1 //===-- StackColoring.cpp -------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the stack-coloring optimization that looks for 11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END), 12 // which represent the possible lifetime of stack slots. It attempts to 13 // merge disjoint stack slots and reduce the used stack space. 14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots. 15 // 16 // TODO: In the future we plan to improve stack coloring in the following ways: 17 // 1. Allow merging multiple small slots into a single larger slot at different 18 // offsets. 19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with 20 // spill slots. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #define DEBUG_TYPE "stackcoloring" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SparseSet.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/Dominators.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 38 #include "llvm/CodeGen/MachineDominators.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/PseudoSourceValue.h" 46 #include "llvm/CodeGen/SlotIndexes.h" 47 #include "llvm/DebugInfo.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/MC/MCInstrItineraries.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 58 using namespace llvm; 59 60 static cl::opt<bool> 61 DisableColoring("no-stack-coloring", 62 cl::init(false), cl::Hidden, 63 cl::desc("Disable stack coloring")); 64 65 /// The user may write code that uses allocas outside of the declared lifetime 66 /// zone. This can happen when the user returns a reference to a local 67 /// data-structure. We can detect these cases and decide not to optimize the 68 /// code. If this flag is enabled, we try to save the user. 69 static cl::opt<bool> 70 ProtectFromEscapedAllocas("protect-from-escaped-allocas", 71 cl::init(false), cl::Hidden, 72 cl::desc("Do not optimize lifetime zones that " 73 "are broken")); 74 75 STATISTIC(NumMarkerSeen, "Number of lifetime markers found."); 76 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots."); 77 STATISTIC(StackSlotMerged, "Number of stack slot merged."); 78 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region"); 79 80 //===----------------------------------------------------------------------===// 81 // StackColoring Pass 82 //===----------------------------------------------------------------------===// 83 84 namespace { 85 /// StackColoring - A machine pass for merging disjoint stack allocations, 86 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. 87 class StackColoring : public MachineFunctionPass { 88 MachineFrameInfo *MFI; 89 MachineFunction *MF; 90 91 /// A class representing liveness information for a single basic block. 92 /// Each bit in the BitVector represents the liveness property 93 /// for a different stack slot. 94 struct BlockLifetimeInfo { 95 /// Which slots BEGINs in each basic block. 96 BitVector Begin; 97 /// Which slots ENDs in each basic block. 98 BitVector End; 99 /// Which slots are marked as LIVE_IN, coming into each basic block. 100 BitVector LiveIn; 101 /// Which slots are marked as LIVE_OUT, coming out of each basic block. 102 BitVector LiveOut; 103 }; 104 105 /// Maps active slots (per bit) for each basic block. 106 typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap; 107 LivenessMap BlockLiveness; 108 109 /// Maps serial numbers to basic blocks. 110 DenseMap<const MachineBasicBlock*, int> BasicBlocks; 111 /// Maps basic blocks to a serial number. 112 SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering; 113 114 /// Maps liveness intervals for each slot. 115 SmallVector<LiveInterval*, 16> Intervals; 116 /// VNInfo is used for the construction of LiveIntervals. 117 VNInfo::Allocator VNInfoAllocator; 118 /// SlotIndex analysis object. 