1 /************************************************************************** 2 * 3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 /* 29 * Authors: 30 * Brian Paul 31 */ 32 33 #include "main/imports.h" 34 #include "main/image.h" 35 #include "main/bufferobj.h" 36 #include "main/format_pack.h" 37 #include "main/macros.h" 38 #include "main/mfeatures.h" 39 #include "main/mtypes.h" 40 #include "main/pack.h" 41 #include "main/pbo.h" 42 #include "main/readpix.h" 43 #include "main/texformat.h" 44 #include "main/teximage.h" 45 #include "main/texstore.h" 46 #include "main/glformats.h" 47 #include "program/program.h" 48 #include "program/prog_print.h" 49 #include "program/prog_instruction.h" 50 51 #include "st_atom.h" 52 #include "st_atom_constbuf.h" 53 #include "st_cb_drawpixels.h" 54 #include "st_cb_readpixels.h" 55 #include "st_cb_fbo.h" 56 #include "st_context.h" 57 #include "st_debug.h" 58 #include "st_format.h" 59 #include "st_program.h" 60 #include "st_texture.h" 61 62 #include "pipe/p_context.h" 63 #include "pipe/p_defines.h" 64 #include "tgsi/tgsi_ureg.h" 65 #include "util/u_draw_quad.h" 66 #include "util/u_format.h" 67 #include "util/u_inlines.h" 68 #include "util/u_math.h" 69 #include "util/u_tile.h" 70 #include "util/u_upload_mgr.h" 71 #include "cso_cache/cso_context.h" 72 73 74 #if FEATURE_drawpix 75 76 /** 77 * Check if the given program is: 78 * 0: MOVE result.color, fragment.color; 79 * 1: END; 80 */ 81 static GLboolean 82 is_passthrough_program(const struct gl_fragment_program *prog) 83 { 84 if (prog->Base.NumInstructions == 2) { 85 const struct prog_instruction *inst = prog->Base.Instructions; 86 if (inst[0].Opcode == OPCODE_MOV && 87 inst[1].Opcode == OPCODE_END && 88 inst[0].DstReg.File == PROGRAM_OUTPUT && 89 inst[0].DstReg.Index == FRAG_RESULT_COLOR && 90 inst[0].DstReg.WriteMask == WRITEMASK_XYZW && 91 inst[0].SrcReg[0].File == PROGRAM_INPUT && 92 inst[0].SrcReg[0].Index == FRAG_ATTRIB_COL0 && 93 inst[0].SrcReg[0].Swizzle == SWIZZLE_XYZW) { 94 return GL_TRUE; 95 } 96 } 97 return GL_FALSE; 98 } 99 100 101 /** 102 * Returns a fragment program which implements the current pixel transfer ops. 103 */ 104 static struct gl_fragment_program * 105 get_glsl_pixel_transfer_program(struct st_context *st, 106 struct st_fragment_program *orig) 107 { 108 int pixelMaps = 0, scaleAndBias = 0; 109 struct gl_context *ctx = st->ctx; 110 struct st_fragment_program *fp = (struct st_fragment_program *) 111 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0); 112 113 if (!fp) 114 return NULL; 115 116 if (ctx->Pixel.RedBias != 0.0 || ctx->Pixel.RedScale != 1.0 || 117 ctx->Pixel.GreenBias != 0.0 || ctx->Pixel.GreenScale != 1.0 || 118 ctx->Pixel.BlueBias != 0.0 || ctx->Pixel.BlueScale != 1.0 || 119 ctx->Pixel.AlphaBias != 0.0 || ctx->Pixel.AlphaScale != 1.0) { 120 scaleAndBias = 1; 121 } 122 123 pixelMaps = ctx->Pixel.MapColorFlag; 124 125 if (pixelMaps) { 126 /* create the colormap/texture now if not already done */ 127 if (!st->pixel_xfer.pixelmap_texture) { 128 st->pixel_xfer.pixelmap_texture = st_create_color_map_texture(ctx); 129 st->pixel_xfer.pixelmap_sampler_view = 130 st_create_texture_sampler_view(st->pipe, 131 st->pixel_xfer.pixelmap_texture); 132 } 133 } 134 135 get_pixel_transfer_visitor(fp, orig->glsl_to_tgsi, 136 scaleAndBias, pixelMaps); 137 138 return &fp->Base; 139 } 140 141 142 /** 143 * Make fragment shader for glDraw/CopyPixels. This shader is made 144 * by combining the pixel transfer shader with the user-defined shader. 145 * \param fpIn the current/incoming fragment program 146 * \param fpOut returns the combined fragment program 147 */ 148 void 149 st_make_drawpix_fragment_program(struct st_context *st, 150 struct gl_fragment_program *fpIn, 151 struct gl_fragment_program **fpOut) 152 { 153 struct gl_program *newProg; 154 struct st_fragment_program *stfp = (struct st_fragment_program *) fpIn; 155 156 if (is_passthrough_program(fpIn)) { 157 newProg = (struct gl_program *) _mesa_clone_fragment_program(st->ctx, 158 &st->pixel_xfer.program->Base); 159 } 160 else if (stfp->glsl_to_tgsi != NULL) { 161 newProg = (struct gl_program *) get_glsl_pixel_transfer_program(st, stfp); 162 } 163 else { 164 #if 0 165 /* debug */ 166 printf("Base program:\n"); 167 _mesa_print_program(&fpIn->Base); 168 printf("DrawPix program:\n"); 169 _mesa_print_program(&st->pixel_xfer.program->Base.Base); 170 #endif 171 newProg = _mesa_combine_programs(st->ctx, 172 &st->pixel_xfer.program->Base.Base, 173 &fpIn->Base); 174 } 175 176 #if 0 177 /* debug */ 178 printf("Combined DrawPixels program:\n"); 179 _mesa_print_program(newProg); 180 printf("InputsRead: 0x%x\n", newProg->InputsRead); 181 printf("OutputsWritten: 0x%x\n", newProg->OutputsWritten); 182 _mesa_print_parameter_list(newProg->Parameters); 183 #endif 184 185 *fpOut = (struct gl_fragment_program *) newProg; 186 } 187 188 189 /** 190 * Create fragment program that does a TEX() instruction to get a Z and/or 191 * stencil value value, then writes to FRAG_RESULT_DEPTH/FRAG_RESULT_STENCIL. 192 * Used for glDrawPixels(GL_DEPTH_COMPONENT / GL_STENCIL_INDEX). 193 * Pass fragment color through as-is. 194 * \return pointer to the gl_fragment program 195 */ 196 struct gl_fragment_program * 197 st_make_drawpix_z_stencil_program(struct st_context *st, 198 GLboolean write_depth, 199 GLboolean write_stencil) 200 { 201 struct gl_context *ctx = st->ctx; 202 struct gl_program *p; 203 struct gl_fragment_program *fp; 204 GLuint ic = 0; 205 const GLuint shaderIndex = write_depth * 2 + write_stencil; 206 207 assert(shaderIndex < Elements(st->drawpix.shaders)); 208 209 if (st->drawpix.shaders[shaderIndex]) { 210 /* already have the proper shader */ 211 return st->drawpix.shaders[shaderIndex]; 212 } 213 214 /* 215 * Create shader now 216 */ 217 p = ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0); 218 if (!p) 219 return NULL; 220 221 p->NumInstructions = write_depth ? 3 : 1; 222 p->NumInstructions += write_stencil ? 