1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/MemoryBuiltins.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/Support/ConstantRange.h" 21 #include "llvm/Support/GetElementPtrTypeIterator.h" 22 #include "llvm/Support/PatternMatch.h" 23 #include "llvm/Target/TargetLibraryInfo.h" 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 static ConstantInt *getOne(Constant *C) { 28 return ConstantInt::get(cast<IntegerType>(C->getType()), 1); 29 } 30 31 /// AddOne - Add one to a ConstantInt 32 static Constant *AddOne(Constant *C) { 33 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); 34 } 35 /// SubOne - Subtract one from a ConstantInt 36 static Constant *SubOne(Constant *C) { 37 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); 38 } 39 40 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { 41 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 42 } 43 44 static bool HasAddOverflow(ConstantInt *Result, 45 ConstantInt *In1, ConstantInt *In2, 46 bool IsSigned) { 47 if (!IsSigned) 48 return Result->getValue().ult(In1->getValue()); 49 50 if (In2->isNegative()) 51 return Result->getValue().sgt(In1->getValue()); 52 return Result->getValue().slt(In1->getValue()); 53 } 54 55 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result 56 /// overflowed for this type. 57 static bool AddWithOverflow(Constant *&Result, Constant *In1, 58 Constant *In2, bool IsSigned = false) { 59 Result = ConstantExpr::getAdd(In1, In2); 60 61 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 62 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 63 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 64 if (HasAddOverflow(ExtractElement(Result, Idx), 65 ExtractElement(In1, Idx), 66 ExtractElement(In2, Idx), 67 IsSigned)) 68 return true; 69 } 70 return false; 71 } 72 73 return HasAddOverflow(cast<ConstantInt>(Result), 74 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 75 IsSigned); 76 } 77 78 static bool HasSubOverflow(ConstantInt *Result, 79 ConstantInt *In1, ConstantInt *In2, 80 bool IsSigned) { 81 if (!IsSigned) 82 return Result->getValue().ugt(In1->getValue()); 83 84 if (In2->isNegative()) 85 return Result->getValue().slt(In1->getValue()); 86 87 return Result->getValue().sgt(In1->getValue()); 88 } 89 90 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result 91 /// overflowed for this type. 92 static bool SubWithOverflow(Constant *&Result, Constant *In1, 93 Constant *In2, bool IsSigned = false) { 94 Result = ConstantExpr::getSub(In1, In2); 95 96 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 97 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 98 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 99 if (HasSubOverflow(ExtractElement(Result, Idx), 100 ExtractElement(In1, Idx), 101 ExtractElement(In2, Idx), 102 IsSigned)) 103 return true; 104 } 105 return false; 106 } 107 108 return HasSubOverflow(cast<ConstantInt>(Result), 109 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 110 IsSigned); 111 } 112 113 /// isSignBitCheck - Given an exploded icmp instruction, return true if the 114 /// comparison only checks the sign bit. If it only checks the sign bit, set 115 /// TrueIfSigned if the result of the comparison is true when the input value is 116 /// signed. 117 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, 118 bool &TrueIfSigned) { 119 switch (pred) { 120 case ICmpInst::ICMP_SLT: // True if LHS s< 0 121 TrueIfSigned = true; 122 return RHS->isZero(); 123 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 124 TrueIfSigned = true; 125 return RHS->isAllOnesValue(); 126 case ICmpInst::ICMP_SGT: // True if LHS s> -1 127 TrueIfSigned = false; 128 return RHS->isAllOnesValue(); 129 case ICmpInst::ICMP_UGT: 130 // True if LHS u> RHS and RHS == high-bit-mask - 1 131 TrueIfSigned = true; 132 return RHS->isMaxValue(true); 133 case ICmpInst::ICMP_UGE: 134 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 135 TrueIfSigned = true; 136 return RHS->getValue().isSignBit(); 137 default: 138 return false; 139 } 140 } 141 142 /// Returns true if the exploded icmp can be expressed as a signed comparison 143 /// to zero and updates the predicate accordingly. 144 /// The signedness of the comparison is preserved. 145 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) { 146 if (!ICmpInst::isSigned(pred)) 147 return false; 148 149 if (RHS->isZero()) 150 return ICmpInst::isRelational(pred); 151 152 if (RHS->isOne()) { 153 if (pred == ICmpInst::ICMP_SLT) { 154 pred = ICmpInst::ICMP_SLE; 155 return true; 156 } 157 } else if (RHS->isAllOnesValue()) { 158 if (pred == ICmpInst::ICMP_SGT) { 159 pred = ICmpInst::ICMP_SGE; 160 return true; 161 } 162 } 163 164 return false; 165 } 166 167 // isHighOnes - Return true if the constant is of the form 1+0+. 168 // This is the same as lowones(~X). 169 static bool isHighOnes(const ConstantInt *CI) { 170 return (~CI->getValue() + 1).isPowerOf2(); 171 } 172 173 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 174 /// set of known zero and one bits, compute the maximum and minimum values that 175 /// could have the specified known zero and known one bits, returning them in 176 /// min/max. 177 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, 178 const APInt& KnownOne, 179 APInt& Min, APInt& Max) { 180 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 181 KnownZero.getBitWidth() == Min.getBitWidth() && 182 KnownZero.getBitWidth() == Max.getBitWidth() && 183 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 184 APInt UnknownBits = ~(KnownZero|KnownOne); 185 186 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 187 // bit if it is unknown. 188 Min = KnownOne; 189 Max = KnownOne|UnknownBits; 190 191 if (UnknownBits.isNegative()) { // Sign bit is unknown 192 Min.setBit(Min.getBitWidth()-1); 193 Max.clearBit(Max.getBitWidth()-1); 194 } 195 } 196 197 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and 198 // a set of known zero and one bits, compute the maximum and minimum values that 199 // could have the specified known zero and known one bits, returning them in 200 // min/max. 201 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 202 const APInt &KnownOne, 203 APInt &Min, APInt &Max) { 204 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 205 KnownZero.getBitWidth() == Min.getBitWidth() && 206 KnownZero.getBitWidth() == Max.getBitWidth() && 207 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 208 APInt UnknownBits = ~(KnownZero|KnownOne); 209 210 // The minimum value is when the unknown bits are all zeros. 211 Min = KnownOne; 212 // The maximum value is when the unknown bits are all ones. 213 Max = KnownOne|UnknownBits; 214 } 215 216 217 218 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern: 219 /// cmp pred (load (gep GV, ...)), cmpcst 220 /// where GV is a global variable with a constant initializer. Try to simplify 221 /// this into some simple computation that does not need the load. For example 222 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 223 /// 224 /// If AndCst is non-null, then the loaded value is masked with that constant 225 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 226 Instruction *InstCombiner:: 227 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, 228 CmpInst &ICI, ConstantInt *AndCst) { 229 // We need TD information to know the pointer size unless this is inbounds. 230 if (!GEP->isInBounds() && TD == 0) return 0; 231 232 Constant *Init = GV->getInitializer(); 233 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 234 return 0; 235 236 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 237 if (ArrayElementCount > 1024) return 0; // Don't blow up on huge arrays. 238 239 // There are many forms of this optimization we can handle, for now, just do 240 // the simple index into a single-dimensional array. 241 // 242 // Require: GEP GV, 0, i {{, constant indices}} 243 if (GEP->getNumOperands() < 3 || 244 !isa<ConstantInt>(GEP->getOperand(1)) || 245 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 246 isa<Constant>(GEP->getOperand(2))) 247 return 0; 248 249 // Check that indices after the variable are constants and in-range for the 250 // type they index. Collect the indices. This is typically for arrays of 251 // structs. 252 SmallVector<unsigned, 4> LaterIndices; 253 254 Type *EltTy = Init->getType()->getArrayElementType(); 255 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 256 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 257 if (Idx == 0) return 0; // Variable index. 258 259 uint64_t IdxVal = Idx->getZExtValue(); 260 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index. 261 262 if (StructType *STy = dyn_cast<StructType>(EltTy)) 263 EltTy = STy->getElementType(IdxVal); 264 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 265 if (IdxVal >= ATy->getNumElements()) return 0; 266 EltTy = ATy->getElementType(); 267 } else { 268 return 0; // Unknown type. 269 } 270 271 LaterIndices.push_back(IdxVal); 272 } 273 274 enum { Overdefined = -3, Undefined = -2 }; 275 276 // Variables for our state machines. 277 278 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 279 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 280 // and 87 is the second (and last) index. FirstTrueElement is -2 when 281 // undefined, otherwise set to the first true element. SecondTrueElement is 282 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 283 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 284 285 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 286 // form "i != 47 & i != 87". Same state transitions as for true elements. 287 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 288 289 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 290 /// define a state machine that triggers for ranges of values that the index 291 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 292 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 293 /// index in the range (inclusive). We use -2 for undefined here because we 294 /// use relative comparisons and don't want 0-1 to match -1. 295 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 296 297 // MagicBitvector - This is a magic bitvector where we set a bit if the 298 // comparison is true for element 'i'. If there are 64 elements or less in 299 // the array, this will fully represent all the comparison results. 300 uint64_t MagicBitvector = 0; 301 302 303 // Scan the array and see if one of our patterns matches. 304 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 305 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 306 Constant *Elt = Init->getAggregateElement(i); 307 if (Elt == 0) return 0; 308 309 // If this is indexing an array of structures, get the structure element. 310 if (!LaterIndices.empty()) 311 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 312 313 // If the element is masked, handle it. 314 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 315 316 // Find out if the comparison would be true or false for the i'th element. 317 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 318 CompareRHS, TD, TLI); 319 // If the result is undef for this element, ignore it. 320 if (isa<UndefValue>(C)) { 321 // Extend range state machines to cover this element in case there is an 322 // undef in the middle of the range. 323 if (TrueRangeEnd == (int)i-1) 324 TrueRangeEnd = i; 325 if (FalseRangeEnd == (int)i-1) 326 FalseRangeEnd = i; 327 continue; 328 } 329 330 // If we can't compute the result for any of the elements, we have to give 331 // up evaluating the entire conditional. 332 if (!isa<ConstantInt>(C)) return 0; 333 334 // Otherwise, we know if the comparison is true or false for this element, 335 // update our state machines. 336 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 337 338 // State machine for single/double/range index comparison. 339 if (IsTrueForElt) { 340 // Update the TrueElement state machine. 341 if (FirstTrueElement == Undefined) 342 FirstTrueElement = TrueRangeEnd = i; // First true element. 343 else { 344 // Update double-compare state machine. 345 if (SecondTrueElement == Undefined) 346 SecondTrueElement = i; 347 else 348 SecondTrueElement = Overdefined; 349 350 // Update range state machine. 351 if (TrueRangeEnd == (int)i-1) 352 TrueRangeEnd = i; 353 else 354 TrueRangeEnd = Overdefined; 355 } 356 } else { 357 // Update the FalseElement state machine. 358 if (FirstFalseElement == Undefined) 359 FirstFalseElement = FalseRangeEnd = i; // First false element. 360 else { 361 // Update double-compare state machine. 362 if (SecondFalseElement == Undefined) 363 SecondFalseElement = i; 364 else 365 SecondFalseElement = Overdefined; 366 367 // Update range state machine. 368 if (FalseRangeEnd == (int)i-1) 369 FalseRangeEnd = i; 370 else 371 FalseRangeEnd = Overdefined; 372 } 373 } 374 375 376 // If this element is in range, update our magic bitvector. 377 if (i < 64 && IsTrueForElt) 378 MagicBitvector |= 1ULL << i; 379 380 // If all of our states become overdefined, bail out early. Since the 381 // predicate is expensive, only check it every 8 elements. This is only 382 // really useful for really huge arrays. 383 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 384 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 385 FalseRangeEnd == Overdefined) 386 return 0; 387 } 388 389 // Now that we've scanned the entire array, emit our new comparison(s). We 390 // order the state machines in complexity of the generated code. 391 Value *Idx = GEP->getOperand(2); 392 393 // If the index is larger than the pointer size of the target, truncate the 394 // index down like the GEP would do implicitly. We don't have to do this for 395 // an inbounds GEP because the index can't be out of range. 396 if (!GEP->isInBounds() && 397 Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits()) 398 Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext())); 399 400 // If the comparison is only true for one or two elements, emit direct 401 // comparisons. 402 if (SecondTrueElement != Overdefined) { 403 // None true -> false. 404 if (FirstTrueElement == Undefined) 405 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 406 407 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 408 409 // True for one element -> 'i == 47'. 410 if (SecondTrueElement == Undefined) 411 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 412 413 // True for two elements -> 'i == 47 | i == 72'. 414 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 415 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 416 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 417 return BinaryOperator::CreateOr(C1, C2); 418 } 419 420 // If the comparison is only false for one or two elements, emit direct 421 // comparisons. 422 if (SecondFalseElement != Overdefined) { 423 // None false -> true. 424 if (FirstFalseElement == Undefined) 425 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 426 427 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 428 429 // False for one element -> 'i != 47'. 430 if (SecondFalseElement == Undefined) 431 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 432 433 // False for two elements -> 'i != 47 & i != 72'. 434 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 435 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 436 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 437 return BinaryOperator::CreateAnd(C1, C2); 438 } 439 440 // If the comparison can be replaced with a range comparison for the elements 441 // where it is true, emit the range check. 442 if (TrueRangeEnd != Overdefined) { 443 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 444 445 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 446 if (FirstTrueElement) { 447 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 448 Idx = Builder->CreateAdd(Idx, Offs); 449 } 450 451 Value *End = ConstantInt::get(Idx->getType(), 452 TrueRangeEnd-FirstTrueElement+1); 453 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 454 } 455 456 // False range check. 