1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "mips/lithium-codegen-mips.h" 31 #include "mips/lithium-gap-resolver-mips.h" 32 #include "code-stubs.h" 33 #include "stub-cache.h" 34 35 namespace v8 { 36 namespace internal { 37 38 39 class SafepointGenerator : public CallWrapper { 40 public: 41 SafepointGenerator(LCodeGen* codegen, 42 LPointerMap* pointers, 43 Safepoint::DeoptMode mode) 44 : codegen_(codegen), 45 pointers_(pointers), 46 deopt_mode_(mode) { } 47 virtual ~SafepointGenerator() { } 48 49 virtual void BeforeCall(int call_size) const { } 50 51 virtual void AfterCall() const { 52 codegen_->RecordSafepoint(pointers_, deopt_mode_); 53 } 54 55 private: 56 LCodeGen* codegen_; 57 LPointerMap* pointers_; 58 Safepoint::DeoptMode deopt_mode_; 59 }; 60 61 62 #define __ masm()-> 63 64 bool LCodeGen::GenerateCode() { 65 HPhase phase("Z_Code generation", chunk()); 66 ASSERT(is_unused()); 67 status_ = GENERATING; 68 CpuFeatures::Scope scope(FPU); 69 70 CodeStub::GenerateFPStubs(); 71 72 // Open a frame scope to indicate that there is a frame on the stack. The 73 // NONE indicates that the scope shouldn't actually generate code to set up 74 // the frame (that is done in GeneratePrologue). 75 FrameScope frame_scope(masm_, StackFrame::NONE); 76 77 return GeneratePrologue() && 78 GenerateBody() && 79 GenerateDeferredCode() && 80 GenerateSafepointTable(); 81 } 82 83 84 void LCodeGen::FinishCode(Handle<Code> code) { 85 ASSERT(is_done()); 86 code->set_stack_slots(GetStackSlotCount()); 87 code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); 88 PopulateDeoptimizationData(code); 89 } 90 91 92 void LCodeGen::Abort(const char* format, ...) { 93 if (FLAG_trace_bailout) { 94 SmartArrayPointer<char> name( 95 info()->shared_info()->DebugName()->ToCString()); 96 PrintF("Aborting LCodeGen in @\"%s\": ", *name); 97 va_list arguments; 98 va_start(arguments, format); 99 OS::VPrint(format, arguments); 100 va_end(arguments); 101 PrintF("\n"); 102 } 103 status_ = ABORTED; 104 } 105 106 107 void LCodeGen::Comment(const char* format, ...) { 108 if (!FLAG_code_comments) return; 109 char buffer[4 * KB]; 110 StringBuilder builder(buffer, ARRAY_SIZE(buffer)); 111 va_list arguments; 112 va_start(arguments, format); 113 builder.AddFormattedList(format, arguments); 114 va_end(arguments); 115 116 // Copy the string before recording it in the assembler to avoid 117 // issues when the stack allocated buffer goes out of scope. 118 size_t length = builder.position(); 119 Vector<char> copy = Vector<char>::New(length + 1); 120 memcpy(copy.start(), builder.Finalize(), copy.length()); 121 masm()->RecordComment(copy.start()); 122 } 123 124 125 bool LCodeGen::GeneratePrologue() { 126 ASSERT(is_generating()); 127 128 #ifdef DEBUG 129 if (strlen(FLAG_stop_at) > 0 && 130 info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { 131 __ stop("stop_at"); 132 } 133 #endif 134 135 // a1: Callee's JS function. 136 // cp: Callee's context. 137 // fp: Caller's frame pointer. 138 // lr: Caller's pc. 139 140 // Strict mode functions and builtins need to replace the receiver 141 // with undefined when called as functions (without an explicit 142 // receiver object). r5 is zero for method calls and non-zero for 143 // function calls. 144 if (!info_->is_classic_mode() || info_->is_native()) { 145 Label ok; 146 __ Branch(&ok, eq, t1, Operand(zero_reg)); 147 148 int receiver_offset = scope()->num_parameters() * kPointerSize; 149 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); 150 __ sw(a2, MemOperand(sp, receiver_offset)); 151 __ bind(&ok); 152 } 153 154 __ Push(ra, fp, cp, a1); 155 __ Addu(fp, sp, Operand(2 * kPointerSize)); // Adj. FP to point to saved FP. 156 157 // Reserve space for the stack slots needed by the code. 158 int slots = GetStackSlotCount(); 159 if (slots > 0) { 160 if (FLAG_debug_code) { 161 __ li(a0, Operand(slots)); 162 __ li(a2, Operand(kSlotsZapValue)); 163 Label loop; 164 __ bind(&loop); 165 __ push(a2); 166 __ Subu(a0, a0, 1); 167 __ Branch(&loop, ne, a0, Operand(zero_reg)); 168 } else { 169 __ Subu(sp, sp, Operand(slots * kPointerSize)); 170 } 171 } 172 173 // Possibly allocate a local context. 174 int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; 175 if (heap_slots > 0) { 176 Comment(";;; Allocate local context"); 177 // Argument to NewContext is the function, which is in a1. 178 __ push(a1); 179 if (heap_slots <= FastNewContextStub::kMaximumSlots) { 180 FastNewContextStub stub(heap_slots); 181 __ CallStub(&stub); 182 } else { 183 __ CallRuntime(Runtime::kNewFunctionContext, 1); 184 } 185 RecordSafepoint(Safepoint::kNoLazyDeopt); 186 // Context is returned in both v0 and cp. It replaces the context 187 // passed to us. It's saved in the stack and kept live in cp. 188 __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 189 // Copy any necessary parameters into the context. 190 int num_parameters = scope()->num_parameters(); 191 for (int i = 0; i < num_parameters; i++) { 192 Variable* var = scope()->parameter(i); 193 if (var->IsContextSlot()) { 194 int parameter_offset = StandardFrameConstants::kCallerSPOffset + 195 (num_parameters - 1 - i) * kPointerSize; 196 // Load parameter from stack. 197 __ lw(a0, MemOperand(fp, parameter_offset)); 198 // Store it in the context. 199 MemOperand target = ContextOperand(cp, var->index()); 200 __ sw(a0, target); 201 // Update the write barrier. This clobbers a3 and a0. 202 __ RecordWriteContextSlot( 203 cp, target.offset(), a0, a3, kRAHasBeenSaved, kSaveFPRegs); 204 } 205 } 206 Comment(";;; End allocate local context"); 207 } 208 209 // Trace the call. 210 if (FLAG_trace) { 211 __ CallRuntime(Runtime::kTraceEnter, 0); 212 } 213 EnsureSpaceForLazyDeopt(); 214 return !is_aborted(); 215 } 216 217 218 bool LCodeGen::GenerateBody() { 219 ASSERT(is_generating()); 220 bool emit_instructions = true; 221 for (current_instruction_ = 0; 222 !is_aborted() && current_instruction_ < instructions_->length(); 223 current_instruction_++) { 224 LInstruction* instr = instructions_->at(current_instruction_); 225 if (instr->IsLabel()) { 226 LLabel* label = LLabel::cast(instr); 227 emit_instructions = !label->HasReplacement(); 228 } 229 230 if (emit_instructions) { 231 Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); 232 instr->CompileToNative(this); 233 } 234 } 235 return !is_aborted(); 236 } 237 238 239 bool LCodeGen::GenerateDeferredCode() { 240 ASSERT(is_generating()); 241 if (deferred_.length() > 0) { 242 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { 243 LDeferredCode* code = deferred_[i]; 244 __ bind(code->entry()); 245 Comment(";;; Deferred code @%d: %s.", 246 code->instruction_index(), 247 code->instr()->Mnemonic()); 248 code->Generate(); 249 __ jmp(code->exit()); 250 } 251 } 252 // Deferred code is the last part of the instruction sequence. Mark 253 // the generated code as done unless we bailed out. 254 if (!is_aborted()) status_ = DONE; 255 return !is_aborted(); 256 } 257 258 259 bool LCodeGen::GenerateDeoptJumpTable() { 260 // TODO(plind): not clear that this will have advantage for MIPS. 261 // Skipping it for now. Raised issue #100 for this. 262 Abort("Unimplemented: %s", "GenerateDeoptJumpTable"); 263 return false; 264 } 265 266 267 bool LCodeGen::GenerateSafepointTable() { 268 ASSERT(is_done()); 269 safepoints_.Emit(masm(), GetStackSlotCount()); 270 return !is_aborted(); 271 } 272 273 274 Register LCodeGen::ToRegister(int index) const { 275 return Register::FromAllocationIndex(index); 276 } 277 278 279 DoubleRegister LCodeGen::ToDoubleRegister(int index) const { 280 return DoubleRegister::FromAllocationIndex(index); 281 } 282 283 284 Register LCodeGen::ToRegister(LOperand* op) const { 285 ASSERT(op->IsRegister()); 286 return ToRegister(op->index()); 287 } 288 289 290 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { 291 if (op->IsRegister()) { 292 return ToRegister(op->index()); 293 } else if (op->IsConstantOperand()) { 294 LConstantOperand* const_op = LConstantOperand::cast(op); 295 Handle<Object> literal = chunk_->LookupLiteral(const_op); 296 Representation r = chunk_->LookupLiteralRepresentation(const_op); 297 if (r.IsInteger32()) { 298 ASSERT(literal->IsNumber()); 299 __ li(scratch, Operand(static_cast<int32_t>(literal->Number()))); 300 } else if (r.IsDouble()) { 301 Abort("EmitLoadRegister: Unsupported double immediate."); 302 } else { 303 ASSERT(r.IsTagged()); 304 if (literal->IsSmi()) { 305 __ li(scratch, Operand(literal)); 306 } else { 307 __ LoadHeapObject(scratch, Handle<HeapObject>::cast(literal)); 308 } 309 } 310 return scratch; 311 } else if (op->IsStackSlot() || op->IsArgument()) { 312 __ lw(scratch, ToMemOperand(op)); 313 return scratch; 314 } 315 UNREACHABLE(); 316 return scratch; 317 } 318 319 320 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { 321 ASSERT(op->IsDoubleRegister()); 322 return ToDoubleRegister(op->index()); 323 } 324 325 326 DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, 327 FloatRegister flt_scratch, 328 DoubleRegister dbl_scratch) { 329 if (op->IsDoubleRegister()) { 330 return ToDoubleRegister(op->index()); 331 } else if (op->IsConstantOperand()) { 332 LConstantOperand* const_op = LConstantOperand::cast(op); 333 Handle<Object> literal = chunk_->LookupLiteral(const_op); 334 Representation r = chunk_->LookupLiteralRepresentation(const_op); 335 if (r.IsInteger32()) { 336 ASSERT(literal->IsNumber()); 337 __ li(at, Operand(static_cast<int32_t>(literal->Number()))); 338 __ mtc1(at, flt_scratch); 339 __ cvt_d_w(dbl_scratch, flt_scratch); 340 return dbl_scratch; 341 } else if (r.IsDouble()) { 342 Abort("unsupported double immediate"); 343 } else if (r.IsTagged()) { 344 Abort("unsupported tagged immediate"); 345 } 346 } else if (op->IsStackSlot() || op->IsArgument()) { 347 MemOperand mem_op = ToMemOperand(op); 348 __ ldc1(dbl_scratch, mem_op); 349 return dbl_scratch; 350 } 351 UNREACHABLE(); 352 return dbl_scratch; 353 } 354 355 356 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { 357 Handle<Object> literal = chunk_->LookupLiteral(op); 358 ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged()); 359 return literal; 360 } 361 362 363 bool LCodeGen::IsInteger32(LConstantOperand* op) const { 364 return chunk_->LookupLiteralRepresentation(op).IsInteger32(); 365 } 366 367 368 int LCodeGen::ToInteger32(LConstantOperand* op) const { 369 Handle<Object> value = chunk_->LookupLiteral(op); 370 ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); 371 ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) == 372 value->Number()); 373 return static_cast<int32_t>(value->Number()); 374 } 375 376 377 double LCodeGen::ToDouble(LConstantOperand* op) const { 378 Handle<Object> value = chunk_->LookupLiteral(op); 379 return value->Number(); 380 } 381 382 383 Operand LCodeGen::ToOperand(LOperand* op) { 384 if (op->IsConstantOperand()) { 385 LConstantOperand* const_op = LConstantOperand::cast(op); 386 Handle<Object> literal = chunk_->LookupLiteral(const_op); 387 Representation r = chunk_->LookupLiteralRepresentation(const_op); 388 if (r.IsInteger32()) { 389 ASSERT(literal->IsNumber()); 390 return Operand(static_cast<int32_t>(literal->Number())); 391 } else if (r.IsDouble()) { 392 Abort("ToOperand Unsupported double immediate."); 393 } 394 ASSERT(r.IsTagged()); 395 return Operand(literal); 396 } else if (op->IsRegister()) { 397 return Operand(ToRegister(op)); 398 } else if (op->IsDoubleRegister()) { 399 Abort("ToOperand IsDoubleRegister unimplemented"); 400 return Operand(0); 401 } 402 // Stack slots not implemented, use ToMemOperand instead. 403 UNREACHABLE(); 404 return Operand(0); 405 } 406 407 408 MemOperand LCodeGen::ToMemOperand(LOperand* op) const { 409 ASSERT(!op->IsRegister()); 410 ASSERT(!op->IsDoubleRegister()); 411 ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); 412 int index = op->index(); 413 if (index >= 0) { 414 // Local or spill slot. Skip the frame pointer, function, and 415 // context in the fixed part of the frame. 416 return MemOperand(fp, -(index + 3) * kPointerSize); 417 } else { 418 // Incoming parameter. Skip the return address. 419 return MemOperand(fp, -(index - 1) * kPointerSize); 420 } 421 } 422 423 424 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { 425 ASSERT(op->IsDoubleStackSlot()); 426 int index = op->index(); 427 if (index >= 0) { 428 // Local or spill slot. Skip the frame pointer, function, context, 429 // and the first word of the double in the fixed part of the frame. 430 return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize); 431 } else { 432 // Incoming parameter. Skip the return address and the first word of 433 // the double. 434 return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize); 435 } 436 } 437 438 439 void LCodeGen::WriteTranslation(LEnvironment* environment, 440 Translation* translation) { 441 if (environment == NULL) return; 442 443 // The translation includes one command per value in the environment. 444 int translation_size = environment->values()->length(); 445 // The output frame height does not include the parameters. 446 int height = translation_size - environment->parameter_count(); 447 448 WriteTranslation(environment->outer(), translation); 449 int closure_id = DefineDeoptimizationLiteral(environment->closure()); 450 switch (environment->frame_type()) { 451 case JS_FUNCTION: 452 translation->BeginJSFrame(environment->ast_id(), closure_id, height); 453 break; 454 case JS_CONSTRUCT: 455 translation->BeginConstructStubFrame(closure_id, translation_size); 456 break; 457 case ARGUMENTS_ADAPTOR: 458 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); 459 break; 460 default: 461 UNREACHABLE(); 462 } 463 for (int i = 0; i < translation_size; ++i) { 464 LOperand* value = environment->values()->at(i); 465 // spilled_registers_ and spilled_double_registers_ are either 466 // both NULL or both set. 467 if (environment->spilled_registers() != NULL && value != NULL) { 468 if (value->IsRegister() && 469 environment->spilled_registers()[value->index()] != NULL) { 470 translation->MarkDuplicate(); 471 AddToTranslation(translation, 472 environment->spilled_registers()[value->index()], 473 environment->HasTaggedValueAt(i)); 474 } else if ( 475 value->IsDoubleRegister() && 476 environment->spilled_double_registers()[value->index()] != NULL) { 477 translation->MarkDuplicate(); 478 AddToTranslation( 479 translation, 480 environment->spilled_double_registers()[value->index()], 481 false); 482 } 483 } 484 485 AddToTranslation(translation, value, environment->HasTaggedValueAt(i)); 486 } 487 } 488 489 490 void LCodeGen::AddToTranslation(Translation* translation, 491 LOperand* op, 492 bool is_tagged) { 493 if (op == NULL) { 494 // TODO(twuerthinger): Introduce marker operands to indicate that this value 495 // is not present and must be reconstructed from the deoptimizer. Currently 496 // this is only used for the arguments object. 497 translation->StoreArgumentsObject(); 498 } else if (op->IsStackSlot()) { 499 if (is_tagged) { 500 translation->StoreStackSlot(op->index()); 501 } else { 502 translation->StoreInt32StackSlot(op->index()); 503 } 504 } else if (op->IsDoubleStackSlot()) { 505 translation->StoreDoubleStackSlot(op->index()); 506 } else if (op->IsArgument()) { 507 ASSERT(is_tagged); 508 int src_index = GetStackSlotCount() + op->index(); 509 translation->StoreStackSlot(src_index); 510 } else if (op->IsRegister()) { 511 Register reg = ToRegister(op); 512 if (is_tagged) { 513 translation->StoreRegister(reg); 514 } else { 515 translation->StoreInt32Register(reg); 516 } 517 } else if (op->IsDoubleRegister()) { 518 DoubleRegister reg = ToDoubleRegister(op); 519 translation->StoreDoubleRegister(reg); 520 } else if (op->IsConstantOperand()) { 521 Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op)); 522 int src_index = DefineDeoptimizationLiteral(literal); 523 translation->StoreLiteral(src_index); 524 } else { 525 UNREACHABLE(); 526 } 527 } 528 529 530 void LCodeGen::CallCode(Handle<Code> code, 531 RelocInfo::Mode mode, 532 LInstruction* instr) { 533 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); 534 } 535 536 537 void LCodeGen::CallCodeGeneric(Handle<Code> code, 538 RelocInfo::Mode mode, 539 LInstruction* instr, 540 SafepointMode safepoint_mode) { 541 ASSERT(instr != NULL); 542 LPointerMap* pointers = instr->pointer_map(); 543 RecordPosition(pointers->position()); 544 __ Call(code, mode); 545 RecordSafepointWithLazyDeopt(instr, safepoint_mode); 546 } 547 548 549 void LCodeGen::CallRuntime(const Runtime::Function* function, 550 int num_arguments, 551 LInstruction* instr) { 552 ASSERT(instr != NULL); 553 LPointerMap* pointers = instr->pointer_map(); 554 ASSERT(pointers != NULL); 555 RecordPosition(pointers->position()); 556 557 __ CallRuntime(function, num_arguments); 558 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 559 } 560 561 562 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, 563 int argc, 564 LInstruction* instr) { 565 __ CallRuntimeSaveDoubles(id); 566 RecordSafepointWithRegisters( 567 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); 568 } 569 570 571 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, 572 Safepoint::DeoptMode mode) { 573 if (!environment->HasBeenRegistered()) { 574 // Physical stack frame layout: 575 // -x ............. -4 0 ..................................... y 576 // [incoming arguments] [spill slots] [pushed outgoing arguments] 577 578 // Layout of the environment: 579 // 0 ..................................................... size-1 580 // [parameters] [locals] [expression stack including arguments] 581 582 // Layout of the translation: 583 // 0 ........................................................ size - 1 + 4 584 // [expression stack including arguments] [locals] [4 words] [parameters] 585 // |>------------ translation_size ------------<| 586 587 int frame_count = 0; 588 int jsframe_count = 0; 589 for (LEnvironment* e = environment; e != NULL; e = e->outer()) { 590 ++frame_count; 591 if (e->frame_type() == JS_FUNCTION) { 592 ++jsframe_count; 593 } 594 } 595 Translation translation(&translations_, frame_count, jsframe_count); 596 WriteTranslation(environment, &translation); 597 int deoptimization_index = deoptimizations_.length(); 598 int pc_offset = masm()->pc_offset(); 599 environment->Register(deoptimization_index, 600 translation.index(), 601 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); 602 deoptimizations_.Add(environment); 603 } 604 } 605 606 607 void LCodeGen::DeoptimizeIf(Condition cc, 608 LEnvironment* environment, 609 Register src1, 610 const Operand& src2) { 611 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 612 ASSERT(environment->HasBeenRegistered()); 613 int id = environment->deoptimization_index(); 614 Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); 615 if (entry == NULL) { 616 Abort("bailout was not prepared"); 617 return; 618 } 619 620 ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on MIPS. 621 622 if (FLAG_deopt_every_n_times == 1 && 623 info_->shared_info()->opt_count() == id) { 624 __ Jump(entry, RelocInfo::RUNTIME_ENTRY); 625 return; 626 } 627 628 if (FLAG_trap_on_deopt) { 629 Label skip; 630 if (cc != al) { 631 __ Branch(&skip, NegateCondition(cc), src1, src2); 632 } 633 __ stop("trap_on_deopt"); 634 __ bind(&skip); 635 } 636 637 // TODO(plind): The Arm port is a little different here, due to their 638 // DeOpt jump table, which is not used for Mips yet. 639 __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc, src1, src2); 640 } 641 642 643 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { 644 int length = deoptimizations_.length(); 645 if (length == 0) return; 646 Handle<DeoptimizationInputData> data = 647 factory()->NewDeoptimizationInputData(length, TENURED); 648 649 Handle<ByteArray> translations = translations_.CreateByteArray(); 650 data->SetTranslationByteArray(*translations); 651 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); 652 653 Handle<FixedArray> literals = 654 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); 655 for (int i = 0; i < deoptimization_literals_.length(); i++) { 656 literals->set(i, *deoptimization_literals_[i]); 657 } 658 data->SetLiteralArray(*literals); 659 660 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id())); 661 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); 662 663 // Populate the deoptimization entries. 664 for (int i = 0; i < length; i++) { 665 LEnvironment* env = deoptimizations_[i]; 666 data->SetAstId(i, Smi::FromInt(env->ast_id())); 667 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); 668 data->SetArgumentsStackHeight(i, 669 Smi::FromInt(env->arguments_stack_height())); 670 data->SetPc(i, Smi::FromInt(env->pc_offset())); 671 } 672 code->set_deoptimization_data(*data); 673 } 674 675 676 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { 677 int result = deoptimization_literals_.length(); 678 for (int i = 0; i < deoptimization_literals_.length(); ++i) { 679 if (deoptimization_literals_[i].is_identical_to(literal)) return i; 680 } 681 deoptimization_literals_.Add(literal); 682 return result; 683 } 684 685 686 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { 687 ASSERT(deoptimization_literals_.length() == 0); 688 689 const ZoneList<Handle<JSFunction> >* inlined_closures = 690 chunk()->inlined_closures(); 691 692 for (int i = 0, length = inlined_closures->length(); 693 i < length; 694 i++) { 695 DefineDeoptimizationLiteral(inlined_closures->at(i)); 696 } 697 698 inlined_function_count_ = deoptimization_literals_.length(); 699 } 700 701 702 void LCodeGen::RecordSafepointWithLazyDeopt( 703 LInstruction* instr, SafepointMode safepoint_mode) { 704 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { 705 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); 706 } else { 707 ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 708 RecordSafepointWithRegisters( 709 instr->pointer_map(), 0, Safepoint::kLazyDeopt); 710 } 711 } 712 713 714 void LCodeGen::RecordSafepoint( 715 LPointerMap* pointers, 716 Safepoint::Kind kind, 717 int arguments, 718 Safepoint::DeoptMode deopt_mode) { 719 ASSERT(expected_safepoint_kind_ == kind); 720 721 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); 722 Safepoint safepoint = safepoints_.DefineSafepoint(masm(), 723 kind, arguments, deopt_mode); 724 for (int i = 0; i < operands->length(); i++) { 725 LOperand* pointer = operands->at(i); 726 if (pointer->IsStackSlot()) { 727 safepoint.DefinePointerSlot(pointer->index()); 728 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { 729 safepoint.DefinePointerRegister(ToRegister(pointer)); 730 } 731 } 732 if (kind & Safepoint::kWithRegisters) { 733 // Register cp always contains a pointer to the context. 