1 : 0; 223 224 p->Instructions = _mesa_alloc_instructions(p->NumInstructions); 225 if (!p->Instructions) { 226 ctx->Driver.DeleteProgram(ctx, p); 227 return NULL; 228 } 229 _mesa_init_instructions(p->Instructions, p->NumInstructions); 230 231 if (write_depth) { 232 /* TEX result.depth, fragment.texcoord[0], texture[0], 2D; */ 233 p->Instructions[ic].Opcode = OPCODE_TEX; 234 p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT; 235 p->Instructions[ic].DstReg.Index = FRAG_RESULT_DEPTH; 236 p->Instructions[ic].DstReg.WriteMask = WRITEMASK_Z; 237 p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT; 238 p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0; 239 p->Instructions[ic].TexSrcUnit = 0; 240 p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX; 241 ic++; 242 /* MOV result.color, fragment.color; */ 243 p->Instructions[ic].Opcode = OPCODE_MOV; 244 p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT; 245 p->Instructions[ic].DstReg.Index = FRAG_RESULT_COLOR; 246 p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT; 247 p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_COL0; 248 ic++; 249 } 250 251 if (write_stencil) { 252 /* TEX result.stencil, fragment.texcoord[0], texture[0], 2D; */ 253 p->Instructions[ic].Opcode = OPCODE_TEX; 254 p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT; 255 p->Instructions[ic].DstReg.Index = FRAG_RESULT_STENCIL; 256 p->Instructions[ic].DstReg.WriteMask = WRITEMASK_Y; 257 p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT; 258 p->Instructions[ic].SrcReg[0].Index = FRAG_ATTRIB_TEX0; 259 p->Instructions[ic].TexSrcUnit = 1; 260 p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX; 261 ic++; 262 } 263 264 /* END; */ 265 p->Instructions[ic++].Opcode = OPCODE_END; 266 267 assert(ic == p->NumInstructions); 268 269 p->InputsRead = FRAG_BIT_TEX0 | FRAG_BIT_COL0; 270 p->OutputsWritten = 0; 271 if (write_depth) { 272 p->OutputsWritten |= BITFIELD64_BIT(FRAG_RESULT_DEPTH); 273 p->OutputsWritten |= BITFIELD64_BIT(FRAG_RESULT_COLOR); 274 } 275 if (write_stencil) 276 p->OutputsWritten |= BITFIELD64_BIT(FRAG_RESULT_STENCIL); 277 278 p->SamplersUsed = 0x1; /* sampler 0 (bit 0) is used */ 279 if (write_stencil) 280 p->SamplersUsed |= 1 << 1; 281 282 fp = (struct gl_fragment_program *) p; 283 284 /* save the new shader */ 285 st->drawpix.shaders[shaderIndex] = fp; 286 287 return fp; 288 } 289 290 291 /** 292 * Create a simple vertex shader that just passes through the 293 * vertex position and texcoord (and optionally, color). 294 */ 295 static void * 296 make_passthrough_vertex_shader(struct st_context *st, 297 GLboolean passColor) 298 { 299 if (!st->drawpix.vert_shaders[passColor]) { 300 struct ureg_program *ureg = ureg_create( TGSI_PROCESSOR_VERTEX ); 301 302 if (ureg == NULL) 303 return NULL; 304 305 /* MOV result.pos, vertex.pos; */ 306 ureg_MOV(ureg, 307 ureg_DECL_output( ureg, TGSI_SEMANTIC_POSITION, 0 ), 308 ureg_DECL_vs_input( ureg, 0 )); 309 310 /* MOV result.texcoord0, vertex.attr[1]; */ 311 ureg_MOV(ureg, 312 ureg_DECL_output( ureg, TGSI_SEMANTIC_GENERIC, 0 ), 313 ureg_DECL_vs_input( ureg, 1 )); 314 315 if (passColor) { 316 /* MOV result.color0, vertex.attr[2]; */ 317 ureg_MOV(ureg, 318 ureg_DECL_output( ureg, TGSI_SEMANTIC_COLOR, 0 ), 319 ureg_DECL_vs_input( ureg, 2 )); 320 } 321 322 ureg_END( ureg ); 323 324 st->drawpix.vert_shaders[passColor] = 325 ureg_create_shader_and_destroy( ureg, st->pipe ); 326 } 327 328 return st->drawpix.vert_shaders[passColor]; 329 } 330 331 332 /** 333 * Return a texture internalFormat for drawing/copying an image 334 * of the given format and type. 335 */ 336 static GLenum 337 internal_format(struct gl_context *ctx, GLenum format, GLenum type) 338 { 339 switch (format) { 340 case GL_DEPTH_COMPONENT: 341 switch (type) { 342 case GL_UNSIGNED_SHORT: 343 return GL_DEPTH_COMPONENT16; 344 345 case GL_UNSIGNED_INT: 346 return GL_DEPTH_COMPONENT32; 347 348 case GL_FLOAT: 349 if (ctx->Extensions.ARB_depth_buffer_float) 350 return GL_DEPTH_COMPONENT32F; 351 else 352 return GL_DEPTH_COMPONENT; 353 354 default: 355 return GL_DEPTH_COMPONENT; 356 } 357 358 case GL_DEPTH_STENCIL: 359 switch (type) { 360 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV: 361 return GL_DEPTH32F_STENCIL8; 362 363 case GL_UNSIGNED_INT_24_8: 364 default: 365 return GL_DEPTH24_STENCIL8; 366 } 367 368 case GL_STENCIL_INDEX: 369 return GL_STENCIL_INDEX; 370 371 default: 372 if (_mesa_is_enum_format_integer(format)) { 373 switch (type) { 374 case GL_BYTE: 375 return GL_RGBA8I; 376 case GL_UNSIGNED_BYTE: 377 return GL_RGBA8UI; 378 case GL_SHORT: 379 return GL_RGBA16I; 380 case GL_UNSIGNED_SHORT: 381 return GL_RGBA16UI; 382 case GL_INT: 383 return GL_RGBA32I; 384 case GL_UNSIGNED_INT: 385 return GL_RGBA32UI; 386 default: 387 assert(0 && "Unexpected type in internal_format()"); 388 return GL_RGBA_INTEGER; 389 } 390 } 391 else { 392 switch (type) { 393 case GL_UNSIGNED_BYTE: 394 case GL_UNSIGNED_INT_8_8_8_8: 395 case GL_UNSIGNED_INT_8_8_8_8_REV: 396 default: 397 return GL_RGBA8; 398 399 case GL_UNSIGNED_BYTE_3_3_2: 400 case GL_UNSIGNED_BYTE_2_3_3_REV: 401 return GL_R3_G3_B2; 402 403 case GL_UNSIGNED_SHORT_4_4_4_4: 404 case GL_UNSIGNED_SHORT_4_4_4_4_REV: 405 return GL_RGBA4; 406 407 case GL_UNSIGNED_SHORT_5_6_5: 408 case GL_UNSIGNED_SHORT_5_6_5_REV: 409 return GL_RGB565; 410 411 case GL_UNSIGNED_SHORT_5_5_5_1: 412 case GL_UNSIGNED_SHORT_1_5_5_5_REV: 413 return GL_RGB5_A1; 414 415 case GL_UNSIGNED_INT_10_10_10_2: 416 case GL_UNSIGNED_INT_2_10_10_10_REV: 417 return GL_RGB10_A2; 418 419 case GL_UNSIGNED_SHORT: 420 case GL_UNSIGNED_INT: 421 return GL_RGBA16; 422 423 case GL_BYTE: 424 return 425 ctx->Extensions.EXT_texture_snorm ? GL_RGBA8_SNORM : GL_RGBA8; 426 427 case GL_SHORT: 428 case GL_INT: 429 return 430 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16; 431 432 case GL_HALF_FLOAT_ARB: 433 return 434 ctx->Extensions.ARB_texture_float ? GL_RGBA16F : 435 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16; 436 437 case GL_FLOAT: 438 case GL_DOUBLE: 439 return 440 ctx->Extensions.ARB_texture_float ? GL_RGBA32F : 441 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16; 442 443 case GL_UNSIGNED_INT_5_9_9_9_REV: 444 assert(ctx->Extensions.EXT_texture_shared_exponent); 445 return GL_RGB9_E5; 446 447 case GL_UNSIGNED_INT_10F_11F_11F_REV: 448 assert(ctx->Extensions.EXT_packed_float); 449 return GL_R11F_G11F_B10F; 450 } 451 } 452 } 453 } 454 455 456 /** 457 * Create a temporary texture to hold an image of the given size. 458 * If width, height are not POT and the driver only handles POT textures, 459 * allocate the next larger size of texture that is POT. 460 */ 461 static struct pipe_resource * 462 alloc_texture(struct st_context *st, GLsizei width, GLsizei height, 463 enum pipe_format texFormat) 464 { 465 struct pipe_resource *pt; 466 467 pt = st_texture_create(st, st->internal_target, texFormat, 0, 468 width, height, 1, 1, PIPE_BIND_SAMPLER_VIEW); 469 470 return pt; 471 } 472 473 474 /** 475 * Make texture containing an image for glDrawPixels image. 