457 if (FalseRangeEnd != Overdefined) { 458 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 459 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 460 if (FirstFalseElement) { 461 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 462 Idx = Builder->CreateAdd(Idx, Offs); 463 } 464 465 Value *End = ConstantInt::get(Idx->getType(), 466 FalseRangeEnd-FirstFalseElement); 467 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 468 } 469 470 471 // If a magic bitvector captures the entire comparison state 472 // of this load, replace it with computation that does: 473 // ((magic_cst >> i) & 1) != 0 474 { 475 Type *Ty = 0; 476 477 // Look for an appropriate type: 478 // - The type of Idx if the magic fits 479 // - The smallest fitting legal type if we have a DataLayout 480 // - Default to i32 481 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 482 Ty = Idx->getType(); 483 else if (TD) 484 Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 485 else if (ArrayElementCount <= 32) 486 Ty = Type::getInt32Ty(Init->getContext()); 487 488 if (Ty != 0) { 489 Value *V = Builder->CreateIntCast(Idx, Ty, false); 490 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 491 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 492 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 493 } 494 } 495 496 return 0; 497 } 498 499 500 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare 501 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we 502 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can 503 /// be complex, and scales are involved. The above expression would also be 504 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). 505 /// This later form is less amenable to optimization though, and we are allowed 506 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 507 /// 508 /// If we can't emit an optimized form for this expression, this returns null. 509 /// 510 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { 511 DataLayout &TD = *IC.getDataLayout(); 512 gep_type_iterator GTI = gep_type_begin(GEP); 513 514 // Check to see if this gep only has a single variable index. If so, and if 515 // any constant indices are a multiple of its scale, then we can compute this 516 // in terms of the scale of the variable index. For example, if the GEP 517 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 518 // because the expression will cross zero at the same point. 519 unsigned i, e = GEP->getNumOperands(); 520 int64_t Offset = 0; 521 for (i = 1; i != e; ++i, ++GTI) { 522 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 523 // Compute the aggregate offset of constant indices. 524 if (CI->isZero()) continue; 525 526 // Handle a struct index, which adds its field offset to the pointer. 527 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 528 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 529 } else { 530 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 531 Offset += Size*CI->getSExtValue(); 532 } 533 } else { 534 // Found our variable index. 535 break; 536 } 537 } 538 539 // If there are no variable indices, we must have a constant offset, just 540 // evaluate it the general way. 541 if (i == e) return 0; 542 543 Value *VariableIdx = GEP->getOperand(i); 544 // Determine the scale factor of the variable element. For example, this is 545 // 4 if the variable index is into an array of i32. 546 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType()); 547 548 // Verify that there are no other variable indices. If so, emit the hard way. 549 for (++i, ++GTI; i != e; ++i, ++GTI) { 550 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 551 if (!CI) return 0; 552 553 // Compute the aggregate offset of constant indices. 554 if (CI->isZero()) continue; 555 556 // Handle a struct index, which adds its field offset to the pointer. 557 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 558 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 559 } else { 560 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 561 Offset += Size*CI->getSExtValue(); 562 } 563 } 564 565 // Okay, we know we have a single variable index, which must be a 566 // pointer/array/vector index. If there is no offset, life is simple, return 567 // the index. 568 unsigned IntPtrWidth = TD.getPointerSizeInBits(); 569 if (Offset == 0) { 570 // Cast to intptrty in case a truncation occurs. If an extension is needed, 571 // we don't need to bother extending: the extension won't affect where the 572 // computation crosses zero. 573 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 574 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); 575 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 576 } 577 return VariableIdx; 578 } 579 580 // Otherwise, there is an index. The computation we will do will be modulo 581 // the pointer size, so get it. 582 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 583 584 Offset &= PtrSizeMask; 585 VariableScale &= PtrSizeMask; 586 587 // To do this transformation, any constant index must be a multiple of the 588 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 589 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 590 // multiple of the variable scale. 591 int64_t NewOffs = Offset / (int64_t)VariableScale; 592 if (Offset != NewOffs*(int64_t)VariableScale) 593 return 0; 594 595 // Okay, we can do this evaluation. Start by converting the index to intptr. 596 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); 597 if (VariableIdx->getType() != IntPtrTy) 598 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 599 true /*Signed*/); 600 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 601 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 602 } 603 604 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something 605 /// else. At this point we know that the GEP is on the LHS of the comparison. 606 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 607 ICmpInst::Predicate Cond, 608 Instruction &I) { 609 // Don't transform signed compares of GEPs into index compares. Even if the 610 // GEP is inbounds, the final add of the base pointer can have signed overflow 611 // and would change the result of the icmp. 612 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 613 // the maximum signed value for the pointer type. 614 if (ICmpInst::isSigned(Cond)) 615 return 0; 616 617 // Look through bitcasts. 618 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS)) 619 RHS = BCI->getOperand(0); 620 621 Value *PtrBase = GEPLHS->getOperand(0); 622 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) { 623 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 624 // This transformation (ignoring the base and scales) is valid because we 625 // know pointers can't overflow since the gep is inbounds. See if we can 626 // output an optimized form. 627 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this); 628 629 // If not, synthesize the offset the hard way. 630 if (Offset == 0) 631 Offset = EmitGEPOffset(GEPLHS); 632 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 633 Constant::getNullValue(Offset->getType())); 634 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 635 // If the base pointers are different, but the indices are the same, just 636 // compare the base pointer. 637 if (PtrBase != GEPRHS->getOperand(0)) { 638 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 639 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 640 GEPRHS->getOperand(0)->getType(); 641 if (IndicesTheSame) 642 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 643 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 644 IndicesTheSame = false; 645 break; 646 } 647 648 // If all indices are the same, just compare the base pointers. 649 if (IndicesTheSame) 650 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 651 652 // If we're comparing GEPs with two base pointers that only differ in type 653 // and both GEPs have only constant indices or just one use, then fold 654 // the compare with the adjusted indices. 655 if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() && 656 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 657 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 658 PtrBase->stripPointerCasts() == 659 GEPRHS->getOperand(0)->stripPointerCasts()) { 660 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 661 EmitGEPOffset(GEPLHS), 662 EmitGEPOffset(GEPRHS)); 663 return ReplaceInstUsesWith(I, Cmp); 664 } 665 666 // Otherwise, the base pointers are different and the indices are 667 // different, bail out. 668 return 0; 669 } 670 671 // If one of the GEPs has all zero indices, recurse. 672 bool AllZeros = true; 673 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 674 if (!isa<Constant>(GEPLHS->getOperand(i)) || 675 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) { 676 AllZeros = false; 677 break; 678 } 679 if (AllZeros) 680 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 681 ICmpInst::getSwappedPredicate(Cond), I); 682 683 // If the other GEP has all zero indices, recurse. 684 AllZeros = true; 685 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 686 if (!isa<Constant>(GEPRHS->getOperand(i)) || 687 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) { 688 AllZeros = false; 689 break; 690 } 691 if (AllZeros) 692 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 693 694 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 695 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 696 // If the GEPs only differ by one index, compare it. 697 unsigned NumDifferences = 0; // Keep track of # differences. 698 unsigned DiffOperand = 0; // The operand that differs. 699 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 700 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 701 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 702 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 703 // Irreconcilable differences. 704 NumDifferences = 2; 705 break; 706 } else { 707 if (NumDifferences++) break; 708 DiffOperand = i; 709 } 710 } 711 712 if (NumDifferences == 0) // SAME GEP? 713 return ReplaceInstUsesWith(I, // No comparison is needed here. 714 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 715 716 else if (NumDifferences == 1 && GEPsInBounds) { 717 Value *LHSV = GEPLHS->getOperand(DiffOperand); 718 Value *RHSV = GEPRHS->getOperand(DiffOperand); 719 // Make sure we do a signed comparison here. 720 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 721 } 722 } 723 724 // Only lower this if the icmp is the only user of the GEP or if we expect 725 // the result to fold to a constant! 726 if (TD && 727 GEPsInBounds && 728 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 729 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 730 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 731 Value *L = EmitGEPOffset(GEPLHS); 732 Value *R = EmitGEPOffset(GEPRHS); 733 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 734 } 735 } 736 return 0; 737 } 738 739 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X". 740 Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI, 741 Value *X, ConstantInt *CI, 742 ICmpInst::Predicate Pred, 743 Value *TheAdd) { 744 // If we have X+0, exit early (simplifying logic below) and let it get folded 745 // elsewhere. icmp X+0, X -> icmp X, X 746 if (CI->isZero()) { 747 bool isTrue = ICmpInst::isTrueWhenEqual(Pred); 748 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue)); 749 } 750 751 // (X+4) == X -> false. 752 if (Pred == ICmpInst::ICMP_EQ) 753 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 754 755 // (X+4) != X -> true. 756 if (Pred == ICmpInst::ICMP_NE) 757 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 758 759 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 760 // so the values can never be equal. Similarly for all other "or equals" 761 // operators. 762 763 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 764 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 765 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 766 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 767 Value *R = 768 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 769 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 770 } 771 772 // (X+1) >u X --> X <u (0-1) --> X != 255 773 // (X+2) >u X --> X <u (0-2) --> X <u 254 774 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 775 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 776 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 777 778 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 779 ConstantInt *SMax = ConstantInt::get(X->getContext(), 780 APInt::getSignedMaxValue(BitWidth)); 781 782 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 783 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 784 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 785 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 786 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 787 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 788 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 789 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 790 791 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 792 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 793 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 794 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 795 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 796 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 797 798 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 799 Constant *C = Builder->getInt(CI->getValue()-1); 800 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 801 } 802 803 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS 804 /// and CmpRHS are both known to be integer constants. 805 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 806 ConstantInt *DivRHS) { 807 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); 808 const APInt &CmpRHSV = CmpRHS->getValue(); 809 810 // FIXME: If the operand types don't match the type of the divide 811 // then don't attempt this transform. The code below doesn't have the 812 // logic to deal with a signed divide and an unsigned compare (and 813 // vice versa). This is because (x /s C1) <s C2 produces different 814 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even 815 // (x /u C1) <u C2. Simply casting the operands and result won't 816 // work. :( The if statement below tests that condition and bails 817 // if it finds it. 818 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; 819 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) 820 return 0; 821 if (DivRHS->isZero()) 822 return 0; // The ProdOV computation fails on divide by zero. 823 if (DivIsSigned && DivRHS->isAllOnesValue()) 824 return 0; // The overflow computation also screws up here 825 if (DivRHS->isOne()) { 826 // This eliminates some funny cases with INT_MIN. 827 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X. 828 return &ICI; 829 } 830 831 // Compute Prod = CI * DivRHS. We are essentially solving an equation 832 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 833 // C2 (CI). By solving for X we can turn this into a range check 834 // instead of computing a divide. 835 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 836 837 // Determine if the product overflows by seeing if the product is 838 // not equal to the divide. Make sure we do the same kind of divide 839 // as in the LHS instruction that we're folding. 840 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : 841 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 842 843 // Get the ICmp opcode 844 ICmpInst::Predicate Pred = ICI.getPredicate(); 845 846 /// If the division is known to be exact, then there is no remainder from the 847 /// divide, so the covered range size is unit, otherwise it is the divisor. 