119 SlotIndexes *Indexes; 120 121 /// The list of lifetime markers found. These markers are to be removed 122 /// once the coloring is done. 123 SmallVector<MachineInstr*, 8> Markers; 124 125 /// SlotSizeSorter - A Sort utility for arranging stack slots according 126 /// to their size. 127 struct SlotSizeSorter { 128 MachineFrameInfo *MFI; 129 SlotSizeSorter(MachineFrameInfo *mfi) : MFI(mfi) { } 130 bool operator()(int LHS, int RHS) { 131 // We use -1 to denote a uninteresting slot. Place these slots at the end. 132 if (LHS == -1) return false; 133 if (RHS == -1) return true; 134 // Sort according to size. 135 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS); 136 } 137 }; 138 139 public: 140 static char ID; 141 StackColoring() : MachineFunctionPass(ID) { 142 initializeStackColoringPass(*PassRegistry::getPassRegistry()); 143 } 144 void getAnalysisUsage(AnalysisUsage &AU) const; 145 bool runOnMachineFunction(MachineFunction &MF); 146 147 private: 148 /// Debug. 149 void dump() const; 150 151 /// Removes all of the lifetime marker instructions from the function. 152 /// \returns true if any markers were removed. 153 bool removeAllMarkers(); 154 155 /// Scan the machine function and find all of the lifetime markers. 156 /// Record the findings in the BEGIN and END vectors. 157 /// \returns the number of markers found. 158 unsigned collectMarkers(unsigned NumSlot); 159 160 /// Perform the dataflow calculation and calculate the lifetime for each of 161 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and 162 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming 163 /// in and out blocks. 164 void calculateLocalLiveness(); 165 166 /// Construct the LiveIntervals for the slots. 167 void calculateLiveIntervals(unsigned NumSlots); 168 169 /// Go over the machine function and change instructions which use stack 170 /// slots to use the joint slots. 171 void remapInstructions(DenseMap<int, int> &SlotRemap); 172 173 /// The input program may contain intructions which are not inside lifetime 174 /// markers. This can happen due to a bug in the compiler or due to a bug in 175 /// user code (for example, returning a reference to a local variable). 176 /// This procedure checks all of the instructions in the function and 177 /// invalidates lifetime ranges which do not contain all of the instructions 178 /// which access that frame slot. 179 void removeInvalidSlotRanges(); 180 181 /// Map entries which point to other entries to their destination. 182 /// A->B->C becomes A->C. 183 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); 184 }; 185 } // end anonymous namespace 186 187 char StackColoring::ID = 0; 188 char &llvm::StackColoringID = StackColoring::ID; 189 190 INITIALIZE_PASS_BEGIN(StackColoring, 191 "stack-coloring", "Merge disjoint stack slots", false, false) 192 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 193 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 194 INITIALIZE_PASS_END(StackColoring, 195 "stack-coloring", "Merge disjoint stack slots", false, false) 196 197 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const { 198 AU.addRequired<MachineDominatorTree>(); 199 AU.addPreserved<MachineDominatorTree>(); 200 AU.addRequired<SlotIndexes>(); 201 MachineFunctionPass::getAnalysisUsage(AU); 202 } 203 204 void StackColoring::dump() const { 205 for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF); 206 FI != FE; ++FI) { 207 DEBUG(dbgs()<<"Inspecting block #"<<BasicBlocks.lookup(*FI)<< 208 " ["<<FI->getName()<<"]\n"); 209 210 LivenessMap::const_iterator BI = BlockLiveness.find(*FI); 211 assert(BI != BlockLiveness.end() && "Block not found"); 212 const BlockLifetimeInfo &BlockInfo = BI->second; 213 214 DEBUG(dbgs()<<"BEGIN : {"); 215 for (unsigned i=0; i < BlockInfo.Begin.size(); ++i) 216 DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" "); 217 DEBUG(dbgs()<<"}\n"); 218 219 DEBUG(dbgs()<<"END : {"); 220 for (unsigned i=0; i < BlockInfo.End.size(); ++i) 221 DEBUG(dbgs()<<BlockInfo.End.test(i)<<" "); 222 223 DEBUG(dbgs()<<"}\n"); 224 225 DEBUG(dbgs()<<"LIVE_IN: {"); 226 for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i) 227 DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" "); 228 229 DEBUG(dbgs()<<"}\n"); 230 DEBUG(dbgs()<<"LIVEOUT: {"); 231 for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i) 232 DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" "); 233 DEBUG(dbgs()<<"}\n"); 234 } 235 } 236 237 unsigned StackColoring::collectMarkers(unsigned NumSlot) { 238 unsigned MarkersFound = 0; 239 // Scan the function to find all lifetime markers. 