476 * If 'pixels' is NULL, leave the texture image data undefined. 477 */ 478 static struct pipe_resource * 479 make_texture(struct st_context *st, 480 GLsizei width, GLsizei height, GLenum format, GLenum type, 481 const struct gl_pixelstore_attrib *unpack, 482 const GLvoid *pixels) 483 { 484 struct gl_context *ctx = st->ctx; 485 struct pipe_context *pipe = st->pipe; 486 gl_format mformat; 487 struct pipe_resource *pt; 488 enum pipe_format pipeFormat; 489 GLenum baseInternalFormat, intFormat; 490 491 intFormat = internal_format(ctx, format, type); 492 baseInternalFormat = _mesa_base_tex_format(ctx, intFormat); 493 494 mformat = st_ChooseTextureFormat_renderable(ctx, intFormat, 495 format, type, GL_FALSE); 496 assert(mformat); 497 498 pipeFormat = st_mesa_format_to_pipe_format(mformat); 499 assert(pipeFormat); 500 501 pixels = _mesa_map_pbo_source(ctx, unpack, pixels); 502 if (!pixels) 503 return NULL; 504 505 /* alloc temporary texture */ 506 pt = alloc_texture(st, width, height, pipeFormat); 507 if (!pt) { 508 _mesa_unmap_pbo_source(ctx, unpack); 509 return NULL; 510 } 511 512 { 513 struct pipe_transfer *transfer; 514 GLboolean success; 515 GLubyte *dest; 516 const GLbitfield imageTransferStateSave = ctx->_ImageTransferState; 517 518 /* we'll do pixel transfer in a fragment shader */ 519 ctx->_ImageTransferState = 0x0; 520 521 transfer = pipe_get_transfer(st->pipe, pt, 0, 0, 522 PIPE_TRANSFER_WRITE, 0, 0, 523 width, height); 524 525 /* map texture transfer */ 526 dest = pipe_transfer_map(pipe, transfer); 527 528 529 /* Put image into texture transfer. 530 * Note that the image is actually going to be upside down in 531 * the texture. We deal with that with texcoords. 532 */ 533 success = _mesa_texstore(ctx, 2, /* dims */ 534 baseInternalFormat, /* baseInternalFormat */ 535 mformat, /* gl_format */ 536 transfer->stride, /* dstRowStride, bytes */ 537 &dest, /* destSlices */ 538 width, height, 1, /* size */ 539 format, type, /* src format/type */ 540 pixels, /* data source */ 541 unpack); 542 543 /* unmap */ 544 pipe_transfer_unmap(pipe, transfer); 545 pipe->transfer_destroy(pipe, transfer); 546 547 assert(success); 548 549 /* restore */ 550 ctx->_ImageTransferState = imageTransferStateSave; 551 } 552 553 _mesa_unmap_pbo_source(ctx, unpack); 554 555 return pt; 556 } 557 558 559 /** 560 * Draw quad with texcoords and optional color. 561 * Coords are gallium window coords with y=0=top. 562 * \param color may be null 563 * \param invertTex if true, flip texcoords vertically 564 */ 565 static void 566 draw_quad(struct gl_context *ctx, GLfloat x0, GLfloat y0, GLfloat z, 567 GLfloat x1, GLfloat y1, const GLfloat *color, 568 GLboolean invertTex, GLfloat maxXcoord, GLfloat maxYcoord) 569 { 570 struct st_context *st = st_context(ctx); 571 struct pipe_context *pipe = st->pipe; 572 GLfloat (*verts)[3][4]; /* four verts, three attribs, XYZW */ 573 struct pipe_resource *buf = NULL; 574 unsigned offset; 575 576 if (u_upload_alloc(st->uploader, 0, 4 * sizeof(verts[0]), &offset, 577 &buf, (void **) &verts) != PIPE_OK) { 578 return; 579 } 580 581 /* setup vertex data */ 582 { 583 const struct gl_framebuffer *fb = st->ctx->DrawBuffer; 584 const GLfloat fb_width = (GLfloat) fb->Width; 585 const GLfloat fb_height = (GLfloat) fb->Height; 586 const GLfloat clip_x0 = x0 / fb_width * 2.0f - 1.0f; 587 const GLfloat clip_y0 = y0 / fb_height * 2.0f - 1.0f; 588 const GLfloat clip_x1 = x1 / fb_width * 2.0f - 1.0f; 589 const GLfloat clip_y1 = y1 / fb_height * 2.0f - 1.0f; 590 const GLfloat sLeft = 0.0f, sRight = maxXcoord; 591 const GLfloat tTop = invertTex ? maxYcoord : 0.0f; 592 const GLfloat tBot = invertTex ? 0.0f : maxYcoord; 593 GLuint i; 594 595 /* upper-left */ 596 verts[0][0][0] = clip_x0; /* v[0].attr[0].x */ 597 verts[0][0][1] = clip_y0; /* v[0].attr[0].y */ 598 599 /* upper-right */ 600 verts[1][0][0] = clip_x1; 601 verts[1][0][1] = clip_y0; 602 603 /* lower-right */ 604 verts[2][0][0] = clip_x1; 605 verts[2][0][1] = clip_y1; 606 607 /* lower-left */ 608 verts[3][0][0] = clip_x0; 609 verts[3][0][1] = clip_y1; 610 611 verts[0][1][0] = sLeft; /* v[0].attr[1].S */ 612 verts[0][1][1] = tTop; /* v[0].attr[1].T */ 613 verts[1][1][0] = sRight; 614 verts[1][1][1] = tTop; 615 verts[2][1][0] = sRight; 616 verts[2][1][1] = tBot; 617 verts[3][1][0] = sLeft; 618 verts[3][1][1] = tBot; 619 620 /* same for all verts: */ 621 if (color) { 622 for (i = 0; i < 4; i++) { 623 verts[i][0][2] = z; /* v[i].attr[0].z */ 624 verts[i][0][3] = 1.0f; /* v[i].attr[0].w */ 625 verts[i][2][0] = color[0]; /* v[i].attr[2].r */ 626 verts[i][2][1] = color[1]; /* v[i].attr[2].g */ 627 verts[i][2][2] = color[2]; /* v[i].attr[2].b */ 628 verts[i][2][3] = color[3]; /* v[i].attr[2].a */ 629 verts[i][1][2] = 0.0f; /* v[i].attr[1].R */ 630 verts[i][1][3] = 1.0f; /* v[i].attr[1].Q */ 631 } 632 } 633 else { 634 for (i = 0; i < 4; i++) { 635 verts[i][0][2] = z; /*Z*/ 636 verts[i][0][3] = 1.0f; /*W*/ 637 verts[i][1][2] = 0.0f; /*R*/ 638 verts[i][1][3] = 1.0f; /*Q*/ 639 } 640 } 641 } 642 643 u_upload_unmap(st->uploader); 644 util_draw_vertex_buffer(pipe, st->cso_context, buf, offset, 645 PIPE_PRIM_QUADS, 646 4, /* verts */ 647 3); /* attribs/vert */ 648 pipe_resource_reference(&buf, NULL); 649 } 650 651 652 653 static void 654 draw_textured_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z, 655 GLsizei width, GLsizei height, 656 GLfloat zoomX, GLfloat zoomY, 657 struct pipe_sampler_view **sv, 658 int num_sampler_view, 659 void *driver_vp, 660 void *driver_fp, 661 const GLfloat *color, 662 GLboolean invertTex, 663 GLboolean write_depth, GLboolean write_stencil) 664 { 665 struct st_context *st = st_context(ctx); 666 struct pipe_context *pipe = st->pipe; 667 struct cso_context *cso = st->cso_context; 668 GLfloat x0, y0, x1, y1; 669 GLsizei maxSize; 670 boolean normalized = sv[0]->texture->target != PIPE_TEXTURE_RECT; 671 672 /* limit checks */ 673 /* XXX if DrawPixels image is larger than max texture size, break 674 * it up into chunks. 