734 safepoint.DefinePointerRegister(cp); 735 } 736 } 737 738 739 void LCodeGen::RecordSafepoint(LPointerMap* pointers, 740 Safepoint::DeoptMode deopt_mode) { 741 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); 742 } 743 744 745 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { 746 LPointerMap empty_pointers(RelocInfo::kNoPosition); 747 RecordSafepoint(&empty_pointers, deopt_mode); 748 } 749 750 751 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, 752 int arguments, 753 Safepoint::DeoptMode deopt_mode) { 754 RecordSafepoint( 755 pointers, Safepoint::kWithRegisters, arguments, deopt_mode); 756 } 757 758 759 void LCodeGen::RecordSafepointWithRegistersAndDoubles( 760 LPointerMap* pointers, 761 int arguments, 762 Safepoint::DeoptMode deopt_mode) { 763 RecordSafepoint( 764 pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode); 765 } 766 767 768 void LCodeGen::RecordPosition(int position) { 769 if (position == RelocInfo::kNoPosition) return; 770 masm()->positions_recorder()->RecordPosition(position); 771 } 772 773 774 void LCodeGen::DoLabel(LLabel* label) { 775 if (label->is_loop_header()) { 776 Comment(";;; B%d - LOOP entry", label->block_id()); 777 } else { 778 Comment(";;; B%d", label->block_id()); 779 } 780 __ bind(label->label()); 781 current_block_ = label->block_id(); 782 DoGap(label); 783 } 784 785 786 void LCodeGen::DoParallelMove(LParallelMove* move) { 787 resolver_.Resolve(move); 788 } 789 790 791 void LCodeGen::DoGap(LGap* gap) { 792 for (int i = LGap::FIRST_INNER_POSITION; 793 i <= LGap::LAST_INNER_POSITION; 794 i++) { 795 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); 796 LParallelMove* move = gap->GetParallelMove(inner_pos); 797 if (move != NULL) DoParallelMove(move); 798 } 799 } 800 801 802 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { 803 DoGap(instr); 804 } 805 806 807 void LCodeGen::DoParameter(LParameter* instr) { 808 // Nothing to do. 809 } 810 811 812 void LCodeGen::DoCallStub(LCallStub* instr) { 813 ASSERT(ToRegister(instr->result()).is(v0)); 814 switch (instr->hydrogen()->major_key()) { 815 case CodeStub::RegExpConstructResult: { 816 RegExpConstructResultStub stub; 817 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 818 break; 819 } 820 case CodeStub::RegExpExec: { 821 RegExpExecStub stub; 822 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 823 break; 824 } 825 case CodeStub::SubString: { 826 SubStringStub stub; 827 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 828 break; 829 } 830 case CodeStub::NumberToString: { 831 NumberToStringStub stub; 832 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 833 break; 834 } 835 case CodeStub::StringAdd: { 836 StringAddStub stub(NO_STRING_ADD_FLAGS); 837 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 838 break; 839 } 840 case CodeStub::StringCompare: { 841 StringCompareStub stub; 842 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 843 break; 844 } 845 case CodeStub::TranscendentalCache: { 846 __ lw(a0, MemOperand(sp, 0)); 847 TranscendentalCacheStub stub(instr->transcendental_type(), 848 TranscendentalCacheStub::TAGGED); 849 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 850 break; 851 } 852 default: 853 UNREACHABLE(); 854 } 855 } 856 857 858 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { 859 // Nothing to do. 860 } 861 862 863 void LCodeGen::DoModI(LModI* instr) { 864 Register scratch = scratch0(); 865 const Register left = ToRegister(instr->InputAt(0)); 866 const Register result = ToRegister(instr->result()); 867 868 Label done; 869 870 if (instr->hydrogen()->HasPowerOf2Divisor()) { 871 Register scratch = scratch0(); 872 ASSERT(!left.is(scratch)); 873 __ mov(scratch, left); 874 int32_t p2constant = HConstant::cast( 875 instr->hydrogen()->right())->Integer32Value(); 876 ASSERT(p2constant != 0); 877 // Result always takes the sign of the dividend (left). 878 p2constant = abs(p2constant); 879 880 Label positive_dividend; 881 __ Branch(USE_DELAY_SLOT, &positive_dividend, ge, left, Operand(zero_reg)); 882 __ subu(result, zero_reg, left); 883 __ And(result, result, p2constant - 1); 884 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 885 DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); 886 } 887 __ Branch(USE_DELAY_SLOT, &done); 888 __ subu(result, zero_reg, result); 889 __ bind(&positive_dividend); 890 __ And(result, scratch, p2constant - 1); 891 } else { 892 // div runs in the background while we check for special cases. 893 Register right = EmitLoadRegister(instr->InputAt(1), scratch); 894 __ div(left, right); 895 896 // Check for x % 0. 897 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { 898 DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg)); 899 } 900 901 __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg)); 902 __ mfhi(result); 903 904 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 905 DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); 906 } 907 } 908 __ bind(&done); 909 } 910 911 912 void LCodeGen::DoDivI(LDivI* instr) { 913 const Register left = ToRegister(instr->InputAt(0)); 914 const Register right = ToRegister(instr->InputAt(1)); 915 const Register result = ToRegister(instr->result()); 916 917 // On MIPS div is asynchronous - it will run in the background while we 918 // check for special cases. 919 __ div(left, right); 920 921 // Check for x / 0. 922 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { 923 DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg)); 924 } 925 926 // Check for (0 / -x) that will produce negative zero. 927 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 928 Label left_not_zero; 929 __ Branch(&left_not_zero, ne, left, Operand(zero_reg)); 930 DeoptimizeIf(lt, instr->environment(), right, Operand(zero_reg)); 931 __ bind(&left_not_zero); 932 } 933 934 // Check for (-kMinInt / -1). 935 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { 936 Label left_not_min_int; 937 __ Branch(&left_not_min_int, ne, left, Operand(kMinInt)); 938 DeoptimizeIf(eq, instr->environment(), right, Operand(-1)); 939 __ bind(&left_not_min_int); 940 } 941 942 __ mfhi(result); 943 DeoptimizeIf(ne, instr->environment(), result, Operand(zero_reg)); 944 __ mflo(result); 945 } 946 947 948 void LCodeGen::DoMulI(LMulI* instr) { 949 Register scratch = scratch0(); 950 Register result = ToRegister(instr->result()); 951 // Note that result may alias left. 952 Register left = ToRegister(instr->InputAt(0)); 953 LOperand* right_op = instr->InputAt(1); 954 955 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 956 bool bailout_on_minus_zero = 957 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); 958 959 if (right_op->IsConstantOperand() && !can_overflow) { 960 // Use optimized code for specific constants. 961 int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); 962 963 if (bailout_on_minus_zero && (constant < 0)) { 964 // The case of a null constant will be handled separately. 965 // If constant is negative and left is null, the result should be -0. 966 DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg)); 967 } 968 969 switch (constant) { 970 case -1: 971 __ Subu(result, zero_reg, left); 972 break; 973 case 0: 974 if (bailout_on_minus_zero) { 975 // If left is strictly negative and the constant is null, the 976 // result is -0. Deoptimize if required, otherwise return 0. 977 DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg)); 978 } 979 __ mov(result, zero_reg); 980 break; 981 case 1: 982 // Nothing to do. 983 __ Move(result, left); 984 break; 985 default: 986 // Multiplying by powers of two and powers of two plus or minus 987 // one can be done faster with shifted operands. 988 // For other constants we emit standard code. 989 int32_t mask = constant >> 31; 990 uint32_t constant_abs = (constant + mask) ^ mask; 991 992 if (IsPowerOf2(constant_abs) || 993 IsPowerOf2(constant_abs - 1) || 994 IsPowerOf2(constant_abs + 1)) { 995 if (IsPowerOf2(constant_abs)) { 996 int32_t shift = WhichPowerOf2(constant_abs); 997 __ sll(result, left, shift); 998 } else if (IsPowerOf2(constant_abs - 1)) { 999 int32_t shift = WhichPowerOf2(constant_abs - 1); 1000 __ sll(result, left, shift); 1001 __ Addu(result, result, left); 1002 } else if (IsPowerOf2(constant_abs + 1)) { 1003 int32_t shift = WhichPowerOf2(constant_abs + 1); 1004 __ sll(result, left, shift); 1005 __ Subu(result, result, left); 1006 } 1007 1008 // Correct the sign of the result is the constant is negative. 1009 if (constant < 0) { 1010 __ Subu(result, zero_reg, result); 1011 } 1012 1013 } else { 1014 // Generate standard code. 1015 __ li(at, constant); 1016 __ Mul(result, left, at); 1017 } 1018 } 1019 1020 } else { 1021 Register right = EmitLoadRegister(right_op, scratch); 1022 if (bailout_on_minus_zero) { 1023 __ Or(ToRegister(instr->TempAt(0)), left, right); 1024 } 1025 1026 if (can_overflow) { 1027 // hi:lo = left * right. 1028 __ mult(left, right); 1029 __ mfhi(scratch); 1030 __ mflo(result); 1031 __ sra(at, result, 31); 1032 DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); 1033 } else { 1034 __ Mul(result, left, right); 1035 } 1036 1037 if (bailout_on_minus_zero) { 1038 // Bail out if the result is supposed to be negative zero. 1039 Label done; 1040 __ Branch(&done, ne, result, Operand(zero_reg)); 1041 DeoptimizeIf(lt, 1042 instr->environment(), 1043 ToRegister(instr->TempAt(0)), 1044 Operand(zero_reg)); 1045 __ bind(&done); 1046 } 1047 } 1048 } 1049 1050 1051 void LCodeGen::DoBitI(LBitI* instr) { 1052 LOperand* left_op = instr->InputAt(0); 1053 LOperand* right_op = instr->InputAt(1); 1054 ASSERT(left_op->IsRegister()); 1055 Register left = ToRegister(left_op); 1056 Register result = ToRegister(instr->result()); 1057 Operand right(no_reg); 1058 1059 if (right_op->IsStackSlot() || right_op->IsArgument()) { 1060 right = Operand(EmitLoadRegister(right_op, at)); 1061 } else { 1062 ASSERT(right_op->IsRegister() || right_op->IsConstantOperand()); 1063 right = ToOperand(right_op); 1064 } 1065 1066 switch (instr->op()) { 1067 case Token::BIT_AND: 1068 __ And(result, left, right); 1069 break; 1070 case Token::BIT_OR: 1071 __ Or(result, left, right); 1072 break; 1073 case Token::BIT_XOR: 1074 __ Xor(result, left, right); 1075 break; 1076 default: 1077 UNREACHABLE(); 1078 break; 1079 } 1080 } 1081 1082 1083 void LCodeGen::DoShiftI(LShiftI* instr) { 1084 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so 1085 // result may alias either of them. 1086 LOperand* right_op = instr->InputAt(1); 1087 Register left = ToRegister(instr->InputAt(0)); 1088 Register result = ToRegister(instr->result()); 1089 1090 if (right_op->IsRegister()) { 1091 // No need to mask the right operand on MIPS, it is built into the variable 1092 // shift instructions. 1093 switch (instr->op()) { 1094 case Token::SAR: 1095 __ srav(result, left, ToRegister(right_op)); 1096 break; 1097 case Token::SHR: 1098 __ srlv(result, left, ToRegister(right_op)); 1099 if (instr->can_deopt()) { 1100 DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); 1101 } 1102 break; 1103 case Token::SHL: 1104 __ sllv(result, left, ToRegister(right_op)); 1105 break; 1106 default: 1107 UNREACHABLE(); 1108 break; 1109 } 1110 } else { 1111 // Mask the right_op operand. 1112 int value = ToInteger32(LConstantOperand::cast(right_op)); 1113 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); 1114 switch (instr->op()) { 1115 case Token::SAR: 1116 if (shift_count != 0) { 1117 __ sra(result, left, shift_count); 1118 } else { 1119 __ Move(result, left); 1120 } 1121 break; 1122 case Token::SHR: 1123 if (shift_count != 0) { 1124 __ srl(result, left, shift_count); 1125 } else { 1126 if (instr->can_deopt()) { 1127 __ And(at, left, Operand(0x80000000)); 1128 DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); 1129 } 1130 __ Move(result, left); 1131 } 1132 break; 1133 case Token::SHL: 1134 if (shift_count != 0) { 1135 __ sll(result, left, shift_count); 1136 } else { 1137 __ Move(result, left); 1138 } 1139 break; 1140 default: 1141 UNREACHABLE(); 1142 break; 1143 } 1144 } 1145 } 1146 1147 1148 void LCodeGen::DoSubI(LSubI* instr) { 1149 LOperand* left = instr->InputAt(0); 1150 LOperand* right = instr->InputAt(1); 1151 LOperand* result = instr->result(); 1152 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 1153 1154 if (!can_overflow) { 1155 if (right->IsStackSlot() || right->IsArgument()) { 1156 Register right_reg = EmitLoadRegister(right, at); 1157 __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg)); 1158 } else { 1159 ASSERT(right->IsRegister() || right->IsConstantOperand()); 1160 __ Subu(ToRegister(result), ToRegister(left), ToOperand(right)); 1161 } 1162 } else { // can_overflow. 1163 Register overflow = scratch0(); 1164 Register scratch = scratch1(); 1165 if (right->IsStackSlot() || 1166 right->IsArgument() || 1167 right->IsConstantOperand()) { 1168 Register right_reg = EmitLoadRegister(right, scratch); 1169 __ SubuAndCheckForOverflow(ToRegister(result), 1170 ToRegister(left), 1171 right_reg, 1172 overflow); // Reg at also used as scratch. 1173 } else { 1174 ASSERT(right->IsRegister()); 1175 // Due to overflow check macros not supporting constant operands, 1176 // handling the IsConstantOperand case was moved to prev if clause. 1177 __ SubuAndCheckForOverflow(ToRegister(result), 1178 ToRegister(left), 1179 ToRegister(right), 1180 overflow); // Reg at also used as scratch. 1181 } 1182 DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg)); 1183 } 1184 } 1185 1186 1187 void LCodeGen::DoConstantI(LConstantI* instr) { 1188 ASSERT(instr->result()->IsRegister()); 1189 __ li(ToRegister(instr->result()), Operand(instr->value())); 1190 } 1191 1192 1193 void LCodeGen::DoConstantD(LConstantD* instr) { 1194 ASSERT(instr->result()->IsDoubleRegister()); 1195 DoubleRegister result = ToDoubleRegister(instr->result()); 1196 double v = instr->value(); 1197 __ Move(result, v); 1198 } 1199 1200 1201 void LCodeGen::DoConstantT(LConstantT* instr) { 1202 Handle<Object> value = instr->value(); 1203 if (value->IsSmi()) { 1204 __ li(ToRegister(instr->result()), Operand(value)); 1205 } else { 1206 __ LoadHeapObject(ToRegister(instr->result()), 1207 Handle<HeapObject>::cast(value)); 1208 } 1209 } 1210 1211 1212 void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { 1213 Register result = ToRegister(instr->result()); 1214 Register array = ToRegister(instr->InputAt(0)); 1215 __ lw(result, FieldMemOperand(array, JSArray::kLengthOffset)); 1216 } 1217 1218 1219 void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) { 1220 Register result = ToRegister(instr->result()); 1221 Register array = ToRegister(instr->InputAt(0)); 1222 __ lw(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset)); 1223 } 1224 1225 1226 void LCodeGen::DoElementsKind(LElementsKind* instr) { 1227 Register result = ToRegister(instr->result()); 1228 Register input = ToRegister(instr->InputAt(0)); 1229 1230 // Load map into |result|. 1231 __ lw(result, FieldMemOperand(input, HeapObject::kMapOffset)); 1232 // Load the map's "bit field 2" into |result|. We only need the first byte, 1233 // but the following bit field extraction takes care of that anyway. 1234 __ lbu(result, FieldMemOperand(result, Map::kBitField2Offset)); 1235 // Retrieve elements_kind from bit field 2. 1236 __ Ext(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount); 1237 } 1238 1239 1240 void LCodeGen::DoValueOf(LValueOf* instr) { 1241 Register input = ToRegister(instr->InputAt(0)); 1242 Register result = ToRegister(instr->result()); 1243 Register map = ToRegister(instr->TempAt(0)); 1244 Label done; 1245 1246 // If the object is a smi return the object. 1247 __ Move(result, input); 1248 __ JumpIfSmi(input, &done); 1249 1250 // If the object is not a value type, return the object. 1251 __ GetObjectType(input, map, map); 1252 __ Branch(&done, ne, map, Operand(JS_VALUE_TYPE)); 1253 __ lw(result, FieldMemOperand(input, JSValue::kValueOffset)); 1254 1255 __ bind(&done); 1256 } 1257 1258 1259 void LCodeGen::DoDateField(LDateField* instr) { 1260 Register object = ToRegister(instr->InputAt(0)); 1261 Register result = ToRegister(instr->result()); 1262 Register scratch = ToRegister(instr->TempAt(0)); 1263 Smi* index = instr->index(); 1264 Label runtime, done; 1265 ASSERT(object.is(a0)); 1266 ASSERT(result.is(v0)); 1267 ASSERT(!scratch.is(scratch0())); 1268 ASSERT(!scratch.is(object)); 1269 1270 #ifdef DEBUG 1271 __ AbortIfSmi(object); 1272 __ GetObjectType(object, scratch, scratch); 1273 __ Assert(eq, "Trying to get date field from non-date.", 1274 scratch, Operand(JS_DATE_TYPE)); 1275 #endif 1276 1277 if (index->value() == 0) { 1278 __ lw(result, FieldMemOperand(object, JSDate::kValueOffset)); 1279 } else { 1280 if (index->value() < JSDate::kFirstUncachedField) { 1281 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); 1282 __ li(scratch, Operand(stamp)); 1283 __ lw(scratch, MemOperand(scratch)); 1284 __ lw(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset)); 1285 __ Branch(&runtime, ne, scratch, Operand(scratch0())); 1286 __ lw(result, FieldMemOperand(object, JSDate::kValueOffset + 1287 kPointerSize * index->value())); 1288 __ jmp(&done); 1289 } 1290 __ bind(&runtime); 1291 __ PrepareCallCFunction(2, scratch); 1292 __ li(a1, Operand(index)); 1293 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); 1294 __ bind(&done); 1295 } 1296 } 1297 1298 1299 void LCodeGen::DoBitNotI(LBitNotI* instr) { 1300 Register input = ToRegister(instr->InputAt(0)); 1301 Register result = ToRegister(instr->result()); 1302 __ Nor(result, zero_reg, Operand(input)); 1303 } 1304 1305 1306 void LCodeGen::DoThrow(LThrow* instr) { 1307 Register input_reg = EmitLoadRegister(instr->InputAt(0), at); 1308 __ push(input_reg); 1309 CallRuntime(Runtime::kThrow, 1, instr); 1310 1311 if (FLAG_debug_code) { 1312 __ stop("Unreachable code."); 1313 } 1314 } 1315 1316 1317 void LCodeGen::DoAddI(LAddI* instr) { 1318 LOperand* left = instr->InputAt(0); 1319 LOperand* right = instr->InputAt(1); 1320 LOperand* result = instr->result(); 1321 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 1322 1323 if (!can_overflow) { 1324 if (right->IsStackSlot() || right->IsArgument()) { 1325 Register right_reg = EmitLoadRegister(right, at); 1326 __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg)); 1327 } else { 1328 ASSERT(right->IsRegister() || right->IsConstantOperand()); 1329 __ Addu(ToRegister(result), ToRegister(left), ToOperand(right)); 1330 } 1331 } else { // can_overflow. 1332 Register overflow = scratch0(); 1333 Register scratch = scratch1(); 1334 if (right->IsStackSlot() || 1335 right->IsArgument() || 1336 right->IsConstantOperand()) { 1337 Register right_reg = EmitLoadRegister(right, scratch); 1338 __ AdduAndCheckForOverflow(ToRegister(result), 1339 ToRegister(left), 1340 right_reg, 1341 overflow); // Reg at also used as scratch. 1342 } else { 1343 ASSERT(right->IsRegister()); 1344 // Due to overflow check macros not supporting constant operands, 1345 // handling the IsConstantOperand case was moved to prev if clause. 1346 __ AdduAndCheckForOverflow(ToRegister(result), 1347 ToRegister(left), 1348 ToRegister(right), 1349 overflow); // Reg at also used as scratch. 1350 } 1351 DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg)); 1352 } 1353 } 1354 1355 1356 void LCodeGen::DoArithmeticD(LArithmeticD* instr) { 1357 DoubleRegister left = ToDoubleRegister(instr->InputAt(0)); 1358 DoubleRegister right = ToDoubleRegister(instr->InputAt(1)); 1359 DoubleRegister result = ToDoubleRegister(instr->result()); 1360 switch (instr->op()) { 1361 case Token::ADD: 1362 __ add_d(result, left, right); 1363 break; 1364 case Token::SUB: 1365 __ sub_d(result, left, right); 1366 break; 1367 case Token::MUL: 1368 __ mul_d(result, left, right); 1369 break; 1370 case Token::DIV: 1371 __ div_d(result, left, right); 1372 break; 1373 case Token::MOD: { 1374 // Save a0-a3 on the stack. 1375 RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit(); 1376 __ MultiPush(saved_regs); 1377 1378 __ PrepareCallCFunction(0, 2, scratch0()); 1379 __ SetCallCDoubleArguments(left, right); 1380 __ CallCFunction( 1381 ExternalReference::double_fp_operation(Token::MOD, isolate()), 1382 0, 2); 1383 // Move the result in the double result register. 1384 __ GetCFunctionDoubleResult(result); 1385 1386 // Restore saved register. 