Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_ROTATIONBASE_H
     11 #define EIGEN_ROTATIONBASE_H
     12 
     13 namespace Eigen {
     14 
     15 // forward declaration
     16 namespace internal {
     17 template<typename RotationDerived, typename MatrixType, bool IsVector=MatrixType::IsVectorAtCompileTime>
     18 struct rotation_base_generic_product_selector;
     19 }
     20 
     21 /** \class RotationBase
     22   *
     23   * \brief Common base class for compact rotation representations
     24   *
     25   * \param Derived is the derived type, i.e., a rotation type
     26   * \param _Dim the dimension of the space
     27   */
     28 template<typename Derived, int _Dim>
     29 class RotationBase
     30 {
     31   public:
     32     enum { Dim = _Dim };
     33     /** the scalar type of the coefficients */
     34     typedef typename internal::traits<Derived>::Scalar Scalar;
     35 
     36     /** corresponding linear transformation matrix type */
     37     typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
     38     typedef Matrix<Scalar,Dim,1> VectorType;
     39 
     40   public:
     41     inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
     42     inline Derived& derived() { return *static_cast<Derived*>(this); }
     43 
     44     /** \returns an equivalent rotation matrix */
     45     inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
     46 
     47     /** \returns an equivalent rotation matrix
     48       * This function is added to be conform with the Transform class' naming scheme.
     49       */
     50     inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); }
     51 
     52     /** \returns the inverse rotation */
     53     inline Derived inverse() const { return derived().inverse(); }
     54 
     55     /** \returns the concatenation of the rotation \c *this with a translation \a t */
     56     inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const
     57     { return Transform<Scalar,Dim,Isometry>(*this) * t; }
     58 
     59     /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */
     60     inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const
     61     { return toRotationMatrix() * s.factor(); }
     62 
     63     /** \returns the concatenation of the rotation \c *this with a generic expression \a e
     64       * \a e can be:
     65       *  - a DimxDim linear transformation matrix
     66       *  - a DimxDim diagonal matrix (axis aligned scaling)
     67       *  - a vector of size Dim
     68       */
     69     template<typename OtherDerived>
     70     EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType
     71     operator*(const EigenBase<OtherDerived>& e) const
     72     { return internal::rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); }
     73 
     74     /** \returns the concatenation of a linear transformation \a l with the rotation \a r */
     75     template<typename OtherDerived> friend
     76     inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r)
     77     { return l.derived() * r.toRotationMatrix(); }
     78 
     79     /** \returns the concatenation of a scaling \a l with the rotation \a r */
     80     friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r)
     81     {
     82       Transform<Scalar,Dim,Affine> res(r);
     83       res.linear().applyOnTheLeft(l);
     84       return res;
     85     }
     86 
     87     /** \returns the concatenation of the rotation \c *this with a transformation \a t */
     88     template<int Mode, int Options>
     89     inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const
     90     { return toRotationMatrix() * t; }
     91 
     92     template<typename OtherVectorType>
     93     inline VectorType _transformVector(const OtherVectorType& v) const
     94     { return toRotationMatrix() * v; }
     95 };
     96 
     97 namespace internal {
     98 
     99 // implementation of the generic product rotation * matrix
    100 template<typename RotationDerived, typename MatrixType>
    101 struct rotation_base_generic_product_selector<RotationDerived,MatrixType,false>
    102 {
    103   enum { Dim = RotationDerived::Dim };
    104   typedef Matrix<typename RotationDerived::Scalar,Dim,Dim> ReturnType;
    105   static inline ReturnType run(const RotationDerived& r, const MatrixType& m)
    106   { return r.toRotationMatrix() * m; }
    107 };
    108 
    109 template<typename RotationDerived, typename Scalar, int Dim, int MaxDim>
    110 struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false >
    111 {
    112   typedef Transform<Scalar,Dim,Affine> ReturnType;
    113   static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m)
    114   {
    115     ReturnType res(r);
    116     res.linear() *= m;
    117     return res;
    118   }
    119 };
    120 
    121 template<typename RotationDerived,typename OtherVectorType>
    122 struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,true>
    123 {
    124   enum { Dim = RotationDerived::Dim };
    125   typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType;
    126   static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v)
    127   {
    128     return r._transformVector(v);
    129   }
    130 };
    131 
    132 } // end namespace internal
    133 
    134 /** \geometry_module
    135   *
    136   * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r
    137   */
    138 template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
    139 template<typename OtherDerived>
    140 Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
    141 ::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
    142 {
    143   EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
    144   *this = r.toRotationMatrix();
    145 }
    146 
    147 /** \geometry_module
    148   *
    149   * \brief Set a Dim x Dim rotation matrix from the rotation \a r
    150   */
    151 template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
    152 template<typename OtherDerived>
    153 Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
    154 Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
    155 ::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
    156 {
    157   EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
    158   return *this = r.toRotationMatrix();
    159 }
    160 
    161 namespace internal {
    162 
    163 /** \internal
    164   *
    165   * Helper function to return an arbitrary rotation object to a rotation matrix.
    166   *
    167   * \param Scalar the numeric type of the matrix coefficients
    168   * \param Dim the dimension of the current space
    169   *
    170   * It returns a Dim x Dim fixed size matrix.
    171   *
    172   * Default specializations are provided for:
    173   *   - any scalar type (2D),
    174   *   - any matrix expression,
    175   *   - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
    176   *
    177   * Currently toRotationMatrix is only used by Transform.
    178   *
    179   * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
    180   */
    181 template<typename Scalar, int Dim>
    182 static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s)
    183 {
    184   EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
    185   return Rotation2D<Scalar>(s).toRotationMatrix();
    186 }
    187 
    188 template<typename Scalar, int Dim, typename OtherDerived>
    189 static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
    190 {
    191   return r.toRotationMatrix();
    192 }
    193 
    194 template<typename Scalar, int Dim, typename OtherDerived>
    195 static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat)
    196 {
    197   EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
    198     YOU_MADE_A_PROGRAMMING_MISTAKE)
    199   return mat;
    200 }
    201 
    202 } // end namespace internal
    203 
    204 } // end namespace Eigen
    205 
    206 #endif // EIGEN_ROTATIONBASE_H
    207