675 */ 676 maxSize = 1 << (pipe->screen->get_param(pipe->screen, 677 PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1); 678 assert(width <= maxSize); 679 assert(height <= maxSize); 680 681 cso_save_rasterizer(cso); 682 cso_save_viewport(cso); 683 cso_save_samplers(cso, PIPE_SHADER_FRAGMENT); 684 cso_save_sampler_views(cso, PIPE_SHADER_FRAGMENT); 685 cso_save_fragment_shader(cso); 686 cso_save_stream_outputs(cso); 687 cso_save_vertex_shader(cso); 688 cso_save_geometry_shader(cso); 689 cso_save_vertex_elements(cso); 690 cso_save_vertex_buffers(cso); 691 if (write_stencil) { 692 cso_save_depth_stencil_alpha(cso); 693 cso_save_blend(cso); 694 } 695 696 /* rasterizer state: just scissor */ 697 { 698 struct pipe_rasterizer_state rasterizer; 699 memset(&rasterizer, 0, sizeof(rasterizer)); 700 rasterizer.clamp_fragment_color = !st->clamp_frag_color_in_shader && 701 ctx->Color._ClampFragmentColor && 702 !ctx->DrawBuffer->_IntegerColor; 703 rasterizer.gl_rasterization_rules = 1; 704 rasterizer.depth_clip = !ctx->Transform.DepthClamp; 705 rasterizer.scissor = ctx->Scissor.Enabled; 706 cso_set_rasterizer(cso, &rasterizer); 707 } 708 709 if (write_stencil) { 710 /* Stencil writing bypasses the normal fragment pipeline to 711 * disable color writing and set stencil test to always pass. 712 */ 713 struct pipe_depth_stencil_alpha_state dsa; 714 struct pipe_blend_state blend; 715 716 /* depth/stencil */ 717 memset(&dsa, 0, sizeof(dsa)); 718 dsa.stencil[0].enabled = 1; 719 dsa.stencil[0].func = PIPE_FUNC_ALWAYS; 720 dsa.stencil[0].writemask = ctx->Stencil.WriteMask[0] & 0xff; 721 dsa.stencil[0].zpass_op = PIPE_STENCIL_OP_REPLACE; 722 if (write_depth) { 723 /* writing depth+stencil: depth test always passes */ 724 dsa.depth.enabled = 1; 725 dsa.depth.writemask = ctx->Depth.Mask; 726 dsa.depth.func = PIPE_FUNC_ALWAYS; 727 } 728 cso_set_depth_stencil_alpha(cso, &dsa); 729 730 /* blend (colormask) */ 731 memset(&blend, 0, sizeof(blend)); 732 cso_set_blend(cso, &blend); 733 } 734 735 /* fragment shader state: TEX lookup program */ 736 cso_set_fragment_shader_handle(cso, driver_fp); 737 738 /* vertex shader state: position + texcoord pass-through */ 739 cso_set_vertex_shader_handle(cso, driver_vp); 740 741 /* geometry shader state: disabled */ 742 cso_set_geometry_shader_handle(cso, NULL); 743 744 /* texture sampling state: */ 745 { 746 struct pipe_sampler_state sampler; 747 memset(&sampler, 0, sizeof(sampler)); 748 sampler.wrap_s = PIPE_TEX_WRAP_CLAMP; 749 sampler.wrap_t = PIPE_TEX_WRAP_CLAMP; 750 sampler.wrap_r = PIPE_TEX_WRAP_CLAMP; 751 sampler.min_img_filter = PIPE_TEX_FILTER_NEAREST; 752 sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE; 753 sampler.mag_img_filter = PIPE_TEX_FILTER_NEAREST; 754 sampler.normalized_coords = normalized; 755 756 cso_single_sampler(cso, PIPE_SHADER_FRAGMENT, 0, &sampler); 757 if (num_sampler_view > 1) { 758 cso_single_sampler(cso, PIPE_SHADER_FRAGMENT, 1, &sampler); 759 } 760 cso_single_sampler_done(cso, PIPE_SHADER_FRAGMENT); 761 } 762 763 /* viewport state: viewport matching window dims */ 764 { 765 const float w = (float) ctx->DrawBuffer->Width; 766 const float h = (float) ctx->DrawBuffer->Height; 767 struct pipe_viewport_state vp; 768 vp.scale[0] = 0.5f * w; 769 vp.scale[1] = -0.5f * h; 770 vp.scale[2] = 0.5f; 771 vp.scale[3] = 1.0f; 772 vp.translate[0] = 0.5f * w; 773 vp.translate[1] = 0.5f * h; 774 vp.translate[2] = 0.5f; 775 vp.translate[3] = 0.0f; 776 cso_set_viewport(cso, &vp); 777 } 778 779 cso_set_vertex_elements(cso, 3, st->velems_util_draw); 780 cso_set_stream_outputs(st->cso_context, 0, NULL, 0); 781 782 /* texture state: */ 783 cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num_sampler_view, sv); 784 785 /* Compute Gallium window coords (y=0=top) with pixel zoom. 786 * Recall that these coords are transformed by the current 787 * vertex shader and viewport transformation. 788 */ 789 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM) { 790 y = ctx->DrawBuffer->Height - (int) (y + height * ctx->Pixel.ZoomY); 791 invertTex = !invertTex; 792 } 793 794 x0 = (GLfloat) x; 795 x1 = x + width * ctx->Pixel.ZoomX; 796 y0 = (GLfloat) y; 797 y1 = y + height * ctx->Pixel.ZoomY; 798 799 /* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */ 800 z = z * 2.0 - 1.0; 801 802 draw_quad(ctx, x0, y0, z, x1, y1, color, invertTex, 803 normalized ? ((GLfloat) width / sv[0]->texture->width0) : (GLfloat)width, 804 normalized ? ((GLfloat) height / sv[0]->texture->height0) : (GLfloat)height); 805 806 /* restore state */ 807 cso_restore_rasterizer(cso); 808 cso_restore_viewport(cso); 809 cso_restore_samplers(cso, PIPE_SHADER_FRAGMENT); 810 cso_restore_sampler_views(cso, PIPE_SHADER_FRAGMENT); 811 cso_restore_fragment_shader(cso); 812 cso_restore_vertex_shader(cso); 813 cso_restore_geometry_shader(cso); 814 cso_restore_vertex_elements(cso); 815 cso_restore_vertex_buffers(cso); 816 cso_restore_stream_outputs(cso); 817 if (write_stencil) { 818 cso_restore_depth_stencil_alpha(cso); 819 cso_restore_blend(cso); 820 } 821 } 822 823 824 /** 825 * Software fallback to do glDrawPixels(GL_STENCIL_INDEX) when we 826 * can't use a fragment shader to write stencil values. 