1387 __ MultiPop(saved_regs); 1388 break; 1389 } 1390 default: 1391 UNREACHABLE(); 1392 break; 1393 } 1394 } 1395 1396 1397 void LCodeGen::DoArithmeticT(LArithmeticT* instr) { 1398 ASSERT(ToRegister(instr->InputAt(0)).is(a1)); 1399 ASSERT(ToRegister(instr->InputAt(1)).is(a0)); 1400 ASSERT(ToRegister(instr->result()).is(v0)); 1401 1402 BinaryOpStub stub(instr->op(), NO_OVERWRITE); 1403 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 1404 // Other arch use a nop here, to signal that there is no inlined 1405 // patchable code. Mips does not need the nop, since our marker 1406 // instruction (andi zero_reg) will never be used in normal code. 1407 } 1408 1409 1410 int LCodeGen::GetNextEmittedBlock(int block) { 1411 for (int i = block + 1; i < graph()->blocks()->length(); ++i) { 1412 LLabel* label = chunk_->GetLabel(i); 1413 if (!label->HasReplacement()) return i; 1414 } 1415 return -1; 1416 } 1417 1418 1419 void LCodeGen::EmitBranch(int left_block, int right_block, 1420 Condition cc, Register src1, const Operand& src2) { 1421 int next_block = GetNextEmittedBlock(current_block_); 1422 right_block = chunk_->LookupDestination(right_block); 1423 left_block = chunk_->LookupDestination(left_block); 1424 if (right_block == left_block) { 1425 EmitGoto(left_block); 1426 } else if (left_block == next_block) { 1427 __ Branch(chunk_->GetAssemblyLabel(right_block), 1428 NegateCondition(cc), src1, src2); 1429 } else if (right_block == next_block) { 1430 __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2); 1431 } else { 1432 __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2); 1433 __ Branch(chunk_->GetAssemblyLabel(right_block)); 1434 } 1435 } 1436 1437 1438 void LCodeGen::EmitBranchF(int left_block, int right_block, 1439 Condition cc, FPURegister src1, FPURegister src2) { 1440 int next_block = GetNextEmittedBlock(current_block_); 1441 right_block = chunk_->LookupDestination(right_block); 1442 left_block = chunk_->LookupDestination(left_block); 1443 if (right_block == left_block) { 1444 EmitGoto(left_block); 1445 } else if (left_block == next_block) { 1446 __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL, 1447 NegateCondition(cc), src1, src2); 1448 } else if (right_block == next_block) { 1449 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2); 1450 } else { 1451 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2); 1452 __ Branch(chunk_->GetAssemblyLabel(right_block)); 1453 } 1454 } 1455 1456 1457 void LCodeGen::DoBranch(LBranch* instr) { 1458 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1459 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1460 1461 Representation r = instr->hydrogen()->value()->representation(); 1462 if (r.IsInteger32()) { 1463 Register reg = ToRegister(instr->InputAt(0)); 1464 EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg)); 1465 } else if (r.IsDouble()) { 1466 DoubleRegister reg = ToDoubleRegister(instr->InputAt(0)); 1467 // Test the double value. Zero and NaN are false. 1468 EmitBranchF(true_block, false_block, ne, reg, kDoubleRegZero); 1469 } else { 1470 ASSERT(r.IsTagged()); 1471 Register reg = ToRegister(instr->InputAt(0)); 1472 HType type = instr->hydrogen()->value()->type(); 1473 if (type.IsBoolean()) { 1474 __ LoadRoot(at, Heap::kTrueValueRootIndex); 1475 EmitBranch(true_block, false_block, eq, reg, Operand(at)); 1476 } else if (type.IsSmi()) { 1477 EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg)); 1478 } else { 1479 Label* true_label = chunk_->GetAssemblyLabel(true_block); 1480 Label* false_label = chunk_->GetAssemblyLabel(false_block); 1481 1482 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); 1483 // Avoid deopts in the case where we've never executed this path before. 1484 if (expected.IsEmpty()) expected = ToBooleanStub::all_types(); 1485 1486 if (expected.Contains(ToBooleanStub::UNDEFINED)) { 1487 // undefined -> false. 1488 __ LoadRoot(at, Heap::kUndefinedValueRootIndex); 1489 __ Branch(false_label, eq, reg, Operand(at)); 1490 } 1491 if (expected.Contains(ToBooleanStub::BOOLEAN)) { 1492 // Boolean -> its value. 1493 __ LoadRoot(at, Heap::kTrueValueRootIndex); 1494 __ Branch(true_label, eq, reg, Operand(at)); 1495 __ LoadRoot(at, Heap::kFalseValueRootIndex); 1496 __ Branch(false_label, eq, reg, Operand(at)); 1497 } 1498 if (expected.Contains(ToBooleanStub::NULL_TYPE)) { 1499 // 'null' -> false. 1500 __ LoadRoot(at, Heap::kNullValueRootIndex); 1501 __ Branch(false_label, eq, reg, Operand(at)); 1502 } 1503 1504 if (expected.Contains(ToBooleanStub::SMI)) { 1505 // Smis: 0 -> false, all other -> true. 1506 __ Branch(false_label, eq, reg, Operand(zero_reg)); 1507 __ JumpIfSmi(reg, true_label); 1508 } else if (expected.NeedsMap()) { 1509 // If we need a map later and have a Smi -> deopt. 1510 __ And(at, reg, Operand(kSmiTagMask)); 1511 DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); 1512 } 1513 1514 const Register map = scratch0(); 1515 if (expected.NeedsMap()) { 1516 __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset)); 1517 if (expected.CanBeUndetectable()) { 1518 // Undetectable -> false. 1519 __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset)); 1520 __ And(at, at, Operand(1 << Map::kIsUndetectable)); 1521 __ Branch(false_label, ne, at, Operand(zero_reg)); 1522 } 1523 } 1524 1525 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { 1526 // spec object -> true. 1527 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); 1528 __ Branch(true_label, ge, at, Operand(FIRST_SPEC_OBJECT_TYPE)); 1529 } 1530 1531 if (expected.Contains(ToBooleanStub::STRING)) { 1532 // String value -> false iff empty. 1533 Label not_string; 1534 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); 1535 __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE)); 1536 __ lw(at, FieldMemOperand(reg, String::kLengthOffset)); 1537 __ Branch(true_label, ne, at, Operand(zero_reg)); 1538 __ Branch(false_label); 1539 __ bind(¬_string); 1540 } 1541 1542 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { 1543 // heap number -> false iff +0, -0, or NaN. 1544 DoubleRegister dbl_scratch = double_scratch0(); 1545 Label not_heap_number; 1546 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); 1547 __ Branch(¬_heap_number, ne, map, Operand(at)); 1548 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); 1549 __ BranchF(true_label, false_label, ne, dbl_scratch, kDoubleRegZero); 1550 // Falls through if dbl_scratch == 0. 1551 __ Branch(false_label); 1552 __ bind(¬_heap_number); 1553 } 1554 1555 // We've seen something for the first time -> deopt. 1556 DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg)); 1557 } 1558 } 1559 } 1560 1561 1562 void LCodeGen::EmitGoto(int block) { 1563 block = chunk_->LookupDestination(block); 1564 int next_block = GetNextEmittedBlock(current_block_); 1565 if (block != next_block) { 1566 __ jmp(chunk_->GetAssemblyLabel(block)); 1567 } 1568 } 1569 1570 1571 void LCodeGen::DoGoto(LGoto* instr) { 1572 EmitGoto(instr->block_id()); 1573 } 1574 1575 1576 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { 1577 Condition cond = kNoCondition; 1578 switch (op) { 1579 case Token::EQ: 1580 case Token::EQ_STRICT: 1581 cond = eq; 1582 break; 1583 case Token::LT: 1584 cond = is_unsigned ? lo : lt; 1585 break; 1586 case Token::GT: 1587 cond = is_unsigned ? hi : gt; 1588 break; 1589 case Token::LTE: 1590 cond = is_unsigned ? ls : le; 1591 break; 1592 case Token::GTE: 1593 cond = is_unsigned ? hs : ge; 1594 break; 1595 case Token::IN: 1596 case Token::INSTANCEOF: 1597 default: 1598 UNREACHABLE(); 1599 } 1600 return cond; 1601 } 1602 1603 1604 void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { 1605 LOperand* left = instr->InputAt(0); 1606 LOperand* right = instr->InputAt(1); 1607 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1608 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1609 1610 Condition cond = TokenToCondition(instr->op(), false); 1611 1612 if (left->IsConstantOperand() && right->IsConstantOperand()) { 1613 // We can statically evaluate the comparison. 1614 double left_val = ToDouble(LConstantOperand::cast(left)); 1615 double right_val = ToDouble(LConstantOperand::cast(right)); 1616 int next_block = 1617 EvalComparison(instr->op(), left_val, right_val) ? true_block 1618 : false_block; 1619 EmitGoto(next_block); 1620 } else { 1621 if (instr->is_double()) { 1622 // Compare left and right as doubles and load the 1623 // resulting flags into the normal status register. 1624 FPURegister left_reg = ToDoubleRegister(left); 1625 FPURegister right_reg = ToDoubleRegister(right); 1626 1627 // If a NaN is involved, i.e. the result is unordered, 1628 // jump to false block label. 1629 __ BranchF(NULL, chunk_->GetAssemblyLabel(false_block), eq, 1630 left_reg, right_reg); 1631 1632 EmitBranchF(true_block, false_block, cond, left_reg, right_reg); 1633 } else { 1634 Register cmp_left; 1635 Operand cmp_right = Operand(0); 1636 1637 if (right->IsConstantOperand()) { 1638 cmp_left = ToRegister(left); 1639 cmp_right = Operand(ToInteger32(LConstantOperand::cast(right))); 1640 } else if (left->IsConstantOperand()) { 1641 cmp_left = ToRegister(right); 1642 cmp_right = Operand(ToInteger32(LConstantOperand::cast(left))); 1643 // We transposed the operands. Reverse the condition. 1644 cond = ReverseCondition(cond); 1645 } else { 1646 cmp_left = ToRegister(left); 1647 cmp_right = Operand(ToRegister(right)); 1648 } 1649 1650 EmitBranch(true_block, false_block, cond, cmp_left, cmp_right); 1651 } 1652 } 1653 } 1654 1655 1656 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { 1657 Register left = ToRegister(instr->InputAt(0)); 1658 Register right = ToRegister(instr->InputAt(1)); 1659 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1660 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1661 1662 EmitBranch(true_block, false_block, eq, left, Operand(right)); 1663 } 1664 1665 1666 void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) { 1667 Register left = ToRegister(instr->InputAt(0)); 1668 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1669 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1670 1671 EmitBranch(true_block, false_block, eq, left, 1672 Operand(instr->hydrogen()->right())); 1673 } 1674 1675 1676 1677 void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) { 1678 Register scratch = scratch0(); 1679 Register reg = ToRegister(instr->InputAt(0)); 1680 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1681 1682 // If the expression is known to be untagged or a smi, then it's definitely 1683 // not null, and it can't be a an undetectable object. 1684 if (instr->hydrogen()->representation().IsSpecialization() || 1685 instr->hydrogen()->type().IsSmi()) { 1686 EmitGoto(false_block); 1687 return; 1688 } 1689 1690 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1691 1692 Heap::RootListIndex nil_value = instr->nil() == kNullValue ? 1693 Heap::kNullValueRootIndex : 1694 Heap::kUndefinedValueRootIndex; 1695 __ LoadRoot(at, nil_value); 1696 if (instr->kind() == kStrictEquality) { 1697 EmitBranch(true_block, false_block, eq, reg, Operand(at)); 1698 } else { 1699 Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ? 1700 Heap::kUndefinedValueRootIndex : 1701 Heap::kNullValueRootIndex; 1702 Label* true_label = chunk_->GetAssemblyLabel(true_block); 1703 Label* false_label = chunk_->GetAssemblyLabel(false_block); 1704 __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at)); 1705 __ LoadRoot(at, other_nil_value); // In the delay slot. 1706 __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at)); 1707 __ JumpIfSmi(reg, false_label); // In the delay slot. 1708 // Check for undetectable objects by looking in the bit field in 1709 // the map. The object has already been smi checked. 1710 __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); 1711 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); 1712 __ And(scratch, scratch, 1 << Map::kIsUndetectable); 1713 EmitBranch(true_block, false_block, ne, scratch, Operand(zero_reg)); 1714 } 1715 } 1716 1717 1718 Condition LCodeGen::EmitIsObject(Register input, 1719 Register temp1, 1720 Register temp2, 1721 Label* is_not_object, 1722 Label* is_object) { 1723 __ JumpIfSmi(input, is_not_object); 1724 1725 __ LoadRoot(temp2, Heap::kNullValueRootIndex); 1726 __ Branch(is_object, eq, input, Operand(temp2)); 1727 1728 // Load map. 1729 __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); 1730 // Undetectable objects behave like undefined. 1731 __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); 1732 __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable)); 1733 __ Branch(is_not_object, ne, temp2, Operand(zero_reg)); 1734 1735 // Load instance type and check that it is in object type range. 1736 __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); 1737 __ Branch(is_not_object, 1738 lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 1739 1740 return le; 1741 } 1742 1743 1744 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { 1745 Register reg = ToRegister(instr->InputAt(0)); 1746 Register temp1 = ToRegister(instr->TempAt(0)); 1747 Register temp2 = scratch0(); 1748 1749 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1750 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1751 Label* true_label = chunk_->GetAssemblyLabel(true_block); 1752 Label* false_label = chunk_->GetAssemblyLabel(false_block); 1753 1754 Condition true_cond = 1755 EmitIsObject(reg, temp1, temp2, false_label, true_label); 1756 1757 EmitBranch(true_block, false_block, true_cond, temp2, 1758 Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); 1759 } 1760 1761 1762 Condition LCodeGen::EmitIsString(Register input, 1763 Register temp1, 1764 Label* is_not_string) { 1765 __ JumpIfSmi(input, is_not_string); 1766 __ GetObjectType(input, temp1, temp1); 1767 1768 return lt; 1769 } 1770 1771 1772 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { 1773 Register reg = ToRegister(instr->InputAt(0)); 1774 Register temp1 = ToRegister(instr->TempAt(0)); 1775 1776 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1777 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1778 Label* false_label = chunk_->GetAssemblyLabel(false_block); 1779 1780 Condition true_cond = 1781 EmitIsString(reg, temp1, false_label); 1782 1783 EmitBranch(true_block, false_block, true_cond, temp1, 1784 Operand(FIRST_NONSTRING_TYPE)); 1785 } 1786 1787 1788 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { 1789 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1790 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1791 1792 Register input_reg = EmitLoadRegister(instr->InputAt(0), at); 1793 __ And(at, input_reg, kSmiTagMask); 1794 EmitBranch(true_block, false_block, eq, at, Operand(zero_reg)); 1795 } 1796 1797 1798 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { 1799 Register input = ToRegister(instr->InputAt(0)); 1800 Register temp = ToRegister(instr->TempAt(0)); 1801 1802 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1803 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1804 1805 __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block)); 1806 __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset)); 1807 __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); 1808 __ And(at, temp, Operand(1 << Map::kIsUndetectable)); 1809 EmitBranch(true_block, false_block, ne, at, Operand(zero_reg)); 1810 } 1811 1812 1813 static Condition ComputeCompareCondition(Token::Value op) { 1814 switch (op) { 1815 case Token::EQ_STRICT: 1816 case Token::EQ: 1817 return eq; 1818 case Token::LT: 1819 return lt; 1820 case Token::GT: 1821 return gt; 1822 case Token::LTE: 1823 return le; 1824 case Token::GTE: 1825 return ge; 1826 default: 1827 UNREACHABLE(); 1828 return kNoCondition; 1829 } 1830 } 1831 1832 1833 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { 1834 Token::Value op = instr->op(); 1835 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1836 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1837 1838 Handle<Code> ic = CompareIC::GetUninitialized(op); 1839 CallCode(ic, RelocInfo::CODE_TARGET, instr); 1840 1841 Condition condition = ComputeCompareCondition(op); 1842 1843 EmitBranch(true_block, false_block, condition, v0, Operand(zero_reg)); 1844 } 1845 1846 1847 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { 1848 InstanceType from = instr->from(); 1849 InstanceType to = instr->to(); 1850 if (from == FIRST_TYPE) return to; 1851 ASSERT(from == to || to == LAST_TYPE); 1852 return from; 1853 } 1854 1855 1856 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { 1857 InstanceType from = instr->from(); 1858 InstanceType to = instr->to(); 1859 if (from == to) return eq; 1860 if (to == LAST_TYPE) return hs; 1861 if (from == FIRST_TYPE) return ls; 1862 UNREACHABLE(); 1863 return eq; 1864 } 1865 1866 1867 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { 1868 Register scratch = scratch0(); 1869 Register input = ToRegister(instr->InputAt(0)); 1870 1871 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1872 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1873 1874 Label* false_label = chunk_->GetAssemblyLabel(false_block); 1875 1876 __ JumpIfSmi(input, false_label); 1877 1878 __ GetObjectType(input, scratch, scratch); 1879 EmitBranch(true_block, 1880 false_block, 1881 BranchCondition(instr->hydrogen()), 1882 scratch, 1883 Operand(TestType(instr->hydrogen()))); 1884 } 1885 1886 1887 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { 1888 Register input = ToRegister(instr->InputAt(0)); 1889 Register result = ToRegister(instr->result()); 1890 1891 if (FLAG_debug_code) { 1892 __ AbortIfNotString(input); 1893 } 1894 1895 __ lw(result, FieldMemOperand(input, String::kHashFieldOffset)); 1896 __ IndexFromHash(result, result); 1897 } 1898 1899 1900 void LCodeGen::DoHasCachedArrayIndexAndBranch( 1901 LHasCachedArrayIndexAndBranch* instr) { 1902 Register input = ToRegister(instr->InputAt(0)); 1903 Register scratch = scratch0(); 1904 1905 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1906 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1907 1908 __ lw(scratch, 1909 FieldMemOperand(input, String::kHashFieldOffset)); 1910 __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask)); 1911 EmitBranch(true_block, false_block, eq, at, Operand(zero_reg)); 1912 } 1913 1914 1915 // Branches to a label or falls through with the answer in flags. Trashes 1916 // the temp registers, but not the input. 1917 void LCodeGen::EmitClassOfTest(Label* is_true, 1918 Label* is_false, 1919 Handle<String>class_name, 1920 Register input, 1921 Register temp, 1922 Register temp2) { 1923 ASSERT(!input.is(temp)); 1924 ASSERT(!input.is(temp2)); 1925 ASSERT(!temp.is(temp2)); 1926 1927 __ JumpIfSmi(input, is_false); 1928 1929 if (class_name->IsEqualTo(CStrVector("Function"))) { 1930 // Assuming the following assertions, we can use the same compares to test 1931 // for both being a function type and being in the object type range. 1932 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 1933 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == 1934 FIRST_SPEC_OBJECT_TYPE + 1); 1935 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == 1936 LAST_SPEC_OBJECT_TYPE - 1); 1937 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); 1938 1939 __ GetObjectType(input, temp, temp2); 1940 __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); 1941 __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); 1942 __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE)); 1943 } else { 1944 // Faster code path to avoid two compares: subtract lower bound from the 1945 // actual type and do a signed compare with the width of the type range. 1946 __ GetObjectType(input, temp, temp2); 1947 __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 1948 __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - 1949 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 1950 } 1951 1952 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. 1953 // Check if the constructor in the map is a function. 1954 __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset)); 1955 1956 // Objects with a non-function constructor have class 'Object'. 1957 __ GetObjectType(temp, temp2, temp2); 1958 if (class_name->IsEqualTo(CStrVector("Object"))) { 1959 __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE)); 1960 } else { 1961 __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE)); 1962 } 1963 1964 // temp now contains the constructor function. Grab the 1965 // instance class name from there. 1966 __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); 1967 __ lw(temp, FieldMemOperand(temp, 1968 SharedFunctionInfo::kInstanceClassNameOffset)); 1969 // The class name we are testing against is a symbol because it's a literal. 1970 // The name in the constructor is a symbol because of the way the context is 1971 // booted. This routine isn't expected to work for random API-created 1972 // classes and it doesn't have to because you can't access it with natives 1973 // syntax. Since both sides are symbols it is sufficient to use an identity 1974 // comparison. 1975 1976 // End with the address of this class_name instance in temp register. 1977 // On MIPS, the caller must do the comparison with Handle<String>class_name. 1978 } 1979 1980 1981 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { 1982 Register input = ToRegister(instr->InputAt(0)); 1983 Register temp = scratch0(); 1984 Register temp2 = ToRegister(instr->TempAt(0)); 1985 Handle<String> class_name = instr->hydrogen()->class_name(); 1986 1987 int true_block = chunk_->LookupDestination(instr->true_block_id()); 1988 int false_block = chunk_->LookupDestination(instr->false_block_id()); 1989 1990 Label* true_label = chunk_->GetAssemblyLabel(true_block); 1991 Label* false_label = chunk_->GetAssemblyLabel(false_block); 1992 1993 EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2); 1994 1995 EmitBranch(true_block, false_block, eq, temp, Operand(class_name)); 1996 } 1997 1998 1999 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { 2000 Register reg = ToRegister(instr->InputAt(0)); 2001 Register temp = ToRegister(instr->TempAt(0)); 2002 int true_block = instr->true_block_id(); 2003 int false_block = instr->false_block_id(); 2004 2005 __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); 2006 EmitBranch(true_block, false_block, eq, temp, Operand(instr->map())); 2007 } 2008 2009 2010 void LCodeGen::DoInstanceOf(LInstanceOf* instr) { 2011 Label true_label, done; 2012 ASSERT(ToRegister(instr->InputAt(0)).is(a0)); // Object is in a0. 2013 ASSERT(ToRegister(instr->InputAt(1)).is(a1)); // Function is in a1. 