240 // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a 241 // deterministic numbering, and because we'll need a post-order iteration 242 // later for solving the liveness dataflow problem. 243 for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF); 244 FI != FE; ++FI) { 245 246 // Assign a serial number to this basic block. 247 BasicBlocks[*FI] = BasicBlockNumbering.size(); 248 BasicBlockNumbering.push_back(*FI); 249 250 // Keep a reference to avoid repeated lookups. 251 BlockLifetimeInfo &BlockInfo = BlockLiveness[*FI]; 252 253 BlockInfo.Begin.resize(NumSlot); 254 BlockInfo.End.resize(NumSlot); 255 256 for (MachineBasicBlock::iterator BI = (*FI)->begin(), BE = (*FI)->end(); 257 BI != BE; ++BI) { 258 259 if (BI->getOpcode() != TargetOpcode::LIFETIME_START && 260 BI->getOpcode() != TargetOpcode::LIFETIME_END) 261 continue; 262 263 Markers.push_back(BI); 264 265 bool IsStart = BI->getOpcode() == TargetOpcode::LIFETIME_START; 266 const MachineOperand &MI = BI->getOperand(0); 267 unsigned Slot = MI.getIndex(); 268 269 MarkersFound++; 270 271 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); 272 if (Allocation) { 273 DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<< 274 " with allocation: "<< Allocation->getName()<<"\n"); 275 } 276 277 if (IsStart) { 278 BlockInfo.Begin.set(Slot); 279 } else { 280 if (BlockInfo.Begin.test(Slot)) { 281 // Allocas that start and end within a single block are handled 282 // specially when computing the LiveIntervals to avoid pessimizing 283 // the liveness propagation. 284 BlockInfo.Begin.reset(Slot); 285 } else { 286 BlockInfo.End.set(Slot); 287 } 288 } 289 } 290 } 291 292 // Update statistics. 293 NumMarkerSeen += MarkersFound; 294 return MarkersFound; 295 } 296 297 void StackColoring::calculateLocalLiveness() { 298 // Perform a standard reverse dataflow computation to solve for 299 // global liveness. The BEGIN set here is equivalent to KILL in the standard 300 // formulation, and END is equivalent to GEN. The result of this computation 301 // is a map from blocks to bitvectors where the bitvectors represent which 302 // allocas are live in/out of that block. 303 SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(), 304 BasicBlockNumbering.end()); 305 unsigned NumSSMIters = 0; 306 bool changed = true; 307 while (changed) { 308 changed = false; 309 ++NumSSMIters; 310 311 SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet; 312 313 for (SmallVectorImpl<const MachineBasicBlock *>::iterator 314 PI = BasicBlockNumbering.begin(), PE = BasicBlockNumbering.end(); 315 PI != PE; ++PI) { 316 317 const MachineBasicBlock *BB = *PI; 318 if (!BBSet.count(BB)) continue; 319 320 // Use an iterator to avoid repeated lookups. 321 LivenessMap::iterator BI = BlockLiveness.find(BB); 322 assert(BI != BlockLiveness.end() && "Block not found"); 323 BlockLifetimeInfo &BlockInfo = BI->second; 324 325 BitVector LocalLiveIn; 326 BitVector LocalLiveOut; 327 328 // Forward propagation from begins to ends. 329 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(), 330 PE = BB->pred_end(); PI != PE; ++PI) { 331 LivenessMap::const_iterator I = BlockLiveness.find(*PI); 332 assert(I != BlockLiveness.end() && "Predecessor not found"); 333 LocalLiveIn |= I->second.LiveOut; 334 } 335 LocalLiveIn |= BlockInfo.End; 336 LocalLiveIn.reset(BlockInfo.Begin); 337 338 // Reverse propagation from ends to begins. 