827 */ 828 static void 829 draw_stencil_pixels(struct gl_context *ctx, GLint x, GLint y, 830 GLsizei width, GLsizei height, GLenum format, GLenum type, 831 const struct gl_pixelstore_attrib *unpack, 832 const GLvoid *pixels) 833 { 834 struct st_context *st = st_context(ctx); 835 struct pipe_context *pipe = st->pipe; 836 struct st_renderbuffer *strb; 837 enum pipe_transfer_usage usage; 838 struct pipe_transfer *pt; 839 const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0; 840 ubyte *stmap; 841 struct gl_pixelstore_attrib clippedUnpack = *unpack; 842 GLubyte *sValues; 843 GLuint *zValues; 844 845 if (!zoom) { 846 if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height, 847 &clippedUnpack)) { 848 /* totally clipped */ 849 return; 850 } 851 } 852 853 strb = st_renderbuffer(ctx->DrawBuffer-> 854 Attachment[BUFFER_STENCIL].Renderbuffer); 855 856 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { 857 y = ctx->DrawBuffer->Height - y - height; 858 } 859 860 if (format == GL_STENCIL_INDEX && 861 _mesa_is_format_packed_depth_stencil(strb->Base.Format)) { 862 /* writing stencil to a combined depth+stencil buffer */ 863 usage = PIPE_TRANSFER_READ_WRITE; 864 } 865 else { 866 usage = PIPE_TRANSFER_WRITE; 867 } 868 869 pt = pipe_get_transfer(pipe, strb->texture, 870 strb->rtt_level, strb->rtt_face + strb->rtt_slice, 871 usage, x, y, 872 width, height); 873 874 stmap = pipe_transfer_map(pipe, pt); 875 876 pixels = _mesa_map_pbo_source(ctx, &clippedUnpack, pixels); 877 assert(pixels); 878 879 sValues = (GLubyte *) malloc(width * sizeof(GLubyte)); 880 zValues = (GLuint *) malloc(width * sizeof(GLuint)); 881 882 if (sValues && zValues) { 883 GLint row; 884 for (row = 0; row < height; row++) { 885 GLfloat *zValuesFloat = (GLfloat*)zValues; 886 GLenum destType = GL_UNSIGNED_BYTE; 887 const GLvoid *source = _mesa_image_address2d(&clippedUnpack, pixels, 888 width, height, 889 format, type, 890 row, 0); 891 _mesa_unpack_stencil_span(ctx, width, destType, sValues, 892 type, source, &clippedUnpack, 893 ctx->_ImageTransferState); 894 895 if (format == GL_DEPTH_STENCIL) { 896 GLenum ztype = 897 pt->resource->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT ? 898 GL_FLOAT : GL_UNSIGNED_INT; 899 900 _mesa_unpack_depth_span(ctx, width, ztype, zValues, 901 (1 << 24) - 1, type, source, 902 &clippedUnpack); 903 } 904 905 if (zoom) { 906 _mesa_problem(ctx, "Gallium glDrawPixels(GL_STENCIL) with " 907 "zoom not complete"); 908 } 909 910 { 911 GLint spanY; 912 913 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { 914 spanY = height - row - 1; 915 } 916 else { 917 spanY = row; 918 } 919 920 /* now pack the stencil (and Z) values in the dest format */ 921 switch (pt->resource->format) { 922 case PIPE_FORMAT_S8_UINT: 923 { 924 ubyte *dest = stmap + spanY * pt->stride; 925 assert(usage == PIPE_TRANSFER_WRITE); 926 memcpy(dest, sValues, width); 927 } 928 break; 929 case PIPE_FORMAT_Z24_UNORM_S8_UINT: 930 if (format == GL_DEPTH_STENCIL) { 931 uint *dest = (uint *) (stmap + spanY * pt->stride); 932 GLint k; 933 assert(usage == PIPE_TRANSFER_WRITE); 934 for (k = 0; k < width; k++) { 935 dest[k] = zValues[k] | (sValues[k] << 24); 936 } 937 } 938 else { 939 uint *dest = (uint *) (stmap + spanY * pt->stride); 940 GLint k; 941 assert(usage == PIPE_TRANSFER_READ_WRITE); 942 for (k = 0; k < width; k++) { 943 dest[k] = (dest[k] & 0xffffff) | (sValues[k] << 24); 944 } 945 } 946 break; 947 case PIPE_FORMAT_S8_UINT_Z24_UNORM: 948 if (format == GL_DEPTH_STENCIL) { 949 uint *dest = (uint *) (stmap + spanY * pt->stride); 950 GLint k; 951 assert(usage == PIPE_TRANSFER_WRITE); 952 for (k = 0; k < width; k++) { 953 dest[k] = (zValues[k] << 8) | (sValues[k] & 0xff); 954 } 955 } 956 else { 957 uint *dest = (uint *) (stmap + spanY * pt->stride); 958 GLint k; 959 assert(usage == PIPE_TRANSFER_READ_WRITE); 960 for (k = 0; k < width; k++) { 961 dest[k] = (dest[k] & 0xffffff00) | (sValues[k] & 0xff); 962 } 963 } 964 break; 965 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT: 966 if (format == GL_DEPTH_STENCIL) { 967 uint *dest = (uint *) (stmap + spanY * pt->stride); 968 GLfloat *destf = (GLfloat*)dest; 969 GLint k; 970 assert(usage == PIPE_TRANSFER_WRITE); 971 for (k = 0; k < width; k++) { 972 destf[k*2] = zValuesFloat[k]; 973 dest[k*2+1] = sValues[k] & 0xff; 974 } 975 } 976 else { 977 uint *dest = (uint *) (stmap + spanY * pt->stride); 978 GLint k; 979 assert(usage == PIPE_TRANSFER_READ_WRITE); 980 for (k = 0; k < width; k++) { 981 dest[k*2+1] = sValues[k] & 0xff; 982 } 983 } 984 break; 985 default: 986 assert(0); 987 } 988 } 989 } 990 } 991 else { 992 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels()"); 993 } 994 995 free(sValues); 996 free(zValues); 997 998 _mesa_unmap_pbo_source(ctx, &clippedUnpack); 999 1000 /* unmap the stencil buffer */ 1001 pipe_transfer_unmap(pipe, pt); 1002 pipe->transfer_destroy(pipe, pt); 1003 } 1004 1005 1006 /** 1007 * Get fragment program variant for a glDrawPixels or glCopyPixels 1008 * command for RGBA data. 1009 */ 1010 static struct st_fp_variant * 1011 get_color_fp_variant(struct st_context *st) 1012 { 1013 struct gl_context *ctx = st->ctx; 1014 struct st_fp_variant_key key; 1015 struct st_fp_variant *fpv; 1016 1017 memset(&key, 0, sizeof(key)); 1018 1019 key.st = st; 1020 key.drawpixels = 1; 1021 key.scaleAndBias = (ctx->Pixel.RedBias != 0.0 || 1022 ctx->Pixel.RedScale != 1.0 || 1023 ctx->Pixel.GreenBias != 0.0 || 1024 ctx->Pixel.GreenScale != 1.0 || 1025 ctx->Pixel.BlueBias != 0.0 || 1026 ctx->Pixel.BlueScale != 1.0 || 1027 ctx->Pixel.AlphaBias != 0.0 || 1028 ctx->Pixel.AlphaScale != 1.0); 1029 key.pixelMaps = ctx->Pixel.MapColorFlag; 1030 key.clamp_color = st->clamp_frag_color_in_shader && 1031 st->ctx->Color._ClampFragmentColor && 1032 !st->ctx->DrawBuffer->_IntegerColor; 1033 1034 fpv = st_get_fp_variant(st, st->fp, &key); 1035 1036 return fpv; 1037 } 1038 1039 1040 /** 1041 * Get fragment program variant for a glDrawPixels or glCopyPixels 1042 * command for depth/stencil data. 1043 */ 1044 static struct st_fp_variant * 1045 get_depth_stencil_fp_variant(struct st_context *st, GLboolean write_depth, 1046 GLboolean write_stencil) 1047 { 1048 struct st_fp_variant_key key; 1049 struct st_fp_variant *fpv; 1050 1051 memset(&key, 0, sizeof(key)); 1052 1053 key.st = st; 1054 key.drawpixels = 1; 1055 key.drawpixels_z = write_depth; 1056 key.drawpixels_stencil = write_stencil; 1057 1058 fpv = st_get_fp_variant(st, st->fp, &key); 1059 1060 return fpv; 1061 } 1062 1063 1064 /** 1065 * Clamp glDrawPixels width and height to the maximum texture size. 1066 */ 1067 static void 1068 clamp_size(struct pipe_context *pipe, GLsizei *width, GLsizei *height, 1069 struct