1 2 /* 3 * Copyright 2006 The Android Open Source Project 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10 #include "SkBlitter.h" 11 #include "SkAntiRun.h" 12 #include "SkColor.h" 13 #include "SkColorFilter.h" 14 #include "SkFilterShader.h" 15 #include "SkFlattenableBuffers.h" 16 #include "SkMask.h" 17 #include "SkMaskFilter.h" 18 #include "SkTemplatesPriv.h" 19 #include "SkTLazy.h" 20 #include "SkUtils.h" 21 #include "SkXfermode.h" 22 #include "SkString.h" 23 24 SkBlitter::~SkBlitter() {} 25 26 bool SkBlitter::isNullBlitter() const { return false; } 27 28 const SkBitmap* SkBlitter::justAnOpaqueColor(uint32_t* value) { 29 return NULL; 30 } 31 32 void SkBlitter::blitH(int x, int y, int width) { 33 SkDEBUGFAIL("unimplemented"); 34 } 35 36 void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], 37 const int16_t runs[]) { 38 SkDEBUGFAIL("unimplemented"); 39 } 40 41 void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) { 42 if (alpha == 255) { 43 this->blitRect(x, y, 1, height); 44 } else { 45 int16_t runs[2]; 46 runs[0] = 1; 47 runs[1] = 0; 48 49 while (--height >= 0) { 50 this->blitAntiH(x, y++, &alpha, runs); 51 } 52 } 53 } 54 55 void SkBlitter::blitRect(int x, int y, int width, int height) { 56 SkASSERT(width > 0); 57 while (--height >= 0) { 58 this->blitH(x, y++, width); 59 } 60 } 61 62 /// Default implementation doesn't check for any easy optimizations 63 /// such as alpha == 0 or 255; also uses blitV(), which some subclasses 64 /// may not support. 65 void SkBlitter::blitAntiRect(int x, int y, int width, int height, 66 SkAlpha leftAlpha, SkAlpha rightAlpha) { 67 this->blitV(x++, y, height, leftAlpha); 68 if (width > 0) { 69 this->blitRect(x, y, width, height); 70 x += width; 71 } 72 this->blitV(x, y, height, rightAlpha); 73 } 74 75 ////////////////////////////////////////////////////////////////////////////// 76 77 static inline void bits_to_runs(SkBlitter* blitter, int x, int y, 78 const uint8_t bits[], 79 U8CPU left_mask, int rowBytes, 80 U8CPU right_mask) { 81 int inFill = 0; 82 int pos = 0; 83 84 while (--rowBytes >= 0) { 85 unsigned b = *bits++ & left_mask; 86 if (rowBytes == 0) { 87 b &= right_mask; 88 } 89 90 for (unsigned test = 0x80; test != 0; test >>= 1) { 91 if (b & test) { 92 if (!inFill) { 93 pos = x; 94 inFill = true; 95 } 96 } else { 97 if (inFill) { 98 blitter->blitH(pos, y, x - pos); 99 inFill = false; 100 } 101 } 102 x += 1; 103 } 104 left_mask = 0xFF; 105 } 106 107 // final cleanup 108 if (inFill) { 109 blitter->blitH(pos, y, x - pos); 110 } 111 } 112 113 void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { 114 SkASSERT(mask.fBounds.contains(clip)); 115 116 if (mask.fFormat == SkMask::kBW_Format) { 117 int cx = clip.fLeft; 118 int cy = clip.fTop; 119 int maskLeft = mask.fBounds.fLeft; 120 int mask_rowBytes = mask.fRowBytes; 121 int height = clip.height(); 122 123 const uint8_t* bits = mask.getAddr1(cx, cy); 124 125 if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) { 126 while (--height >= 0) { 127 bits_to_runs(this, cx, cy, bits, 0xFF, mask_rowBytes, 0xFF); 128 bits += mask_rowBytes; 129 cy += 1; 130 } 131 } else { 132 int left_edge = cx - maskLeft; 133 SkASSERT(left_edge >= 0); 134 int rite_edge = clip.fRight - maskLeft; 135 SkASSERT(rite_edge > left_edge); 136 137 int left_mask = 0xFF >> (left_edge & 7); 138 int rite_mask = 0xFF << (8 - (rite_edge & 7)); 139 int full_runs = (rite_edge >> 3) - ((left_edge + 7) >> 3); 140 