339 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), 340 SE = BB->succ_end(); SI != SE; ++SI) { 341 LivenessMap::const_iterator I = BlockLiveness.find(*SI); 342 assert(I != BlockLiveness.end() && "Successor not found"); 343 LocalLiveOut |= I->second.LiveIn; 344 } 345 LocalLiveOut |= BlockInfo.Begin; 346 LocalLiveOut.reset(BlockInfo.End); 347 348 LocalLiveIn |= LocalLiveOut; 349 LocalLiveOut |= LocalLiveIn; 350 351 // After adopting the live bits, we need to turn-off the bits which 352 // are de-activated in this block. 353 LocalLiveOut.reset(BlockInfo.End); 354 LocalLiveIn.reset(BlockInfo.Begin); 355 356 // If we have both BEGIN and END markers in the same basic block then 357 // we know that the BEGIN marker comes after the END, because we already 358 // handle the case where the BEGIN comes before the END when collecting 359 // the markers (and building the BEGIN/END vectore). 360 // Want to enable the LIVE_IN and LIVE_OUT of slots that have both 361 // BEGIN and END because it means that the value lives before and after 362 // this basic block. 363 BitVector LocalEndBegin = BlockInfo.End; 364 LocalEndBegin &= BlockInfo.Begin; 365 LocalLiveIn |= LocalEndBegin; 366 LocalLiveOut |= LocalEndBegin; 367 368 if (LocalLiveIn.test(BlockInfo.LiveIn)) { 369 changed = true; 370 BlockInfo.LiveIn |= LocalLiveIn; 371 372 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(), 373 PE = BB->pred_end(); PI != PE; ++PI) 374 NextBBSet.insert(*PI); 375 } 376 377 if (LocalLiveOut.test(BlockInfo.LiveOut)) { 378 changed = true; 379 BlockInfo.LiveOut |= LocalLiveOut; 380 381 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), 382 SE = BB->succ_end(); SI != SE; ++SI) 383 NextBBSet.insert(*SI); 384 } 385 } 386 387 BBSet = NextBBSet; 388 }// while changed. 389 } 390 391 void StackColoring::calculateLiveIntervals(unsigned NumSlots) { 392 SmallVector<SlotIndex, 16> Starts; 393 SmallVector<SlotIndex, 16> Finishes; 394 395 // For each block, find which slots are active within this block 396 // and update the live intervals. 397 for (MachineFunction::iterator MBB = MF->begin(), MBBe = MF->end(); 398 MBB != MBBe; ++MBB) { 399 Starts.clear(); 400 Starts.resize(NumSlots); 401 Finishes.clear(); 402 Finishes.resize(NumSlots); 403 404 // Create the interval for the basic blocks with lifetime markers in them. 405 for (SmallVectorImpl<MachineInstr*>::const_iterator it = Markers.begin(), 406 e = Markers.end(); it != e; ++it) { 407 const MachineInstr *MI = *it; 408 if (MI->getParent() != MBB) 409 continue; 410 411 assert((MI->getOpcode() == TargetOpcode::LIFETIME_START || 412 MI->getOpcode() == TargetOpcode::LIFETIME_END) && 413 "Invalid Lifetime marker"); 414 415 bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START; 416 const MachineOperand &Mo = MI->getOperand(0); 417 int Slot = Mo.getIndex(); 418 assert(Slot >= 0 && "Invalid slot"); 419 420 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI); 421 422 if (IsStart) { 423 if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex) 424 Starts[Slot] = ThisIndex; 425 } else { 426 if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex) 427 Finishes[Slot] = ThisIndex; 428 } 429 } 430 431 // Create the interval of the blocks that we previously found to be 'alive'. 432 BlockLifetimeInfo &MBBLiveness = BlockLiveness[MBB]; 433 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; 434 pos = MBBLiveness.LiveIn.find_next(pos)) { 435 Starts[pos] = Indexes->getMBBStartIdx(MBB); 436 } 437 for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1; 438 pos = MBBLiveness.LiveOut.find_next(pos)) { 439 Finishes[pos] = Indexes->getMBBEndIdx(MBB); 440 } 441 442 for (unsigned i = 0; i < NumSlots; ++i) { 443 assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range"); 444 if (!Starts[i].isValid()) 445 continue; 446 447 assert(Starts[i] && Finishes[i] && "Invalid interval"); 448 VNInfo *ValNum = Intervals[i]->getValNumInfo(0); 449 SlotIndex S = Starts[i]; 450 SlotIndex F = Finishes[i]; 451 if (S < F) { 452 // We have a single consecutive region. 