gl_pixelstore_attrib *unpack) 1070 { 1071 const unsigned maxSize = 1072 1 << (pipe->screen->get_param(pipe->screen, 1073 PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1); 1074 1075 if (*width > maxSize) { 1076 if (unpack->RowLength == 0) 1077 unpack->RowLength = *width; 1078 *width = maxSize; 1079 } 1080 if (*height > maxSize) { 1081 *height = maxSize; 1082 } 1083 } 1084 1085 1086 /** 1087 * Called via ctx->Driver.DrawPixels() 1088 */ 1089 static void 1090 st_DrawPixels(struct gl_context *ctx, GLint x, GLint y, 1091 GLsizei width, GLsizei height, 1092 GLenum format, GLenum type, 1093 const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels) 1094 { 1095 void *driver_vp, *driver_fp; 1096 struct st_context *st = st_context(ctx); 1097 const GLfloat *color; 1098 struct pipe_context *pipe = st->pipe; 1099 GLboolean write_stencil = GL_FALSE, write_depth = GL_FALSE; 1100 struct pipe_sampler_view *sv[2]; 1101 int num_sampler_view = 1; 1102 struct st_fp_variant *fpv; 1103 struct gl_pixelstore_attrib clippedUnpack; 1104 1105 /* Mesa state should be up to date by now */ 1106 assert(ctx->NewState == 0x0); 1107 1108 st_validate_state(st); 1109 1110 /* Limit the size of the glDrawPixels to the max texture size. 1111 * Strictly speaking, that's not correct but since we don't handle 1112 * larger images yet, this is better than crashing. 1113 */ 1114 clippedUnpack = *unpack; 1115 unpack = &clippedUnpack; 1116 clamp_size(st->pipe, &width, &height, &clippedUnpack); 1117 1118 if (format == GL_DEPTH_STENCIL) 1119 write_stencil = write_depth = GL_TRUE; 1120 else if (format == GL_STENCIL_INDEX) 1121 write_stencil = GL_TRUE; 1122 else if (format == GL_DEPTH_COMPONENT) 1123 write_depth = GL_TRUE; 1124 1125 if (write_stencil && 1126 !pipe->screen->get_param(pipe->screen, PIPE_CAP_SHADER_STENCIL_EXPORT)) { 1127 /* software fallback */ 1128 draw_stencil_pixels(ctx, x, y, width, height, format, type, 1129 unpack, pixels); 1130 return; 1131 } 1132 1133 /* 1134 * Get vertex/fragment shaders 1135 */ 1136 if (write_depth || write_stencil) { 1137 fpv = get_depth_stencil_fp_variant(st, write_depth, write_stencil); 1138 1139 driver_fp = fpv->driver_shader; 1140 1141 driver_vp = make_passthrough_vertex_shader(st, GL_TRUE); 1142 1143 color = ctx->Current.RasterColor; 1144 } 1145 else { 1146 fpv = get_color_fp_variant(st); 1147 1148 driver_fp = fpv->driver_shader; 1149 1150 driver_vp = make_passthrough_vertex_shader(st, GL_FALSE); 1151 1152 color = NULL; 1153 if (st->pixel_xfer.pixelmap_enabled) { 1154 sv[1] = st->pixel_xfer.pixelmap_sampler_view; 1155 num_sampler_view++; 1156 } 1157 } 1158 1159 /* update fragment program constants */ 1160 st_upload_constants(st, fpv->parameters, PIPE_SHADER_FRAGMENT); 1161 1162 /* draw with textured quad */ 1163 { 1164 struct pipe_resource *pt 1165 = make_texture(st, width, height, format, type, unpack, pixels); 1166 if (pt) { 1167 sv[0] = st_create_texture_sampler_view(st->pipe, pt); 1168 1169 if (sv[0]) { 1170 /* Create a second sampler view to read stencil. 1171 * The stencil is written using the shader stencil export 1172 * functionality. */ 1173 if (write_stencil) { 1174 enum pipe_format stencil_format = 1175 util_format_stencil_only(pt->format); 1176 1177 sv[1] = st_create_texture_sampler_view_format(st->pipe, pt, 1178 stencil_format); 1179 num_sampler_view++; 1180 } 1181 1182 draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2], 1183 width, height, 1184 ctx->Pixel.ZoomX, ctx->Pixel.ZoomY, 1185 sv, 1186 num_sampler_view, 1187 driver_vp, 1188 driver_fp, 1189 color, GL_FALSE, write_depth, write_stencil); 1190 pipe_sampler_view_reference(&sv[0], NULL); 1191 if (num_sampler_view > 1) 1192 pipe_sampler_view_reference(&sv[1], NULL); 1193 } 1194 pipe_resource_reference(&pt, NULL); 1195 } 1196 } 1197 } 1198 1199 1200 1201 /** 1202 * Software fallback for glCopyPixels(GL_STENCIL). 1203 */ 1204 static void 1205 copy_stencil_pixels(struct gl_context *ctx, GLint srcx, GLint srcy, 1206 GLsizei width, GLsizei height, 1207 GLint dstx, GLint dsty) 1208 { 1209 struct st_renderbuffer *rbDraw; 1210 struct pipe_context *pipe = st_context(ctx)->pipe; 1211 enum pipe_transfer_usage usage; 1212 struct pipe_transfer *ptDraw; 1213 ubyte *drawMap; 1214 ubyte *buffer; 1215 int i; 1216 1217 buffer = malloc(width * height * sizeof(ubyte)); 1218 if (!buffer) { 1219 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels(stencil)"); 1220 return; 1221 } 1222 1223 /* Get the dest renderbuffer */ 1224 rbDraw = st_renderbuffer(ctx->DrawBuffer-> 1225 Attachment[BUFFER_STENCIL].Renderbuffer); 1226 1227 /* this will do stencil pixel transfer ops */ 1228 _mesa_readpixels(ctx, srcx, srcy, width, height, 1229 GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, 1230 &ctx->DefaultPacking, buffer); 1231 1232 if (0) { 1233 /* debug code: dump stencil values */ 1234 GLint row, col; 1235 for (row = 0; row < height; row++) { 1236 printf("%3d: ", row); 1237 for (col = 0; col < width; col++) { 1238 printf("%02x ", buffer[col + row * width]); 1239 } 1240 printf("\n"); 1241 } 1242 } 1243 1244 if (_mesa_is_format_packed_depth_stencil(rbDraw->Base.Format)) 1245 usage = PIPE_TRANSFER_READ_WRITE; 1246 else 1247 usage = PIPE_TRANSFER_WRITE; 1248 1249 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { 1250 dsty = rbDraw->Base.Height - dsty - height; 1251 } 1252 1253 ptDraw = pipe_get_transfer(pipe, 1254 rbDraw->texture, 1255 rbDraw->rtt_level, 1256 rbDraw->rtt_face + rbDraw->rtt_slice, 1257 usage, dstx, dsty, 1258 width, height); 1259 1260 assert(util_format_get_blockwidth(ptDraw->resource->format) == 1); 1261 assert(util_format_get_blockheight(ptDraw->resource->format) == 1); 1262 1263 /* map the stencil buffer */ 1264 drawMap = pipe_transfer_map(pipe, ptDraw); 1265 1266 /* draw */ 1267 /* XXX PixelZoom not handled yet */ 1268 for (i = 0; i < height; i++) { 1269 ubyte *dst; 1270 const ubyte *src; 1271 int y; 1272 1273 y = i; 1274 1275 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { 1276 y = height - y - 1; 1277 } 1278 1279 dst = drawMap + y * ptDraw->stride; 1280 src = buffer + i * width; 1281 1282 _mesa_pack_ubyte_stencil_row(rbDraw->Base.Format, width, src, dst); 1283 } 1284 1285 