141 // check for empty right mask, so we don't read off the end (or go slower than we need to) 142 if (rite_mask == 0) { 143 SkASSERT(full_runs >= 0); 144 full_runs -= 1; 145 rite_mask = 0xFF; 146 } 147 if (left_mask == 0xFF) { 148 full_runs -= 1; 149 } 150 151 // back up manually so we can keep in sync with our byte-aligned src 152 // have cx reflect our actual starting x-coord 153 cx -= left_edge & 7; 154 155 if (full_runs < 0) { 156 SkASSERT((left_mask & rite_mask) != 0); 157 while (--height >= 0) { 158 bits_to_runs(this, cx, cy, bits, left_mask, 1, rite_mask); 159 bits += mask_rowBytes; 160 cy += 1; 161 } 162 } else { 163 while (--height >= 0) { 164 bits_to_runs(this, cx, cy, bits, left_mask, full_runs + 2, rite_mask); 165 bits += mask_rowBytes; 166 cy += 1; 167 } 168 } 169 } 170 } else { 171 int width = clip.width(); 172 SkAutoSTMalloc<64, int16_t> runStorage(width + 1); 173 int16_t* runs = runStorage.get(); 174 const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop); 175 176 sk_memset16((uint16_t*)runs, 1, width); 177 runs[width] = 0; 178 179 int height = clip.height(); 180 int y = clip.fTop; 181 while (--height >= 0) { 182 this->blitAntiH(clip.fLeft, y, aa, runs); 183 aa += mask.fRowBytes; 184 y += 1; 185 } 186 } 187 } 188 189 /////////////////////// these guys are not virtual, just a helpers 190 191 void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) { 192 if (clip.quickReject(mask.fBounds)) { 193 return; 194 } 195 196 SkRegion::Cliperator clipper(clip, mask.fBounds); 197 198 while (!clipper.done()) { 199 const SkIRect& cr = clipper.rect(); 200 this->blitMask(mask, cr); 201 clipper.next(); 202 } 203 } 204 205 void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) { 206 SkRegion::Cliperator clipper(clip, rect); 207 208 while (!clipper.done()) { 209 const SkIRect& cr = clipper.rect(); 210 this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); 211 clipper.next(); 212 } 213 } 214 215 void SkBlitter::blitRegion(const SkRegion& clip) { 216 SkRegion::Iterator iter(clip); 217 218 while (!iter.done()) { 219 const SkIRect& cr = iter.rect(); 220 this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); 221 iter.next(); 222 } 223 } 224 225 /////////////////////////////////////////////////////////////////////////////// 226 227 void SkNullBlitter::blitH(int x, int y, int width) {} 228 229 void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], 230 const int16_t runs[]) {} 231 232 void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {} 233 234 void SkNullBlitter::blitRect(int x, int y, int width, int height) {} 235 236 void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {} 237 238 const SkBitmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) { 239 return NULL; 240 } 241 242 bool SkNullBlitter::isNullBlitter() const { return true; } 243 244 /////////////////////////////////////////////////////////////////////////////// 245 246 static int compute_anti_width(const int16_t runs[]) { 247 int width = 0; 248 249 for (;;) { 250 int count = runs[0]; 251 252 SkASSERT(count >= 0); 253 if (count == 0) { 254 break; 255 } 256 width += count; 257 runs += count; 258 } 259 return width; 260 } 261 262 static inline bool y_in_rect(int y, const SkIRect& rect) { 263 return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); 264 } 265 266 static inline bool x_in_rect(int x, const SkIRect& rect) { 267 return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); 