2014 Register result = ToRegister(instr->result()); 2015 ASSERT(result.is(v0)); 2016 2017 InstanceofStub stub(InstanceofStub::kArgsInRegisters); 2018 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2019 2020 __ Branch(&true_label, eq, result, Operand(zero_reg)); 2021 __ li(result, Operand(factory()->false_value())); 2022 __ Branch(&done); 2023 __ bind(&true_label); 2024 __ li(result, Operand(factory()->true_value())); 2025 __ bind(&done); 2026 } 2027 2028 2029 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { 2030 class DeferredInstanceOfKnownGlobal: public LDeferredCode { 2031 public: 2032 DeferredInstanceOfKnownGlobal(LCodeGen* codegen, 2033 LInstanceOfKnownGlobal* instr) 2034 : LDeferredCode(codegen), instr_(instr) { } 2035 virtual void Generate() { 2036 codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); 2037 } 2038 virtual LInstruction* instr() { return instr_; } 2039 Label* map_check() { return &map_check_; } 2040 2041 private: 2042 LInstanceOfKnownGlobal* instr_; 2043 Label map_check_; 2044 }; 2045 2046 DeferredInstanceOfKnownGlobal* deferred; 2047 deferred = new DeferredInstanceOfKnownGlobal(this, instr); 2048 2049 Label done, false_result; 2050 Register object = ToRegister(instr->InputAt(0)); 2051 Register temp = ToRegister(instr->TempAt(0)); 2052 Register result = ToRegister(instr->result()); 2053 2054 ASSERT(object.is(a0)); 2055 ASSERT(result.is(v0)); 2056 2057 // A Smi is not instance of anything. 2058 __ JumpIfSmi(object, &false_result); 2059 2060 // This is the inlined call site instanceof cache. The two occurences of the 2061 // hole value will be patched to the last map/result pair generated by the 2062 // instanceof stub. 2063 Label cache_miss; 2064 Register map = temp; 2065 __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); 2066 2067 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); 2068 __ bind(deferred->map_check()); // Label for calculating code patching. 2069 // We use Factory::the_hole_value() on purpose instead of loading from the 2070 // root array to force relocation to be able to later patch with 2071 // the cached map. 2072 Handle<JSGlobalPropertyCell> cell = 2073 factory()->NewJSGlobalPropertyCell(factory()->the_hole_value()); 2074 __ li(at, Operand(Handle<Object>(cell))); 2075 __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); 2076 __ Branch(&cache_miss, ne, map, Operand(at)); 2077 // We use Factory::the_hole_value() on purpose instead of loading from the 2078 // root array to force relocation to be able to later patch 2079 // with true or false. 2080 __ li(result, Operand(factory()->the_hole_value()), CONSTANT_SIZE); 2081 __ Branch(&done); 2082 2083 // The inlined call site cache did not match. Check null and string before 2084 // calling the deferred code. 2085 __ bind(&cache_miss); 2086 // Null is not instance of anything. 2087 __ LoadRoot(temp, Heap::kNullValueRootIndex); 2088 __ Branch(&false_result, eq, object, Operand(temp)); 2089 2090 // String values is not instance of anything. 2091 Condition cc = __ IsObjectStringType(object, temp, temp); 2092 __ Branch(&false_result, cc, temp, Operand(zero_reg)); 2093 2094 // Go to the deferred code. 2095 __ Branch(deferred->entry()); 2096 2097 __ bind(&false_result); 2098 __ LoadRoot(result, Heap::kFalseValueRootIndex); 2099 2100 // Here result has either true or false. Deferred code also produces true or 2101 // false object. 2102 __ bind(deferred->exit()); 2103 __ bind(&done); 2104 } 2105 2106 2107 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, 2108 Label* map_check) { 2109 Register result = ToRegister(instr->result()); 2110 ASSERT(result.is(v0)); 2111 2112 InstanceofStub::Flags flags = InstanceofStub::kNoFlags; 2113 flags = static_cast<InstanceofStub::Flags>( 2114 flags | InstanceofStub::kArgsInRegisters); 2115 flags = static_cast<InstanceofStub::Flags>( 2116 flags | InstanceofStub::kCallSiteInlineCheck); 2117 flags = static_cast<InstanceofStub::Flags>( 2118 flags | InstanceofStub::kReturnTrueFalseObject); 2119 InstanceofStub stub(flags); 2120 2121 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); 2122 2123 // Get the temp register reserved by the instruction. This needs to be t0 as 2124 // its slot of the pushing of safepoint registers is used to communicate the 2125 // offset to the location of the map check. 2126 Register temp = ToRegister(instr->TempAt(0)); 2127 ASSERT(temp.is(t0)); 2128 __ LoadHeapObject(InstanceofStub::right(), instr->function()); 2129 static const int kAdditionalDelta = 7; 2130 int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta; 2131 Label before_push_delta; 2132 __ bind(&before_push_delta); 2133 { 2134 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); 2135 __ li(temp, Operand(delta * kPointerSize), CONSTANT_SIZE); 2136 __ StoreToSafepointRegisterSlot(temp, temp); 2137 } 2138 CallCodeGeneric(stub.GetCode(), 2139 RelocInfo::CODE_TARGET, 2140 instr, 2141 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 2142 ASSERT(instr->HasDeoptimizationEnvironment()); 2143 LEnvironment* env = instr->deoptimization_environment(); 2144 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 2145 // Put the result value into the result register slot and 2146 // restore all registers. 2147 __ StoreToSafepointRegisterSlot(result, result); 2148 } 2149 2150 2151 void LCodeGen::DoCmpT(LCmpT* instr) { 2152 Token::Value op = instr->op(); 2153 2154 Handle<Code> ic = CompareIC::GetUninitialized(op); 2155 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2156 // On MIPS there is no need for a "no inlined smi code" marker (nop). 2157 2158 Condition condition = ComputeCompareCondition(op); 2159 // A minor optimization that relies on LoadRoot always emitting one 2160 // instruction. 2161 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); 2162 Label done; 2163 __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg)); 2164 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); 2165 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); 2166 ASSERT_EQ(3, masm()->InstructionsGeneratedSince(&done)); 2167 __ bind(&done); 2168 } 2169 2170 2171 void LCodeGen::DoReturn(LReturn* instr) { 2172 if (FLAG_trace) { 2173 // Push the return value on the stack as the parameter. 2174 // Runtime::TraceExit returns its parameter in v0. 2175 __ push(v0); 2176 __ CallRuntime(Runtime::kTraceExit, 1); 2177 } 2178 int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize; 2179 __ mov(sp, fp); 2180 __ Pop(ra, fp); 2181 __ Addu(sp, sp, Operand(sp_delta)); 2182 __ Jump(ra); 2183 } 2184 2185 2186 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { 2187 Register result = ToRegister(instr->result()); 2188 __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell()))); 2189 __ lw(result, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); 2190 if (instr->hydrogen()->RequiresHoleCheck()) { 2191 __ LoadRoot(at, Heap::kTheHoleValueRootIndex); 2192 DeoptimizeIf(eq, instr->environment(), result, Operand(at)); 2193 } 2194 } 2195 2196 2197 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { 2198 ASSERT(ToRegister(instr->global_object()).is(a0)); 2199 ASSERT(ToRegister(instr->result()).is(v0)); 2200 2201 __ li(a2, Operand(instr->name())); 2202 RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET 2203 : RelocInfo::CODE_TARGET_CONTEXT; 2204 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); 2205 CallCode(ic, mode, instr); 2206 } 2207 2208 2209 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { 2210 Register value = ToRegister(instr->value()); 2211 Register cell = scratch0(); 2212 2213 // Load the cell. 2214 __ li(cell, Operand(instr->hydrogen()->cell())); 2215 2216 // If the cell we are storing to contains the hole it could have 2217 // been deleted from the property dictionary. In that case, we need 2218 // to update the property details in the property dictionary to mark 2219 // it as no longer deleted. 2220 if (instr->hydrogen()->RequiresHoleCheck()) { 2221 // We use a temp to check the payload. 2222 Register payload = ToRegister(instr->TempAt(0)); 2223 __ lw(payload, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset)); 2224 __ LoadRoot(at, Heap::kTheHoleValueRootIndex); 2225 DeoptimizeIf(eq, instr->environment(), payload, Operand(at)); 2226 } 2227 2228 // Store the value. 2229 __ sw(value, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset)); 2230 // Cells are always rescanned, so no write barrier here. 2231 } 2232 2233 2234 void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { 2235 ASSERT(ToRegister(instr->global_object()).is(a1)); 2236 ASSERT(ToRegister(instr->value()).is(a0)); 2237 2238 __ li(a2, Operand(instr->name())); 2239 Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) 2240 ? isolate()->builtins()->StoreIC_Initialize_Strict() 2241 : isolate()->builtins()->StoreIC_Initialize(); 2242 CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); 2243 } 2244 2245 2246 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { 2247 Register context = ToRegister(instr->context()); 2248 Register result = ToRegister(instr->result()); 2249 2250 __ lw(result, ContextOperand(context, instr->slot_index())); 2251 if (instr->hydrogen()->RequiresHoleCheck()) { 2252 __ LoadRoot(at, Heap::kTheHoleValueRootIndex); 2253 2254 if (instr->hydrogen()->DeoptimizesOnHole()) { 2255 DeoptimizeIf(eq, instr->environment(), result, Operand(at)); 2256 } else { 2257 Label is_not_hole; 2258 __ Branch(&is_not_hole, ne, result, Operand(at)); 2259 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); 2260 __ bind(&is_not_hole); 2261 } 2262 } 2263 } 2264 2265 2266 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { 2267 Register context = ToRegister(instr->context()); 2268 Register value = ToRegister(instr->value()); 2269 Register scratch = scratch0(); 2270 MemOperand target = ContextOperand(context, instr->slot_index()); 2271 2272 Label skip_assignment; 2273 2274 if (instr->hydrogen()->RequiresHoleCheck()) { 2275 __ lw(scratch, target); 2276 __ LoadRoot(at, Heap::kTheHoleValueRootIndex); 2277 2278 if (instr->hydrogen()->DeoptimizesOnHole()) { 2279 DeoptimizeIf(eq, instr->environment(), scratch, Operand(at)); 2280 } else { 2281 __ Branch(&skip_assignment, ne, scratch, Operand(at)); 2282 } 2283 } 2284 2285 __ sw(value, target); 2286 if (instr->hydrogen()->NeedsWriteBarrier()) { 2287 HType type = instr->hydrogen()->value()->type(); 2288 SmiCheck check_needed = 2289 type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 2290 __ RecordWriteContextSlot(context, 2291 target.offset(), 2292 value, 2293 scratch0(), 2294 kRAHasBeenSaved, 2295 kSaveFPRegs, 2296 EMIT_REMEMBERED_SET, 2297 check_needed); 2298 } 2299 2300 __ bind(&skip_assignment); 2301 } 2302 2303 2304 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { 2305 Register object = ToRegister(instr->InputAt(0)); 2306 Register result = ToRegister(instr->result()); 2307 if (instr->hydrogen()->is_in_object()) { 2308 __ lw(result, FieldMemOperand(object, instr->hydrogen()->offset())); 2309 } else { 2310 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 2311 __ lw(result, FieldMemOperand(result, instr->hydrogen()->offset())); 2312 } 2313 } 2314 2315 2316 void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, 2317 Register object, 2318 Handle<Map> type, 2319 Handle<String> name) { 2320 LookupResult lookup(isolate()); 2321 type->LookupInDescriptors(NULL, *name, &lookup); 2322 ASSERT(lookup.IsFound() && 2323 (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION)); 2324 if (lookup.type() == FIELD) { 2325 int index = lookup.GetLocalFieldIndexFromMap(*type); 2326 int offset = index * kPointerSize; 2327 if (index < 0) { 2328 // Negative property indices are in-object properties, indexed 2329 // from the end of the fixed part of the object. 2330 __ lw(result, FieldMemOperand(object, offset + type->instance_size())); 2331 } else { 2332 // Non-negative property indices are in the properties array. 2333 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 2334 __ lw(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize)); 2335 } 2336 } else { 2337 Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type)); 2338 __ LoadHeapObject(result, function); 2339 } 2340 } 2341 2342 2343 void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { 2344 Register object = ToRegister(instr->object()); 2345 Register result = ToRegister(instr->result()); 2346 Register scratch = scratch0(); 2347 int map_count = instr->hydrogen()->types()->length(); 2348 Handle<String> name = instr->hydrogen()->name(); 2349 if (map_count == 0) { 2350 ASSERT(instr->hydrogen()->need_generic()); 2351 __ li(a2, Operand(name)); 2352 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); 2353 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2354 } else { 2355 Label done; 2356 __ lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 2357 for (int i = 0; i < map_count - 1; ++i) { 2358 Handle<Map> map = instr->hydrogen()->types()->at(i); 2359 Label next; 2360 __ Branch(&next, ne, scratch, Operand(map)); 2361 EmitLoadFieldOrConstantFunction(result, object, map, name); 2362 __ Branch(&done); 2363 __ bind(&next); 2364 } 2365 Handle<Map> map = instr->hydrogen()->types()->last(); 2366 if (instr->hydrogen()->need_generic()) { 2367 Label generic; 2368 __ Branch(&generic, ne, scratch, Operand(map)); 2369 EmitLoadFieldOrConstantFunction(result, object, map, name); 2370 __ Branch(&done); 2371 __ bind(&generic); 2372 __ li(a2, Operand(name)); 2373 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); 2374 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2375 } else { 2376 DeoptimizeIf(ne, instr->environment(), scratch, Operand(map)); 2377 EmitLoadFieldOrConstantFunction(result, object, map, name); 2378 } 2379 __ bind(&done); 2380 } 2381 } 2382 2383 2384 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { 2385 ASSERT(ToRegister(instr->object()).is(a0)); 2386 ASSERT(ToRegister(instr->result()).is(v0)); 2387 2388 // Name is always in a2. 2389 __ li(a2, Operand(instr->name())); 2390 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); 2391 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2392 } 2393 2394 2395 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { 2396 Register scratch = scratch0(); 2397 Register function = ToRegister(instr->function()); 2398 Register result = ToRegister(instr->result()); 2399 2400 // Check that the function really is a function. Load map into the 2401 // result register. 2402 __ GetObjectType(function, result, scratch); 2403 DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_FUNCTION_TYPE)); 2404 2405 // Make sure that the function has an instance prototype. 2406 Label non_instance; 2407 __ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); 2408 __ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); 2409 __ Branch(&non_instance, ne, scratch, Operand(zero_reg)); 2410 2411 // Get the prototype or initial map from the function. 2412 __ lw(result, 2413 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 2414 2415 // Check that the function has a prototype or an initial map. 2416 __ LoadRoot(at, Heap::kTheHoleValueRootIndex); 2417 DeoptimizeIf(eq, instr->environment(), result, Operand(at)); 2418 2419 // If the function does not have an initial map, we're done. 2420 Label done; 2421 __ GetObjectType(result, scratch, scratch); 2422 __ Branch(&done, ne, scratch, Operand(MAP_TYPE)); 2423 2424 // Get the prototype from the initial map. 2425 __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); 2426 __ Branch(&done); 2427 2428 // Non-instance prototype: Fetch prototype from constructor field 2429 // in initial map. 2430 __ bind(&non_instance); 2431 __ lw(result, FieldMemOperand(result, Map::kConstructorOffset)); 2432 2433 // All done. 2434 __ bind(&done); 2435 } 2436 2437 2438 void LCodeGen::DoLoadElements(LLoadElements* instr) { 2439 Register result = ToRegister(instr->result()); 2440 Register input = ToRegister(instr->InputAt(0)); 2441 Register scratch = scratch0(); 2442 2443 __ lw(result, FieldMemOperand(input, JSObject::kElementsOffset)); 2444 if (FLAG_debug_code) { 2445 Label done, fail; 2446 __ lw(scratch, FieldMemOperand(result, HeapObject::kMapOffset)); 2447 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); 2448 __ Branch(USE_DELAY_SLOT, &done, eq, scratch, Operand(at)); 2449 __ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); // In the delay slot. 2450 __ Branch(&done, eq, scratch, Operand(at)); 2451 // |scratch| still contains |input|'s map. 2452 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitField2Offset)); 2453 __ Ext(scratch, scratch, Map::kElementsKindShift, 2454 Map::kElementsKindBitCount); 2455 __ Branch(&done, eq, scratch, 2456 Operand(FAST_ELEMENTS)); 2457 __ Branch(&fail, lt, scratch, 2458 Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND)); 2459 __ Branch(&done, le, scratch, 2460 Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND)); 2461 __ bind(&fail); 2462 __ Abort("Check for fast or external elements failed."); 2463 __ bind(&done); 2464 } 2465 } 2466 2467 2468 void LCodeGen::DoLoadExternalArrayPointer( 2469 LLoadExternalArrayPointer* instr) { 2470 Register to_reg = ToRegister(instr->result()); 2471 Register from_reg = ToRegister(instr->InputAt(0)); 2472 __ lw(to_reg, FieldMemOperand(from_reg, 2473 ExternalArray::kExternalPointerOffset)); 2474 } 2475 2476 2477 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { 2478 Register arguments = ToRegister(instr->arguments()); 2479 Register length = ToRegister(instr->length()); 2480 Register index = ToRegister(instr->index()); 2481 Register result = ToRegister(instr->result()); 2482 2483 // Bailout index is not a valid argument index. Use unsigned check to get 2484 // negative check for free. 2485 2486 // TODO(plind): Shoud be optimized to do the sub before the DeoptimizeIf(), 2487 // as they do in Arm. It will save us an instruction. 2488 DeoptimizeIf(ls, instr->environment(), length, Operand(index)); 2489 2490 // There are two words between the frame pointer and the last argument. 2491 // Subtracting from length accounts for one of them, add one more. 2492 __ subu(length, length, index); 2493 __ Addu(length, length, Operand(1)); 2494 __ sll(length, length, kPointerSizeLog2); 2495 __ Addu(at, arguments, Operand(length)); 2496 __ lw(result, MemOperand(at, 0)); 2497 } 2498 2499 2500 void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { 2501 Register elements = ToRegister(instr->elements()); 2502 Register key = EmitLoadRegister(instr->key(), scratch0()); 2503 Register result = ToRegister(instr->result()); 2504 Register scratch = scratch0(); 2505 2506 // Load the result. 2507 __ sll(scratch, key, kPointerSizeLog2); // Key indexes words. 2508 __ addu(scratch, elements, scratch); 2509 __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize)); 2510 2511 // Check for the hole value. 2512 if (instr->hydrogen()->RequiresHoleCheck()) { 2513 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); 2514 DeoptimizeIf(eq, instr->environment(), result, Operand(scratch)); 2515 } 2516 } 2517 2518 2519 void LCodeGen::DoLoadKeyedFastDoubleElement( 2520 LLoadKeyedFastDoubleElement* instr) { 2521 Register elements = ToRegister(instr->elements()); 2522 bool key_is_constant = instr->key()->IsConstantOperand(); 2523 Register key = no_reg; 2524 DoubleRegister result = ToDoubleRegister(instr->result()); 2525 Register scratch = scratch0(); 2526 2527 int shift_size = 2528 ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); 2529 int constant_key = 0; 2530 if (key_is_constant) { 2531 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 2532 if (constant_key & 0xF0000000) { 2533 Abort("array index constant value too big."); 2534 } 2535 } else { 2536 key = ToRegister(instr->key()); 2537 } 2538 2539 if (key_is_constant) { 2540 __ Addu(elements, elements, Operand(constant_key * (1 << shift_size) + 2541 FixedDoubleArray::kHeaderSize - kHeapObjectTag)); 2542 } else { 2543 __ sll(scratch, key, shift_size); 2544 __ Addu(elements, elements, Operand(scratch)); 2545 __ Addu(elements, elements, 2546 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); 2547 } 2548 2549 __ lw(scratch, MemOperand(elements, sizeof(kHoleNanLower32))); 2550 DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32)); 2551 2552 __ ldc1(result, MemOperand(elements)); 2553 } 2554 2555 2556 void LCodeGen::DoLoadKeyedSpecializedArrayElement( 2557 LLoadKeyedSpecializedArrayElement* instr) { 2558 Register external_pointer = ToRegister(instr->external_pointer()); 2559 Register key = no_reg; 2560 ElementsKind elements_kind = instr->elements_kind(); 2561 bool key_is_constant = instr->key()->IsConstantOperand(); 2562 int constant_key = 0; 2563 if (key_is_constant) { 2564 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 2565 if (constant_key & 0xF0000000) { 2566 Abort("array index constant value too big."); 2567 } 2568 } else { 2569 key = ToRegister(instr->key()); 2570 } 2571 int shift_size = ElementsKindToShiftSize(elements_kind); 2572 2573 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || 2574 elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { 2575 FPURegister result = ToDoubleRegister(instr->result()); 2576 if (key_is_constant) { 2577 __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size)); 2578 } else { 2579 __ sll(scratch0(), key, shift_size); 2580 __ Addu(scratch0(), scratch0(), external_pointer); 2581 } 2582 2583 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { 2584 __ lwc1(result, MemOperand(scratch0())); 2585 __ cvt_d_s(result, result); 2586 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS 2587 __ ldc1(result, MemOperand(scratch0())); 2588 } 2589 } else { 2590 Register result = ToRegister(instr->result()); 2591 Register scratch = scratch0(); 2592 MemOperand mem_operand(zero_reg); 2593 if (key_is_constant) { 2594 mem_operand = MemOperand(external_pointer, 2595 constant_key * (1 << shift_size)); 2596 } else { 2597 __ sll(scratch, key, shift_size); 2598 __ Addu(scratch, scratch, external_pointer); 2599 mem_operand = MemOperand(scratch); 2600 } 2601 switch (elements_kind) { 2602 case EXTERNAL_BYTE_ELEMENTS: 2603 __ lb(result, mem_operand); 2604 break; 2605 case EXTERNAL_PIXEL_ELEMENTS: 2606 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: 2607 __ lbu(result, mem_operand); 2608 break; 2609 case EXTERNAL_SHORT_ELEMENTS: 2610 __ lh(result, mem_operand); 2611 break; 2612 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: 2613 __ lhu(result, mem_operand); 2614 break; 2615 case EXTERNAL_INT_ELEMENTS: 2616 __ lw(result, mem_operand); 2617 break; 2618 case EXTERNAL_UNSIGNED_INT_ELEMENTS: 2619 __ lw(result, mem_operand); 2620 // TODO(danno): we could be more clever here, perhaps having a special 2621 // version of the stub that detects if the overflow case actually 2622 // happens, and generate code that returns a double rather than int. 2623 DeoptimizeIf(Ugreater_equal, instr->environment(), 2624 result, Operand(0x80000000)); 2625 break; 2626 case EXTERNAL_FLOAT_ELEMENTS: 2627 case EXTERNAL_DOUBLE_ELEMENTS: 2628 case FAST_DOUBLE_ELEMENTS: 2629 case FAST_ELEMENTS: 2630 case FAST_SMI_ONLY_ELEMENTS: 2631 case DICTIONARY_ELEMENTS: 2632 case NON_STRICT_ARGUMENTS_ELEMENTS: 2633 UNREACHABLE(); 2634 break; 2635 } 2636 } 2637 } 2638 2639 2640 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { 2641 ASSERT(ToRegister(instr->object()).is(a1)); 2642 ASSERT(ToRegister(instr->key()).is(a0)); 2643 2644 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); 2645 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2646 } 2647 2648 2649 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { 2650 Register scratch = scratch0(); 2651 Register temp = scratch1(); 2652 Register result = ToRegister(instr->result()); 2653 2654 // Check if the calling frame is an arguments adaptor frame. 