free(buffer); 1286 1287 /* unmap the stencil buffer */ 1288 pipe_transfer_unmap(pipe, ptDraw); 1289 pipe->transfer_destroy(pipe, ptDraw); 1290 } 1291 1292 1293 /** 1294 * Return renderbuffer to use for reading color pixels for glCopyPixels 1295 */ 1296 static struct st_renderbuffer * 1297 st_get_color_read_renderbuffer(struct gl_context *ctx) 1298 { 1299 struct gl_framebuffer *fb = ctx->ReadBuffer; 1300 struct st_renderbuffer *strb = 1301 st_renderbuffer(fb->_ColorReadBuffer); 1302 1303 return strb; 1304 } 1305 1306 1307 /** Do the src/dest regions overlap? */ 1308 static GLboolean 1309 regions_overlap(GLint srcX, GLint srcY, GLint dstX, GLint dstY, 1310 GLsizei width, GLsizei height) 1311 { 1312 if (srcX + width <= dstX || 1313 dstX + width <= srcX || 1314 srcY + height <= dstY || 1315 dstY + height <= srcY) 1316 return GL_FALSE; 1317 else 1318 return GL_TRUE; 1319 } 1320 1321 1322 /** 1323 * Try to do a glCopyPixels for simple cases with a blit by calling 1324 * pipe->resource_copy_region(). 1325 * 1326 * We can do this when we're copying color pixels (depth/stencil 1327 * eventually) with no pixel zoom, no pixel transfer ops, no 1328 * per-fragment ops, the src/dest regions don't overlap and the 1329 * src/dest pixel formats are the same. 1330 */ 1331 static GLboolean 1332 blit_copy_pixels(struct gl_context *ctx, GLint srcx, GLint srcy, 1333 GLsizei width, GLsizei height, 1334 GLint dstx, GLint dsty, GLenum type) 1335 { 1336 struct st_context *st = st_context(ctx); 1337 struct pipe_context *pipe = st->pipe; 1338 struct gl_pixelstore_attrib pack, unpack; 1339 GLint readX, readY, readW, readH; 1340 1341 if (type == GL_COLOR && 1342 ctx->Pixel.ZoomX == 1.0 && 1343 ctx->Pixel.ZoomY == 1.0 && 1344 ctx->_ImageTransferState == 0x0 && 1345 !ctx->Color.BlendEnabled && 1346 !ctx->Color.AlphaEnabled && 1347 !ctx->Depth.Test && 1348 !ctx->Fog.Enabled && 1349 !ctx->Stencil.Enabled && 1350 !ctx->FragmentProgram.Enabled && 1351 !ctx->VertexProgram.Enabled && 1352 !ctx->Shader.CurrentFragmentProgram && 1353 st_fb_orientation(ctx->ReadBuffer) == st_fb_orientation(ctx->DrawBuffer) && 1354 ctx->DrawBuffer->_NumColorDrawBuffers == 1 && 1355 !ctx->Query.CondRenderQuery) { 1356 struct st_renderbuffer *rbRead, *rbDraw; 1357 GLint drawX, drawY; 1358 1359 /* 1360 * Clip the read region against the src buffer bounds. 1361 * We'll still allocate a temporary buffer/texture for the original 1362 * src region size but we'll only read the region which is on-screen. 1363 * This may mean that we draw garbage pixels into the dest region, but 1364 * that's expected. 1365 */ 1366 readX = srcx; 1367 readY = srcy; 1368 readW = width; 1369 readH = height; 1370 pack = ctx->DefaultPacking; 1371 if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack)) 1372 return GL_TRUE; /* all done */ 1373 1374 /* clip against dest buffer bounds and scissor box */ 1375 drawX = dstx + pack.SkipPixels; 1376 drawY = dsty + pack.SkipRows; 1377 unpack = pack; 1378 if (!_mesa_clip_drawpixels(ctx, &drawX, &drawY, &readW, &readH, &unpack)) 1379 return GL_TRUE; /* all done */ 1380 1381 readX = readX - pack.SkipPixels + unpack.SkipPixels; 1382 readY = readY - pack.SkipRows + unpack.SkipRows; 1383 1384 rbRead = st_get_color_read_renderbuffer(ctx); 1385 rbDraw = st_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[0]); 1386 1387 if ((rbRead != rbDraw || 1388 !regions_overlap(readX, readY, drawX, drawY, readW, readH)) && 1389 rbRead->Base.Format == rbDraw->Base.Format) { 1390 struct pipe_box srcBox; 1391 1392 /* flip src/dst position if needed */ 1393 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) { 1394 /* both buffers will have the same orientation */ 1395 readY = ctx->ReadBuffer->Height - readY - readH; 1396 drawY = ctx->DrawBuffer->Height - drawY - readH; 1397 } 1398 1399 u_box_2d(readX, readY, readW, readH, &srcBox); 1400 1401 pipe->resource_copy_region(pipe, 1402 rbDraw->texture, 1403 rbDraw->rtt_level, drawX, drawY, 0, 1404 rbRead->texture, 1405 rbRead->rtt_level, &srcBox); 1406 return GL_TRUE; 1407 } 1408 } 1409 1410 return GL_FALSE; 1411 } 1412 1413 1414 static void 1415 st_CopyPixels(struct gl_context *ctx, GLint srcx, GLint srcy, 1416 GLsizei width, GLsizei height, 1417 GLint dstx, GLint dsty, GLenum type) 1418 { 1419 struct st_context *st = st_context(ctx); 1420 struct pipe_context *pipe = st->pipe; 1421 struct pipe_screen *screen = pipe->screen; 1422 struct st_renderbuffer *rbRead; 1423 void *driver_vp, *driver_fp; 1424 struct pipe_resource *pt; 1425 struct pipe_sampler_view *sv[2]; 1426 int num_sampler_view = 1; 1427 GLfloat *color; 1428 enum pipe_format srcFormat, texFormat; 1429 GLboolean invertTex = GL_FALSE; 1430 GLint readX, readY, readW, readH; 1431 GLuint sample_count; 1432 struct gl_pixelstore_attrib pack = ctx->DefaultPacking; 1433 struct st_fp_variant *fpv; 1434 1435 st_validate_state(st); 1436 1437 if (type == GL_DEPTH_STENCIL) { 1438 /* XXX make this more efficient */ 1439 st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_STENCIL); 1440 st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_DEPTH); 1441 return; 1442 } 1443 1444 if (type == GL_STENCIL) { 1445 /* can't use texturing to do stencil */ 1446 copy_stencil_pixels(ctx, srcx, srcy, width, height, dstx, dsty); 1447 return; 1448 } 1449 1450 if (blit_copy_pixels(ctx, srcx, srcy, width, height, dstx, dsty, type)) 1451 return; 1452 1453 /* 1454 * The subsequent code implements glCopyPixels by copying the source 1455 * pixels into a temporary texture that's then applied to a textured quad. 1456 * When we draw the textured quad, all the usual per-fragment operations 1457 * are handled. 