268 } 269 270 void SkRectClipBlitter::blitH(int left, int y, int width) { 271 SkASSERT(width > 0); 272 273 if (!y_in_rect(y, fClipRect)) { 274 return; 275 } 276 277 int right = left + width; 278 279 if (left < fClipRect.fLeft) { 280 left = fClipRect.fLeft; 281 } 282 if (right > fClipRect.fRight) { 283 right = fClipRect.fRight; 284 } 285 286 width = right - left; 287 if (width > 0) { 288 fBlitter->blitH(left, y, width); 289 } 290 } 291 292 void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[], 293 const int16_t runs[]) { 294 if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) { 295 return; 296 } 297 298 int x0 = left; 299 int x1 = left + compute_anti_width(runs); 300 301 if (x1 <= fClipRect.fLeft) { 302 return; 303 } 304 305 SkASSERT(x0 < x1); 306 if (x0 < fClipRect.fLeft) { 307 int dx = fClipRect.fLeft - x0; 308 SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx); 309 runs += dx; 310 aa += dx; 311 x0 = fClipRect.fLeft; 312 } 313 314 SkASSERT(x0 < x1 && runs[x1 - x0] == 0); 315 if (x1 > fClipRect.fRight) { 316 x1 = fClipRect.fRight; 317 SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0); 318 ((int16_t*)runs)[x1 - x0] = 0; 319 } 320 321 SkASSERT(x0 < x1 && runs[x1 - x0] == 0); 322 SkASSERT(compute_anti_width(runs) == x1 - x0); 323 324 fBlitter->blitAntiH(x0, y, aa, runs); 325 } 326 327 void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { 328 SkASSERT(height > 0); 329 330 if (!x_in_rect(x, fClipRect)) { 331 return; 332 } 333 334 int y0 = y; 335 int y1 = y + height; 336 337 if (y0 < fClipRect.fTop) { 338 y0 = fClipRect.fTop; 339 } 340 if (y1 > fClipRect.fBottom) { 341 y1 = fClipRect.fBottom; 342 } 343 344 if (y0 < y1) { 345 fBlitter->blitV(x, y0, y1 - y0, alpha); 346 } 347 } 348 349 void SkRectClipBlitter::blitRect(int left, int y, int width, int height) { 350 SkIRect r; 351 352 r.set(left, y, left + width, y + height); 353 if (r.intersect(fClipRect)) { 354 fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); 355 } 356 } 357 358 void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height, 359 SkAlpha leftAlpha, SkAlpha rightAlpha) { 360 SkIRect r; 361 362 // The *true* width of the rectangle blitted is width+2: 363 r.set(left, y, left + width + 2, y + height); 364 if (r.intersect(fClipRect)) { 365 if (r.fLeft != left) { 366 SkASSERT(r.fLeft > left); 367 leftAlpha = 255; 368 } 369 if (r.fRight != left + width + 2) { 370 SkASSERT(r.fRight < left + width + 2); 371 rightAlpha = 255; 372 } 373 if (255 == leftAlpha && 255 == rightAlpha) { 374 fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); 375 } else if (1 == r.width()) { 376 if (r.fLeft == left) { 377 fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha); 378 } else { 379 SkASSERT(r.fLeft == left + width + 1); 380 fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha); 381 } 382 } else { 383 fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), 384 leftAlpha, rightAlpha); 385 } 386 } 387 } 388 389 void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { 390 SkASSERT(mask.fBounds.contains(clip)); 391 392 SkIRect r = clip; 393 394 if (r.intersect(fClipRect)) { 395 fBlitter->blitMask(mask, r); 396 } 397 } 398 399 const SkBitmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) { 400 return fBlitter->justAnOpaqueColor(value); 401 } 402 403 /////////////////////////////////////////////////////////////////////////////// 404 405 void SkRgnClipBlitter::blitH(int x, int y, int