848 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; 849 850 // Figure out the interval that is being checked. For example, a comparison 851 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 852 // Compute this interval based on the constants involved and the signedness of 853 // the compare/divide. This computes a half-open interval, keeping track of 854 // whether either value in the interval overflows. After analysis each 855 // overflow variable is set to 0 if it's corresponding bound variable is valid 856 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 857 int LoOverflow = 0, HiOverflow = 0; 858 Constant *LoBound = 0, *HiBound = 0; 859 860 if (!DivIsSigned) { // udiv 861 // e.g. X/5 op 3 --> [15, 20) 862 LoBound = Prod; 863 HiOverflow = LoOverflow = ProdOV; 864 if (!HiOverflow) { 865 // If this is not an exact divide, then many values in the range collapse 866 // to the same result value. 867 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); 868 } 869 870 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. 871 if (CmpRHSV == 0) { // (X / pos) op 0 872 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 873 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 874 HiBound = RangeSize; 875 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos 876 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 877 HiOverflow = LoOverflow = ProdOV; 878 if (!HiOverflow) 879 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true); 880 } else { // (X / pos) op neg 881 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 882 HiBound = AddOne(Prod); 883 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 884 if (!LoOverflow) { 885 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 886 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 887 } 888 } 889 } else if (DivRHS->isNegative()) { // Divisor is < 0. 890 if (DivI->isExact()) 891 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 892 if (CmpRHSV == 0) { // (X / neg) op 0 893 // e.g. X/-5 op 0 --> [-4, 5) 894 LoBound = AddOne(RangeSize); 895 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 896 if (HiBound == DivRHS) { // -INTMIN = INTMIN 897 HiOverflow = 1; // [INTMIN+1, overflow) 898 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN 899 } 900 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos 901 // e.g. X/-5 op 3 --> [-19, -14) 902 HiBound = AddOne(Prod); 903 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 904 if (!LoOverflow) 905 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 906 } else { // (X / neg) op neg 907 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 908 LoOverflow = HiOverflow = ProdOV; 909 if (!HiOverflow) 910 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); 911 } 912 913 // Dividing by a negative swaps the condition. LT <-> GT 914 Pred = ICmpInst::getSwappedPredicate(Pred); 915 } 916 917 Value *X = DivI->getOperand(0); 918 switch (Pred) { 919 default: llvm_unreachable("Unhandled icmp opcode!"); 920 case ICmpInst::ICMP_EQ: 921 if (LoOverflow && HiOverflow) 922 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 923 if (HiOverflow) 924 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 925 ICmpInst::ICMP_UGE, X, LoBound); 926 if (LoOverflow) 927 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 928 ICmpInst::ICMP_ULT, X, HiBound); 929 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 930 DivIsSigned, true)); 931 case ICmpInst::ICMP_NE: 932 if (LoOverflow && HiOverflow) 933 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 934 if (HiOverflow) 935 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 936 ICmpInst::ICMP_ULT, X, LoBound); 937 if (LoOverflow) 938 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 939 ICmpInst::ICMP_UGE, X, HiBound); 940 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 941 DivIsSigned, false)); 942 case ICmpInst::ICMP_ULT: 943 case ICmpInst::ICMP_SLT: 944 if (LoOverflow == +1) // Low bound is greater than input range. 945 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 946 if (LoOverflow == -1) // Low bound is less than input range. 947 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 948 return new ICmpInst(Pred, X, LoBound); 949 case ICmpInst::ICMP_UGT: 950 case ICmpInst::ICMP_SGT: 951 if (HiOverflow == +1) // High bound greater than input range. 952 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 953 if (HiOverflow == -1) // High bound less than input range. 954 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 955 if (Pred == ICmpInst::ICMP_UGT) 956 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 957 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 958 } 959 } 960 961 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)". 962 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, 963 ConstantInt *ShAmt) { 964 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); 965 966 // Check that the shift amount is in range. If not, don't perform 967 // undefined shifts. When the shift is visited it will be 968 // simplified. 969 uint32_t TypeBits = CmpRHSV.getBitWidth(); 970 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 971 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 972 return 0; 973 974 if (!ICI.isEquality()) { 975 // If we have an unsigned comparison and an ashr, we can't simplify this. 976 // Similarly for signed comparisons with lshr. 977 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) 978 return 0; 979 980 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 981 // by a power of 2. Since we already have logic to simplify these, 982 // transform to div and then simplify the resultant comparison. 983 if (Shr->getOpcode() == Instruction::AShr && 984 (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 985 return 0; 986 987 // Revisit the shift (to delete it). 988 Worklist.Add(Shr); 989 990 Constant *DivCst = 991 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 992 993 Value *Tmp = 994 Shr->getOpcode() == Instruction::AShr ? 995 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : 996 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); 997 998 ICI.setOperand(0, Tmp); 999 1000 // If the builder folded the binop, just return it. 1001 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 1002 if (TheDiv == 0) 1003 return &ICI; 1004 1005 // Otherwise, fold this div/compare. 1006 assert(TheDiv->getOpcode() == Instruction::SDiv || 1007 TheDiv->getOpcode() == Instruction::UDiv); 1008 1009 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); 1010 assert(Res && "This div/cst should have folded!"); 1011 return Res; 1012 } 1013 1014 1015 // If we are comparing against bits always shifted out, the 1016 // comparison cannot succeed. 1017 APInt Comp = CmpRHSV << ShAmtVal; 1018 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp); 1019 if (Shr->getOpcode() == Instruction::LShr) 1020 Comp = Comp.lshr(ShAmtVal); 1021 else 1022 Comp = Comp.ashr(ShAmtVal); 1023 1024 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. 1025 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1026 Constant *Cst = Builder->getInt1(IsICMP_NE); 1027 return ReplaceInstUsesWith(ICI, Cst); 1028 } 1029 1030 // Otherwise, check to see if the bits shifted out are known to be zero. 1031 // If so, we can compare against the unshifted value: 1032 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 1033 if (Shr->hasOneUse() && Shr->isExact()) 1034 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); 1035 1036 if (Shr->hasOneUse()) { 1037 // Otherwise strength reduce the shift into an and. 1038 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 1039 Constant *Mask = Builder->getInt(Val); 1040 1041 Value *And = Builder->CreateAnd(Shr->getOperand(0), 1042 Mask, Shr->getName()+".mask"); 1043 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); 1044 } 1045 return 0; 1046 } 1047 1048 1049 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". 1050 /// 1051 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 1052 Instruction *LHSI, 1053 ConstantInt *RHS) { 1054 const APInt &RHSV = RHS->getValue(); 1055 1056 switch (LHSI->getOpcode()) { 1057 case Instruction::Trunc: 1058 if (ICI.isEquality() && LHSI->hasOneUse()) { 1059 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1060 // of the high bits truncated out of x are known. 1061 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), 1062 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1063 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1064 ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne); 1065 1066 // If all the high bits are known, we can do this xform. 1067 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { 1068 // Pull in the high bits from known-ones set. 1069 APInt NewRHS = RHS->getValue().zext(SrcBits); 1070 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits); 1071 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1072 Builder->getInt(NewRHS)); 1073 } 1074 } 1075 break; 1076 1077 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI) 1078 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1079 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1080 // fold the xor. 1081 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || 1082 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { 1083 Value *CompareVal = LHSI->getOperand(0); 1084 1085 // If the sign bit of the XorCST is not set, there is no change to 1086 // the operation, just stop using the Xor. 1087 if (!XorCST->isNegative()) { 1088 ICI.setOperand(0, CompareVal); 1089 Worklist.Add(LHSI); 1090 return &ICI; 1091 } 1092 1093 // Was the old condition true if the operand is positive? 1094 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; 1095 1096 // If so, the new one isn't. 1097 isTrueIfPositive ^= true; 1098 1099 if (isTrueIfPositive) 1100 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, 1101 SubOne(RHS)); 1102 else 1103 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, 1104 AddOne(RHS)); 1105 } 1106 1107 if (LHSI->hasOneUse()) { 1108 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) 1109 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) { 1110 const APInt &SignBit = XorCST->getValue(); 1111 ICmpInst::Predicate Pred = ICI.isSigned() 1112 ? ICI.getUnsignedPredicate() 1113 : ICI.getSignedPredicate(); 1114 return new ICmpInst(Pred, LHSI->getOperand(0), 1115 Builder->getInt(RHSV ^ SignBit)); 1116 } 1117 1118 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) 1119 if (!ICI.isEquality() && XorCST->isMaxValue(true)) { 1120 const APInt &NotSignBit = XorCST->getValue(); 1121 ICmpInst::Predicate Pred = ICI.isSigned() 1122 ? ICI.getUnsignedPredicate() 1123 : ICI.getSignedPredicate(); 1124 Pred = ICI.getSwappedPredicate(Pred); 1125 return new ICmpInst(Pred, LHSI->getOperand(0), 1126 Builder->getInt(RHSV ^ NotSignBit)); 1127 } 1128 } 1129 1130 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1131 // iff -C is a power of 2 1132 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && 1133 XorCST->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) 1134 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCST); 1135 1136 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1137 // iff -C is a power of 2 1138 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && 1139 XorCST->getValue() == -RHSV && RHSV.isPowerOf2()) 1140 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCST); 1141 } 1142 break; 1143 case Instruction::And: // (icmp pred (and X, AndCST), RHS) 1144 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && 1145 LHSI->getOperand(0)->hasOneUse()) { 1146 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); 1147 1148 // If the LHS is an AND of a truncating cast, we can widen the 1149 // and/compare to be the input width without changing the value 1150 // produced, eliminating a cast. 1151 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { 1152 // We can do this transformation if either the AND constant does not 1153 // have its sign bit set or if it is an equality comparison. 1154 // Extending a relational comparison when we're checking the sign 1155 // bit would not work. 1156 if (ICI.isEquality() || 1157 (!AndCST->isNegative() && RHSV.isNonNegative())) { 1158 Value *NewAnd = 1159 Builder->CreateAnd(Cast->getOperand(0), 1160 ConstantExpr::getZExt(AndCST, Cast->getSrcTy())); 1161 NewAnd->takeName(LHSI); 1162 return new ICmpInst(ICI.getPredicate(), NewAnd, 1163 ConstantExpr::getZExt(RHS, Cast->getSrcTy())); 1164 } 1165 } 1166 1167 // If the LHS is an AND of a zext, and we have an equality compare, we can 1168 // shrink the and/compare to the smaller type, eliminating the cast. 1169 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { 1170 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); 1171 // Make sure we don't compare the upper bits, SimplifyDemandedBits 1172 // should fold the icmp to true/false in that case. 1173 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { 1174 Value *NewAnd = 1175 Builder->CreateAnd(Cast->getOperand(0), 1176 ConstantExpr::getTrunc(AndCST, Ty)); 1177 NewAnd->takeName(LHSI); 1178 return new ICmpInst(ICI.getPredicate(), NewAnd, 1179 ConstantExpr::getTrunc(RHS, Ty)); 1180 } 1181 } 1182 1183 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare 1184 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This 1185 // happens a LOT in code produced by the C front-end, for bitfield 1186 // access. 1187 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); 1188 if (Shift && !Shift->isShift()) 1189 Shift = 0; 1190 1191 ConstantInt *ShAmt; 1192 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0; 1193 Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. 1194 Type *AndTy = AndCST->getType(); // Type of the and. 1195 1196 // We can fold this as long as we can't shift unknown bits 1197 // into the mask. This can only happen with signed shift 1198 // rights, as they sign-extend. 1199 if (ShAmt) { 1200 bool CanFold = Shift->isLogicalShift(); 1201 if (!CanFold) { 1202 // To test for the bad case of the signed shr, see if any 1203 // of the bits shifted in could be tested after the mask. 1204 uint32_t TyBits = Ty->getPrimitiveSizeInBits(); 1205 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); 1206 1207 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); 1208 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & 1209 AndCST->getValue()) == 0) 1210 CanFold = true; 1211 } 1212 1213 if (CanFold) { 1214 Constant *NewCst; 1215 if (Shift->getOpcode() == Instruction::Shl) 1216 NewCst = ConstantExpr::getLShr(RHS, ShAmt); 1217 else 1218 NewCst = ConstantExpr::getShl(RHS, ShAmt); 1219 1220 // Check to see if we are shifting out any of the bits being 1221 // compared. 1222 if (ConstantExpr::get(Shift->getOpcode(), 1223 NewCst, ShAmt) != RHS) { 1224 // If we shifted bits out, the fold is not going to work out. 1225 // As a special case, check to see if this means that the 1226 // result is always true or false now. 1227 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1228 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 1229 if (ICI.getPredicate() == ICmpInst::ICMP_NE) 1230 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 1231 } else { 1232 ICI.setOperand(1, NewCst); 1233 Constant *NewAndCST; 1234 if (Shift->getOpcode() == Instruction::Shl) 1235 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); 1236 else 1237 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); 1238 LHSI->setOperand(1, NewAndCST); 1239 LHSI->setOperand(0, Shift->getOperand(0)); 1240 Worklist.Add(Shift); // Shift is dead. 1241 return &ICI; 1242 } 1243 } 1244 } 1245 1246 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is 1247 // preferable because it allows the C<<Y expression to be hoisted out 1248 // of a loop if Y is invariant and X is not. 1249 if (Shift && Shift->hasOneUse() && RHSV == 0 && 1250 ICI.isEquality() && !Shift->isArithmeticShift() && 1251 !isa<Constant>(Shift->getOperand(0))) { 1252 // Compute C << Y. 1253 Value *NS; 1254 if (Shift->getOpcode() == Instruction::LShr) { 1255 NS = Builder->CreateShl(AndCST, Shift->getOperand(1)); 1256 } else { 1257 // Insert a logical shift. 