2655 Label done, adapted; 2656 __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 2657 __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); 2658 __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 2659 2660 // Result is the frame pointer for the frame if not adapted and for the real 2661 // frame below the adaptor frame if adapted. 2662 __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne). 2663 __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq). 2664 } 2665 2666 2667 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { 2668 Register elem = ToRegister(instr->InputAt(0)); 2669 Register result = ToRegister(instr->result()); 2670 2671 Label done; 2672 2673 // If no arguments adaptor frame the number of arguments is fixed. 2674 __ Addu(result, zero_reg, Operand(scope()->num_parameters())); 2675 __ Branch(&done, eq, fp, Operand(elem)); 2676 2677 // Arguments adaptor frame present. Get argument length from there. 2678 __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 2679 __ lw(result, 2680 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); 2681 __ SmiUntag(result); 2682 2683 // Argument length is in result register. 2684 __ bind(&done); 2685 } 2686 2687 2688 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { 2689 Register receiver = ToRegister(instr->receiver()); 2690 Register function = ToRegister(instr->function()); 2691 Register scratch = scratch0(); 2692 2693 // If the receiver is null or undefined, we have to pass the global 2694 // object as a receiver to normal functions. Values have to be 2695 // passed unchanged to builtins and strict-mode functions. 2696 Label global_object, receiver_ok; 2697 2698 // Do not transform the receiver to object for strict mode 2699 // functions. 2700 __ lw(scratch, 2701 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); 2702 __ lw(scratch, 2703 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); 2704 2705 // Do not transform the receiver to object for builtins. 2706 int32_t strict_mode_function_mask = 2707 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize); 2708 int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize); 2709 __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask)); 2710 __ Branch(&receiver_ok, ne, scratch, Operand(zero_reg)); 2711 2712 // Normal function. Replace undefined or null with global receiver. 2713 __ LoadRoot(scratch, Heap::kNullValueRootIndex); 2714 __ Branch(&global_object, eq, receiver, Operand(scratch)); 2715 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 2716 __ Branch(&global_object, eq, receiver, Operand(scratch)); 2717 2718 // Deoptimize if the receiver is not a JS object. 2719 __ And(scratch, receiver, Operand(kSmiTagMask)); 2720 DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg)); 2721 2722 __ GetObjectType(receiver, scratch, scratch); 2723 DeoptimizeIf(lt, instr->environment(), 2724 scratch, Operand(FIRST_SPEC_OBJECT_TYPE)); 2725 __ Branch(&receiver_ok); 2726 2727 __ bind(&global_object); 2728 __ lw(receiver, GlobalObjectOperand()); 2729 __ lw(receiver, 2730 FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); 2731 __ bind(&receiver_ok); 2732 } 2733 2734 void LCodeGen::DoApplyArguments(LApplyArguments* instr) { 2735 Register receiver = ToRegister(instr->receiver()); 2736 Register function = ToRegister(instr->function()); 2737 Register length = ToRegister(instr->length()); 2738 Register elements = ToRegister(instr->elements()); 2739 Register scratch = scratch0(); 2740 ASSERT(receiver.is(a0)); // Used for parameter count. 2741 ASSERT(function.is(a1)); // Required by InvokeFunction. 2742 ASSERT(ToRegister(instr->result()).is(v0)); 2743 2744 // Copy the arguments to this function possibly from the 2745 // adaptor frame below it. 2746 const uint32_t kArgumentsLimit = 1 * KB; 2747 DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit)); 2748 2749 // Push the receiver and use the register to keep the original 2750 // number of arguments. 2751 __ push(receiver); 2752 __ Move(receiver, length); 2753 // The arguments are at a one pointer size offset from elements. 2754 __ Addu(elements, elements, Operand(1 * kPointerSize)); 2755 2756 // Loop through the arguments pushing them onto the execution 2757 // stack. 2758 Label invoke, loop; 2759 // length is a small non-negative integer, due to the test above. 2760 __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg)); 2761 __ sll(scratch, length, 2); 2762 __ bind(&loop); 2763 __ Addu(scratch, elements, scratch); 2764 __ lw(scratch, MemOperand(scratch)); 2765 __ push(scratch); 2766 __ Subu(length, length, Operand(1)); 2767 __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg)); 2768 __ sll(scratch, length, 2); 2769 2770 __ bind(&invoke); 2771 ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); 2772 LPointerMap* pointers = instr->pointer_map(); 2773 RecordPosition(pointers->position()); 2774 SafepointGenerator safepoint_generator( 2775 this, pointers, Safepoint::kLazyDeopt); 2776 // The number of arguments is stored in receiver which is a0, as expected 2777 // by InvokeFunction. 2778 ParameterCount actual(receiver); 2779 __ InvokeFunction(function, actual, CALL_FUNCTION, 2780 safepoint_generator, CALL_AS_METHOD); 2781 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2782 } 2783 2784 2785 void LCodeGen::DoPushArgument(LPushArgument* instr) { 2786 LOperand* argument = instr->InputAt(0); 2787 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { 2788 Abort("DoPushArgument not implemented for double type."); 2789 } else { 2790 Register argument_reg = EmitLoadRegister(argument, at); 2791 __ push(argument_reg); 2792 } 2793 } 2794 2795 2796 void LCodeGen::DoThisFunction(LThisFunction* instr) { 2797 Register result = ToRegister(instr->result()); 2798 __ LoadHeapObject(result, instr->hydrogen()->closure()); 2799 } 2800 2801 2802 void LCodeGen::DoContext(LContext* instr) { 2803 Register result = ToRegister(instr->result()); 2804 __ mov(result, cp); 2805 } 2806 2807 2808 void LCodeGen::DoOuterContext(LOuterContext* instr) { 2809 Register context = ToRegister(instr->context()); 2810 Register result = ToRegister(instr->result()); 2811 __ lw(result, 2812 MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); 2813 } 2814 2815 2816 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { 2817 __ LoadHeapObject(scratch0(), instr->hydrogen()->pairs()); 2818 __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); 2819 // The context is the first argument. 2820 __ Push(cp, scratch0(), scratch1()); 2821 CallRuntime(Runtime::kDeclareGlobals, 3, instr); 2822 } 2823 2824 2825 void LCodeGen::DoGlobalObject(LGlobalObject* instr) { 2826 Register result = ToRegister(instr->result()); 2827 __ lw(result, ContextOperand(cp, Context::GLOBAL_INDEX)); 2828 } 2829 2830 2831 void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { 2832 Register global = ToRegister(instr->global()); 2833 Register result = ToRegister(instr->result()); 2834 __ lw(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset)); 2835 } 2836 2837 2838 void LCodeGen::CallKnownFunction(Handle<JSFunction> function, 2839 int arity, 2840 LInstruction* instr, 2841 CallKind call_kind) { 2842 bool can_invoke_directly = !function->NeedsArgumentsAdaption() || 2843 function->shared()->formal_parameter_count() == arity; 2844 2845 LPointerMap* pointers = instr->pointer_map(); 2846 RecordPosition(pointers->position()); 2847 2848 if (can_invoke_directly) { 2849 __ LoadHeapObject(a1, function); 2850 // Change context if needed. 2851 bool change_context = 2852 (info()->closure()->context() != function->context()) || 2853 scope()->contains_with() || 2854 (scope()->num_heap_slots() > 0); 2855 if (change_context) { 2856 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); 2857 } 2858 2859 // Set r0 to arguments count if adaption is not needed. Assumes that r0 2860 // is available to write to at this point. 2861 if (!function->NeedsArgumentsAdaption()) { 2862 __ li(a0, Operand(arity)); 2863 } 2864 2865 // Invoke function. 2866 __ SetCallKind(t1, call_kind); 2867 __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 2868 __ Call(at); 2869 2870 // Set up deoptimization. 2871 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 2872 } else { 2873 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 2874 ParameterCount count(arity); 2875 __ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind); 2876 } 2877 2878 // Restore context. 2879 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2880 } 2881 2882 2883 void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { 2884 ASSERT(ToRegister(instr->result()).is(v0)); 2885 __ mov(a0, v0); 2886 CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD); 2887 } 2888 2889 2890 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { 2891 Register input = ToRegister(instr->InputAt(0)); 2892 Register result = ToRegister(instr->result()); 2893 Register scratch = scratch0(); 2894 2895 // Deoptimize if not a heap number. 2896 __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); 2897 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); 2898 DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); 2899 2900 Label done; 2901 Register exponent = scratch0(); 2902 scratch = no_reg; 2903 __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); 2904 // Check the sign of the argument. If the argument is positive, just 2905 // return it. 2906 __ Move(result, input); 2907 __ And(at, exponent, Operand(HeapNumber::kSignMask)); 2908 __ Branch(&done, eq, at, Operand(zero_reg)); 2909 2910 // Input is negative. Reverse its sign. 2911 // Preserve the value of all registers. 2912 { 2913 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); 2914 2915 // Registers were saved at the safepoint, so we can use 2916 // many scratch registers. 2917 Register tmp1 = input.is(a1) ? a0 : a1; 2918 Register tmp2 = input.is(a2) ? a0 : a2; 2919 Register tmp3 = input.is(a3) ? a0 : a3; 2920 Register tmp4 = input.is(t0) ? a0 : t0; 2921 2922 // exponent: floating point exponent value. 2923 2924 Label allocated, slow; 2925 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); 2926 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); 2927 __ Branch(&allocated); 2928 2929 // Slow case: Call the runtime system to do the number allocation. 2930 __ bind(&slow); 2931 2932 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); 2933 // Set the pointer to the new heap number in tmp. 2934 if (!tmp1.is(v0)) 2935 __ mov(tmp1, v0); 2936 // Restore input_reg after call to runtime. 2937 __ LoadFromSafepointRegisterSlot(input, input); 2938 __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); 2939 2940 __ bind(&allocated); 2941 // exponent: floating point exponent value. 2942 // tmp1: allocated heap number. 2943 __ And(exponent, exponent, Operand(~HeapNumber::kSignMask)); 2944 __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); 2945 __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); 2946 __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); 2947 2948 __ StoreToSafepointRegisterSlot(tmp1, result); 2949 } 2950 2951 __ bind(&done); 2952 } 2953 2954 2955 void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { 2956 Register input = ToRegister(instr->InputAt(0)); 2957 Register result = ToRegister(instr->result()); 2958 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); 2959 Label done; 2960 __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg)); 2961 __ mov(result, input); 2962 ASSERT_EQ(2, masm()->InstructionsGeneratedSince(&done)); 2963 __ subu(result, zero_reg, input); 2964 // Overflow if result is still negative, i.e. 0x80000000. 2965 DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); 2966 __ bind(&done); 2967 } 2968 2969 2970 void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { 2971 // Class for deferred case. 2972 class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { 2973 public: 2974 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, 2975 LUnaryMathOperation* instr) 2976 : LDeferredCode(codegen), instr_(instr) { } 2977 virtual void Generate() { 2978 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); 2979 } 2980 virtual LInstruction* instr() { return instr_; } 2981 private: 2982 LUnaryMathOperation* instr_; 2983 }; 2984 2985 Representation r = instr->hydrogen()->value()->representation(); 2986 if (r.IsDouble()) { 2987 FPURegister input = ToDoubleRegister(instr->InputAt(0)); 2988 FPURegister result = ToDoubleRegister(instr->result()); 2989 __ abs_d(result, input); 2990 } else if (r.IsInteger32()) { 2991 EmitIntegerMathAbs(instr); 2992 } else { 2993 // Representation is tagged. 2994 DeferredMathAbsTaggedHeapNumber* deferred = 2995 new DeferredMathAbsTaggedHeapNumber(this, instr); 2996 Register input = ToRegister(instr->InputAt(0)); 2997 // Smi check. 2998 __ JumpIfNotSmi(input, deferred->entry()); 2999 // If smi, handle it directly. 3000 EmitIntegerMathAbs(instr); 3001 __ bind(deferred->exit()); 3002 } 3003 } 3004 3005 3006 void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { 3007 DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); 3008 Register result = ToRegister(instr->result()); 3009 FPURegister single_scratch = double_scratch0().low(); 3010 Register scratch1 = scratch0(); 3011 Register except_flag = ToRegister(instr->TempAt(0)); 3012 3013 __ EmitFPUTruncate(kRoundToMinusInf, 3014 single_scratch, 3015 input, 3016 scratch1, 3017 except_flag); 3018 3019 // Deopt if the operation did not succeed. 3020 DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); 3021 3022 // Load the result. 3023 __ mfc1(result, single_scratch); 3024 3025 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3026 // Test for -0. 3027 Label done; 3028 __ Branch(&done, ne, result, Operand(zero_reg)); 3029 __ mfc1(scratch1, input.high()); 3030 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); 3031 DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg)); 3032 __ bind(&done); 3033 } 3034 } 3035 3036 3037 void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { 3038 DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); 3039 Register result = ToRegister(instr->result()); 3040 Register scratch = scratch0(); 3041 Label done, check_sign_on_zero; 3042 3043 // Extract exponent bits. 3044 __ mfc1(result, input.high()); 3045 __ Ext(scratch, 3046 result, 3047 HeapNumber::kExponentShift, 3048 HeapNumber::kExponentBits); 3049 3050 // If the number is in ]-0.5, +0.5[, the result is +/- 0. 3051 Label skip1; 3052 __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2)); 3053 __ mov(result, zero_reg); 3054 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3055 __ Branch(&check_sign_on_zero); 3056 } else { 3057 __ Branch(&done); 3058 } 3059 __ bind(&skip1); 3060 3061 // The following conversion will not work with numbers 3062 // outside of ]-2^32, 2^32[. 3063 DeoptimizeIf(ge, instr->environment(), scratch, 3064 Operand(HeapNumber::kExponentBias + 32)); 3065 3066 // Save the original sign for later comparison. 3067 __ And(scratch, result, Operand(HeapNumber::kSignMask)); 3068 3069 __ Move(double_scratch0(), 0.5); 3070 __ add_d(double_scratch0(), input, double_scratch0()); 3071 3072 // Check sign of the result: if the sign changed, the input 3073 // value was in ]0.5, 0[ and the result should be -0. 3074 __ mfc1(result, double_scratch0().high()); 3075 __ Xor(result, result, Operand(scratch)); 3076 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3077 // ARM uses 'mi' here, which is 'lt' 3078 DeoptimizeIf(lt, instr->environment(), result, 3079 Operand(zero_reg)); 3080 } else { 3081 Label skip2; 3082 // ARM uses 'mi' here, which is 'lt' 3083 // Negating it results in 'ge' 3084 __ Branch(&skip2, ge, result, Operand(zero_reg)); 3085 __ mov(result, zero_reg); 3086 __ Branch(&done); 3087 __ bind(&skip2); 3088 } 3089 3090 Register except_flag = scratch; 3091 3092 __ EmitFPUTruncate(kRoundToMinusInf, 3093 double_scratch0().low(), 3094 double_scratch0(), 3095 result, 3096 except_flag); 3097 3098 DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); 3099 3100 __ mfc1(result, double_scratch0().low()); 3101 3102 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3103 // Test for -0. 3104 __ Branch(&done, ne, result, Operand(zero_reg)); 3105 __ bind(&check_sign_on_zero); 3106 __ mfc1(scratch, input.high()); 3107 __ And(scratch, scratch, Operand(HeapNumber::kSignMask)); 3108 DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg)); 3109 } 3110 __ bind(&done); 3111 } 3112 3113 3114 void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { 3115 DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); 3116 DoubleRegister result = ToDoubleRegister(instr->result()); 3117 __ sqrt_d(result, input); 3118 } 3119 3120 3121 void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) { 3122 DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); 3123 DoubleRegister result = ToDoubleRegister(instr->result()); 3124 DoubleRegister temp = ToDoubleRegister(instr->TempAt(0)); 3125 3126 ASSERT(!input.is(result)); 3127 3128 // Note that according to ECMA-262 15.8.2.13: 3129 // Math.pow(-Infinity, 0.5) == Infinity 3130 // Math.sqrt(-Infinity) == NaN 3131 Label done; 3132 __ Move(temp, -V8_INFINITY); 3133 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input); 3134 // Set up Infinity in the delay slot. 3135 // result is overwritten if the branch is not taken. 3136 __ neg_d(result, temp); 3137 3138 // Add +0 to convert -0 to +0. 3139 __ add_d(result, input, kDoubleRegZero); 3140 __ sqrt_d(result, result); 3141 __ bind(&done); 3142 } 3143 3144 3145 void LCodeGen::DoPower(LPower* instr) { 3146 Representation exponent_type = instr->hydrogen()->right()->representation(); 3147 // Having marked this as a call, we can use any registers. 3148 // Just make sure that the input/output registers are the expected ones. 3149 ASSERT(!instr->InputAt(1)->IsDoubleRegister() || 3150 ToDoubleRegister(instr->InputAt(1)).is(f4)); 3151 ASSERT(!instr->InputAt(1)->IsRegister() || 3152 ToRegister(instr->InputAt(1)).is(a2)); 3153 ASSERT(ToDoubleRegister(instr->InputAt(0)).is(f2)); 3154 ASSERT(ToDoubleRegister(instr->result()).is(f0)); 3155 3156 if (exponent_type.IsTagged()) { 3157 Label no_deopt; 3158 __ JumpIfSmi(a2, &no_deopt); 3159 __ lw(t3, FieldMemOperand(a2, HeapObject::kMapOffset)); 3160 DeoptimizeIf(ne, instr->environment(), t3, Operand(at)); 3161 __ bind(&no_deopt); 3162 MathPowStub stub(MathPowStub::TAGGED); 3163 __ CallStub(&stub); 3164 } else if (exponent_type.IsInteger32()) { 3165 MathPowStub stub(MathPowStub::INTEGER); 3166 __ CallStub(&stub); 3167 } else { 3168 ASSERT(exponent_type.IsDouble()); 3169 MathPowStub stub(MathPowStub::DOUBLE); 3170 __ CallStub(&stub); 3171 } 3172 } 3173 3174 3175 void LCodeGen::DoRandom(LRandom* instr) { 3176 class DeferredDoRandom: public LDeferredCode { 3177 public: 3178 DeferredDoRandom(LCodeGen* codegen, LRandom* instr) 3179 : LDeferredCode(codegen), instr_(instr) { } 3180 virtual void Generate() { codegen()->DoDeferredRandom(instr_); } 3181 virtual LInstruction* instr() { return instr_; } 3182 private: 3183 LRandom* instr_; 3184 }; 3185 3186 DeferredDoRandom* deferred = new DeferredDoRandom(this, instr); 3187 // Having marked this instruction as a call we can use any 3188 // registers. 3189 ASSERT(ToDoubleRegister(instr->result()).is(f0)); 3190 ASSERT(ToRegister(instr->InputAt(0)).is(a0)); 3191 3192 static const int kSeedSize = sizeof(uint32_t); 3193 STATIC_ASSERT(kPointerSize == kSeedSize); 3194 3195 __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset)); 3196 static const int kRandomSeedOffset = 3197 FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize; 3198 __ lw(a2, FieldMemOperand(a0, kRandomSeedOffset)); 3199 // a2: FixedArray of the global context's random seeds 3200 3201 // Load state[0]. 3202 __ lw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize)); 3203 __ Branch(deferred->entry(), eq, a1, Operand(zero_reg)); 3204 // Load state[1]. 3205 __ lw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize)); 3206 // a1: state[0]. 3207 // a0: state[1]. 3208 3209 // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16) 3210 __ And(a3, a1, Operand(0xFFFF)); 3211 __ li(t0, Operand(18273)); 3212 __ Mul(a3, a3, t0); 3213 __ srl(a1, a1, 16); 3214 __ Addu(a1, a3, a1); 3215 // Save state[0]. 3216 __ sw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize)); 3217 3218 // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16) 3219 __ And(a3, a0, Operand(0xFFFF)); 3220 __ li(t0, Operand(36969)); 3221 __ Mul(a3, a3, t0); 3222 __ srl(a0, a0, 16), 3223 __ Addu(a0, a3, a0); 3224 // Save state[1]. 3225 __ sw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize)); 3226 3227 // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF) 3228 __ And(a0, a0, Operand(0x3FFFF)); 3229 __ sll(a1, a1, 14); 3230 __ Addu(v0, a0, a1); 3231 3232 __ bind(deferred->exit()); 3233 3234 // 0x41300000 is the top half of 1.0 x 2^20 as a double. 