width) { 406 SkRegion::Spanerator span(*fRgn, y, x, x + width); 407 int left, right; 408 409 while (span.next(&left, &right)) { 410 SkASSERT(left < right); 411 fBlitter->blitH(left, y, right - left); 412 } 413 } 414 415 void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], 416 const int16_t runs[]) { 417 int width = compute_anti_width(runs); 418 SkRegion::Spanerator span(*fRgn, y, x, x + width); 419 int left, right; 420 SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();) 421 422 int prevRite = x; 423 while (span.next(&left, &right)) { 424 SkASSERT(x <= left); 425 SkASSERT(left < right); 426 SkASSERT(left >= bounds.fLeft && right <= bounds.fRight); 427 428 SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left); 429 430 // now zero before left 431 if (left > prevRite) { 432 int index = prevRite - x; 433 ((uint8_t*)aa)[index] = 0; // skip runs after right 434 ((int16_t*)runs)[index] = SkToS16(left - prevRite); 435 } 436 437 prevRite = right; 438 } 439 440 if (prevRite > x) { 441 ((int16_t*)runs)[prevRite - x] = 0; 442 443 if (x < 0) { 444 int skip = runs[0]; 445 SkASSERT(skip >= -x); 446 aa += skip; 447 runs += skip; 448 x += skip; 449 } 450 fBlitter->blitAntiH(x, y, aa, runs); 451 } 452 } 453 454 void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { 455 SkIRect bounds; 456 bounds.set(x, y, x + 1, y + height); 457 458 SkRegion::Cliperator iter(*fRgn, bounds); 459 460 while (!iter.done()) { 461 const SkIRect& r = iter.rect(); 462 SkASSERT(bounds.contains(r)); 463 464 fBlitter->blitV(x, r.fTop, r.height(), alpha); 465 iter.next(); 466 } 467 } 468 469 void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) { 470 SkIRect bounds; 471 bounds.set(x, y, x + width, y + height); 472 473 SkRegion::Cliperator iter(*fRgn, bounds); 474 475 while (!iter.done()) { 476 const SkIRect& r = iter.rect(); 477 SkASSERT(bounds.contains(r)); 478 479 fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); 480 iter.next(); 481 } 482 } 483 484 void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height, 485 SkAlpha leftAlpha, SkAlpha rightAlpha) { 486 // The *true* width of the rectangle to blit is width + 2 487 SkIRect bounds; 488 bounds.set(x, y, x + width + 2, y + height); 489 490 SkRegion::Cliperator iter(*fRgn, bounds); 491 492 while (!iter.done()) { 493 const SkIRect& r = iter.rect(); 494 SkASSERT(bounds.contains(r)); 495 SkASSERT(r.fLeft >= x); 496 SkASSERT(r.fRight <= x + width + 2); 497 498 SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255; 499 SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ? 500 rightAlpha : 255; 501 502 if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) { 503 fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); 504 } else if (1 == r.width()) { 505 if (r.fLeft == x) { 506 fBlitter->blitV(r.fLeft, r.fTop, r.height(), 507 effectiveLeftAlpha); 508 } else { 509 SkASSERT(r.fLeft == x + width + 1); 510 fBlitter->blitV(r.fLeft, r.fTop, r.height(), 511 effectiveRightAlpha); 512 } 513 } else { 514 fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), 515 effectiveLeftAlpha, effectiveRightAlpha); 516 } 517 iter.next(); 518 } 519 } 520 521 522 void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { 523 SkASSERT(mask.fBounds.contains(clip)); 524 525 SkRegion::Cliperator iter(*fRgn, clip); 526 const SkIRect& r = iter.rect(); 527 SkBlitter* blitter = fBlitter; 528 529 while (!iter.done()) { 530 blitter->blitMask(mask, r); 531 iter.next(); 