1258 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1)); 1259 } 1260 1261 // Compute X & (C << Y). 1262 Value *NewAnd = 1263 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); 1264 1265 ICI.setOperand(0, NewAnd); 1266 return &ICI; 1267 } 1268 1269 // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any 1270 // bit set in (X & AndCST) will produce a result greater than RHSV. 1271 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 1272 unsigned NTZ = AndCST->getValue().countTrailingZeros(); 1273 if ((NTZ < AndCST->getBitWidth()) && 1274 APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV)) 1275 return new ICmpInst(ICmpInst::ICMP_NE, LHSI, 1276 Constant::getNullValue(RHS->getType())); 1277 } 1278 } 1279 1280 // Try to optimize things like "A[i]&42 == 0" to index computations. 1281 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { 1282 if (GetElementPtrInst *GEP = 1283 dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1284 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1285 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1286 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { 1287 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); 1288 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) 1289 return Res; 1290 } 1291 } 1292 1293 // X & -C == -C -> X > u ~C 1294 // X & -C != -C -> X <= u ~C 1295 // iff C is a power of 2 1296 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2()) 1297 return new ICmpInst( 1298 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT 1299 : ICmpInst::ICMP_ULE, 1300 LHSI->getOperand(0), SubOne(RHS)); 1301 break; 1302 1303 case Instruction::Or: { 1304 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) 1305 break; 1306 Value *P, *Q; 1307 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1308 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1309 // -> and (icmp eq P, null), (icmp eq Q, null). 1310 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, 1311 Constant::getNullValue(P->getType())); 1312 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, 1313 Constant::getNullValue(Q->getType())); 1314 Instruction *Op; 1315 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1316 Op = BinaryOperator::CreateAnd(ICIP, ICIQ); 1317 else 1318 Op = BinaryOperator::CreateOr(ICIP, ICIQ); 1319 return Op; 1320 } 1321 break; 1322 } 1323 1324 case Instruction::Mul: { // (icmp pred (mul X, Val), CI) 1325 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1326 if (!Val) break; 1327 1328 // If this is a signed comparison to 0 and the mul is sign preserving, 1329 // use the mul LHS operand instead. 1330 ICmpInst::Predicate pred = ICI.getPredicate(); 1331 if (isSignTest(pred, RHS) && !Val->isZero() && 1332 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1333 return new ICmpInst(Val->isNegative() ? 1334 ICmpInst::getSwappedPredicate(pred) : pred, 1335 LHSI->getOperand(0), 1336 Constant::getNullValue(RHS->getType())); 1337 1338 break; 1339 } 1340 1341 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) 1342 uint32_t TypeBits = RHSV.getBitWidth(); 1343 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1344 if (!ShAmt) { 1345 Value *X; 1346 // (1 << X) pred P2 -> X pred Log2(P2) 1347 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) { 1348 bool RHSVIsPowerOf2 = RHSV.isPowerOf2(); 1349 ICmpInst::Predicate Pred = ICI.getPredicate(); 1350 if (ICI.isUnsigned()) { 1351 if (!RHSVIsPowerOf2) { 1352 // (1 << X) < 30 -> X <= 4 1353 // (1 << X) <= 30 -> X <= 4 1354 // (1 << X) >= 30 -> X > 4 1355 // (1 << X) > 30 -> X > 4 1356 if (Pred == ICmpInst::ICMP_ULT) 1357 Pred = ICmpInst::ICMP_ULE; 1358 else if (Pred == ICmpInst::ICMP_UGE) 1359 Pred = ICmpInst::ICMP_UGT; 1360 } 1361 unsigned RHSLog2 = RHSV.logBase2(); 1362 1363 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31 1364 // (1 << X) > 2147483648 -> X > 31 -> false 1365 // (1 << X) <= 2147483648 -> X <= 31 -> true 1366 // (1 << X) < 2147483648 -> X < 31 -> X != 31 1367 if (RHSLog2 == TypeBits-1) { 1368 if (Pred == ICmpInst::ICMP_UGE) 1369 Pred = ICmpInst::ICMP_EQ; 1370 else if (Pred == ICmpInst::ICMP_UGT) 1371 return ReplaceInstUsesWith(ICI, Builder->getFalse()); 1372 else if (Pred == ICmpInst::ICMP_ULE) 1373 return ReplaceInstUsesWith(ICI, Builder->getTrue()); 1374 else if (Pred == ICmpInst::ICMP_ULT) 1375 Pred = ICmpInst::ICMP_NE; 1376 } 1377 1378 return new ICmpInst(Pred, X, 1379 ConstantInt::get(RHS->getType(), RHSLog2)); 1380 } else if (ICI.isSigned()) { 1381 if (RHSV.isAllOnesValue()) { 1382 // (1 << X) <= -1 -> X == 31 1383 if (Pred == ICmpInst::ICMP_SLE) 1384 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1385 ConstantInt::get(RHS->getType(), TypeBits-1)); 1386 1387 // (1 << X) > -1 -> X != 31 1388 if (Pred == ICmpInst::ICMP_SGT) 1389 return new ICmpInst(ICmpInst::ICMP_NE, X, 1390 ConstantInt::get(RHS->getType(), TypeBits-1)); 1391 } else if (!RHSV) { 1392 // (1 << X) < 0 -> X == 31 1393 // (1 << X) <= 0 -> X == 31 1394 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1395 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1396 ConstantInt::get(RHS->getType(), TypeBits-1)); 1397 1398 // (1 << X) >= 0 -> X != 31 1399 // (1 << X) > 0 -> X != 31 1400 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1401 return new ICmpInst(ICmpInst::ICMP_NE, X, 1402 ConstantInt::get(RHS->getType(), TypeBits-1)); 1403 } 1404 } else if (ICI.isEquality()) { 1405 if (RHSVIsPowerOf2) 1406 return new ICmpInst( 1407 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2())); 1408 1409 return ReplaceInstUsesWith( 1410 ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse() 1411 : Builder->getTrue()); 1412 } 1413 } 1414 break; 1415 } 1416 1417 // Check that the shift amount is in range. If not, don't perform 1418 // undefined shifts. When the shift is visited it will be 1419 // simplified. 1420 if (ShAmt->uge(TypeBits)) 1421 break; 1422 1423 if (ICI.isEquality()) { 1424 // If we are comparing against bits always shifted out, the 1425 // comparison cannot succeed. 1426 Constant *Comp = 1427 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), 1428 ShAmt); 1429 if (Comp != RHS) {// Comparing against a bit that we know is zero. 1430 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1431 Constant *Cst = Builder->getInt1(IsICMP_NE); 1432 return ReplaceInstUsesWith(ICI, Cst); 1433 } 1434 1435 // If the shift is NUW, then it is just shifting out zeros, no need for an 1436 // AND. 1437 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) 1438 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1439 ConstantExpr::getLShr(RHS, ShAmt)); 1440 1441 // If the shift is NSW and we compare to 0, then it is just shifting out 1442 // sign bits, no need for an AND either. 1443 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0) 1444 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1445 ConstantExpr::getLShr(RHS, ShAmt)); 1446 1447 if (LHSI->hasOneUse()) { 1448 // Otherwise strength reduce the shift into an and. 1449 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 1450 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits, 1451 TypeBits - ShAmtVal)); 1452 1453 Value *And = 1454 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); 1455 return new ICmpInst(ICI.getPredicate(), And, 1456 ConstantExpr::getLShr(RHS, ShAmt)); 1457 } 1458 } 1459 1460 // If this is a signed comparison to 0 and the shift is sign preserving, 1461 // use the shift LHS operand instead. 1462 ICmpInst::Predicate pred = ICI.getPredicate(); 1463 if (isSignTest(pred, RHS) && 1464 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1465 return new ICmpInst(pred, 1466 LHSI->getOperand(0), 1467 Constant::getNullValue(RHS->getType())); 1468 1469 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1470 bool TrueIfSigned = false; 1471 if (LHSI->hasOneUse() && 1472 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { 1473 // (X << 31) <s 0 --> (X&1) != 0 1474 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), 1475 APInt::getOneBitSet(TypeBits, 1476 TypeBits-ShAmt->getZExtValue()-1)); 1477 Value *And = 1478 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); 1479 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 1480 And, Constant::getNullValue(And->getType())); 1481 } 1482 1483 // Transform (icmp pred iM (shl iM %v, N), CI) 1484 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N)) 1485 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N. 1486 // This enables to get rid of the shift in favor of a trunc which can be 1487 // free on the target. It has the additional benefit of comparing to a 1488 // smaller constant, which will be target friendly. 1489 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1); 1490 if (LHSI->hasOneUse() && 1491 Amt != 0 && RHSV.countTrailingZeros() >= Amt) { 1492 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt); 1493 Constant *NCI = ConstantExpr::getTrunc( 1494 ConstantExpr::getAShr(RHS, 1495 ConstantInt::get(RHS->getType(), Amt)), 1496 NTy); 1497 return new ICmpInst(ICI.getPredicate(), 1498 Builder->CreateTrunc(LHSI->getOperand(0), NTy), 1499 NCI); 1500 } 1501 1502 break; 1503 } 1504 1505 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) 1506 case Instruction::AShr: { 1507 // Handle equality comparisons of shift-by-constant. 1508 BinaryOperator *BO = cast<BinaryOperator>(LHSI); 1509 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1510 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt)) 1511 return Res; 1512 } 1513 1514 // Handle exact shr's. 1515 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) { 1516 if (RHSV.isMinValue()) 1517 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS); 1518 } 1519 break; 1520 } 1521 1522 case Instruction::SDiv: 1523 case Instruction::UDiv: 1524 // Fold: icmp pred ([us]div X, C1), C2 -> range test 1525 // Fold this div into the comparison, producing a range check. 1526 // Determine, based on the divide type, what the range is being 1527 // checked. If there is an overflow on the low or high side, remember 1528 // it, otherwise compute the range [low, hi) bounding the new value. 1529 // See: InsertRangeTest above for the kinds of replacements possible. 1530 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) 1531 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), 1532 DivRHS)) 1533 return R; 1534 break; 1535 1536 case Instruction::Sub: { 1537 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0)); 1538 if (!LHSC) break; 1539 const APInt &LHSV = LHSC->getValue(); 1540 1541 // C1-X <u C2 -> (X|(C2-1)) == C1 1542 // iff C1 & (C2-1) == C2-1 1543 // C2 is a power of 2 1544 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 1545 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1)) 1546 return new ICmpInst(ICmpInst::ICMP_EQ, 1547 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1), 1548 LHSC); 1549 1550 // C1-X >u C2 -> (X|C2) != C1 1551 // iff C1 & C2 == C2 1552 // C2+1 is a power of 2 1553 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 1554 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV) 1555 return new ICmpInst(ICmpInst::ICMP_NE, 1556 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC); 1557 break; 1558 } 1559 1560 case Instruction::Add: 1561 // Fold: icmp pred (add X, C1), C2 1562 if (!ICI.isEquality()) { 1563 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1564 if (!LHSC) break; 1565 const APInt &LHSV = LHSC->getValue(); 1566 1567 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) 1568 .subtract(LHSV); 1569 1570 if (ICI.isSigned()) { 1571 if (CR.getLower().isSignBit()) { 1572 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), 1573 Builder->getInt(CR.getUpper())); 1574 } else if (CR.getUpper().isSignBit()) { 1575 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), 1576 Builder->getInt(CR.getLower())); 1577 } 1578 } else { 1579 if (CR.getLower().isMinValue()) { 1580 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), 1581 Builder->getInt(CR.getUpper())); 1582 } else if (CR.getUpper().isMinValue()) { 1583 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), 1584 Builder->getInt(CR.getLower())); 1585 } 1586 } 1587 1588 // X-C1 <u C2 -> (X & -C2) == C1 1589 // iff C1 & (C2-1) == 0 1590 // C2 is a power of 2 1591 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 1592 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0) 1593 return new ICmpInst(ICmpInst::ICMP_EQ, 1594 Builder->CreateAnd(LHSI->getOperand(0), -RHSV), 1595 ConstantExpr::getNeg(LHSC)); 1596 1597 // X-C1 >u C2 -> (X & ~C2) != C1 1598 // iff C1 & C2 == 0 1599 // C2+1 is a power of 2 1600 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 1601 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0) 1602 return new ICmpInst(ICmpInst::ICMP_NE, 1603 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV), 1604 ConstantExpr::getNeg(LHSC)); 1605 } 1606 break; 1607 } 1608 1609 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. 1610 if (ICI.isEquality()) { 1611 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1612 1613 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 1614 // the second operand is a constant, simplify a bit. 1615 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { 1616 switch (BO->getOpcode()) { 1617 case Instruction::SRem: 1618 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 1619 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ 1620 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); 1621 if (V.sgt(1) && V.isPowerOf2()) { 1622 Value *NewRem = 1623 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 1624 BO->getName()); 1625 return new ICmpInst(ICI.getPredicate(), NewRem, 1626 Constant::getNullValue(BO->getType())); 1627 } 1628 } 1629 break; 1630 case Instruction::Add: 1631 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 1632 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1633 if (BO->hasOneUse()) 1634 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1635 ConstantExpr::getSub(RHS, BOp1C)); 1636 } else if (RHSV == 0) { 1637 // Replace ((add A, B) != 0) with (A != -B) if A or B is 1638 // efficiently invertible, or if the add has just this one use. 1639 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 1640 1641 if (Value *NegVal = dyn_castNegVal(BOp1)) 1642 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); 1643 if (Value *NegVal = dyn_castNegVal(BOp0)) 1644 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); 1645 if (BO->hasOneUse()) { 1646 Value *Neg = Builder->CreateNeg(BOp1); 1647 Neg->takeName(BO); 1648 return new ICmpInst(ICI.getPredicate(), BOp0, Neg); 1649 } 1650 } 1651 break; 1652 case Instruction::Xor: 1653 // For the xor case, we can xor two constants together, eliminating 1654 // the explicit xor. 1655 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { 1656 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1657 ConstantExpr::getXor(RHS, BOC)); 1658 } else if (RHSV == 0) { 1659 // Replace ((xor A, B) != 0) with (A != B) 1660 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1661 BO->getOperand(1)); 1662 } 1663 break; 1664 case Instruction::Sub: 1665 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants. 1666 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) { 1667 if (BO->hasOneUse()) 1668 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1), 1669 ConstantExpr::getSub(BOp0C, RHS)); 1670 } else if (RHSV == 0) { 1671 // Replace ((sub A, B) != 0) with (A != B) 1672 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1673 BO->getOperand(1)); 1674 } 1675 break; 1676 case Instruction::Or: 1677 // If bits are being or'd in that are not present in the constant we 1678 // are comparing against, then the comparison could never succeed! 1679 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1680 Constant *NotCI = ConstantExpr::getNot(RHS); 1681 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) 1682 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 1683 } 1684 break; 1685 1686 case Instruction::And: 1687 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1688 // If bits are being compared against that are and'd out, then the 1689 // comparison can never succeed! 