453 Intervals[i]->addRange(LiveRange(S, F, ValNum)); 454 } else { 455 // We have two non consecutive regions. This happens when 456 // LIFETIME_START appears after the LIFETIME_END marker. 457 SlotIndex NewStart = Indexes->getMBBStartIdx(MBB); 458 SlotIndex NewFin = Indexes->getMBBEndIdx(MBB); 459 Intervals[i]->addRange(LiveRange(NewStart, F, ValNum)); 460 Intervals[i]->addRange(LiveRange(S, NewFin, ValNum)); 461 } 462 } 463 } 464 } 465 466 bool StackColoring::removeAllMarkers() { 467 unsigned Count = 0; 468 for (unsigned i = 0; i < Markers.size(); ++i) { 469 Markers[i]->eraseFromParent(); 470 Count++; 471 } 472 Markers.clear(); 473 474 DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n"); 475 return Count; 476 } 477 478 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { 479 unsigned FixedInstr = 0; 480 unsigned FixedMemOp = 0; 481 unsigned FixedDbg = 0; 482 MachineModuleInfo *MMI = &MF->getMMI(); 483 484 // Remap debug information that refers to stack slots. 485 MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo(); 486 for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(), 487 VE = VMap.end(); VI != VE; ++VI) { 488 const MDNode *Var = VI->first; 489 if (!Var) continue; 490 std::pair<unsigned, DebugLoc> &VP = VI->second; 491 if (SlotRemap.count(VP.first)) { 492 DEBUG(dbgs()<<"Remapping debug info for ["<<Var->getName()<<"].\n"); 493 VP.first = SlotRemap[VP.first]; 494 FixedDbg++; 495 } 496 } 497 498 // Keep a list of *allocas* which need to be remapped. 499 DenseMap<const AllocaInst*, const AllocaInst*> Allocas; 500 for (DenseMap<int, int>::const_iterator it = SlotRemap.begin(), 501 e = SlotRemap.end(); it != e; ++it) { 502 const AllocaInst *From = MFI->getObjectAllocation(it->first); 503 const AllocaInst *To = MFI->getObjectAllocation(it->second); 504 assert(To && From && "Invalid allocation object"); 505 Allocas[From] = To; 506 } 507 508 // Remap all instructions to the new stack slots. 509 MachineFunction::iterator BB, BBE; 510 MachineBasicBlock::iterator I, IE; 511 for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB) 512 for (I = BB->begin(), IE = BB->end(); I != IE; ++I) { 513 514 // Skip lifetime markers. We'll remove them soon. 515 if (I->getOpcode() == TargetOpcode::LIFETIME_START || 516 I->getOpcode() == TargetOpcode::LIFETIME_END) 517 continue; 518 519 // Update the MachineMemOperand to use the new alloca. 520 for (MachineInstr::mmo_iterator MM = I->memoperands_begin(), 521 E = I->memoperands_end(); MM != E; ++MM) { 522 MachineMemOperand *MMO = *MM; 523 524 const Value *V = MMO->getValue(); 525 526 if (!V) 527 continue; 528 529 const PseudoSourceValue *PSV = dyn_cast<const PseudoSourceValue>(V); 530 if (PSV && PSV->isConstant(MFI)) 531 continue; 532 533 // Climb up and find the original alloca. 534 V = GetUnderlyingObject(V); 535 // If we did not find one, or if the one that we found is not in our 536 // map, then move on. 537 if (!V || !isa<AllocaInst>(V)) { 538 // Clear mem operand since we don't know for sure that it doesn't 539 // alias a merged alloca. 540 MMO->setValue(0); 541 continue; 542 } 543 const AllocaInst *AI= cast<AllocaInst>(V); 544 if (!Allocas.count(AI)) 545 continue; 546 547 MMO->setValue(Allocas[AI]); 548 FixedMemOp++; 549 } 550 551 // Update all of the machine instruction operands. 552 for (unsigned i = 0 ; i < I->getNumOperands(); ++i) { 553 MachineOperand &MO = I->getOperand(i); 554 555 if (!MO.isFI()) 556 continue; 557 int FromSlot = MO.getIndex(); 558 559 // Don't touch arguments. 560 if (FromSlot<0) 561 continue; 562 563 // Only look at mapped slots. 564 if (!SlotRemap.count(FromSlot)) 565 continue; 566 567 // In a debug build, check that the instruction that we are modifying is 568 // inside the expected live range. If the instruction is not inside 569 // the calculated range then it means that the alloca usage moved 570 // outside of the lifetime markers, or that the user has a bug. 571 // NOTE: Alloca address calculations which happen outside the lifetime 572 // zone are are okay, despite the fact that we don't have a good way 573 // for validating all of the usages of the calculation. 