532 } 533 } 534 535 const SkBitmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) { 536 return fBlitter->justAnOpaqueColor(value); 537 } 538 539 /////////////////////////////////////////////////////////////////////////////// 540 541 SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip, 542 const SkIRect* ir) { 543 if (clip) { 544 const SkIRect& clipR = clip->getBounds(); 545 546 if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) { 547 blitter = &fNullBlitter; 548 } else if (clip->isRect()) { 549 if (ir == NULL || !clipR.contains(*ir)) { 550 fRectBlitter.init(blitter, clipR); 551 blitter = &fRectBlitter; 552 } 553 } else { 554 fRgnBlitter.init(blitter, clip); 555 blitter = &fRgnBlitter; 556 } 557 } 558 return blitter; 559 } 560 561 /////////////////////////////////////////////////////////////////////////////// 562 563 #include "SkColorShader.h" 564 #include "SkColorPriv.h" 565 566 class Sk3DShader : public SkShader { 567 public: 568 Sk3DShader(SkShader* proxy) : fProxy(proxy) { 569 SkSafeRef(proxy); 570 fMask = NULL; 571 } 572 573 virtual ~Sk3DShader() { 574 SkSafeUnref(fProxy); 575 } 576 577 void setMask(const SkMask* mask) { fMask = mask; } 578 579 virtual bool setContext(const SkBitmap& device, const SkPaint& paint, 580 const SkMatrix& matrix) SK_OVERRIDE { 581 if (!this->INHERITED::setContext(device, paint, matrix)) { 582 return false; 583 } 584 if (fProxy) { 585 if (!fProxy->setContext(device, paint, matrix)) { 586 // must keep our set/end context calls balanced 587 this->INHERITED::endContext(); 588 return false; 589 } 590 } else { 591 fPMColor = SkPreMultiplyColor(paint.getColor()); 592 } 593 return true; 594 } 595 596 virtual void endContext() SK_OVERRIDE { 597 if (fProxy) { 598 fProxy->endContext(); 599 } 600 this->INHERITED::endContext(); 601 } 602 603 virtual void shadeSpan(int x, int y, SkPMColor span[], int count) SK_OVERRIDE { 604 if (fProxy) { 605 fProxy->shadeSpan(x, y, span, count); 606 } 607 608 if (fMask == NULL) { 609 if (fProxy == NULL) { 610 sk_memset32(span, fPMColor, count); 611 } 612 return; 613 } 614 615 SkASSERT(fMask->fBounds.contains(x, y)); 616 SkASSERT(fMask->fBounds.contains(x + count - 1, y)); 617 618 size_t size = fMask->computeImageSize(); 619 const uint8_t* alpha = fMask->getAddr8(x, y); 620 const uint8_t* mulp = alpha + size; 621 const uint8_t* addp = mulp + size; 622 623 if (fProxy) { 624 for (int i = 0; i < count; i++) { 625 if (alpha[i]) { 626 SkPMColor c = span[i]; 627 if (c) { 628 unsigned a = SkGetPackedA32(c); 629 unsigned r = SkGetPackedR32(c); 630 unsigned g = SkGetPackedG32(c); 631 unsigned b = SkGetPackedB32(c); 632 633 unsigned mul = SkAlpha255To256(mulp[i]); 634 unsigned add = addp[i]; 635 636 r = SkFastMin32(SkAlphaMul(r, mul) + add, a); 637 g = SkFastMin32(SkAlphaMul(g, mul) + add, a); 638 b = SkFastMin32(SkAlphaMul(b, mul) + add, a); 639 640 span[i] = SkPackARGB32(a, r, g, b); 641 } 642 } else { 643 span[i] = 0; 644 } 645 } 646 } else { // color 647 unsigned a = SkGetPackedA32(fPMColor); 648 unsigned r = SkGetPackedR32(fPMColor); 649 unsigned g = SkGetPackedG32(fPMColor); 650 unsigned b = SkGetPackedB32(fPMColor); 651 for (int i = 0; i < count; i++) { 652 if (alpha[i]) { 653 unsigned mul = SkAlpha255To256(mulp[i]); 654 unsigned add = addp[i]; 655 656 span[i] = SkPackARGB32( a, 657 SkFastMin32(SkAlphaMul(r, mul) + add, a), 658 SkFastMin32(SkAlphaMul(g, mul) + add, a), 659 SkFastMin32(SkAlphaMul(b, mul) + add, a)); 