1690 if ((RHSV & ~BOC->getValue()) != 0) 1691 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 1692 1693 // If we have ((X & C) == C), turn it into ((X & C) != 0). 1694 if (RHS == BOC && RHSV.isPowerOf2()) 1695 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : 1696 ICmpInst::ICMP_NE, LHSI, 1697 Constant::getNullValue(RHS->getType())); 1698 1699 // Don't perform the following transforms if the AND has multiple uses 1700 if (!BO->hasOneUse()) 1701 break; 1702 1703 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 1704 if (BOC->getValue().isSignBit()) { 1705 Value *X = BO->getOperand(0); 1706 Constant *Zero = Constant::getNullValue(X->getType()); 1707 ICmpInst::Predicate pred = isICMP_NE ? 1708 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1709 return new ICmpInst(pred, X, Zero); 1710 } 1711 1712 // ((X & ~7) == 0) --> X < 8 1713 if (RHSV == 0 && isHighOnes(BOC)) { 1714 Value *X = BO->getOperand(0); 1715 Constant *NegX = ConstantExpr::getNeg(BOC); 1716 ICmpInst::Predicate pred = isICMP_NE ? 1717 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1718 return new ICmpInst(pred, X, NegX); 1719 } 1720 } 1721 break; 1722 case Instruction::Mul: 1723 if (RHSV == 0 && BO->hasNoSignedWrap()) { 1724 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1725 // The trivial case (mul X, 0) is handled by InstSimplify 1726 // General case : (mul X, C) != 0 iff X != 0 1727 // (mul X, C) == 0 iff X == 0 1728 if (!BOC->isZero()) 1729 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1730 Constant::getNullValue(RHS->getType())); 1731 } 1732 } 1733 break; 1734 default: break; 1735 } 1736 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { 1737 // Handle icmp {eq|ne} <intrinsic>, intcst. 1738 switch (II->getIntrinsicID()) { 1739 case Intrinsic::bswap: 1740 Worklist.Add(II); 1741 ICI.setOperand(0, II->getArgOperand(0)); 1742 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap())); 1743 return &ICI; 1744 case Intrinsic::ctlz: 1745 case Intrinsic::cttz: 1746 // ctz(A) == bitwidth(a) -> A == 0 and likewise for != 1747 if (RHSV == RHS->getType()->getBitWidth()) { 1748 Worklist.Add(II); 1749 ICI.setOperand(0, II->getArgOperand(0)); 1750 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); 1751 return &ICI; 1752 } 1753 break; 1754 case Intrinsic::ctpop: 1755 // popcount(A) == 0 -> A == 0 and likewise for != 1756 if (RHS->isZero()) { 1757 Worklist.Add(II); 1758 ICI.setOperand(0, II->getArgOperand(0)); 1759 ICI.setOperand(1, RHS); 1760 return &ICI; 1761 } 1762 break; 1763 default: 1764 break; 1765 } 1766 } 1767 } 1768 return 0; 1769 } 1770 1771 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). 1772 /// We only handle extending casts so far. 1773 /// 1774 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { 1775 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); 1776 Value *LHSCIOp = LHSCI->getOperand(0); 1777 Type *SrcTy = LHSCIOp->getType(); 1778 Type *DestTy = LHSCI->getType(); 1779 Value *RHSCIOp; 1780 1781 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 1782 // integer type is the same size as the pointer type. 1783 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt && 1784 TD->getPointerSizeInBits() == 1785 cast<IntegerType>(DestTy)->getBitWidth()) { 1786 Value *RHSOp = 0; 1787 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { 1788 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 1789 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) { 1790 RHSOp = RHSC->getOperand(0); 1791 // If the pointer types don't match, insert a bitcast. 1792 if (LHSCIOp->getType() != RHSOp->getType()) 1793 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 1794 } 1795 1796 if (RHSOp) 1797 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); 1798 } 1799 1800 // The code below only handles extension cast instructions, so far. 1801 // Enforce this. 1802 if (LHSCI->getOpcode() != Instruction::ZExt && 1803 LHSCI->getOpcode() != Instruction::SExt) 1804 return 0; 1805 1806 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 1807 bool isSignedCmp = ICI.isSigned(); 1808 1809 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { 1810 // Not an extension from the same type? 1811 RHSCIOp = CI->getOperand(0); 1812 if (RHSCIOp->getType() != LHSCIOp->getType()) 1813 return 0; 1814 1815 // If the signedness of the two casts doesn't agree (i.e. one is a sext 1816 // and the other is a zext), then we can't handle this. 1817 if (CI->getOpcode() != LHSCI->getOpcode()) 1818 return 0; 1819 1820 // Deal with equality cases early. 1821 if (ICI.isEquality()) 1822 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 1823 1824 // A signed comparison of sign extended values simplifies into a 1825 // signed comparison. 1826 if (isSignedCmp && isSignedExt) 1827 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 1828 1829 // The other three cases all fold into an unsigned comparison. 1830 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 1831 } 1832 1833 // If we aren't dealing with a constant on the RHS, exit early 1834 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); 1835 if (!CI) 1836 return 0; 1837 1838 // Compute the constant that would happen if we truncated to SrcTy then 1839 // reextended to DestTy. 1840 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); 1841 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), 1842 Res1, DestTy); 1843 1844 // If the re-extended constant didn't change... 1845 if (Res2 == CI) { 1846 // Deal with equality cases early. 1847 if (ICI.isEquality()) 1848 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 1849 1850 // A signed comparison of sign extended values simplifies into a 1851 // signed comparison. 1852 if (isSignedExt && isSignedCmp) 1853 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 1854 1855 // The other three cases all fold into an unsigned comparison. 1856 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); 1857 } 1858 1859 // The re-extended constant changed so the constant cannot be represented 1860 // in the shorter type. Consequently, we cannot emit a simple comparison. 1861 // All the cases that fold to true or false will have already been handled 1862 // by SimplifyICmpInst, so only deal with the tricky case. 1863 1864 if (isSignedCmp || !isSignedExt) 1865 return 0; 1866 1867 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 1868 // should have been folded away previously and not enter in here. 1869 1870 // We're performing an unsigned comp with a sign extended value. 1871 // This is true if the input is >= 0. [aka >s -1] 1872 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 1873 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); 1874 1875 // Finally, return the value computed. 1876 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) 1877 return ReplaceInstUsesWith(ICI, Result); 1878 1879 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 1880 return BinaryOperator::CreateNot(Result); 1881 } 1882 1883 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form: 1884 /// I = icmp ugt (add (add A, B), CI2), CI1 1885 /// If this is of the form: 1886 /// sum = a + b 1887 /// if (sum+128 >u 255) 1888 /// Then replace it with llvm.sadd.with.overflow.i8. 1889 /// 1890 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1891 ConstantInt *CI2, ConstantInt *CI1, 1892 InstCombiner &IC) { 1893 // The transformation we're trying to do here is to transform this into an 1894 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1895 // with a narrower add, and discard the add-with-constant that is part of the 1896 // range check (if we can't eliminate it, this isn't profitable). 1897 1898 // In order to eliminate the add-with-constant, the compare can be its only 1899 // use. 1900 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1901 if (!AddWithCst->hasOneUse()) return 0; 1902 1903 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1904 if (!CI2->getValue().isPowerOf2()) return 0; 1905 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1906 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0; 1907 1908 // The width of the new add formed is 1 more than the bias. 1909 ++NewWidth; 1910 1911 // Check to see that CI1 is an all-ones value with NewWidth bits. 1912 if (CI1->getBitWidth() == NewWidth || 1913 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1914 return 0; 1915 1916 // This is only really a signed overflow check if the inputs have been 1917 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1918 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1919 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1920 if (IC.ComputeNumSignBits(A) < NeededSignBits || 1921 IC.ComputeNumSignBits(B) < NeededSignBits) 1922 return 0; 1923 1924 // In order to replace the original add with a narrower 1925 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1926 // and truncates that discard the high bits of the add. Verify that this is 1927 // the case. 1928 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1929 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end(); 1930 UI != E; ++UI) { 1931 if (*UI == AddWithCst) continue; 1932 1933 // Only accept truncates for now. We would really like a nice recursive 1934 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1935 // chain to see which bits of a value are actually demanded. If the 1936 // original add had another add which was then immediately truncated, we 1937 // could still do the transformation. 1938 TruncInst *TI = dyn_cast<TruncInst>(*UI); 1939 if (TI == 0 || 1940 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0; 1941 } 1942 1943 // If the pattern matches, truncate the inputs to the narrower type and 1944 // use the sadd_with_overflow intrinsic to efficiently compute both the 1945 // result and the overflow bit. 1946 Module *M = I.getParent()->getParent()->getParent(); 1947 1948 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1949 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 1950 NewType); 1951 1952 InstCombiner::BuilderTy *Builder = IC.Builder; 1953 1954 // Put the new code above the original add, in case there are any uses of the 1955 // add between the add and the compare. 1956 Builder->SetInsertPoint(OrigAdd); 1957 1958 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); 1959 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); 1960 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd"); 1961 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 1962 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 1963 1964 // The inner add was the result of the narrow add, zero extended to the 1965 // wider type. Replace it with the result computed by the intrinsic. 1966 IC.ReplaceInstUsesWith(*OrigAdd, ZExt); 1967 1968 // The original icmp gets replaced with the overflow value. 1969 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1970 } 1971 1972 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV, 1973 InstCombiner &IC) { 1974 // Don't bother doing this transformation for pointers, don't do it for 1975 // vectors. 1976 if (!isa<IntegerType>(OrigAddV->getType())) return 0; 1977 1978 // If the add is a constant expr, then we don't bother transforming it. 1979 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV); 1980 if (OrigAdd == 0) return 0; 1981 1982 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1); 1983 1984 // Put the new code above the original add, in case there are any uses of the 1985 // add between the add and the compare. 1986 InstCombiner::BuilderTy *Builder = IC.Builder; 1987 Builder->SetInsertPoint(OrigAdd); 1988 1989 Module *M = I.getParent()->getParent()->getParent(); 1990 Type *Ty = LHS->getType(); 1991 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1992 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd"); 1993 Value *Add = Builder->CreateExtractValue(Call, 0); 1994 1995 IC.ReplaceInstUsesWith(*OrigAdd, Add); 1996 1997 // The original icmp gets replaced with the overflow value. 1998 return ExtractValueInst::Create(Call, 1, "uadd.overflow"); 1999 } 2000 2001 // DemandedBitsLHSMask - When performing a comparison against a constant, 2002 // it is possible that not all the bits in the LHS are demanded. This helper 2003 // method computes the mask that IS demanded. 2004 static APInt DemandedBitsLHSMask(ICmpInst &I, 2005 unsigned BitWidth, bool isSignCheck) { 2006 if (isSignCheck) 2007 return APInt::getSignBit(BitWidth); 2008 2009 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 2010 if (!CI) return APInt::getAllOnesValue(BitWidth); 2011 const APInt &RHS = CI->getValue(); 2012 2013 switch (I.getPredicate()) { 2014 // For a UGT comparison, we don't care about any bits that 2015 // correspond to the trailing ones of the comparand. The value of these 2016 // bits doesn't impact the outcome of the comparison, because any value 2017 // greater than the RHS must differ in a bit higher than these due to carry. 2018 case ICmpInst::ICMP_UGT: { 2019 unsigned trailingOnes = RHS.countTrailingOnes(); 2020 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 2021 return ~lowBitsSet; 2022 } 2023 2024 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 2025 // Any value less than the RHS must differ in a higher bit because of carries. 2026 case ICmpInst::ICMP_ULT: { 2027 unsigned trailingZeros = RHS.countTrailingZeros(); 2028 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 2029 return ~lowBitsSet; 2030 } 2031 2032 default: 2033 return APInt::getAllOnesValue(BitWidth); 2034 } 2035 2036 } 2037 2038 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 2039 bool Changed = false; 2040 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2041 2042 /// Orders the operands of the compare so that they are listed from most 2043 /// complex to least complex. This puts constants before unary operators, 2044 /// before binary operators. 2045 if (getComplexity(Op0) < getComplexity(Op1)) { 2046 I.swapOperands(); 2047 std::swap(Op0, Op1); 2048 Changed = true; 2049 } 2050 2051 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD)) 2052 return ReplaceInstUsesWith(I, V); 2053 2054 // comparing -val or val with non-zero is the same as just comparing val 2055 // ie, abs(val) != 0 -> val != 0 2056 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) 2057 { 2058 Value *Cond, *SelectTrue, *SelectFalse; 2059 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 2060 m_Value(SelectFalse)))) { 2061 if (Value *V = dyn_castNegVal(SelectTrue)) { 2062 if (V == SelectFalse) 2063 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 2064 } 2065 else if (Value *V = dyn_castNegVal(SelectFalse)) { 2066 if (V == SelectTrue) 2067 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 2068 } 2069 } 2070 } 2071 2072 Type *Ty = Op0->getType(); 2073 2074 // icmp's with boolean values can always be turned into bitwise operations 2075 if (Ty->isIntegerTy(1)) { 2076 switch (I.getPredicate()) { 2077 default: llvm_unreachable("Invalid icmp instruction!"); 2078 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 2079 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); 2080 return BinaryOperator::CreateNot(Xor); 2081 } 2082 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B 2083 return BinaryOperator::CreateXor(Op0, Op1); 2084 2085 case ICmpInst::ICMP_UGT: 2086 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 2087 // FALL THROUGH 2088 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 2089 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 2090 return BinaryOperator::CreateAnd(Not, Op1); 2091 } 2092 case ICmpInst::ICMP_SGT: 2093 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 2094 // FALL THROUGH 2095 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 2096 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 2097 return BinaryOperator::CreateAnd(Not, Op0); 2098 } 2099 case ICmpInst::ICMP_UGE: 2100 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 2101 // FALL THROUGH 2102 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 2103 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 2104 return BinaryOperator::CreateOr(Not, Op1); 2105 } 2106 case ICmpInst::ICMP_SGE: 2107 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 2108 // FALL THROUGH 2109 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 2110 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 2111 return BinaryOperator::CreateOr(Not, Op0); 2112 } 2113 } 2114 } 2115 2116 unsigned BitWidth = 0; 2117 if (Ty->isIntOrIntVectorTy()) 2118 BitWidth = Ty->getScalarSizeInBits(); 2119 else if (TD) // Pointers require TD info to get their size. 2120 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType()); 2121 2122 bool isSignBit = false; 2123 2124 // See if we are doing a comparison with a constant. 