574 #ifndef NDEBUG 575 bool TouchesMemory = I->mayLoad() || I->mayStore(); 576 // If we *don't* protect the user from escaped allocas, don't bother 577 // validating the instructions. 578 if (!I->isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) { 579 SlotIndex Index = Indexes->getInstructionIndex(I); 580 LiveInterval *Interval = Intervals[FromSlot]; 581 assert(Interval->find(Index) != Interval->end() && 582 "Found instruction usage outside of live range."); 583 } 584 #endif 585 586 // Fix the machine instructions. 587 int ToSlot = SlotRemap[FromSlot]; 588 MO.setIndex(ToSlot); 589 FixedInstr++; 590 } 591 } 592 593 DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n"); 594 DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n"); 595 DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n"); 596 } 597 598 void StackColoring::removeInvalidSlotRanges() { 599 MachineFunction::const_iterator BB, BBE; 600 MachineBasicBlock::const_iterator I, IE; 601 for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB) 602 for (I = BB->begin(), IE = BB->end(); I != IE; ++I) { 603 604 if (I->getOpcode() == TargetOpcode::LIFETIME_START || 605 I->getOpcode() == TargetOpcode::LIFETIME_END || I->isDebugValue()) 606 continue; 607 608 // Some intervals are suspicious! In some cases we find address 609 // calculations outside of the lifetime zone, but not actual memory 610 // read or write. Memory accesses outside of the lifetime zone are a clear 611 // violation, but address calculations are okay. This can happen when 612 // GEPs are hoisted outside of the lifetime zone. 613 // So, in here we only check instructions which can read or write memory. 614 if (!I->mayLoad() && !I->mayStore()) 615 continue; 616 617 // Check all of the machine operands. 618 for (unsigned i = 0 ; i < I->getNumOperands(); ++i) { 619 const MachineOperand &MO = I->getOperand(i); 620 621 if (!MO.isFI()) 622 continue; 623 624 int Slot = MO.getIndex(); 625 626 if (Slot<0) 627 continue; 628 629 if (Intervals[Slot]->empty()) 630 continue; 631 632 // Check that the used slot is inside the calculated lifetime range. 633 // If it is not, warn about it and invalidate the range. 634 LiveInterval *Interval = Intervals[Slot]; 635 SlotIndex Index = Indexes->getInstructionIndex(I); 636 if (Interval->find(Index) == Interval->end()) { 637 Intervals[Slot]->clear(); 638 DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n"); 639 EscapedAllocas++; 640 } 641 } 642 } 643 } 644 645 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, 646 unsigned NumSlots) { 647 // Expunge slot remap map. 648 for (unsigned i=0; i < NumSlots; ++i) { 649 // If we are remapping i 650 if (SlotRemap.count(i)) { 651 int Target = SlotRemap[i]; 652 // As long as our target is mapped to something else, follow it. 653 while (SlotRemap.count(Target)) { 654 Target = SlotRemap[Target]; 655 SlotRemap[i] = Target; 656 } 657 } 658 } 659 } 660 661 bool StackColoring::runOnMachineFunction(MachineFunction &Func) { 662 DEBUG(dbgs() << "********** Stack Coloring **********\n" 663 << "********** Function: " 664 << ((const Value*)Func.getFunction())->getName() << '\n'); 665 MF = &Func; 666 MFI = MF->getFrameInfo(); 667 Indexes = &getAnalysis<SlotIndexes>(); 668 BlockLiveness.clear(); 669 BasicBlocks.clear(); 670 BasicBlockNumbering.clear(); 671 Markers.clear(); 672 Intervals.clear(); 673 VNInfoAllocator.Reset(); 674 675 unsigned NumSlots = MFI->getObjectIndexEnd(); 676 677 // If there are no stack slots then there are no markers to remove. 