660 } else { 661 span[i] = 0; 662 } 663 } 664 } 665 } 666 667 #ifdef SK_DEVELOPER 668 virtual void toString(SkString* str) const SK_OVERRIDE { 669 str->append("Sk3DShader: ("); 670 671 if (NULL != fProxy) { 672 str->append("Proxy: "); 673 fProxy->toString(str); 674 } 675 676 this->INHERITED::toString(str); 677 678 str->append(")"); 679 } 680 #endif 681 682 SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(Sk3DShader) 683 684 protected: 685 Sk3DShader(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) { 686 fProxy = buffer.readShader(); 687 fPMColor = buffer.readColor(); 688 fMask = NULL; 689 } 690 691 virtual void flatten(SkFlattenableWriteBuffer& buffer) const SK_OVERRIDE { 692 this->INHERITED::flatten(buffer); 693 buffer.writeFlattenable(fProxy); 694 buffer.writeColor(fPMColor); 695 } 696 697 private: 698 SkShader* fProxy; 699 SkPMColor fPMColor; 700 const SkMask* fMask; 701 702 typedef SkShader INHERITED; 703 }; 704 705 class Sk3DBlitter : public SkBlitter { 706 public: 707 Sk3DBlitter(SkBlitter* proxy, Sk3DShader* shader, void (*killProc)(void*)) 708 : fProxy(proxy), f3DShader(shader), fKillProc(killProc) { 709 shader->ref(); 710 } 711 712 virtual ~Sk3DBlitter() { 713 f3DShader->unref(); 714 fKillProc(fProxy); 715 } 716 717 virtual void blitH(int x, int y, int width) { 718 fProxy->blitH(x, y, width); 719 } 720 721 virtual void blitAntiH(int x, int y, const SkAlpha antialias[], 722 const int16_t runs[]) { 723 fProxy->blitAntiH(x, y, antialias, runs); 724 } 725 726 virtual void blitV(int x, int y, int height, SkAlpha alpha) { 727 fProxy->blitV(x, y, height, alpha); 728 } 729 730 virtual void blitRect(int x, int y, int width, int height) { 731 fProxy->blitRect(x, y, width, height); 732 } 733 734 virtual void blitMask(const SkMask& mask, const SkIRect& clip) { 735 if (mask.fFormat == SkMask::k3D_Format) { 736 f3DShader->setMask(&mask); 737 738 ((SkMask*)&mask)->fFormat = SkMask::kA8_Format; 739 fProxy->blitMask(mask, clip); 740 ((SkMask*)&mask)->fFormat = SkMask::k3D_Format; 741 742 f3DShader->setMask(NULL); 743 } else { 744 fProxy->blitMask(mask, clip); 745 } 746 } 747 748 private: 749 SkBlitter* fProxy; 750 Sk3DShader* f3DShader; 751 void (*fKillProc)(void*); 752 }; 753 754 /////////////////////////////////////////////////////////////////////////////// 755 756 #include "SkCoreBlitters.h" 757 758 class SkAutoCallProc { 759 public: 760 typedef void (*Proc)(void*); 761 762 SkAutoCallProc(void* obj, Proc proc) 763 : fObj(obj), fProc(proc) {} 764 765 ~SkAutoCallProc() { 766 if (fObj && fProc) { 767 fProc(fObj); 768 } 769 } 770 771 void* get() const { return fObj; } 772 773 void* detach() { 774 void* obj = fObj; 775 fObj = NULL; 776 return obj; 777 } 778 779 private: 780 void* fObj; 781 Proc fProc; 782 }; 783 #define SkAutoCallProc(...) SK_REQUIRE_LOCAL_VAR(SkAutoCallProc) 784 785 static void destroy_blitter(void* blitter) { 786 ((SkBlitter*)blitter)->~SkBlitter(); 787 } 788 789 static void delete_blitter(void* blitter) { 790 SkDELETE((SkBlitter*)blitter); 791 } 792 793 static bool just_solid_color(const SkPaint& paint) { 794 if (paint.getAlpha() == 0xFF && paint.getColorFilter() == NULL) { 795 SkShader* shader = paint.getShader(); 796 if (NULL == shader || 797 (shader->getFlags() & SkShader::kOpaqueAlpha_Flag)) { 798 return true; 799 } 800 } 801 return false; 802 } 803 804 /** By analyzing the paint (with an xfermode), we may decide we can take 805 special