2125 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2126 Value *A = 0, *B = 0; 2127 2128 // Match the following pattern, which is a common idiom when writing 2129 // overflow-safe integer arithmetic function. The source performs an 2130 // addition in wider type, and explicitly checks for overflow using 2131 // comparisons against INT_MIN and INT_MAX. Simplify this by using the 2132 // sadd_with_overflow intrinsic. 2133 // 2134 // TODO: This could probably be generalized to handle other overflow-safe 2135 // operations if we worked out the formulas to compute the appropriate 2136 // magic constants. 2137 // 2138 // sum = a + b 2139 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 2140 { 2141 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 2142 if (I.getPredicate() == ICmpInst::ICMP_UGT && 2143 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 2144 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) 2145 return Res; 2146 } 2147 2148 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) 2149 if (I.isEquality() && CI->isZero() && 2150 match(Op0, m_Sub(m_Value(A), m_Value(B)))) { 2151 // (icmp cond A B) if cond is equality 2152 return new ICmpInst(I.getPredicate(), A, B); 2153 } 2154 2155 // If we have an icmp le or icmp ge instruction, turn it into the 2156 // appropriate icmp lt or icmp gt instruction. This allows us to rely on 2157 // them being folded in the code below. The SimplifyICmpInst code has 2158 // already handled the edge cases for us, so we just assert on them. 2159 switch (I.getPredicate()) { 2160 default: break; 2161 case ICmpInst::ICMP_ULE: 2162 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE 2163 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, 2164 Builder->getInt(CI->getValue()+1)); 2165 case ICmpInst::ICMP_SLE: 2166 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE 2167 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 2168 Builder->getInt(CI->getValue()+1)); 2169 case ICmpInst::ICMP_UGE: 2170 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE 2171 return new ICmpInst(ICmpInst::ICMP_UGT, Op0, 2172 Builder->getInt(CI->getValue()-1)); 2173 case ICmpInst::ICMP_SGE: 2174 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE 2175 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 2176 Builder->getInt(CI->getValue()-1)); 2177 } 2178 2179 // If this comparison is a normal comparison, it demands all 2180 // bits, if it is a sign bit comparison, it only demands the sign bit. 2181 bool UnusedBit; 2182 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); 2183 } 2184 2185 // See if we can fold the comparison based on range information we can get 2186 // by checking whether bits are known to be zero or one in the input. 2187 if (BitWidth != 0) { 2188 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 2189 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 2190 2191 if (SimplifyDemandedBits(I.getOperandUse(0), 2192 DemandedBitsLHSMask(I, BitWidth, isSignBit), 2193 Op0KnownZero, Op0KnownOne, 0)) 2194 return &I; 2195 if (SimplifyDemandedBits(I.getOperandUse(1), 2196 APInt::getAllOnesValue(BitWidth), 2197 Op1KnownZero, Op1KnownOne, 0)) 2198 return &I; 2199 2200 // Given the known and unknown bits, compute a range that the LHS could be 2201 // in. Compute the Min, Max and RHS values based on the known bits. For the 2202 // EQ and NE we use unsigned values. 2203 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 2204 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 2205 if (I.isSigned()) { 2206 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 2207 Op0Min, Op0Max); 2208 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 2209 Op1Min, Op1Max); 2210 } else { 2211 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 2212 Op0Min, Op0Max); 2213 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 2214 Op1Min, Op1Max); 2215 } 2216 2217 // If Min and Max are known to be the same, then SimplifyDemandedBits 2218 // figured out that the LHS is a constant. Just constant fold this now so 2219 // that code below can assume that Min != Max. 2220 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 2221 return new ICmpInst(I.getPredicate(), 2222 ConstantInt::get(Op0->getType(), Op0Min), Op1); 2223 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 2224 return new ICmpInst(I.getPredicate(), Op0, 2225 ConstantInt::get(Op1->getType(), Op1Min)); 2226 2227 // Based on the range information we know about the LHS, see if we can 2228 // simplify this comparison. For example, (x&4) < 8 is always true. 2229 switch (I.getPredicate()) { 2230 default: llvm_unreachable("Unknown icmp opcode!"); 2231 case ICmpInst::ICMP_EQ: { 2232 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 2233 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2234 2235 // If all bits are known zero except for one, then we know at most one 2236 // bit is set. If the comparison is against zero, then this is a check 2237 // to see if *that* bit is set. 2238 APInt Op0KnownZeroInverted = ~Op0KnownZero; 2239 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) { 2240 // If the LHS is an AND with the same constant, look through it. 2241 Value *LHS = 0; 2242 ConstantInt *LHSC = 0; 2243 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 2244 LHSC->getValue() != Op0KnownZeroInverted) 2245 LHS = Op0; 2246 2247 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2248 // then turn "((1 << x)&8) == 0" into "x != 3". 2249 Value *X = 0; 2250 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2251 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros(); 2252 return new ICmpInst(ICmpInst::ICMP_NE, X, 2253 ConstantInt::get(X->getType(), CmpVal)); 2254 } 2255 2256 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2257 // then turn "((8 >>u x)&1) == 0" into "x != 3". 2258 const APInt *CI; 2259 if (Op0KnownZeroInverted == 1 && 2260 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2261 return new ICmpInst(ICmpInst::ICMP_NE, X, 2262 ConstantInt::get(X->getType(), 2263 CI->countTrailingZeros())); 2264 } 2265 2266 break; 2267 } 2268 case ICmpInst::ICMP_NE: { 2269 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 2270 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2271 2272 // If all bits are known zero except for one, then we know at most one 2273 // bit is set. If the comparison is against zero, then this is a check 2274 // to see if *that* bit is set. 2275 APInt Op0KnownZeroInverted = ~Op0KnownZero; 2276 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) { 2277 // If the LHS is an AND with the same constant, look through it. 2278 Value *LHS = 0; 2279 ConstantInt *LHSC = 0; 2280 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 2281 LHSC->getValue() != Op0KnownZeroInverted) 2282 LHS = Op0; 2283 2284 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2285 // then turn "((1 << x)&8) != 0" into "x == 3". 2286 Value *X = 0; 2287 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2288 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros(); 2289 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2290 ConstantInt::get(X->getType(), CmpVal)); 2291 } 2292 2293 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2294 // then turn "((8 >>u x)&1) != 0" into "x == 3". 2295 const APInt *CI; 2296 if (Op0KnownZeroInverted == 1 && 2297 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2298 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2299 ConstantInt::get(X->getType(), 2300 CI->countTrailingZeros())); 2301 } 2302 2303 break; 2304 } 2305 case ICmpInst::ICMP_ULT: 2306 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 2307 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2308 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 2309 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2310 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 2311 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2312 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2313 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C 2314 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2315 Builder->getInt(CI->getValue()-1)); 2316 2317 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 2318 if (CI->isMinValue(true)) 2319 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 2320 Constant::getAllOnesValue(Op0->getType())); 2321 } 2322 break; 2323 case ICmpInst::ICMP_UGT: 2324 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 2325 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2326 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 2327 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2328 2329 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 2330 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2331 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2332 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C 2333 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2334 Builder->getInt(CI->getValue()+1)); 2335 2336 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 2337 if (CI->isMaxValue(true)) 2338 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 2339 Constant::getNullValue(Op0->getType())); 2340 } 2341 break; 2342 case ICmpInst::ICMP_SLT: 2343 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 2344 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2345 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 2346 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2347 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 2348 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2349 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2350 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C 2351 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2352 Builder->getInt(CI->getValue()-1)); 2353 } 2354 break; 2355 case ICmpInst::ICMP_SGT: 2356 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 2357 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2358 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 2359 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2360 2361 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 2362 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2363 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2364 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C 2365 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2366 Builder->getInt(CI->getValue()+1)); 2367 } 2368 break; 2369 case ICmpInst::ICMP_SGE: 2370 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 2371 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 2372 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2373 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 2374 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2375 break; 2376 case ICmpInst::ICMP_SLE: 2377 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 2378 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 2379 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2380 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 2381 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2382 break; 2383 case ICmpInst::ICMP_UGE: 2384 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 2385 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 2386 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2387 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 2388 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2389 break; 2390 case ICmpInst::ICMP_ULE: 2391 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 2392 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 2393 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2394 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 2395 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2396 break; 2397 } 2398 2399 // Turn a signed comparison into an unsigned one if both operands 2400 // are known to have the same sign. 2401 if (I.isSigned() && 2402 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 2403 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 2404 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 2405 } 2406 2407 // Test if the ICmpInst instruction is used exclusively by a select as 2408 // part of a minimum or maximum operation. If so, refrain from doing 2409 // any other folding. This helps out other analyses which understand 2410 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 2411 // and CodeGen. And in this case, at least one of the comparison 2412 // operands has at least one user besides the compare (the select), 2413 // which would often largely negate the benefit of folding anyway. 2414 if (I.hasOneUse()) 2415 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin())) 2416 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 2417 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 2418 return 0; 2419 2420 // See if we are doing a comparison between a constant and an instruction that 2421 // can be folded into the comparison. 2422 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2423 // Since the RHS is a ConstantInt (CI), if the left hand side is an 2424 // instruction, see if that instruction also has constants so that the 2425 // instruction can be folded into the icmp 2426 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2427 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) 2428 return Res; 2429 } 2430 2431 // Handle icmp with constant (but not simple integer constant) RHS 2432 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 2433 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2434 switch (LHSI->getOpcode()) { 2435 case Instruction::GetElementPtr: 2436 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2437 if (RHSC->isNullValue() && 2438 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2439 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 2440 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2441 break; 2442 case Instruction::PHI: 2443 // Only fold icmp into the PHI if the phi and icmp are in the same 2444 // block. If in the same block, we're encouraging jump threading. If 2445 // not, we are just pessimizing the code by making an i1 phi. 2446 if (LHSI->getParent() == I.getParent()) 2447 if (Instruction *NV = FoldOpIntoPhi(I)) 2448 return NV; 2449 break; 2450 case Instruction::Select: { 2451 // If either operand of the select is a constant, we can fold the 2452 // comparison into the select arms, which will cause one to be 2453 // constant folded and the select turned into a bitwise or. 2454 Value *Op1 = 0, *Op2 = 0; 2455 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) 2456 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2457 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) 2458 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2459 2460 // We only want to perform this transformation if it will not lead to 2461 // additional code. This is true if either both sides of the select 2462 // fold to a constant (in which case the icmp is replaced with a select 2463 // which will usually simplify) or this is the only user of the 2464 // select (in which case we are trading a select+icmp for a simpler 2465 // select+icmp). 