1458 */ 1459 1460 1461 /* 1462 * Get vertex/fragment shaders 1463 */ 1464 if (type == GL_COLOR) { 1465 rbRead = st_get_color_read_renderbuffer(ctx); 1466 color = NULL; 1467 1468 fpv = get_color_fp_variant(st); 1469 driver_fp = fpv->driver_shader; 1470 1471 driver_vp = make_passthrough_vertex_shader(st, GL_FALSE); 1472 1473 if (st->pixel_xfer.pixelmap_enabled) { 1474 sv[1] = st->pixel_xfer.pixelmap_sampler_view; 1475 num_sampler_view++; 1476 } 1477 } 1478 else { 1479 assert(type == GL_DEPTH); 1480 rbRead = st_renderbuffer(ctx->ReadBuffer-> 1481 Attachment[BUFFER_DEPTH].Renderbuffer); 1482 color = ctx->Current.Attrib[VERT_ATTRIB_COLOR0]; 1483 1484 fpv = get_depth_stencil_fp_variant(st, GL_TRUE, GL_FALSE); 1485 driver_fp = fpv->driver_shader; 1486 1487 driver_vp = make_passthrough_vertex_shader(st, GL_TRUE); 1488 } 1489 1490 /* update fragment program constants */ 1491 st_upload_constants(st, fpv->parameters, PIPE_SHADER_FRAGMENT); 1492 1493 sample_count = rbRead->texture->nr_samples; 1494 /* I believe this would be legal, presumably would need to do a resolve 1495 for color, and for depth/stencil spec says to just use one of the 1496 depth/stencil samples per pixel? Need some transfer clarifications. */ 1497 assert(sample_count < 2); 1498 1499 srcFormat = rbRead->texture->format; 1500 1501 if (screen->is_format_supported(screen, srcFormat, st->internal_target, 1502 sample_count, 1503 PIPE_BIND_SAMPLER_VIEW)) { 1504 texFormat = srcFormat; 1505 } 1506 else { 1507 /* srcFormat can't be used as a texture format */ 1508 if (type == GL_DEPTH) { 1509 texFormat = st_choose_format(screen, GL_DEPTH_COMPONENT, 1510 GL_NONE, GL_NONE, st->internal_target, 1511 sample_count, PIPE_BIND_DEPTH_STENCIL); 1512 assert(texFormat != PIPE_FORMAT_NONE); 1513 } 1514 else { 1515 /* default color format */ 1516 texFormat = st_choose_format(screen, GL_RGBA, 1517 GL_NONE, GL_NONE, st->internal_target, 1518 sample_count, PIPE_BIND_SAMPLER_VIEW); 1519 assert(texFormat != PIPE_FORMAT_NONE); 1520 } 1521 } 1522 1523 /* Invert src region if needed */ 1524 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) { 1525 srcy = ctx->ReadBuffer->Height - srcy - height; 1526 invertTex = !invertTex; 1527 } 1528 1529 /* Clip the read region against the src buffer bounds. 1530 * We'll still allocate a temporary buffer/texture for the original 1531 * src region size but we'll only read the region which is on-screen. 1532 * This may mean that we draw garbage pixels into the dest region, but 1533 * that's expected. 1534 */ 1535 readX = srcx; 1536 readY = srcy; 1537 readW = width; 1538 readH = height; 1539 if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack)) { 1540 /* The source region is completely out of bounds. Do nothing. 1541 * The GL spec says "Results of copies from outside the window, 1542 * or from regions of the window that are not exposed, are 1543 * hardware dependent and undefined." 1544 */ 1545 return; 1546 } 1547 1548 readW = MAX2(0, readW); 1549 readH = MAX2(0, readH); 1550 1551 /* alloc temporary texture */ 1552 pt = alloc_texture(st, width, height, texFormat); 1553 if (!pt) 1554 return; 1555 1556 sv[0] = st_create_texture_sampler_view(st->pipe, pt); 1557 if (!sv[0]) { 1558 pipe_resource_reference(&pt, NULL); 1559 return; 1560 } 1561 1562 /* Make temporary texture which is a copy of the src region. 1563 */ 1564 if (srcFormat == texFormat) { 1565 struct pipe_box src_box; 1566 u_box_2d(readX, readY, readW, readH, &src_box); 1567 /* copy source framebuffer surface into mipmap/texture */ 1568 pipe->resource_copy_region(pipe, 1569 pt, /* dest tex */ 1570 0, /* dest lvl */ 1571 pack.SkipPixels, pack.SkipRows, 0, /* dest pos */ 1572 rbRead->texture, /* src tex */ 1573 rbRead->rtt_level, /* src lvl */ 1574 &src_box); 1575 1576 } 1577 else { 1578 /* CPU-based fallback/conversion */ 1579 struct pipe_transfer *ptRead = 1580 pipe_get_transfer(st->pipe, rbRead->texture, 1581 rbRead->rtt_level, 1582 rbRead->rtt_face + rbRead->rtt_slice, 1583 PIPE_TRANSFER_READ, 1584 readX, readY, readW, readH); 1585 struct pipe_transfer *ptTex; 1586 enum pipe_transfer_usage transfer_usage; 1587 1588 if (ST_DEBUG & DEBUG_FALLBACK) 1589 debug_printf("%s: fallback processing\n", __FUNCTION__); 1590 1591 if (type == GL_DEPTH && util_format_is_depth_and_stencil(pt->format)) 1592 transfer_usage = PIPE_TRANSFER_READ_WRITE; 1593 else 1594 transfer_usage = PIPE_TRANSFER_WRITE; 1595 1596 ptTex = pipe_get_transfer(st->pipe, pt, 0, 0, transfer_usage, 1597 0, 0, width, height); 1598 1599 /* copy image from ptRead surface to ptTex surface */ 1600 if (type == GL_COLOR) { 1601 /* alternate path using get/put_tile() */ 1602 GLfloat *buf = (GLfloat *) malloc(width * height * 4 * sizeof(GLfloat)); 1603 enum pipe_format readFormat, drawFormat; 1604 readFormat = util_format_linear(rbRead->texture->format); 1605 drawFormat = util_format_linear(pt->format); 1606 pipe_get_tile_rgba_format(pipe, ptRead, 0, 0, readW, readH, 1607 readFormat, buf); 1608 pipe_put_tile_rgba_format(pipe, ptTex, pack.SkipPixels, pack.SkipRows, 1609 readW, readH, drawFormat, buf); 1610 free(buf); 1611 } 1612 else { 1613 /* GL_DEPTH */ 1614 GLuint *buf = (GLuint *) malloc(width * height * sizeof(GLuint)); 1615 pipe_get_tile_z(pipe, ptRead, 0, 0, readW, readH, buf); 1616 pipe_put_tile_z(pipe, ptTex, pack.SkipPixels, pack.SkipRows, 1617 readW, readH, buf); 1618 free(buf); 1619 } 1620 1621 pipe->transfer_destroy(pipe, ptRead); 1622 pipe->transfer_destroy(pipe, ptTex); 1623 } 1624 1625 /* OK, the texture 'pt' contains the src image/pixels. Now draw a 1626 * textured quad with that texture. 1627 */ 1628 draw_textured_quad(ctx, dstx, dsty, ctx->Current.RasterPos[2], 1629 width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY, 1630 sv, 1631 num_sampler_view, 1632 driver_vp, 1633 driver_fp, 1634 color, invertTex, GL_FALSE, GL_FALSE); 1635 1636 pipe_resource_reference(&pt, NULL); 1637 pipe_sampler_view_reference(&sv[0], NULL); 1638 } 1639 1640 1641 1642 void st_init_drawpixels_functions(struct dd_function_table *functions) 1643 { 1644 functions->DrawPixels = st_DrawPixels; 1645 functions->CopyPixels = st_CopyPixels; 1646 } 1647 1648 1649 void 1650 st_destroy_drawpix(struct st_context *st) 1651 { 1652 GLuint i; 1653 1654 for (i = 0; i < Elements(st->drawpix.shaders); i++) { 1655 if (st->drawpix.shaders[i]) 1656 _mesa_reference_fragprog(st->ctx, &st->drawpix.shaders[i], NULL); 1657 } 1658 1659 st_reference_fragprog(st, &st->pixel_xfer.combined_prog, NULL); 1660 if (st->drawpix.vert_shaders[0]) 1661 cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[0]); 1662 if (st->drawpix.vert_shaders[1]) 1663 cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[1]); 1664 } 1665 1666 #endif /* FEATURE_drawpix */ 1667