action. This enum lists our possible actions 806 */ 807 enum XferInterp { 808 kNormal_XferInterp, // no special interpretation, draw normally 809 kSrcOver_XferInterp, // draw as if in srcover mode 810 kSkipDrawing_XferInterp // draw nothing 811 }; 812 813 static XferInterp interpret_xfermode(const SkPaint& paint, SkXfermode* xfer, 814 SkBitmap::Config deviceConfig) { 815 SkXfermode::Mode mode; 816 817 if (SkXfermode::AsMode(xfer, &mode)) { 818 switch (mode) { 819 case SkXfermode::kSrc_Mode: 820 if (just_solid_color(paint)) { 821 return kSrcOver_XferInterp; 822 } 823 break; 824 case SkXfermode::kDst_Mode: 825 return kSkipDrawing_XferInterp; 826 case SkXfermode::kSrcOver_Mode: 827 return kSrcOver_XferInterp; 828 case SkXfermode::kDstOver_Mode: 829 if (SkBitmap::kRGB_565_Config == deviceConfig) { 830 return kSkipDrawing_XferInterp; 831 } 832 break; 833 case SkXfermode::kSrcIn_Mode: 834 if (SkBitmap::kRGB_565_Config == deviceConfig && 835 just_solid_color(paint)) { 836 return kSrcOver_XferInterp; 837 } 838 break; 839 case SkXfermode::kDstIn_Mode: 840 if (just_solid_color(paint)) { 841 return kSkipDrawing_XferInterp; 842 } 843 break; 844 default: 845 break; 846 } 847 } 848 return kNormal_XferInterp; 849 } 850 851 SkBlitter* SkBlitter::Choose(const SkBitmap& device, 852 const SkMatrix& matrix, 853 const SkPaint& origPaint, 854 void* storage, size_t storageSize, 855 bool drawCoverage) { 856 SkASSERT(storageSize == 0 || storage != NULL); 857 858 SkBlitter* blitter = NULL; 859 860 // which check, in case we're being called by a client with a dummy device 861 // (e.g. they have a bounder that always aborts the draw) 862 if (SkBitmap::kNo_Config == device.config() || 863 (drawCoverage && (SkBitmap::kA8_Config != device.config()))) { 864 SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); 865 return blitter; 866 } 867 868 SkShader* shader = origPaint.getShader(); 869 SkColorFilter* cf = origPaint.getColorFilter(); 870 SkXfermode* mode = origPaint.getXfermode(); 871 Sk3DShader* shader3D = NULL; 872 873 SkTCopyOnFirstWrite<SkPaint> paint(origPaint); 874 875 if (origPaint.getMaskFilter() != NULL && 876 origPaint.getMaskFilter()->getFormat() == SkMask::k3D_Format) { 877 shader3D = SkNEW_ARGS(Sk3DShader, (shader)); 878 // we know we haven't initialized lazyPaint yet, so just do it 879 paint.writable()->setShader(shader3D)->unref(); 880 shader = shader3D; 881 } 882 883 if (NULL != mode) { 884 switch (interpret_xfermode(*paint, mode, device.config())) { 885 case kSrcOver_XferInterp: 886 mode = NULL; 887 paint.writable()->setXfermode(NULL); 888 break; 889 case kSkipDrawing_XferInterp: 890 SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); 891 return blitter; 892 default: 893 break; 894 } 895 } 896 897 /* 898 * If the xfermode is CLEAR, then we can completely ignore the installed 899 * color/shader/colorfilter, and just pretend we're SRC + color==0. This 900 * will fall into our optimizations for SRC mode. 901 */ 902 if (SkXfermode::IsMode(mode, SkXfermode::kClear_Mode)) { 903 SkPaint* p = paint.writable(); 904 shader = p->setShader(NULL); 905 cf = p->setColorFilter(NULL); 906 mode = p->setXfermodeMode(SkXfermode::kSrc_Mode); 907 p->setColor(0); 908 } 909 910 if (NULL == shader) { 911 if (mode) { 912 // xfermodes (and filters) require shaders for our current blitters 913 shader = SkNEW(SkColorShader); 914 paint.writable()->setShader(shader)->unref(); 915 } else if (cf) { 916 // if no