2466 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) { 2467 if (!Op1) 2468 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), 2469 RHSC, I.getName()); 2470 if (!Op2) 2471 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), 2472 RHSC, I.getName()); 2473 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2474 } 2475 break; 2476 } 2477 case Instruction::IntToPtr: 2478 // icmp pred inttoptr(X), null -> icmp pred X, 0 2479 if (RHSC->isNullValue() && TD && 2480 TD->getIntPtrType(RHSC->getContext()) == 2481 LHSI->getOperand(0)->getType()) 2482 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 2483 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2484 break; 2485 2486 case Instruction::Load: 2487 // Try to optimize things like "A[i] > 4" to index computations. 2488 if (GetElementPtrInst *GEP = 2489 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2490 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2491 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2492 !cast<LoadInst>(LHSI)->isVolatile()) 2493 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2494 return Res; 2495 } 2496 break; 2497 } 2498 } 2499 2500 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 2501 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 2502 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) 2503 return NI; 2504 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 2505 if (Instruction *NI = FoldGEPICmp(GEP, Op0, 2506 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 2507 return NI; 2508 2509 // Test to see if the operands of the icmp are casted versions of other 2510 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 2511 // now. 2512 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 2513 if (Op0->getType()->isPointerTy() && 2514 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2515 // We keep moving the cast from the left operand over to the right 2516 // operand, where it can often be eliminated completely. 2517 Op0 = CI->getOperand(0); 2518 2519 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2520 // so eliminate it as well. 2521 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 2522 Op1 = CI2->getOperand(0); 2523 2524 // If Op1 is a constant, we can fold the cast into the constant. 2525 if (Op0->getType() != Op1->getType()) { 2526 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 2527 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 2528 } else { 2529 // Otherwise, cast the RHS right before the icmp 2530 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 2531 } 2532 } 2533 return new ICmpInst(I.getPredicate(), Op0, Op1); 2534 } 2535 } 2536 2537 if (isa<CastInst>(Op0)) { 2538 // Handle the special case of: icmp (cast bool to X), <cst> 2539 // This comes up when you have code like 2540 // int X = A < B; 2541 // if (X) ... 2542 // For generality, we handle any zero-extension of any operand comparison 2543 // with a constant or another cast from the same type. 2544 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 2545 if (Instruction *R = visitICmpInstWithCastAndCast(I)) 2546 return R; 2547 } 2548 2549 // Special logic for binary operators. 2550 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 2551 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 2552 if (BO0 || BO1) { 2553 CmpInst::Predicate Pred = I.getPredicate(); 2554 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 2555 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 2556 NoOp0WrapProblem = ICmpInst::isEquality(Pred) || 2557 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 2558 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 2559 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 2560 NoOp1WrapProblem = ICmpInst::isEquality(Pred) || 2561 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 2562 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 2563 2564 // Analyze the case when either Op0 or Op1 is an add instruction. 2565 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 2566 Value *A = 0, *B = 0, *C = 0, *D = 0; 2567 if (BO0 && BO0->getOpcode() == Instruction::Add) 2568 A = BO0->getOperand(0), B = BO0->getOperand(1); 2569 if (BO1 && BO1->getOpcode() == Instruction::Add) 2570 C = BO1->getOperand(0), D = BO1->getOperand(1); 2571 2572 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2573 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 2574 return new ICmpInst(Pred, A == Op1 ? B : A, 2575 Constant::getNullValue(Op1->getType())); 2576 2577 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2578 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 2579 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 2580 C == Op0 ? D : C); 2581 2582 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 2583 if (A && C && (A == C || A == D || B == C || B == D) && 2584 NoOp0WrapProblem && NoOp1WrapProblem && 2585 // Try not to increase register pressure. 2586 BO0->hasOneUse() && BO1->hasOneUse()) { 2587 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2588 Value *Y, *Z; 2589 if (A == C) { 2590 // C + B == C + D -> B == D 2591 Y = B; 2592 Z = D; 2593 } else if (A == D) { 2594 // D + B == C + D -> B == C 2595 Y = B; 2596 Z = C; 2597 } else if (B == C) { 2598 // A + C == C + D -> A == D 2599 Y = A; 2600 Z = D; 2601 } else { 2602 assert(B == D); 2603 // A + D == C + D -> A == C 2604 Y = A; 2605 Z = C; 2606 } 2607 return new ICmpInst(Pred, Y, Z); 2608 } 2609 2610 // icmp slt (X + -1), Y -> icmp sle X, Y 2611 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 2612 match(B, m_AllOnes())) 2613 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 2614 2615 // icmp sge (X + -1), Y -> icmp sgt X, Y 2616 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 2617 match(B, m_AllOnes())) 2618 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 2619 2620 // icmp sle (X + 1), Y -> icmp slt X, Y 2621 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && 2622 match(B, m_One())) 2623 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 2624 2625 // icmp sgt (X + 1), Y -> icmp sge X, Y 2626 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && 2627 match(B, m_One())) 2628 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 2629 2630 // if C1 has greater magnitude than C2: 2631 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 2632 // s.t. C3 = C1 - C2 2633 // 2634 // if C2 has greater magnitude than C1: 2635 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 2636 // s.t. C3 = C2 - C1 2637 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 2638 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 2639 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 2640 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 2641 const APInt &AP1 = C1->getValue(); 2642 const APInt &AP2 = C2->getValue(); 2643 if (AP1.isNegative() == AP2.isNegative()) { 2644 APInt AP1Abs = C1->getValue().abs(); 2645 APInt AP2Abs = C2->getValue().abs(); 2646 if (AP1Abs.uge(AP2Abs)) { 2647 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 2648 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 2649 return new ICmpInst(Pred, NewAdd, C); 2650 } else { 2651 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 2652 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 2653 return new ICmpInst(Pred, A, NewAdd); 2654 } 2655 } 2656 } 2657 2658 2659 // Analyze the case when either Op0 or Op1 is a sub instruction. 2660 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 2661 A = 0; B = 0; C = 0; D = 0; 2662 if (BO0 && BO0->getOpcode() == Instruction::Sub) 2663 A = BO0->getOperand(0), B = BO0->getOperand(1); 2664 if (BO1 && BO1->getOpcode() == Instruction::Sub) 2665 C = BO1->getOperand(0), D = BO1->getOperand(1); 2666 2667 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 2668 if (A == Op1 && NoOp0WrapProblem) 2669 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 2670 2671 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 2672 if (C == Op0 && NoOp1WrapProblem) 2673 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 2674 2675 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 2676 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 2677 // Try not to increase register pressure. 2678 BO0->hasOneUse() && BO1->hasOneUse()) 2679 return new ICmpInst(Pred, A, C); 2680 2681 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 2682 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 2683 // Try not to increase register pressure. 2684 BO0->hasOneUse() && BO1->hasOneUse()) 2685 return new ICmpInst(Pred, D, B); 2686 2687 BinaryOperator *SRem = NULL; 2688 // icmp (srem X, Y), Y 2689 if (BO0 && BO0->getOpcode() == Instruction::SRem && 2690 Op1 == BO0->getOperand(1)) 2691 SRem = BO0; 2692 // icmp Y, (srem X, Y) 2693 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 2694 Op0 == BO1->getOperand(1)) 2695 SRem = BO1; 2696 if (SRem) { 2697 // We don't check hasOneUse to avoid increasing register pressure because 2698 // the value we use is the same value this instruction was already using. 2699 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 2700 default: break; 2701 case ICmpInst::ICMP_EQ: 2702 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2703 case ICmpInst::ICMP_NE: 2704 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2705 case ICmpInst::ICMP_SGT: 2706 case ICmpInst::ICMP_SGE: 2707 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 2708 Constant::getAllOnesValue(SRem->getType())); 2709 case ICmpInst::ICMP_SLT: 2710 case ICmpInst::ICMP_SLE: 2711 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 2712 Constant::getNullValue(SRem->getType())); 2713 } 2714 } 2715 2716 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 2717 BO0->hasOneUse() && BO1->hasOneUse() && 2718 BO0->getOperand(1) == BO1->getOperand(1)) { 2719 switch (BO0->getOpcode()) { 2720 default: break; 2721 case Instruction::Add: 2722 case Instruction::Sub: 2723 case Instruction::Xor: 2724 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 2725 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2726 BO1->getOperand(0)); 2727 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 2728 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 2729 if (CI->getValue().isSignBit()) { 2730 ICmpInst::Predicate Pred = I.isSigned() 2731 ? I.getUnsignedPredicate() 2732 : I.getSignedPredicate(); 2733 return new ICmpInst(Pred, BO0->getOperand(0), 2734 BO1->getOperand(0)); 2735 } 2736 2737 if (CI->isMaxValue(true)) { 2738 ICmpInst::Predicate Pred = I.isSigned() 2739 ? I.getUnsignedPredicate() 2740 : I.getSignedPredicate(); 2741 Pred = I.getSwappedPredicate(Pred); 2742 return new ICmpInst(Pred, BO0->getOperand(0), 2743 BO1->getOperand(0)); 2744 } 2745 } 2746 break; 2747 case Instruction::Mul: 2748 if (!I.isEquality()) 2749 break; 2750 2751 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 2752 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 2753 // Mask = -1 >> count-trailing-zeros(Cst). 2754 if (!CI->isZero() && !CI->isOne()) { 2755 const APInt &AP = CI->getValue(); 2756 ConstantInt *Mask = ConstantInt::get(I.getContext(), 2757 APInt::getLowBitsSet(AP.getBitWidth(), 2758 AP.getBitWidth() - 2759 AP.countTrailingZeros())); 2760 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 2761 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 2762 return new ICmpInst(I.getPredicate(), And1, And2); 2763 } 2764 } 2765 break; 2766 case Instruction::UDiv: 2767 case Instruction::LShr: 2768 if (I.isSigned()) 2769 break; 2770 // fall-through 2771 case Instruction::SDiv: 2772 case Instruction::AShr: 2773 if (!BO0->isExact() || !BO1->isExact()) 2774 break; 2775 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2776 BO1->getOperand(0)); 2777 case Instruction::Shl: { 2778 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 2779 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 2780 if (!NUW && !NSW) 2781 break; 2782 if (!NSW && I.isSigned()) 2783 break; 2784 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2785 BO1->getOperand(0)); 2786 } 2787 } 2788 } 2789 } 2790 2791 { Value *A, *B; 2792 // Transform (A & ~B) == 0 --> (A & B) != 0 2793 // and (A & ~B) != 0 --> (A & B) == 0 2794 // if A is a power of 2. 2795 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 2796 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality()) 2797 return new ICmpInst(I.getInversePredicate(), 2798 Builder->CreateAnd(A, B), 2799 Op1); 2800 2801 // ~x < ~y --> y < x 2802 // ~x < cst --> ~cst < x 2803 if (match(Op0, m_Not(m_Value(A)))) { 2804 if (match(Op1, m_Not(m_Value(B)))) 2805 return new ICmpInst(I.getPredicate(), B, A); 2806 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 2807 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 2808 } 2809 2810 // (a+b) <u a --> llvm.uadd.with.overflow. 2811 // (a+b) <u b --> llvm.uadd.with.overflow. 2812 if (I.getPredicate() == ICmpInst::ICMP_ULT && 2813 match(Op0, m_Add(m_Value(A), m_Value(B))) && 2814 (Op1 == A || Op1 == B)) 2815 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this)) 2816 return R; 2817 2818 // a >u (a+b) --> llvm.uadd.with.overflow. 2819 // b >u (a+b) --> llvm.uadd.with.overflow. 2820 if (I.getPredicate() == ICmpInst::ICMP_UGT && 2821 match(Op1, m_Add(m_Value(A), m_Value(B))) && 2822 (Op0 == A || Op0 == B)) 2823 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this)) 2824 return R; 2825 } 2826 2827 if (I.isEquality()) { 2828 Value *A, *B, *C, *D; 2829 2830 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 2831 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 2832 Value *OtherVal = A == Op1 ? B : A; 2833 return new ICmpInst(I.getPredicate(), OtherVal, 2834 Constant::getNullValue(A->getType())); 2835 } 2836 2837 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 2838 // A^c1 == C^c2 --> A == C^(c1^c2) 2839 ConstantInt *C1, *C2; 2840 if (match(B, m_ConstantInt(C1)) && 2841 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { 2842 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 2843 Value *Xor = Builder->CreateXor(C, NC); 2844 return new ICmpInst(I.getPredicate(), A, Xor); 2845 } 2846 2847 // A^B == A^D -> B == D 2848 if (A == C) return new ICmpInst(I.getPredicate(), B, D); 2849 if (A == D) return new ICmpInst(I.getPredicate(), B, C); 2850 if (B == C) return new ICmpInst(I.getPredicate(), A, D); 2851 if (B == D) return new ICmpInst(I.getPredicate(), A, C); 2852 } 2853 } 2854 2855 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2856 (A == Op0 || B == Op0)) { 2857 // A == (A^B) -> B == 0 2858 Value *OtherVal = A == Op0 ? B : A; 2859 return new ICmpInst(I.getPredicate(), OtherVal, 2860 Constant::getNullValue(A->getType())); 2861 } 2862 2863 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 2864 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 2865 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 2866 Value *X = 0, *Y = 0, *Z = 0; 2867 2868 if (A == C) { 2869 X = B; Y = D; Z = A; 2870 } else if (A == D) { 2871 X = B; Y = C; Z = A; 2872 } else if (B == C) { 2873 X = A; Y = D; Z = B; 2874 } else if (B == D) { 2875 X = A; Y = C; Z = B; 2876 } 2877 2878 if (X) { // Build (X^Y) & Z 2879 Op1 = Builder->CreateXor(X, Y); 2880 Op1 = Builder->CreateAnd(Op1, Z); 2881 I.setOperand(0, Op1); 2882 I.setOperand(1, Constant::getNullValue(Op1->getType())); 2883 return &I; 2884 } 2885 } 2886 2887 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 2888 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 2889 ConstantInt *Cst1; 2890 if ((Op0->hasOneUse() && 2891 match(Op0, m_ZExt(m_Value(A))) && 2892 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 2893 (Op1->hasOneUse() && 2894 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 2895 match(Op1, m_ZExt(m_Value(A))))) { 2896 APInt Pow2 = Cst1->getValue() + 1; 2897 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 2898 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 2899 return new ICmpInst(I.getPredicate(), A, 2900 Builder->CreateTrunc(B, A->getType())); 2901 } 2902 2903 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 2904 // "icmp (and X, mask), cst" 2905 uint64_t ShAmt = 0; 2906 if (Op0->hasOneUse() && 2907 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), 2908 m_ConstantInt(ShAmt))))) && 2909 match(Op1, m_ConstantInt(Cst1)) && 2910 // Only do this when A has multiple uses. This is most important to do 2911 // when it exposes other optimizations. 