affine transformation type */ 44 typedef Transform<Scalar,Dim> TransformType; 45 46 protected: 47 48 VectorType m_coeffs; 49 50 public: 51 52 /** Default constructor without initialization. */ 53 Scaling() {} 54 /** Constructs and initialize a uniform scaling transformation */ 55 explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); } 56 /** 2D only */ 57 inline Scaling(const Scalar& sx, const Scalar& sy) 58 { 59 ei_assert(Dim==2); 60 m_coeffs.x() = sx; 61 m_coeffs.y() = sy; 62 } 63 /** 3D only */ 64 inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) 65 { 66 ei_assert(Dim==3); 67 m_coeffs.x() = sx; 68 m_coeffs.y() = sy; 69 m_coeffs.z() = sz; 70 } 71 /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */ 72 explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {} 73 74 const VectorType& coeffs() const { return m_coeffs; } 75 VectorType& coeffs() { return m_coeffs; } 76 77 /** Concatenates two scaling */ 78 inline Scaling operator* (const Scaling& other) const 79 { return Scaling(coeffs().cwise() * other.coeffs()); } 80 81 /** Concatenates a scaling and a translation */ 82 inline TransformType operator* (const TranslationType& t) const; 83 84 /** Concatenates a scaling and an affine transformation */ 85 inline TransformType operator* (const TransformType& t) const; 86 87 /** Concatenates a scaling and a linear transformation matrix */ 88 // TODO returns an expression 89 inline LinearMatrixType operator* (const LinearMatrixType& other) const 90 { return coeffs().asDiagonal() * other; } 91 92 /** Concatenates a linear transformation matrix and a scaling */ 93 // TODO returns an expression 94 friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s) 95 { return other * s.coeffs().asDiagonal(); } 96 97 template<typename Derived> 98 inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const 99 { return *this * r.toRotationMatrix(); } 100 101 /** Applies scaling to vector */ 102 inline VectorType operator* (const VectorType& other) const 103 { return coeffs().asDiagonal() * other; } 104 105 /** \returns the inverse scaling */ 106 inline Scaling inverse() const 107 { return Scaling(coeffs().cwise().inverse()); } 108 109 inline Scaling& operator=(const Scaling& other) 110 { 111 m_coeffs = other.m_coeffs; 112 return *this; 113 } 114 115 /** \returns \c *this with scalar type casted to \a NewScalarType 116 * 117 * Note that if \a NewScalarType is equal to the current scalar type of \c *this 118 * then this function smartly returns a const reference to \c *this. 119 */ 120 template<typename NewScalarType> 121 inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const 122 { return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); } 123 124 /** Copy constructor with scalar type conversion */ 125 template<typename OtherScalarType> 126 inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other) 127 { m_coeffs = other.coeffs().template cast<Scalar>(); } 128 129 /** \returns \c true if \c *this is approximately equal to \a other, within the precision 130 * determined by \a prec. 131 * 132 * \sa MatrixBase::isApprox() */ 133 bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const 134 { return m_coeffs.isApprox(other.m_coeffs, prec); } 135 136 }; 137 138 /** \addtogroup Geometry_Module */ 139 //@{ 140 typedef Scaling<float, 2> Scaling2f; 141 typedef Scaling<double,2> Scaling2d; 142 typedef Scaling<float, 3> Scaling3f; 143 typedef Scaling<double,3> Scaling3d; 144 //@} 145 146 template<typename Scalar, int Dim> 147 inline typename Scaling<Scalar,Dim>::TransformType 148 Scaling<Scalar,Dim>::operator* (const TranslationType& t) const 149 { 150 TransformType res; 151 res.matrix().setZero(); 152 res.linear().diagonal() = coeffs(); 153 res.translation() = m_coeffs.cwise() * t.vector(); 154 res(Dim,Dim) = Scalar(1); 155 return res; 156 } 157 158 template<typename Scalar, int Dim> 159 inline typename Scaling<Scalar,Dim>::TransformType 160 Scaling<Scalar,Dim>::operator* (const TransformType& t) const 161 { 162 TransformType res = t; 163 res.prescale(m_coeffs); 164 return res; 165 } 166 167 } // end namespace Eigen 168