shader && no xfermode, we just apply the colorfilter to 917 // our color and move on. 918 SkPaint* writablePaint = paint.writable(); 919 writablePaint->setColor(cf->filterColor(paint->getColor())); 920 writablePaint->setColorFilter(NULL); 921 cf = NULL; 922 } 923 } 924 925 if (cf) { 926 SkASSERT(shader); 927 shader = SkNEW_ARGS(SkFilterShader, (shader, cf)); 928 paint.writable()->setShader(shader)->unref(); 929 // blitters should ignore the presence/absence of a filter, since 930 // if there is one, the shader will take care of it. 931 } 932 933 /* 934 * We need to have balanced calls to the shader: 935 * setContext 936 * endContext 937 * We make the first call here, in case it fails we can abort the draw. 938 * The endContext() call is made by the blitter (assuming setContext did 939 * not fail) in its destructor. 940 */ 941 if (shader && !shader->setContext(device, *paint, matrix)) { 942 SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); 943 return blitter; 944 } 945 946 947 switch (device.config()) { 948 case SkBitmap::kA8_Config: 949 if (drawCoverage) { 950 SkASSERT(NULL == shader); 951 SkASSERT(NULL == paint->getXfermode()); 952 SK_PLACEMENT_NEW_ARGS(blitter, SkA8_Coverage_Blitter, 953 storage, storageSize, (device, *paint)); 954 } else if (shader) { 955 SK_PLACEMENT_NEW_ARGS(blitter, SkA8_Shader_Blitter, 956 storage, storageSize, (device, *paint)); 957 } else { 958 SK_PLACEMENT_NEW_ARGS(blitter, SkA8_Blitter, 959 storage, storageSize, (device, *paint)); 960 } 961 break; 962 963 case SkBitmap::kRGB_565_Config: 964 blitter = SkBlitter_ChooseD565(device, *paint, storage, storageSize); 965 break; 966 967 case SkBitmap::kARGB_8888_Config: 968 if (shader) { 969 SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Shader_Blitter, 970 storage, storageSize, (device, *paint)); 971 } else if (paint->getColor() == SK_ColorBLACK) { 972 SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Black_Blitter, 973 storage, storageSize, (device, *paint)); 974 } else if (paint->getAlpha() == 0xFF) { 975 SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Opaque_Blitter, 976 storage, storageSize, (device, *paint)); 977 } else { 978 SK_PLACEMENT_NEW_ARGS(blitter, SkARGB32_Blitter, 979 storage, storageSize, (device, *paint)); 980 } 981 break; 982 983 default: 984 SkDEBUGFAIL("unsupported device config"); 985 SK_PLACEMENT_NEW(blitter, SkNullBlitter, storage, storageSize); 986 break; 987 } 988 989 if (shader3D) { 990 void (*proc)(void*) = ((void*)storage == (void*)blitter) ? destroy_blitter : delete_blitter; 991 SkAutoCallProc tmp(blitter, proc); 992 993 blitter = SkNEW_ARGS(Sk3DBlitter, (blitter, shader3D, proc)); 994 (void)tmp.detach(); 995 } 996 return blitter; 997 } 998 999 /////////////////////////////////////////////////////////////////////////////// 1000 1001 const uint16_t gMask_0F0F = 0xF0F; 1002 const uint32_t gMask_00FF00FF = 0xFF00FF; 1003 1004 /////////////////////////////////////////////////////////////////////////////// 1005 1006 SkShaderBlitter::SkShaderBlitter(const SkBitmap& device, const SkPaint& paint) 1007 : INHERITED(device) { 1008 fShader = paint.getShader(); 1009 SkASSERT(fShader); 1010 SkASSERT(fShader->setContextHasBeenCalled()); 1011 1012 fShader->ref(); 1013 fShaderFlags = fShader->getFlags(); 1014 } 1015 1016 SkShaderBlitter::~SkShaderBlitter() { 1017 SkASSERT(fShader->setContextHasBeenCalled()); 1018 fShader->endContext(); 1019 fShader->unref(); 1020 } 1021