3235 __ li(a2, Operand(0x41300000)); 3236 // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU. 3237 __ Move(f12, v0, a2); 3238 // Move 0x4130000000000000 to FPU. 3239 __ Move(f14, zero_reg, a2); 3240 // Subtract to get the result. 3241 __ sub_d(f0, f12, f14); 3242 } 3243 3244 void LCodeGen::DoDeferredRandom(LRandom* instr) { 3245 __ PrepareCallCFunction(1, scratch0()); 3246 __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); 3247 // Return value is in v0. 3248 } 3249 3250 3251 void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { 3252 ASSERT(ToDoubleRegister(instr->result()).is(f4)); 3253 TranscendentalCacheStub stub(TranscendentalCache::LOG, 3254 TranscendentalCacheStub::UNTAGGED); 3255 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 3256 } 3257 3258 3259 void LCodeGen::DoMathTan(LUnaryMathOperation* instr) { 3260 ASSERT(ToDoubleRegister(instr->result()).is(f4)); 3261 TranscendentalCacheStub stub(TranscendentalCache::TAN, 3262 TranscendentalCacheStub::UNTAGGED); 3263 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 3264 } 3265 3266 3267 void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { 3268 ASSERT(ToDoubleRegister(instr->result()).is(f4)); 3269 TranscendentalCacheStub stub(TranscendentalCache::COS, 3270 TranscendentalCacheStub::UNTAGGED); 3271 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 3272 } 3273 3274 3275 void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { 3276 ASSERT(ToDoubleRegister(instr->result()).is(f4)); 3277 TranscendentalCacheStub stub(TranscendentalCache::SIN, 3278 TranscendentalCacheStub::UNTAGGED); 3279 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 3280 } 3281 3282 3283 void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { 3284 switch (instr->op()) { 3285 case kMathAbs: 3286 DoMathAbs(instr); 3287 break; 3288 case kMathFloor: 3289 DoMathFloor(instr); 3290 break; 3291 case kMathRound: 3292 DoMathRound(instr); 3293 break; 3294 case kMathSqrt: 3295 DoMathSqrt(instr); 3296 break; 3297 case kMathPowHalf: 3298 DoMathPowHalf(instr); 3299 break; 3300 case kMathCos: 3301 DoMathCos(instr); 3302 break; 3303 case kMathSin: 3304 DoMathSin(instr); 3305 break; 3306 case kMathTan: 3307 DoMathTan(instr); 3308 break; 3309 case kMathLog: 3310 DoMathLog(instr); 3311 break; 3312 default: 3313 Abort("Unimplemented type of LUnaryMathOperation."); 3314 UNREACHABLE(); 3315 } 3316 } 3317 3318 3319 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { 3320 ASSERT(ToRegister(instr->function()).is(a1)); 3321 ASSERT(instr->HasPointerMap()); 3322 ASSERT(instr->HasDeoptimizationEnvironment()); 3323 LPointerMap* pointers = instr->pointer_map(); 3324 RecordPosition(pointers->position()); 3325 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 3326 ParameterCount count(instr->arity()); 3327 __ InvokeFunction(a1, count, CALL_FUNCTION, generator, CALL_AS_METHOD); 3328 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3329 } 3330 3331 3332 void LCodeGen::DoCallKeyed(LCallKeyed* instr) { 3333 ASSERT(ToRegister(instr->result()).is(v0)); 3334 3335 int arity = instr->arity(); 3336 Handle<Code> ic = 3337 isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); 3338 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3339 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3340 } 3341 3342 3343 void LCodeGen::DoCallNamed(LCallNamed* instr) { 3344 ASSERT(ToRegister(instr->result()).is(v0)); 3345 3346 int arity = instr->arity(); 3347 RelocInfo::Mode mode = RelocInfo::CODE_TARGET; 3348 Handle<Code> ic = 3349 isolate()->stub_cache()->ComputeCallInitialize(arity, mode); 3350 __ li(a2, Operand(instr->name())); 3351 CallCode(ic, mode, instr); 3352 // Restore context register. 3353 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3354 } 3355 3356 3357 void LCodeGen::DoCallFunction(LCallFunction* instr) { 3358 ASSERT(ToRegister(instr->function()).is(a1)); 3359 ASSERT(ToRegister(instr->result()).is(v0)); 3360 3361 int arity = instr->arity(); 3362 CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS); 3363 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 3364 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3365 } 3366 3367 3368 void LCodeGen::DoCallGlobal(LCallGlobal* instr) { 3369 ASSERT(ToRegister(instr->result()).is(v0)); 3370 3371 int arity = instr->arity(); 3372 RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; 3373 Handle<Code> ic = 3374 isolate()->stub_cache()->ComputeCallInitialize(arity, mode); 3375 __ li(a2, Operand(instr->name())); 3376 CallCode(ic, mode, instr); 3377 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3378 } 3379 3380 3381 void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { 3382 ASSERT(ToRegister(instr->result()).is(v0)); 3383 CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION); 3384 } 3385 3386 3387 void LCodeGen::DoCallNew(LCallNew* instr) { 3388 ASSERT(ToRegister(instr->InputAt(0)).is(a1)); 3389 ASSERT(ToRegister(instr->result()).is(v0)); 3390 3391 CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); 3392 __ li(a0, Operand(instr->arity())); 3393 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 3394 } 3395 3396 3397 void LCodeGen::DoCallRuntime(LCallRuntime* instr) { 3398 CallRuntime(instr->function(), instr->arity(), instr); 3399 } 3400 3401 3402 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { 3403 Register object = ToRegister(instr->object()); 3404 Register value = ToRegister(instr->value()); 3405 Register scratch = scratch0(); 3406 int offset = instr->offset(); 3407 3408 ASSERT(!object.is(value)); 3409 3410 if (!instr->transition().is_null()) { 3411 __ li(scratch, Operand(instr->transition())); 3412 __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 3413 } 3414 3415 // Do the store. 3416 HType type = instr->hydrogen()->value()->type(); 3417 SmiCheck check_needed = 3418 type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 3419 if (instr->is_in_object()) { 3420 __ sw(value, FieldMemOperand(object, offset)); 3421 if (instr->hydrogen()->NeedsWriteBarrier()) { 3422 // Update the write barrier for the object for in-object properties. 3423 __ RecordWriteField(object, 3424 offset, 3425 value, 3426 scratch, 3427 kRAHasBeenSaved, 3428 kSaveFPRegs, 3429 EMIT_REMEMBERED_SET, 3430 check_needed); 3431 } 3432 } else { 3433 __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); 3434 __ sw(value, FieldMemOperand(scratch, offset)); 3435 if (instr->hydrogen()->NeedsWriteBarrier()) { 3436 // Update the write barrier for the properties array. 3437 // object is used as a scratch register. 3438 __ RecordWriteField(scratch, 3439 offset, 3440 value, 3441 object, 3442 kRAHasBeenSaved, 3443 kSaveFPRegs, 3444 EMIT_REMEMBERED_SET, 3445 check_needed); 3446 } 3447 } 3448 } 3449 3450 3451 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { 3452 ASSERT(ToRegister(instr->object()).is(a1)); 3453 ASSERT(ToRegister(instr->value()).is(a0)); 3454 3455 // Name is always in a2. 3456 __ li(a2, Operand(instr->name())); 3457 Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) 3458 ? isolate()->builtins()->StoreIC_Initialize_Strict() 3459 : isolate()->builtins()->StoreIC_Initialize(); 3460 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3461 } 3462 3463 3464 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { 3465 DeoptimizeIf(hs, 3466 instr->environment(), 3467 ToRegister(instr->index()), 3468 Operand(ToRegister(instr->length()))); 3469 } 3470 3471 3472 void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { 3473 Register value = ToRegister(instr->value()); 3474 Register elements = ToRegister(instr->object()); 3475 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; 3476 Register scratch = scratch0(); 3477 3478 // Do the store. 3479 if (instr->key()->IsConstantOperand()) { 3480 ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); 3481 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); 3482 int offset = 3483 ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize; 3484 __ sw(value, FieldMemOperand(elements, offset)); 3485 } else { 3486 __ sll(scratch, key, kPointerSizeLog2); 3487 __ addu(scratch, elements, scratch); 3488 __ sw(value, FieldMemOperand(scratch, FixedArray::kHeaderSize)); 3489 } 3490 3491 if (instr->hydrogen()->NeedsWriteBarrier()) { 3492 HType type = instr->hydrogen()->value()->type(); 3493 SmiCheck check_needed = 3494 type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 3495 // Compute address of modified element and store it into key register. 3496 __ Addu(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 3497 __ RecordWrite(elements, 3498 key, 3499 value, 3500 kRAHasBeenSaved, 3501 kSaveFPRegs, 3502 EMIT_REMEMBERED_SET, 3503 check_needed); 3504 } 3505 } 3506 3507 3508 void LCodeGen::DoStoreKeyedFastDoubleElement( 3509 LStoreKeyedFastDoubleElement* instr) { 3510 DoubleRegister value = ToDoubleRegister(instr->value()); 3511 Register elements = ToRegister(instr->elements()); 3512 Register key = no_reg; 3513 Register scratch = scratch0(); 3514 bool key_is_constant = instr->key()->IsConstantOperand(); 3515 int constant_key = 0; 3516 Label not_nan; 3517 3518 // Calculate the effective address of the slot in the array to store the 3519 // double value. 3520 if (key_is_constant) { 3521 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 3522 if (constant_key & 0xF0000000) { 3523 Abort("array index constant value too big."); 3524 } 3525 } else { 3526 key = ToRegister(instr->key()); 3527 } 3528 int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); 3529 if (key_is_constant) { 3530 __ Addu(scratch, elements, Operand(constant_key * (1 << shift_size) + 3531 FixedDoubleArray::kHeaderSize - kHeapObjectTag)); 3532 } else { 3533 __ sll(scratch, key, shift_size); 3534 __ Addu(scratch, elements, Operand(scratch)); 3535 __ Addu(scratch, scratch, 3536 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); 3537 } 3538 3539 Label is_nan; 3540 // Check for NaN. All NaNs must be canonicalized. 3541 __ BranchF(NULL, &is_nan, eq, value, value); 3542 __ Branch(¬_nan); 3543 3544 // Only load canonical NaN if the comparison above set the overflow. 3545 __ bind(&is_nan); 3546 __ Move(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double()); 3547 3548 __ bind(¬_nan); 3549 __ sdc1(value, MemOperand(scratch)); 3550 } 3551 3552 3553 void LCodeGen::DoStoreKeyedSpecializedArrayElement( 3554 LStoreKeyedSpecializedArrayElement* instr) { 3555 3556 Register external_pointer = ToRegister(instr->external_pointer()); 3557 Register key = no_reg; 3558 ElementsKind elements_kind = instr->elements_kind(); 3559 bool key_is_constant = instr->key()->IsConstantOperand(); 3560 int constant_key = 0; 3561 if (key_is_constant) { 3562 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 3563 if (constant_key & 0xF0000000) { 3564 Abort("array index constant value too big."); 3565 } 3566 } else { 3567 key = ToRegister(instr->key()); 3568 } 3569 int shift_size = ElementsKindToShiftSize(elements_kind); 3570 3571 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || 3572 elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { 3573 FPURegister value(ToDoubleRegister(instr->value())); 3574 if (key_is_constant) { 3575 __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size)); 3576 } else { 3577 __ sll(scratch0(), key, shift_size); 3578 __ Addu(scratch0(), scratch0(), external_pointer); 3579 } 3580 3581 if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { 3582 __ cvt_s_d(double_scratch0(), value); 3583 __ swc1(double_scratch0(), MemOperand(scratch0())); 3584 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS 3585 __ sdc1(value, MemOperand(scratch0())); 3586 } 3587 } else { 3588 Register value(ToRegister(instr->value())); 3589 MemOperand mem_operand(zero_reg); 3590 Register scratch = scratch0(); 3591 if (key_is_constant) { 3592 mem_operand = MemOperand(external_pointer, 3593 constant_key * (1 << shift_size)); 3594 } else { 3595 __ sll(scratch, key, shift_size); 3596 __ Addu(scratch, scratch, external_pointer); 3597 mem_operand = MemOperand(scratch); 3598 } 3599 switch (elements_kind) { 3600 case EXTERNAL_PIXEL_ELEMENTS: 3601 case EXTERNAL_BYTE_ELEMENTS: 3602 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: 3603 __ sb(value, mem_operand); 3604 break; 3605 case EXTERNAL_SHORT_ELEMENTS: 3606 case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: 3607 __ sh(value, mem_operand); 3608 break; 3609 case EXTERNAL_INT_ELEMENTS: 3610 case EXTERNAL_UNSIGNED_INT_ELEMENTS: 3611 __ sw(value, mem_operand); 3612 break; 3613 case EXTERNAL_FLOAT_ELEMENTS: 3614 case EXTERNAL_DOUBLE_ELEMENTS: 3615 case FAST_DOUBLE_ELEMENTS: 3616 case FAST_ELEMENTS: 3617 case FAST_SMI_ONLY_ELEMENTS: 3618 case DICTIONARY_ELEMENTS: 3619 case NON_STRICT_ARGUMENTS_ELEMENTS: 3620 UNREACHABLE(); 3621 break; 3622 } 3623 } 3624 } 3625 3626 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { 3627 ASSERT(ToRegister(instr->object()).is(a2)); 3628 ASSERT(ToRegister(instr->key()).is(a1)); 3629 ASSERT(ToRegister(instr->value()).is(a0)); 3630 3631 Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) 3632 ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() 3633 : isolate()->builtins()->KeyedStoreIC_Initialize(); 3634 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3635 } 3636 3637 3638 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { 3639 Register object_reg = ToRegister(instr->object()); 3640 Register new_map_reg = ToRegister(instr->new_map_reg()); 3641 Register scratch = scratch0(); 3642 3643 Handle<Map> from_map = instr->original_map(); 3644 Handle<Map> to_map = instr->transitioned_map(); 3645 ElementsKind from_kind = from_map->elements_kind(); 3646 ElementsKind to_kind = to_map->elements_kind(); 3647 3648 __ mov(ToRegister(instr->result()), object_reg); 3649 3650 Label not_applicable; 3651 __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); 3652 __ Branch(¬_applicable, ne, scratch, Operand(from_map)); 3653 3654 __ li(new_map_reg, Operand(to_map)); 3655 if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) { 3656 __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); 3657 // Write barrier. 3658 __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg, 3659 scratch, kRAHasBeenSaved, kDontSaveFPRegs); 3660 } else if (from_kind == FAST_SMI_ONLY_ELEMENTS && 3661 to_kind == FAST_DOUBLE_ELEMENTS) { 3662 Register fixed_object_reg = ToRegister(instr->temp_reg()); 3663 ASSERT(fixed_object_reg.is(a2)); 3664 ASSERT(new_map_reg.is(a3)); 3665 __ mov(fixed_object_reg, object_reg); 3666 CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(), 3667 RelocInfo::CODE_TARGET, instr); 3668 } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) { 3669 Register fixed_object_reg = ToRegister(instr->temp_reg()); 3670 ASSERT(fixed_object_reg.is(a2)); 3671 ASSERT(new_map_reg.is(a3)); 3672 __ mov(fixed_object_reg, object_reg); 3673 CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(), 3674 RelocInfo::CODE_TARGET, instr); 3675 } else { 3676 UNREACHABLE(); 3677 } 3678 __ bind(¬_applicable); 3679 } 3680 3681 3682 void LCodeGen::DoStringAdd(LStringAdd* instr) { 3683 __ push(ToRegister(instr->left())); 3684 __ push(ToRegister(instr->right())); 3685 StringAddStub stub(NO_STRING_CHECK_IN_STUB); 3686 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 3687 } 3688 3689 3690 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { 3691 class DeferredStringCharCodeAt: public LDeferredCode { 3692 public: 3693 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) 3694 : LDeferredCode(codegen), instr_(instr) { } 3695 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } 3696 virtual LInstruction* instr() { return instr_; } 3697 private: 3698 LStringCharCodeAt* instr_; 3699 }; 3700 3701 DeferredStringCharCodeAt* deferred = 3702 new DeferredStringCharCodeAt(this, instr); 3703 StringCharLoadGenerator::Generate(masm(), 3704 ToRegister(instr->string()), 3705 ToRegister(instr->index()), 3706 ToRegister(instr->result()), 3707 deferred->entry()); 3708 __ bind(deferred->exit()); 3709 } 3710 3711 3712 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { 3713 Register string = ToRegister(instr->string()); 3714 Register result = ToRegister(instr->result()); 3715 Register scratch = scratch0(); 3716 3717 // TODO(3095996): Get rid of this. For now, we need to make the 3718 // result register contain a valid pointer because it is already 3719 // contained in the register pointer map. 3720 __ mov(result, zero_reg); 3721 3722 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); 3723 __ push(string); 3724 // Push the index as a smi. This is safe because of the checks in 3725 // DoStringCharCodeAt above. 3726 if (instr->index()->IsConstantOperand()) { 3727 int const_index = ToInteger32(LConstantOperand::cast(instr->index())); 3728 __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index))); 3729 __ push(scratch); 3730 } else { 3731 Register index = ToRegister(instr->index()); 3732 __ SmiTag(index); 3733 __ push(index); 3734 } 3735 CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr); 3736 if (FLAG_debug_code) { 3737 __ AbortIfNotSmi(v0); 3738 } 3739 __ SmiUntag(v0); 3740 __ StoreToSafepointRegisterSlot(v0, result); 3741 } 3742 3743 3744 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { 3745 class DeferredStringCharFromCode: public LDeferredCode { 3746 public: 3747 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) 3748 : LDeferredCode(codegen), instr_(instr) { } 3749 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } 3750 virtual LInstruction* instr() { return instr_; } 3751 private: 3752 LStringCharFromCode* instr_; 3753 }; 3754 3755 DeferredStringCharFromCode* deferred = 3756 new DeferredStringCharFromCode(this, instr); 3757 3758 ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); 3759 Register char_code = ToRegister(instr->char_code()); 3760 Register result = ToRegister(instr->result()); 3761 Register scratch = scratch0(); 3762 ASSERT(!char_code.is(result)); 3763 3764 __ Branch(deferred->entry(), hi, 3765 char_code, Operand(String::kMaxAsciiCharCode)); 3766 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); 3767 __ sll(scratch, char_code, kPointerSizeLog2); 3768 __ Addu(result, result, scratch); 3769 __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize)); 3770 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 3771 __ Branch(deferred->entry(), eq, result, Operand(scratch)); 3772 __ bind(deferred->exit()); 3773 } 3774 3775 3776 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { 3777 Register char_code = ToRegister(instr->char_code()); 3778 Register result = ToRegister(instr->result()); 3779 3780 // TODO(3095996): Get rid of this. For now, we need to make the 3781 // result register contain a valid pointer because it is already 3782 // contained in the register pointer map. 3783 __ mov(result, zero_reg); 3784 3785 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); 3786 __ SmiTag(char_code); 3787 __ push(char_code); 3788 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr); 3789 __ StoreToSafepointRegisterSlot(v0, result); 3790 } 3791 3792 3793 void LCodeGen::DoStringLength(LStringLength* instr) { 3794 Register string = ToRegister(instr->InputAt(0)); 3795 Register result = ToRegister(instr->result()); 3796 __ lw(result, FieldMemOperand(string, String::kLengthOffset)); 3797 } 3798 3799 3800 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { 3801 LOperand* input = instr->InputAt(0); 3802 ASSERT(input->IsRegister() || input->IsStackSlot()); 3803 LOperand* output = instr->result(); 3804 ASSERT(output->IsDoubleRegister()); 3805 FPURegister single_scratch = double_scratch0().low(); 3806 if (input->IsStackSlot()) { 3807 Register scratch = scratch0(); 3808 __ lw(scratch, ToMemOperand(input)); 3809 __ mtc1(scratch, single_scratch); 3810 } else { 3811 __ mtc1(ToRegister(input), single_scratch); 3812 } 3813 __ cvt_d_w(ToDoubleRegister(output), single_scratch); 3814 } 3815 3816 3817 void LCodeGen::DoNumberTagI(LNumberTagI* instr) { 3818 class DeferredNumberTagI: public LDeferredCode { 3819 public: 3820 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) 3821 : LDeferredCode(codegen), instr_(instr) { } 3822 virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); } 3823 virtual LInstruction* instr() { return instr_; } 3824 private: 3825 LNumberTagI* instr_; 3826 }; 3827 3828 Register src = ToRegister(instr->InputAt(0)); 3829 Register dst = ToRegister(instr->result()); 3830 Register overflow = scratch0(); 3831 3832 DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr); 3833 __ SmiTagCheckOverflow(dst, src, overflow); 3834 __ BranchOnOverflow(deferred->entry(), overflow); 3835 __ bind(deferred->exit()); 3836 } 3837 3838 3839 void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) { 3840 Label slow; 3841 Register src = ToRegister(instr->InputAt(0)); 3842 Register dst = ToRegister(instr->result()); 3843 FPURegister dbl_scratch = double_scratch0(); 3844 3845 // Preserve the value of all registers. 3846 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); 3847 3848 // There was overflow, so bits 30 and 31 of the original integer 3849 // disagree. Try to allocate a heap number in new space and store 3850 // the value in there. If that fails, call the runtime system. 3851 Label done; 3852 if (dst.is(src)) { 3853 __ SmiUntag(src, dst); 3854 __ Xor(src, src, Operand(0x80000000)); 3855 } 3856 __ mtc1(src, dbl_scratch); 3857 __ cvt_d_w(dbl_scratch, dbl_scratch); 3858 if (FLAG_inline_new) { 3859 __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex); 3860 __ AllocateHeapNumber(t1, a3, t0, t2, &slow); 3861 __ Move(dst, t1); 3862 __ Branch(&done); 3863 } 3864 3865 // Slow case: Call the runtime system to do the number allocation. 3866 __ bind(&slow); 3867 3868 // TODO(3095996): Put a valid pointer value in the stack slot where the result 3869 // register is stored, as this register is in the pointer map, but contains an 3870 // integer value. 3871 __ StoreToSafepointRegisterSlot(zero_reg, dst); 3872 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); 3873 __ Move(dst, v0); 3874 3875 // Done. Put the value in dbl_scratch into the value of the allocated heap 3876 // number. 