2912 !A->hasOneUse()) { 2913 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 2914 2915 if (ShAmt < ASize) { 2916 APInt MaskV = 2917 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 2918 MaskV <<= ShAmt; 2919 2920 APInt CmpV = Cst1->getValue().zext(ASize); 2921 CmpV <<= ShAmt; 2922 2923 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 2924 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 2925 } 2926 } 2927 } 2928 2929 { 2930 Value *X; ConstantInt *Cst; 2931 // icmp X+Cst, X 2932 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 2933 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0); 2934 2935 // icmp X, X+Cst 2936 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 2937 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1); 2938 } 2939 return Changed ? &I : 0; 2940 } 2941 2942 2943 2944 2945 2946 2947 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. 2948 /// 2949 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, 2950 Instruction *LHSI, 2951 Constant *RHSC) { 2952 if (!isa<ConstantFP>(RHSC)) return 0; 2953 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 2954 2955 // Get the width of the mantissa. We don't want to hack on conversions that 2956 // might lose information from the integer, e.g. "i64 -> float" 2957 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 2958 if (MantissaWidth == -1) return 0; // Unknown. 2959 2960 // Check to see that the input is converted from an integer type that is small 2961 // enough that preserves all bits. TODO: check here for "known" sign bits. 2962 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 2963 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); 2964 2965 // If this is a uitofp instruction, we need an extra bit to hold the sign. 2966 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 2967 if (LHSUnsigned) 2968 ++InputSize; 2969 2970 // If the conversion would lose info, don't hack on this. 2971 if ((int)InputSize > MantissaWidth) 2972 return 0; 2973 2974 // Otherwise, we can potentially simplify the comparison. We know that it 2975 // will always come through as an integer value and we know the constant is 2976 // not a NAN (it would have been previously simplified). 2977 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 2978 2979 ICmpInst::Predicate Pred; 2980 switch (I.getPredicate()) { 2981 default: llvm_unreachable("Unexpected predicate!"); 2982 case FCmpInst::FCMP_UEQ: 2983 case FCmpInst::FCMP_OEQ: 2984 Pred = ICmpInst::ICMP_EQ; 2985 break; 2986 case FCmpInst::FCMP_UGT: 2987 case FCmpInst::FCMP_OGT: 2988 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 2989 break; 2990 case FCmpInst::FCMP_UGE: 2991 case FCmpInst::FCMP_OGE: 2992 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 2993 break; 2994 case FCmpInst::FCMP_ULT: 2995 case FCmpInst::FCMP_OLT: 2996 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 2997 break; 2998 case FCmpInst::FCMP_ULE: 2999 case FCmpInst::FCMP_OLE: 3000 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 3001 break; 3002 case FCmpInst::FCMP_UNE: 3003 case FCmpInst::FCMP_ONE: 3004 Pred = ICmpInst::ICMP_NE; 3005 break; 3006 case FCmpInst::FCMP_ORD: 3007 return ReplaceInstUsesWith(I, Builder->getTrue()); 3008 case FCmpInst::FCMP_UNO: 3009 return ReplaceInstUsesWith(I, Builder->getFalse()); 3010 } 3011 3012 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 3013 3014 // Now we know that the APFloat is a normal number, zero or inf. 3015 3016 // See if the FP constant is too large for the integer. For example, 3017 // comparing an i8 to 300.0. 3018 unsigned IntWidth = IntTy->getScalarSizeInBits(); 3019 3020 if (!LHSUnsigned) { 3021 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 3022 // and large values. 3023 APFloat SMax(RHS.getSemantics()); 3024 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 3025 APFloat::rmNearestTiesToEven); 3026 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 3027 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 3028 Pred == ICmpInst::ICMP_SLE) 3029 return ReplaceInstUsesWith(I, Builder->getTrue()); 3030 return ReplaceInstUsesWith(I, Builder->getFalse()); 3031 } 3032 } else { 3033 // If the RHS value is > UnsignedMax, fold the comparison. This handles 3034 // +INF and large values. 3035 APFloat UMax(RHS.getSemantics()); 3036 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 3037 APFloat::rmNearestTiesToEven); 3038 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 3039 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 3040 Pred == ICmpInst::ICMP_ULE) 3041 return ReplaceInstUsesWith(I, Builder->getTrue()); 3042 return ReplaceInstUsesWith(I, Builder->getFalse()); 3043 } 3044 } 3045 3046 if (!LHSUnsigned) { 3047 // See if the RHS value is < SignedMin. 3048 APFloat SMin(RHS.getSemantics()); 3049 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 3050 APFloat::rmNearestTiesToEven); 3051 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 3052 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 3053 Pred == ICmpInst::ICMP_SGE) 3054 return ReplaceInstUsesWith(I, Builder->getTrue()); 3055 return ReplaceInstUsesWith(I, Builder->getFalse()); 3056 } 3057 } else { 3058 // See if the RHS value is < UnsignedMin. 3059 APFloat SMin(RHS.getSemantics()); 3060 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 3061 APFloat::rmNearestTiesToEven); 3062 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 3063 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 3064 Pred == ICmpInst::ICMP_UGE) 3065 return ReplaceInstUsesWith(I, Builder->getTrue()); 3066 return ReplaceInstUsesWith(I, Builder->getFalse()); 3067 } 3068 } 3069 3070 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 3071 // [0, UMAX], but it may still be fractional. See if it is fractional by 3072 // casting the FP value to the integer value and back, checking for equality. 3073 // Don't do this for zero, because -0.0 is not fractional. 3074 Constant *RHSInt = LHSUnsigned 3075 ? ConstantExpr::getFPToUI(RHSC, IntTy) 3076 : ConstantExpr::getFPToSI(RHSC, IntTy); 3077 if (!RHS.isZero()) { 3078 bool Equal = LHSUnsigned 3079 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 3080 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 3081 if (!Equal) { 3082 // If we had a comparison against a fractional value, we have to adjust 3083 // the compare predicate and sometimes the value. RHSC is rounded towards 3084 // zero at this point. 3085 switch (Pred) { 3086 default: llvm_unreachable("Unexpected integer comparison!"); 3087 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 3088 return ReplaceInstUsesWith(I, Builder->getTrue()); 3089 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 3090 return ReplaceInstUsesWith(I, Builder->getFalse()); 3091 case ICmpInst::ICMP_ULE: 3092 // (float)int <= 4.4 --> int <= 4 3093 // (float)int <= -4.4 --> false 3094 if (RHS.isNegative()) 3095 return ReplaceInstUsesWith(I, Builder->getFalse()); 3096 break; 3097 case ICmpInst::ICMP_SLE: 3098 // (float)int <= 4.4 --> int <= 4 3099 // (float)int <= -4.4 --> int < -4 3100 if (RHS.isNegative()) 3101 Pred = ICmpInst::ICMP_SLT; 3102 break; 3103 case ICmpInst::ICMP_ULT: 3104 // (float)int < -4.4 --> false 3105 // (float)int < 4.4 --> int <= 4 3106 if (RHS.isNegative()) 3107 return ReplaceInstUsesWith(I, Builder->getFalse()); 3108 Pred = ICmpInst::ICMP_ULE; 3109 break; 3110 case ICmpInst::ICMP_SLT: 3111 // (float)int < -4.4 --> int < -4 3112 // (float)int < 4.4 --> int <= 4 3113 if (!RHS.isNegative()) 3114 Pred = ICmpInst::ICMP_SLE; 3115 break; 3116 case ICmpInst::ICMP_UGT: 3117 // (float)int > 4.4 --> int > 4 3118 // (float)int > -4.4 --> true 3119 if (RHS.isNegative()) 3120 return ReplaceInstUsesWith(I, Builder->getTrue()); 3121 break; 3122 case ICmpInst::ICMP_SGT: 3123 // (float)int > 4.4 --> int > 4 3124 // (float)int > -4.4 --> int >= -4 3125 if (RHS.isNegative()) 3126 Pred = ICmpInst::ICMP_SGE; 3127 break; 3128 case ICmpInst::ICMP_UGE: 3129 // (float)int >= -4.4 --> true 3130 // (float)int >= 4.4 --> int > 4 3131 if (RHS.isNegative()) 3132 return ReplaceInstUsesWith(I, Builder->getTrue()); 3133 Pred = ICmpInst::ICMP_UGT; 3134 break; 3135 case ICmpInst::ICMP_SGE: 3136 // (float)int >= -4.4 --> int >= -4 3137 // (float)int >= 4.4 --> int > 4 3138 if (!RHS.isNegative()) 3139 Pred = ICmpInst::ICMP_SGT; 3140 break; 3141 } 3142 } 3143 } 3144 3145 // Lower this FP comparison into an appropriate integer version of the 3146 // comparison. 3147 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 3148 } 3149 3150 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 3151 bool Changed = false; 3152 3153 /// Orders the operands of the compare so that they are listed from most 3154 /// complex to least complex. This puts constants before unary operators, 3155 /// before binary operators. 3156 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 3157 I.swapOperands(); 3158 Changed = true; 3159 } 3160 3161 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3162 3163 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD)) 3164 return ReplaceInstUsesWith(I, V); 3165 3166 // Simplify 'fcmp pred X, X' 3167 if (Op0 == Op1) { 3168 switch (I.getPredicate()) { 3169 default: llvm_unreachable("Unknown predicate!"); 3170 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 3171 case FCmpInst::FCMP_ULT: // True if unordered or less than 3172 case FCmpInst::FCMP_UGT: // True if unordered or greater than 3173 case FCmpInst::FCMP_UNE: // True if unordered or not equal 3174 // Canonicalize these to be 'fcmp uno %X, 0.0'. 3175 I.setPredicate(FCmpInst::FCMP_UNO); 3176 I.setOperand(1, Constant::getNullValue(Op0->getType())); 3177 return &I; 3178 3179 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 3180 case FCmpInst::FCMP_OEQ: // True if ordered and equal 3181 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 3182 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 3183 // Canonicalize these to be 'fcmp ord %X, 0.0'. 3184 I.setPredicate(FCmpInst::FCMP_ORD); 3185 I.setOperand(1, Constant::getNullValue(Op0->getType())); 3186 return &I; 3187 } 3188 } 3189 3190 // Handle fcmp with constant RHS 3191 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 3192 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3193 switch (LHSI->getOpcode()) { 3194 case Instruction::FPExt: { 3195 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 3196 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 3197 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 3198 if (!RHSF) 3199 break; 3200 3201 const fltSemantics *Sem; 3202 // FIXME: This shouldn't be here. 3203 if (LHSExt->getSrcTy()->isHalfTy()) 3204 Sem = &APFloat::IEEEhalf; 3205 else if (LHSExt->getSrcTy()->isFloatTy()) 3206 Sem = &APFloat::IEEEsingle; 3207 else if (LHSExt->getSrcTy()->isDoubleTy()) 3208 Sem = &APFloat::IEEEdouble; 3209 else if (LHSExt->getSrcTy()->isFP128Ty()) 3210 Sem = &APFloat::IEEEquad; 3211 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 3212 Sem = &APFloat::x87DoubleExtended; 3213 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 3214 Sem = &APFloat::PPCDoubleDouble; 3215 else 3216 break; 3217 3218 bool Lossy; 3219 APFloat F = RHSF->getValueAPF(); 3220 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 3221 3222 // Avoid lossy conversions and denormals. Zero is a special case 3223 // that's OK to convert. 3224 APFloat Fabs = F; 3225 Fabs.clearSign(); 3226 if (!Lossy && 3227 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 3228 APFloat::cmpLessThan) || Fabs.isZero())) 3229 3230 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 3231 ConstantFP::get(RHSC->getContext(), F)); 3232 break; 3233 } 3234 case Instruction::PHI: 3235 // Only fold fcmp into the PHI if the phi and fcmp are in the same 3236 // block. If in the same block, we're encouraging jump threading. If 3237 // not, we are just pessimizing the code by making an i1 phi. 3238 if (LHSI->getParent() == I.getParent()) 3239 if (Instruction *NV = FoldOpIntoPhi(I)) 3240 return NV; 3241 break; 3242 case Instruction::SIToFP: 3243 case Instruction::UIToFP: 3244 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) 3245 return NV; 3246 break; 3247 case Instruction::Select: { 3248 // If either operand of the select is a constant, we can fold the 3249 // comparison into the select arms, which will cause one to be 3250 // constant folded and the select turned into a bitwise or. 3251 Value *Op1 = 0, *Op2 = 0; 3252 if (LHSI->hasOneUse()) { 3253 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3254 // Fold the known value into the constant operand. 3255 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); 3256 // Insert a new FCmp of the other select operand. 3257 Op2 = Builder->CreateFCmp(I.getPredicate(), 3258 LHSI->getOperand(2), RHSC, I.getName()); 3259 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3260 // Fold the known value into the constant operand. 3261 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); 3262 // Insert a new FCmp of the other select operand. 3263 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1), 3264 RHSC, I.getName()); 3265 } 3266 } 3267 3268 if (Op1) 3269 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3270 break; 3271 } 3272 case Instruction::FSub: { 3273 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 3274 Value *Op; 3275 if (match(LHSI, m_FNeg(m_Value(Op)))) 3276 return new FCmpInst(I.getSwappedPredicate(), Op, 3277 ConstantExpr::getFNeg(RHSC)); 3278 break; 3279 } 3280 case Instruction::Load: 3281 if (GetElementPtrInst *GEP = 3282 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3283 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3284 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3285 !cast<LoadInst>(LHSI)->isVolatile()) 3286 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3287 return Res; 3288 } 3289 break; 3290 case Instruction::Call: { 3291 CallInst *CI = cast<CallInst>(LHSI); 3292 LibFunc::Func Func; 3293 // Various optimization for fabs compared with zero. 3294 if (RHSC->isNullValue() && CI->getCalledFunction() && 3295 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 3296 TLI->has(Func)) { 3297 if (Func == LibFunc::fabs || Func == LibFunc::fabsf || 3298 Func == LibFunc::fabsl) { 3299 switch (I.getPredicate()) { 3300 default: break; 3301 // fabs(x) < 0 --> false 3302 case FCmpInst::FCMP_OLT: 3303 return ReplaceInstUsesWith(I, Builder->getFalse()); 3304 // fabs(x) > 0 --> x != 0 3305 case FCmpInst::FCMP_OGT: 3306 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), 3307 RHSC); 3308 // fabs(x) <= 0 --> x == 0 3309 case FCmpInst::FCMP_OLE: 3310 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), 3311 RHSC); 3312 // fabs(x) >= 0 --> !isnan(x) 3313 case FCmpInst::FCMP_OGE: 3314 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), 3315 RHSC); 3316 // fabs(x) == 0 --> x == 0 3317 // fabs(x) != 0 --> x != 0 3318 case FCmpInst::FCMP_OEQ: 3319 case FCmpInst::FCMP_UEQ: 3320 case FCmpInst::FCMP_ONE: 3321 case FCmpInst::FCMP_UNE: 3322 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), 3323 RHSC); 3324 } 3325 } 3326 } 3327 } 3328 } 3329 } 3330 3331 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 3332 Value *X, *Y; 3333 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 3334 return new FCmpInst(I.getSwappedPredicate(), X, Y); 3335 3336 // fcmp (fpext x), (fpext y) -> fcmp x, y 3337 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 3338 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 3339 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 3340 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 3341 RHSExt->getOperand(0)); 3342 3343 return Changed ? &I : 0; 3344 } 3345