678 if (!NumSlots) 679 return false; 680 681 SmallVector<int, 8> SortedSlots; 682 683 SortedSlots.reserve(NumSlots); 684 Intervals.reserve(NumSlots); 685 686 unsigned NumMarkers = collectMarkers(NumSlots); 687 688 unsigned TotalSize = 0; 689 DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n"); 690 DEBUG(dbgs()<<"Slot structure:\n"); 691 692 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { 693 DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n"); 694 TotalSize += MFI->getObjectSize(i); 695 } 696 697 DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n"); 698 699 // Don't continue because there are not enough lifetime markers, or the 700 // stack is too small, or we are told not to optimize the slots. 701 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) { 702 DEBUG(dbgs()<<"Will not try to merge slots.\n"); 703 return removeAllMarkers(); 704 } 705 706 for (unsigned i=0; i < NumSlots; ++i) { 707 LiveInterval *LI = new LiveInterval(i, 0); 708 Intervals.push_back(LI); 709 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator); 710 SortedSlots.push_back(i); 711 } 712 713 // Calculate the liveness of each block. 714 calculateLocalLiveness(); 715 716 // Propagate the liveness information. 717 calculateLiveIntervals(NumSlots); 718 719 // Search for allocas which are used outside of the declared lifetime 720 // markers. 721 if (ProtectFromEscapedAllocas) 722 removeInvalidSlotRanges(); 723 724 // Maps old slots to new slots. 725 DenseMap<int, int> SlotRemap; 726 unsigned RemovedSlots = 0; 727 unsigned ReducedSize = 0; 728 729 // Do not bother looking at empty intervals. 730 for (unsigned I = 0; I < NumSlots; ++I) { 731 if (Intervals[SortedSlots[I]]->empty()) 732 SortedSlots[I] = -1; 733 } 734 735 // This is a simple greedy algorithm for merging allocas. First, sort the 736 // slots, placing the largest slots first. Next, perform an n^2 scan and look 737 // for disjoint slots. When you find disjoint slots, merge the samller one 738 // into the bigger one and update the live interval. Remove the small alloca 739 // and continue. 740 741 // Sort the slots according to their size. Place unused slots at the end. 742 // Use stable sort to guarantee deterministic code generation. 743 std::stable_sort(SortedSlots.begin(), SortedSlots.end(), 744 SlotSizeSorter(MFI)); 745 746 bool Changed = true; 747 while (Changed) { 748 Changed = false; 749 for (unsigned I = 0; I < NumSlots; ++I) { 750 if (SortedSlots[I] == -1) 751 continue; 752 753 for (unsigned J=I+1; J < NumSlots; ++J) { 754 if (SortedSlots[J] == -1) 755 continue; 756 757 int FirstSlot = SortedSlots[I]; 758 int SecondSlot = SortedSlots[J]; 759 LiveInterval *First = Intervals[FirstSlot]; 760 LiveInterval *Second = Intervals[SecondSlot]; 761 assert (!First->empty() && !Second->empty() && "Found an empty range"); 762 763 // Merge disjoint slots. 764 if (!First->overlaps(*Second)) { 765 Changed = true; 766 First->MergeRangesInAsValue(*Second, First->getValNumInfo(0)); 767 SlotRemap[SecondSlot] = FirstSlot; 768 SortedSlots[J] = -1; 769 DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<< 770 SecondSlot<<" together.\n"); 771 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot), 772 MFI->getObjectAlignment(SecondSlot)); 773 774 assert(MFI->getObjectSize(FirstSlot) >= 775 MFI->getObjectSize(SecondSlot) && 776 "Merging a small object into a larger one"); 777 778 RemovedSlots+=1; 779 ReducedSize += MFI->getObjectSize(SecondSlot); 780 MFI->setObjectAlignment(FirstSlot, MaxAlignment); 781 MFI->RemoveStackObject(SecondSlot); 782 } 783 } 784 } 785 }// While changed. 786 787 // Record statistics. 788 StackSpaceSaved += ReducedSize; 789 StackSlotMerged += RemovedSlots; 790 DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<< 791 ReducedSize<<" bytes\n"); 792 793 // Scan the entire function and update all machine operands that use frame 794 // indices to use the remapped frame index. 795 expungeSlotMap(SlotRemap, NumSlots); 796 remapInstructions(SlotRemap); 797 798 // Release the intervals. 799 for (unsigned I = 0; I < NumSlots; ++I) { 800 delete Intervals[I]; 801 } 802 803 return removeAllMarkers(); 804 } 805