3877 __ bind(&done); 3878 __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); 3879 __ StoreToSafepointRegisterSlot(dst, dst); 3880 } 3881 3882 3883 void LCodeGen::DoNumberTagD(LNumberTagD* instr) { 3884 class DeferredNumberTagD: public LDeferredCode { 3885 public: 3886 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) 3887 : LDeferredCode(codegen), instr_(instr) { } 3888 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } 3889 virtual LInstruction* instr() { return instr_; } 3890 private: 3891 LNumberTagD* instr_; 3892 }; 3893 3894 DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0)); 3895 Register scratch = scratch0(); 3896 Register reg = ToRegister(instr->result()); 3897 Register temp1 = ToRegister(instr->TempAt(0)); 3898 Register temp2 = ToRegister(instr->TempAt(1)); 3899 3900 DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr); 3901 if (FLAG_inline_new) { 3902 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); 3903 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry()); 3904 } else { 3905 __ Branch(deferred->entry()); 3906 } 3907 __ bind(deferred->exit()); 3908 __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset)); 3909 } 3910 3911 3912 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { 3913 // TODO(3095996): Get rid of this. For now, we need to make the 3914 // result register contain a valid pointer because it is already 3915 // contained in the register pointer map. 3916 Register reg = ToRegister(instr->result()); 3917 __ mov(reg, zero_reg); 3918 3919 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); 3920 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); 3921 __ StoreToSafepointRegisterSlot(v0, reg); 3922 } 3923 3924 3925 void LCodeGen::DoSmiTag(LSmiTag* instr) { 3926 ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); 3927 __ SmiTag(ToRegister(instr->result()), ToRegister(instr->InputAt(0))); 3928 } 3929 3930 3931 void LCodeGen::DoSmiUntag(LSmiUntag* instr) { 3932 Register scratch = scratch0(); 3933 Register input = ToRegister(instr->InputAt(0)); 3934 Register result = ToRegister(instr->result()); 3935 if (instr->needs_check()) { 3936 STATIC_ASSERT(kHeapObjectTag == 1); 3937 // If the input is a HeapObject, value of scratch won't be zero. 3938 __ And(scratch, input, Operand(kHeapObjectTag)); 3939 __ SmiUntag(result, input); 3940 DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg)); 3941 } else { 3942 __ SmiUntag(result, input); 3943 } 3944 } 3945 3946 3947 void LCodeGen::EmitNumberUntagD(Register input_reg, 3948 DoubleRegister result_reg, 3949 bool deoptimize_on_undefined, 3950 bool deoptimize_on_minus_zero, 3951 LEnvironment* env) { 3952 Register scratch = scratch0(); 3953 3954 Label load_smi, heap_number, done; 3955 3956 // Smi check. 3957 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); 3958 3959 // Heap number map check. 3960 __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); 3961 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); 3962 if (deoptimize_on_undefined) { 3963 DeoptimizeIf(ne, env, scratch, Operand(at)); 3964 } else { 3965 Label heap_number; 3966 __ Branch(&heap_number, eq, scratch, Operand(at)); 3967 3968 __ LoadRoot(at, Heap::kUndefinedValueRootIndex); 3969 DeoptimizeIf(ne, env, input_reg, Operand(at)); 3970 3971 // Convert undefined to NaN. 3972 __ LoadRoot(at, Heap::kNanValueRootIndex); 3973 __ ldc1(result_reg, FieldMemOperand(at, HeapNumber::kValueOffset)); 3974 __ Branch(&done); 3975 3976 __ bind(&heap_number); 3977 } 3978 // Heap number to double register conversion. 3979 __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); 3980 if (deoptimize_on_minus_zero) { 3981 __ mfc1(at, result_reg.low()); 3982 __ Branch(&done, ne, at, Operand(zero_reg)); 3983 __ mfc1(scratch, result_reg.high()); 3984 DeoptimizeIf(eq, env, scratch, Operand(HeapNumber::kSignMask)); 3985 } 3986 __ Branch(&done); 3987 3988 // Smi to double register conversion 3989 __ bind(&load_smi); 3990 // scratch: untagged value of input_reg 3991 __ mtc1(scratch, result_reg); 3992 __ cvt_d_w(result_reg, result_reg); 3993 __ bind(&done); 3994 } 3995 3996 3997 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { 3998 Register input_reg = ToRegister(instr->InputAt(0)); 3999 Register scratch1 = scratch0(); 4000 Register scratch2 = ToRegister(instr->TempAt(0)); 4001 DoubleRegister double_scratch = double_scratch0(); 4002 FPURegister single_scratch = double_scratch.low(); 4003 4004 ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2)); 4005 ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1)); 4006 4007 Label done; 4008 4009 // The input is a tagged HeapObject. 4010 // Heap number map check. 4011 __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); 4012 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); 4013 // This 'at' value and scratch1 map value are used for tests in both clauses 4014 // of the if. 4015 4016 if (instr->truncating()) { 4017 Register scratch3 = ToRegister(instr->TempAt(1)); 4018 DoubleRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2)); 4019 ASSERT(!scratch3.is(input_reg) && 4020 !scratch3.is(scratch1) && 4021 !scratch3.is(scratch2)); 4022 // Performs a truncating conversion of a floating point number as used by 4023 // the JS bitwise operations. 4024 Label heap_number; 4025 __ Branch(&heap_number, eq, scratch1, Operand(at)); // HeapNumber map? 4026 // Check for undefined. Undefined is converted to zero for truncating 4027 // conversions. 4028 __ LoadRoot(at, Heap::kUndefinedValueRootIndex); 4029 DeoptimizeIf(ne, instr->environment(), input_reg, Operand(at)); 4030 ASSERT(ToRegister(instr->result()).is(input_reg)); 4031 __ mov(input_reg, zero_reg); 4032 __ Branch(&done); 4033 4034 __ bind(&heap_number); 4035 __ ldc1(double_scratch2, 4036 FieldMemOperand(input_reg, HeapNumber::kValueOffset)); 4037 __ EmitECMATruncate(input_reg, 4038 double_scratch2, 4039 single_scratch, 4040 scratch1, 4041 scratch2, 4042 scratch3); 4043 } else { 4044 // Deoptimize if we don't have a heap number. 4045 DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at)); 4046 4047 // Load the double value. 4048 __ ldc1(double_scratch, 4049 FieldMemOperand(input_reg, HeapNumber::kValueOffset)); 4050 4051 Register except_flag = scratch2; 4052 __ EmitFPUTruncate(kRoundToZero, 4053 single_scratch, 4054 double_scratch, 4055 scratch1, 4056 except_flag, 4057 kCheckForInexactConversion); 4058 4059 // Deopt if the operation did not succeed. 4060 DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); 4061 4062 // Load the result. 4063 __ mfc1(input_reg, single_scratch); 4064 4065 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 4066 __ Branch(&done, ne, input_reg, Operand(zero_reg)); 4067 4068 __ mfc1(scratch1, double_scratch.high()); 4069 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); 4070 DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg)); 4071 } 4072 } 4073 __ bind(&done); 4074 } 4075 4076 4077 void LCodeGen::DoTaggedToI(LTaggedToI* instr) { 4078 class DeferredTaggedToI: public LDeferredCode { 4079 public: 4080 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) 4081 : LDeferredCode(codegen), instr_(instr) { } 4082 virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } 4083 virtual LInstruction* instr() { return instr_; } 4084 private: 4085 LTaggedToI* instr_; 4086 }; 4087 4088 LOperand* input = instr->InputAt(0); 4089 ASSERT(input->IsRegister()); 4090 ASSERT(input->Equals(instr->result())); 4091 4092 Register input_reg = ToRegister(input); 4093 4094 DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr); 4095 4096 // Let the deferred code handle the HeapObject case. 4097 __ JumpIfNotSmi(input_reg, deferred->entry()); 4098 4099 // Smi to int32 conversion. 4100 __ SmiUntag(input_reg); 4101 __ bind(deferred->exit()); 4102 } 4103 4104 4105 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { 4106 LOperand* input = instr->InputAt(0); 4107 ASSERT(input->IsRegister()); 4108 LOperand* result = instr->result(); 4109 ASSERT(result->IsDoubleRegister()); 4110 4111 Register input_reg = ToRegister(input); 4112 DoubleRegister result_reg = ToDoubleRegister(result); 4113 4114 EmitNumberUntagD(input_reg, result_reg, 4115 instr->hydrogen()->deoptimize_on_undefined(), 4116 instr->hydrogen()->deoptimize_on_minus_zero(), 4117 instr->environment()); 4118 } 4119 4120 4121 void LCodeGen::DoDoubleToI(LDoubleToI* instr) { 4122 Register result_reg = ToRegister(instr->result()); 4123 Register scratch1 = scratch0(); 4124 Register scratch2 = ToRegister(instr->TempAt(0)); 4125 DoubleRegister double_input = ToDoubleRegister(instr->InputAt(0)); 4126 FPURegister single_scratch = double_scratch0().low(); 4127 4128 if (instr->truncating()) { 4129 Register scratch3 = ToRegister(instr->TempAt(1)); 4130 __ EmitECMATruncate(result_reg, 4131 double_input, 4132 single_scratch, 4133 scratch1, 4134 scratch2, 4135 scratch3); 4136 } else { 4137 Register except_flag = scratch2; 4138 4139 __ EmitFPUTruncate(kRoundToMinusInf, 4140 single_scratch, 4141 double_input, 4142 scratch1, 4143 except_flag, 4144 kCheckForInexactConversion); 4145 4146 // Deopt if the operation did not succeed (except_flag != 0). 4147 DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); 4148 4149 // Load the result. 4150 __ mfc1(result_reg, single_scratch); 4151 } 4152 } 4153 4154 4155 void LCodeGen::DoCheckSmi(LCheckSmi* instr) { 4156 LOperand* input = instr->InputAt(0); 4157 __ And(at, ToRegister(input), Operand(kSmiTagMask)); 4158 DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); 4159 } 4160 4161 4162 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { 4163 LOperand* input = instr->InputAt(0); 4164 __ And(at, ToRegister(input), Operand(kSmiTagMask)); 4165 DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); 4166 } 4167 4168 4169 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { 4170 Register input = ToRegister(instr->InputAt(0)); 4171 Register scratch = scratch0(); 4172 4173 __ GetObjectType(input, scratch, scratch); 4174 4175 if (instr->hydrogen()->is_interval_check()) { 4176 InstanceType first; 4177 InstanceType last; 4178 instr->hydrogen()->GetCheckInterval(&first, &last); 4179 4180 // If there is only one type in the interval check for equality. 4181 if (first == last) { 4182 DeoptimizeIf(ne, instr->environment(), scratch, Operand(first)); 4183 } else { 4184 DeoptimizeIf(lo, instr->environment(), scratch, Operand(first)); 4185 // Omit check for the last type. 4186 if (last != LAST_TYPE) { 4187 DeoptimizeIf(hi, instr->environment(), scratch, Operand(last)); 4188 } 4189 } 4190 } else { 4191 uint8_t mask; 4192 uint8_t tag; 4193 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); 4194 4195 if (IsPowerOf2(mask)) { 4196 ASSERT(tag == 0 || IsPowerOf2(tag)); 4197 __ And(at, scratch, mask); 4198 DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(), 4199 at, Operand(zero_reg)); 4200 } else { 4201 __ And(scratch, scratch, Operand(mask)); 4202 DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag)); 4203 } 4204 } 4205 } 4206 4207 4208 void LCodeGen::DoCheckFunction(LCheckFunction* instr) { 4209 Register reg = ToRegister(instr->value()); 4210 Handle<JSFunction> target = instr->hydrogen()->target(); 4211 if (isolate()->heap()->InNewSpace(*target)) { 4212 Register reg = ToRegister(instr->value()); 4213 Handle<JSGlobalPropertyCell> cell = 4214 isolate()->factory()->NewJSGlobalPropertyCell(target); 4215 __ li(at, Operand(Handle<Object>(cell))); 4216 __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); 4217 DeoptimizeIf(ne, instr->environment(), reg, 4218 Operand(at)); 4219 } else { 4220 DeoptimizeIf(ne, instr->environment(), reg, 4221 Operand(target)); 4222 } 4223 } 4224 4225 4226 void LCodeGen::DoCheckMapCommon(Register reg, 4227 Register scratch, 4228 Handle<Map> map, 4229 CompareMapMode mode, 4230 LEnvironment* env) { 4231 Label success; 4232 __ CompareMapAndBranch(reg, scratch, map, &success, eq, &success, mode); 4233 DeoptimizeIf(al, env); 4234 __ bind(&success); 4235 } 4236 4237 4238 void LCodeGen::DoCheckMap(LCheckMap* instr) { 4239 Register scratch = scratch0(); 4240 LOperand* input = instr->InputAt(0); 4241 ASSERT(input->IsRegister()); 4242 Register reg = ToRegister(input); 4243 Handle<Map> map = instr->hydrogen()->map(); 4244 DoCheckMapCommon(reg, scratch, map, instr->hydrogen()->mode(), 4245 instr->environment()); 4246 } 4247 4248 4249 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { 4250 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped()); 4251 Register result_reg = ToRegister(instr->result()); 4252 DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0)); 4253 __ ClampDoubleToUint8(result_reg, value_reg, temp_reg); 4254 } 4255 4256 4257 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { 4258 Register unclamped_reg = ToRegister(instr->unclamped()); 4259 Register result_reg = ToRegister(instr->result()); 4260 __ ClampUint8(result_reg, unclamped_reg); 4261 } 4262 4263 4264 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { 4265 Register scratch = scratch0(); 4266 Register input_reg = ToRegister(instr->unclamped()); 4267 Register result_reg = ToRegister(instr->result()); 4268 DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0)); 4269 Label is_smi, done, heap_number; 4270 4271 // Both smi and heap number cases are handled. 4272 __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi); 4273 4274 // Check for heap number 4275 __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); 4276 __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map())); 4277 4278 // Check for undefined. Undefined is converted to zero for clamping 4279 // conversions. 4280 DeoptimizeIf(ne, instr->environment(), input_reg, 4281 Operand(factory()->undefined_value())); 4282 __ mov(result_reg, zero_reg); 4283 __ jmp(&done); 4284 4285 // Heap number 4286 __ bind(&heap_number); 4287 __ ldc1(double_scratch0(), FieldMemOperand(input_reg, 4288 HeapNumber::kValueOffset)); 4289 __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg); 4290 __ jmp(&done); 4291 4292 __ bind(&is_smi); 4293 __ ClampUint8(result_reg, scratch); 4294 4295 __ bind(&done); 4296 } 4297 4298 4299 void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { 4300 Register temp1 = ToRegister(instr->TempAt(0)); 4301 Register temp2 = ToRegister(instr->TempAt(1)); 4302 4303 Handle<JSObject> holder = instr->holder(); 4304 Handle<JSObject> current_prototype = instr->prototype(); 4305 4306 // Load prototype object. 4307 __ LoadHeapObject(temp1, current_prototype); 4308 4309 // Check prototype maps up to the holder. 4310 while (!current_prototype.is_identical_to(holder)) { 4311 DoCheckMapCommon(temp1, temp2, 4312 Handle<Map>(current_prototype->map()), 4313 ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment()); 4314 current_prototype = 4315 Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype())); 4316 // Load next prototype object. 4317 __ LoadHeapObject(temp1, current_prototype); 4318 } 4319 4320 // Check the holder map. 4321 DoCheckMapCommon(temp1, temp2, 4322 Handle<Map>(current_prototype->map()), 4323 ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment()); 4324 } 4325 4326 4327 void LCodeGen::DoAllocateObject(LAllocateObject* instr) { 4328 class DeferredAllocateObject: public LDeferredCode { 4329 public: 4330 DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr) 4331 : LDeferredCode(codegen), instr_(instr) { } 4332 virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); } 4333 virtual LInstruction* instr() { return instr_; } 4334 private: 4335 LAllocateObject* instr_; 4336 }; 4337 4338 DeferredAllocateObject* deferred = new DeferredAllocateObject(this, instr); 4339 4340 Register result = ToRegister(instr->result()); 4341 Register scratch = ToRegister(instr->TempAt(0)); 4342 Register scratch2 = ToRegister(instr->TempAt(1)); 4343 Handle<JSFunction> constructor = instr->hydrogen()->constructor(); 4344 Handle<Map> initial_map(constructor->initial_map()); 4345 int instance_size = initial_map->instance_size(); 4346 ASSERT(initial_map->pre_allocated_property_fields() + 4347 initial_map->unused_property_fields() - 4348 initial_map->inobject_properties() == 0); 4349 4350 // Allocate memory for the object. The initial map might change when 4351 // the constructor's prototype changes, but instance size and property 4352 // counts remain unchanged (if slack tracking finished). 4353 ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress()); 4354 __ AllocateInNewSpace(instance_size, 4355 result, 4356 scratch, 4357 scratch2, 4358 deferred->entry(), 4359 TAG_OBJECT); 4360 4361 // Load the initial map. 4362 Register map = scratch; 4363 __ LoadHeapObject(map, constructor); 4364 __ lw(map, FieldMemOperand(map, JSFunction::kPrototypeOrInitialMapOffset)); 4365 4366 // Initialize map and fields of the newly allocated object. 4367 ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE); 4368 __ sw(map, FieldMemOperand(result, JSObject::kMapOffset)); 4369 __ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex); 4370 __ sw(scratch, FieldMemOperand(result, JSObject::kElementsOffset)); 4371 __ sw(scratch, FieldMemOperand(result, JSObject::kPropertiesOffset)); 4372 if (initial_map->inobject_properties() != 0) { 4373 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 4374 for (int i = 0; i < initial_map->inobject_properties(); i++) { 4375 int property_offset = JSObject::kHeaderSize + i * kPointerSize; 4376 __ sw(scratch, FieldMemOperand(result, property_offset)); 4377 } 4378 } 4379 4380 __ bind(deferred->exit()); 4381 } 4382 4383 4384 void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) { 4385 Register result = ToRegister(instr->result()); 4386 Handle<JSFunction> constructor = instr->hydrogen()->constructor(); 4387 4388 // TODO(3095996): Get rid of this. For now, we need to make the 4389 // result register contain a valid pointer because it is already 4390 // contained in the register pointer map. 4391 __ mov(result, zero_reg); 4392 4393 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); 4394 __ LoadHeapObject(a0, constructor); 4395 __ push(a0); 4396 CallRuntimeFromDeferred(Runtime::kNewObject, 1, instr); 4397 __ StoreToSafepointRegisterSlot(v0, result); 4398 } 4399 4400 4401 void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { 4402 Heap* heap = isolate()->heap(); 4403 ElementsKind boilerplate_elements_kind = 4404 instr->hydrogen()->boilerplate_elements_kind(); 4405 4406 // Deopt if the array literal boilerplate ElementsKind is of a type different 4407 // than the expected one. The check isn't necessary if the boilerplate has 4408 // already been converted to FAST_ELEMENTS. 4409 if (boilerplate_elements_kind != FAST_ELEMENTS) { 4410 __ LoadHeapObject(a1, instr->hydrogen()->boilerplate_object()); 4411 // Load map into a2. 4412 __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset)); 4413 // Load the map's "bit field 2". 4414 __ lbu(a2, FieldMemOperand(a2, Map::kBitField2Offset)); 4415 // Retrieve elements_kind from bit field 2. 4416 __ Ext(a2, a2, Map::kElementsKindShift, Map::kElementsKindBitCount); 4417 DeoptimizeIf(ne, 4418 instr->environment(), 4419 a2, 4420 Operand(boilerplate_elements_kind)); 4421 } 4422 __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 4423 __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); 4424 __ li(a2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); 4425 // Boilerplate already exists, constant elements are never accessed. 4426 // Pass an empty fixed array. 4427 __ li(a1, Operand(Handle<FixedArray>(heap->empty_fixed_array()))); 4428 __ Push(a3, a2, a1); 4429 4430 // Pick the right runtime function or stub to call. 4431 int length = instr->hydrogen()->length(); 4432 if (instr->hydrogen()->IsCopyOnWrite()) { 4433 ASSERT(instr->hydrogen()->depth() == 1); 4434 FastCloneShallowArrayStub::Mode mode = 4435 FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; 4436 FastCloneShallowArrayStub stub(mode, length); 4437 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 4438 } else if (instr->hydrogen()->depth() > 1) { 4439 CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); 4440 } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { 4441 CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); 4442 } else { 4443 FastCloneShallowArrayStub::Mode mode = 4444 boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS 4445 ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS 4446 : FastCloneShallowArrayStub::CLONE_ELEMENTS; 4447 FastCloneShallowArrayStub stub(mode, length); 4448 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 4449 } 4450 } 4451 4452 4453 void LCodeGen::EmitDeepCopy(Handle<JSObject> object, 4454 Register result, 4455 Register source, 4456 int* offset) { 4457 ASSERT(!source.is(a2)); 4458 ASSERT(!result.is(a2)); 4459 4460 // Only elements backing stores for non-COW arrays need to be copied. 4461 Handle<FixedArrayBase> elements(object->elements()); 4462 bool has_elements = elements->length() > 0 && 4463 elements->map() != isolate()->heap()->fixed_cow_array_map(); 4464 4465 // Increase the offset so that subsequent objects end up right after 4466 // this object and its backing store. 4467 int object_offset = *offset; 4468 int object_size = object->map()->instance_size(); 4469 int elements_offset = *offset + object_size; 4470 int elements_size = has_elements ? elements->Size() : 0; 4471 *offset += object_size + elements_size; 4472 4473 // Copy object header. 4474 ASSERT(object->properties()->length() == 0); 4475 int inobject_properties = object->map()->inobject_properties(); 4476 int header_size = object_size - inobject_properties * kPointerSize; 4477 for (int i = 0; i < header_size; i += kPointerSize) { 4478 if (has_elements && i == JSObject::kElementsOffset) { 4479 __ Addu(a2, result, Operand(elements_offset)); 4480 } else { 4481 __ lw(a2, FieldMemOperand(source, i)); 4482 } 4483 __ sw(a2, FieldMemOperand(result, object_offset + i)); 4484 } 4485 4486 // Copy in-object properties. 4487 for (int i = 0; i < inobject_properties; i++) { 4488 int total_offset = object_offset + object->GetInObjectPropertyOffset(i); 4489 Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i)); 4490 if (value->IsJSObject()) { 4491 Handle<JSObject> value_object = Handle<JSObject>::cast(value); 4492 __ Addu(a2, result, Operand(*offset)); 4493 __ sw(a2, FieldMemOperand(result, total_offset)); 4494 __ LoadHeapObject(source, value_object); 4495 EmitDeepCopy(value_object, result, source, offset); 4496 } else if (value->IsHeapObject()) { 4497 __ LoadHeapObject(a2, Handle<HeapObject>::cast(value)); 4498 __ sw(a2, FieldMemOperand(result, total_offset)); 4499 } else { 4500 __ li(a2, Operand(value)); 4501 __ sw(a2, FieldMemOperand(result, total_offset)); 4502 } 4503 } 4504 4505 4506 if (has_elements) { 4507 // Copy elements backing store header. 4508 __ LoadHeapObject(source, elements); 4509 for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) { 4510 __ lw(a2, FieldMemOperand(source, i)); 4511 __ sw(a2, FieldMemOperand(result, elements_offset + i)); 4512 } 4513 4514 // Copy elements backing store content. 4515 int elements_length = has_elements ? elements->length() : 0; 4516 if (elements->IsFixedDoubleArray()) { 4517 Handle<FixedDoubleArray> double_array = 4518 Handle<FixedDoubleArray>::cast(elements); 4519 for (int i = 0; i < elements_length; i++) { 4520 int64_t value = double_array->get_representation(i); 4521 // We only support little endian mode... 4522 int32_t value_low = value & 0xFFFFFFFF; 4523 int32_t value_high = value >> 32; 4524 int total_offset = 4525 elements_offset + FixedDoubleArray::OffsetOfElementAt(i); 4526 __ li(a2, Operand(value_low)); 4527 __ sw(a2, FieldMemOperand(result, total_offset)); 4528 __ li(a2, Operand(value_high)); 4529 __ sw(a2, FieldMemOperand(result, total_offset + 4)); 4530 } 4531 } else if (elements->IsFixedArray()) { 4532 for (int i = 0; i < elements_length; i++) { 4533 int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i); 4534 Handle<Object> value = JSObject::GetElement(object, i); 4535 if (value->IsJSObject()) { 4536 Handle<JSObject> value_object = Handle<JSObject>::cast(value); 4537 __ Addu(a2, result, Operand(*offset)); 4538 __ sw(a2, FieldMemOperand(result, total_offset)); 4539 __ LoadHeapObject(source, value_object); 4540 EmitDeepCopy(value_object, result, source, offset); 4541 } else if (value->IsHeapObject()) { 4542 __ LoadHeapObject(a2, Handle<HeapObject>::cast(value)); 4543 __ sw(a2, FieldMemOperand(result, total_offset)); 4544 } else { 4545 __ li(a2, Operand(value)); 4546 __ sw(a2, FieldMemOperand(result, total_offset)); 4547 } 4548 } 4549 } else { 4550 UNREACHABLE(); 4551 } 4552 } 4553 } 4554 4555 4556 void LCodeGen::DoFastLiteral(LFastLiteral* instr) { 4557 int size = instr->hydrogen()->total_size(); 4558 4559 // Allocate all objects that are part of the literal in one big 4560 // allocation. This avoids multiple limit checks. 4561 Label allocated, runtime_allocate; 4562 __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); 4563 __ jmp(&allocated); 4564 4565 __ bind(&runtime_allocate); 4566 __ li(a0, Operand(Smi::FromInt(size))); 4567 __ push(a0); 4568 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); 4569 4570 __ bind(&allocated); 4571 int offset = 0; 4572 __ LoadHeapObject(a1, instr->hydrogen()->boilerplate()); 4573 EmitDeepCopy(instr->hydrogen()->boilerplate(), v0, a1, &offset); 4574 ASSERT_EQ(size, offset); 4575 } 4576 4577 4578 void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) { 4579 ASSERT(ToRegister(instr->result()).is(v0)); 4580 Handle<FixedArray> literals(instr->environment()->closure()->literals()); 4581 Handle<FixedArray> constant_properties = 4582 instr->hydrogen()->constant_properties(); 4583 4584 // Set up the parameters to the stub/runtime call. 4585 __ LoadHeapObject(t0, literals); 4586 __ li(a3, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); 4587 __ li(a2, Operand(constant_properties)); 4588 int flags = instr->hydrogen()->fast_elements() 4589 ? ObjectLiteral::kFastElements 4590 : ObjectLiteral::kNoFlags; 4591 __ li(a1, Operand(Smi::FromInt(flags))); 4592 __ Push(t0, a3, a2, a1); 4593 4594 // Pick the right runtime function or stub to call. 4595 int properties_count = constant_properties->length() / 2; 4596 if (instr->hydrogen()->depth() > 1) { 4597 CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); 4598 } else if (flags != ObjectLiteral::kFastElements || 4599 properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { 4600 CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); 4601 } else { 4602 FastCloneShallowObjectStub stub(properties_count); 4603 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 4604 } 4605 } 4606 4607 4608 void LCodeGen::DoToFastProperties(LToFastProperties* instr) { 4609 ASSERT(ToRegister(instr->InputAt(0)).is(a0)); 4610 ASSERT(ToRegister(instr->result()).is(v0)); 4611 __ push(a0); 4612 CallRuntime(Runtime::kToFastProperties, 1, instr); 4613 } 4614 4615 4616 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { 4617 Label materialized; 4618 // Registers will be used as follows: 4619 // a3 = JS function. 4620 // t3 = literals array. 4621 // a1 = regexp literal. 4622 // a0 = regexp literal clone. 4623 // a2 and t0-t2 are used as temporaries. 4624 __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 4625 __ lw(t3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); 4626 int literal_offset = FixedArray::kHeaderSize + 4627 instr->hydrogen()->literal_index() * kPointerSize; 4628 __ lw(a1, FieldMemOperand(t3, literal_offset)); 4629 __ LoadRoot(at, Heap::kUndefinedValueRootIndex); 4630 __ Branch(&materialized, ne, a1, Operand(at)); 4631 4632 // Create regexp literal using runtime function 4633 // Result will be in v0. 4634 __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); 4635 __ li(t1, Operand(instr->hydrogen()->pattern())); 4636 __ li(t0, Operand(instr->hydrogen()->flags())); 4637 __ Push(t3, t2, t1, t0); 4638 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); 4639 __ mov(a1, v0); 4640 4641 __ bind(&materialized); 4642 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; 4643 Label allocated, runtime_allocate; 4644 4645 __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); 4646 __ jmp(&allocated); 4647 4648 __ bind(&runtime_allocate); 4649 __ li(a0, Operand(Smi::FromInt(size))); 4650 __ Push(a1, a0); 4651 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); 4652 __ pop(a1); 4653 4654 __ bind(&allocated); 4655 // Copy the content into the newly allocated memory. 4656 // (Unroll copy loop once for better throughput). 4657 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { 4658 __ lw(a3, FieldMemOperand(a1, i)); 4659 __ lw(a2, FieldMemOperand(a1, i + kPointerSize)); 4660 __ sw(a3, FieldMemOperand(v0, i)); 4661 __ sw(a2, FieldMemOperand(v0, i + kPointerSize)); 4662 } 4663 if ((size % (2 * kPointerSize)) != 0) { 4664 __ lw(a3, FieldMemOperand(a1, size - kPointerSize)); 4665 __ sw(a3, FieldMemOperand(v0, size - kPointerSize)); 4666 } 4667 } 4668 4669 4670 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { 4671 // Use the fast case closure allocation code that allocates in new 4672 // space for nested functions that don't need literals cloning. 4673 Handle<SharedFunctionInfo> shared_info = instr->shared_info(); 4674 bool pretenure = instr->hydrogen()->pretenure(); 4675 if (!pretenure && shared_info->num_literals() == 0) { 4676 FastNewClosureStub stub(shared_info->language_mode()); 4677 __ li(a1, Operand(shared_info)); 4678 __ push(a1); 4679 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 4680 } else { 4681 __ li(a2, Operand(shared_info)); 4682 __ li(a1, Operand(pretenure 4683 ? factory()->true_value() 4684 : factory()->false_value())); 4685 __ Push(cp, a2, a1); 4686 CallRuntime(Runtime::kNewClosure, 3, instr); 4687 } 4688 } 4689 4690 4691 void LCodeGen::DoTypeof(LTypeof* instr) { 4692 ASSERT(ToRegister(instr->result()).is(v0)); 4693 Register input = ToRegister(instr->InputAt(0)); 4694 __ push(input); 4695 CallRuntime(Runtime::kTypeof, 1, instr); 4696 } 4697 4698 4699 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { 4700 Register input = ToRegister(instr->InputAt(0)); 4701 int true_block = chunk_->LookupDestination(instr->true_block_id()); 4702 int false_block = chunk_->LookupDestination(instr->false_block_id()); 4703 Label* true_label = chunk_->GetAssemblyLabel(true_block); 4704 Label* false_label = chunk_->GetAssemblyLabel(false_block); 4705 4706 Register cmp1 = no_reg; 4707 Operand cmp2 = Operand(no_reg); 4708 4709 Condition final_branch_condition = EmitTypeofIs(true_label, 4710 false_label, 4711 input, 4712 instr->type_literal(), 4713 cmp1, 4714 cmp2); 4715 4716 ASSERT(cmp1.is_valid()); 4717 ASSERT(!cmp2.is_reg() || cmp2.rm().is_valid()); 4718 4719 if (final_branch_condition != kNoCondition) { 4720 EmitBranch(true_block, false_block, final_branch_condition, cmp1, cmp2); 4721 } 4722 } 4723 4724 4725 Condition LCodeGen::EmitTypeofIs(Label* true_label, 4726 Label* false_label, 4727 Register input, 4728 Handle<String> type_name, 4729 Register& cmp1, 4730 Operand& cmp2) { 4731 // This function utilizes the delay slot heavily. This is used to load 4732 // values that are always usable without depending on the type of the input 4733 // register. 4734 Condition final_branch_condition = kNoCondition; 4735 Register scratch = scratch0(); 4736 if (type_name->Equals(heap()->number_symbol())) { 4737 __ JumpIfSmi(input, true_label); 4738 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); 4739 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); 4740 cmp1 = input; 4741 cmp2 = Operand(at); 4742 final_branch_condition = eq; 4743 4744 } else if (type_name->Equals(heap()->string_symbol())) { 4745 __ JumpIfSmi(input, false_label); 4746 __ GetObjectType(input, input, scratch); 4747 __ Branch(USE_DELAY_SLOT, false_label, 4748 ge, scratch, Operand(FIRST_NONSTRING_TYPE)); 4749 // input is an object so we can load the BitFieldOffset even if we take the 4750 // other branch. 4751 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); 4752 __ And(at, at, 1 << Map::kIsUndetectable); 4753 cmp1 = at; 4754 cmp2 = Operand(zero_reg); 4755 final_branch_condition = eq; 4756 4757 } else if (type_name->Equals(heap()->boolean_symbol())) { 4758 __ LoadRoot(at, Heap::kTrueValueRootIndex); 4759 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); 4760 __ LoadRoot(at, Heap::kFalseValueRootIndex); 4761 cmp1 = at; 4762 cmp2 = Operand(input); 4763 final_branch_condition = eq; 4764 4765 } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) { 4766 __ LoadRoot(at, Heap::kNullValueRootIndex); 4767 cmp1 = at; 4768 cmp2 = Operand(input); 4769 final_branch_condition = eq; 4770 4771 } else if (type_name->Equals(heap()->undefined_symbol())) { 4772 __ LoadRoot(at, Heap::kUndefinedValueRootIndex); 4773 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); 4774 // The first instruction of JumpIfSmi is an And - it is safe in the delay 4775 // slot. 4776 __ JumpIfSmi(input, false_label); 4777 // Check for undetectable objects => true. 4778 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); 4779 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); 4780 __ And(at, at, 1 << Map::kIsUndetectable); 4781 cmp1 = at; 4782 cmp2 = Operand(zero_reg); 4783 final_branch_condition = ne; 4784 4785 } else if (type_name->Equals(heap()->function_symbol())) { 4786 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 4787 __ JumpIfSmi(input, false_label); 4788 __ GetObjectType(input, scratch, input); 4789 __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE)); 4790 cmp1 = input; 4791 cmp2 = Operand(JS_FUNCTION_PROXY_TYPE); 4792 final_branch_condition = eq; 4793 4794 } else if (type_name->Equals(heap()->object_symbol())) { 4795 __ JumpIfSmi(input, false_label); 4796 if (!FLAG_harmony_typeof) { 4797 __ LoadRoot(at, Heap::kNullValueRootIndex); 4798 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); 4799 } 4800 // input is an object, it is safe to use GetObjectType in the delay slot. 4801 __ GetObjectType(input, input, scratch); 4802 __ Branch(USE_DELAY_SLOT, false_label, 4803 lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 4804 // Still an object, so the InstanceType can be loaded. 4805 __ lbu(scratch, FieldMemOperand(input, Map::kInstanceTypeOffset)); 4806 __ Branch(USE_DELAY_SLOT, false_label, 4807 gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); 4808 // Still an object, so the BitField can be loaded. 4809 // Check for undetectable objects => false. 4810 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); 4811 __ And(at, at, 1 << Map::kIsUndetectable); 4812 cmp1 = at; 4813 cmp2 = Operand(zero_reg); 4814 final_branch_condition = eq; 4815 4816 } else { 4817 cmp1 = at; 4818 cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion. 4819 __ Branch(false_label); 4820 } 4821 4822 return final_branch_condition; 4823 } 4824 4825 4826 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { 4827 Register temp1 = ToRegister(instr->TempAt(0)); 4828 int true_block = chunk_->LookupDestination(instr->true_block_id()); 4829 int false_block = chunk_->LookupDestination(instr->false_block_id()); 4830 4831 EmitIsConstructCall(temp1, scratch0()); 4832 4833 EmitBranch(true_block, false_block, eq, temp1, 4834 Operand(Smi::FromInt(StackFrame::CONSTRUCT))); 4835 } 4836 4837 4838 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { 4839 ASSERT(!temp1.is(temp2)); 4840 // Get the frame pointer for the calling frame. 4841 __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 4842 4843 // Skip the arguments adaptor frame if it exists. 4844 Label check_frame_marker; 4845 __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); 4846 __ Branch(&check_frame_marker, ne, temp2, 4847 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 4848 __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); 4849 4850 // Check the marker in the calling frame. 4851 __ bind(&check_frame_marker); 4852 __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); 4853 } 4854 4855 4856 void LCodeGen::EnsureSpaceForLazyDeopt() { 4857 // Ensure that we have enough space after the previous lazy-bailout 4858 // instruction for patching the code here. 4859 int current_pc = masm()->pc_offset(); 4860 int patch_size = Deoptimizer::patch_size(); 4861 if (current_pc < last_lazy_deopt_pc_ + patch_size) { 4862 int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc; 4863 ASSERT_EQ(0, padding_size % Assembler::kInstrSize); 4864 while (padding_size > 0) { 4865 __ nop(); 4866 padding_size -= Assembler::kInstrSize; 4867 } 4868 } 4869 last_lazy_deopt_pc_ = masm()->pc_offset(); 4870 } 4871 4872 4873 void LCodeGen::DoLazyBailout(LLazyBailout* instr) { 4874 EnsureSpaceForLazyDeopt(); 4875 ASSERT(instr->HasEnvironment()); 4876 LEnvironment* env = instr->environment(); 4877 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); 4878 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 4879 } 4880 4881 4882 void LCodeGen::DoDeoptimize(LDeoptimize* instr) { 4883 DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg)); 4884 } 4885 4886 4887 void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { 4888 Register object = ToRegister(instr->object()); 4889 Register key = ToRegister(instr->key()); 4890 Register strict = scratch0(); 4891 __ li(strict, Operand(Smi::FromInt(strict_mode_flag()))); 4892 __ Push(object, key, strict); 4893 ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); 4894 LPointerMap* pointers = instr->pointer_map(); 4895 RecordPosition(pointers->position()); 4896 SafepointGenerator safepoint_generator( 4897 this, pointers, Safepoint::kLazyDeopt); 4898 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator); 4899 } 4900 4901 4902 void LCodeGen::DoIn(LIn* instr) { 4903 Register obj = ToRegister(instr->object()); 4904 Register key = ToRegister(instr->key()); 4905 __ Push(key, obj); 4906 ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); 4907 LPointerMap* pointers = instr->pointer_map(); 4908 RecordPosition(pointers->position()); 4909 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); 4910 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator); 4911 } 4912 4913 4914 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { 4915 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); 4916 __ CallRuntimeSaveDoubles(Runtime::kStackGuard); 4917 RecordSafepointWithLazyDeopt( 4918 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 4919 ASSERT(instr->HasEnvironment()); 4920 LEnvironment* env = instr->environment(); 4921 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 4922 } 4923 4924 4925 void LCodeGen::DoStackCheck(LStackCheck* instr) { 4926 class DeferredStackCheck: public LDeferredCode { 4927 public: 4928 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) 4929 : LDeferredCode(codegen), instr_(instr) { } 4930 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } 4931 virtual LInstruction* instr() { return instr_; } 4932 private: 4933 LStackCheck* instr_; 4934 }; 4935 4936 ASSERT(instr->HasEnvironment()); 4937 LEnvironment* env = instr->environment(); 4938 // There is no LLazyBailout instruction for stack-checks. We have to 4939 // prepare for lazy deoptimization explicitly here. 4940 if (instr->hydrogen()->is_function_entry()) { 4941 // Perform stack overflow check. 4942 Label done; 4943 __ LoadRoot(at, Heap::kStackLimitRootIndex); 4944 __ Branch(&done, hs, sp, Operand(at)); 4945 StackCheckStub stub; 4946 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 4947 EnsureSpaceForLazyDeopt(); 4948 __ bind(&done); 4949 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); 4950 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 4951 } else { 4952 ASSERT(instr->hydrogen()->is_backwards_branch()); 4953 // Perform stack overflow check if this goto needs it before jumping. 4954 DeferredStackCheck* deferred_stack_check = 4955 new DeferredStackCheck(this, instr); 4956 __ LoadRoot(at, Heap::kStackLimitRootIndex); 4957 __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at)); 4958 EnsureSpaceForLazyDeopt(); 4959 __ bind(instr->done_label()); 4960 deferred_stack_check->SetExit(instr->done_label()); 4961 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); 4962 // Don't record a deoptimization index for the safepoint here. 4963 // This will be done explicitly when emitting call and the safepoint in 4964 // the deferred code. 4965 } 4966 } 4967 4968 4969 void LCodeGen::DoOsrEntry(LOsrEntry* instr) { 4970 // This is a pseudo-instruction that ensures that the environment here is 4971 // properly registered for deoptimization and records the assembler's PC 4972 // offset. 4973 LEnvironment* environment = instr->environment(); 4974 environment->SetSpilledRegisters(instr->SpilledRegisterArray(), 4975 instr->SpilledDoubleRegisterArray()); 4976 4977 // If the environment were already registered, we would have no way of 4978 // backpatching it with the spill slot operands. 4979 ASSERT(!environment->HasBeenRegistered()); 4980 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 4981 ASSERT(osr_pc_offset_ == -1); 4982 osr_pc_offset_ = masm()->pc_offset(); 4983 } 4984 4985 4986 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { 4987 Register result = ToRegister(instr->result()); 4988 Register object = ToRegister(instr->object()); 4989 __ LoadRoot(at, Heap::kUndefinedValueRootIndex); 4990 DeoptimizeIf(eq, instr->environment(), object, Operand(at)); 4991 4992 Register null_value = t1; 4993 __ LoadRoot(null_value, Heap::kNullValueRootIndex); 4994 DeoptimizeIf(eq, instr->environment(), object, Operand(null_value)); 4995 4996 __ And(at, object, kSmiTagMask); 4997 DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); 4998 4999 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); 5000 __ GetObjectType(object, a1, a1); 5001 DeoptimizeIf(le, instr->environment(), a1, Operand(LAST_JS_PROXY_TYPE)); 5002 5003 Label use_cache, call_runtime; 5004 ASSERT(object.is(a0)); 5005 __ CheckEnumCache(null_value, &call_runtime); 5006 5007 __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset)); 5008 __ Branch(&use_cache); 5009 5010 // Get the set of properties to enumerate. 5011 __ bind(&call_runtime); 5012 __ push(object); 5013 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); 5014 5015 __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); 5016 ASSERT(result.is(v0)); 5017 __ LoadRoot(at, Heap::kMetaMapRootIndex); 5018 DeoptimizeIf(ne, instr->environment(), a1, Operand(at)); 5019 __ bind(&use_cache); 5020 } 5021 5022 5023 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { 5024 Register map = ToRegister(instr->map()); 5025 Register result = ToRegister(instr->result()); 5026 __ LoadInstanceDescriptors(map, result); 5027 __ lw(result, 5028 FieldMemOperand(result, DescriptorArray::kEnumerationIndexOffset)); 5029 __ lw(result, 5030 FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); 5031 DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); 5032 } 5033 5034 5035 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { 5036 Register object = ToRegister(instr->value()); 5037 Register map = ToRegister(instr->map()); 5038 __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); 5039 DeoptimizeIf(ne, instr->environment(), map, Operand(scratch0())); 5040 } 5041 5042 5043 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { 5044 Register object = ToRegister(instr->object()); 5045 Register index = ToRegister(instr->index()); 5046 Register result = ToRegister(instr->result()); 5047 Register scratch = scratch0(); 5048 5049 Label out_of_object, done; 5050 __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg)); 5051 __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize); // In delay slot. 5052 5053 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); 5054 __ Addu(scratch, object, scratch); 5055 __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); 5056 5057 __ Branch(&done); 5058 5059 __ bind(&out_of_object); 5060 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 5061 // Index is equal to negated out of object property index plus 1. 5062 __ Subu(scratch, result, scratch); 5063 __ lw(result, FieldMemOperand(scratch, 5064 FixedArray::kHeaderSize - kPointerSize)); 5065 __ bind(&done); 5066 } 5067 5068 5069 #undef __ 5070 5071 } } // namespace v8::internal 5072