Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Analysis/MemoryBuiltins.h"
     18 #include "llvm/IR/DataLayout.h"
     19 #include "llvm/IR/IntrinsicInst.h"
     20 #include "llvm/Support/ConstantRange.h"
     21 #include "llvm/Support/GetElementPtrTypeIterator.h"
     22 #include "llvm/Support/PatternMatch.h"
     23 #include "llvm/Target/TargetLibraryInfo.h"
     24 using namespace llvm;
     25 using namespace PatternMatch;
     26 
     27 static ConstantInt *getOne(Constant *C) {
     28   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     29 }
     30 
     31 /// AddOne - Add one to a ConstantInt
     32 static Constant *AddOne(Constant *C) {
     33   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     34 }
     35 /// SubOne - Subtract one from a ConstantInt
     36 static Constant *SubOne(Constant *C) {
     37   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     38 }
     39 
     40 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     41   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     42 }
     43 
     44 static bool HasAddOverflow(ConstantInt *Result,
     45                            ConstantInt *In1, ConstantInt *In2,
     46                            bool IsSigned) {
     47   if (!IsSigned)
     48     return Result->getValue().ult(In1->getValue());
     49 
     50   if (In2->isNegative())
     51     return Result->getValue().sgt(In1->getValue());
     52   return Result->getValue().slt(In1->getValue());
     53 }
     54 
     55 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     56 /// overflowed for this type.
     57 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     58                             Constant *In2, bool IsSigned = false) {
     59   Result = ConstantExpr::getAdd(In1, In2);
     60 
     61   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     62     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     63       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     64       if (HasAddOverflow(ExtractElement(Result, Idx),
     65                          ExtractElement(In1, Idx),
     66                          ExtractElement(In2, Idx),
     67                          IsSigned))
     68         return true;
     69     }
     70     return false;
     71   }
     72 
     73   return HasAddOverflow(cast<ConstantInt>(Result),
     74                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     75                         IsSigned);
     76 }
     77 
     78 static bool HasSubOverflow(ConstantInt *Result,
     79                            ConstantInt *In1, ConstantInt *In2,
     80                            bool IsSigned) {
     81   if (!IsSigned)
     82     return Result->getValue().ugt(In1->getValue());
     83 
     84   if (In2->isNegative())
     85     return Result->getValue().slt(In1->getValue());
     86 
     87   return Result->getValue().sgt(In1->getValue());
     88 }
     89 
     90 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     91 /// overflowed for this type.
     92 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     93                             Constant *In2, bool IsSigned = false) {
     94   Result = ConstantExpr::getSub(In1, In2);
     95 
     96   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     97     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     98       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     99       if (HasSubOverflow(ExtractElement(Result, Idx),
    100                          ExtractElement(In1, Idx),
    101                          ExtractElement(In2, Idx),
    102                          IsSigned))
    103         return true;
    104     }
    105     return false;
    106   }
    107 
    108   return HasSubOverflow(cast<ConstantInt>(Result),
    109                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    110                         IsSigned);
    111 }
    112 
    113 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    114 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    115 /// TrueIfSigned if the result of the comparison is true when the input value is
    116 /// signed.
    117 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    118                            bool &TrueIfSigned) {
    119   switch (pred) {
    120   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    121     TrueIfSigned = true;
    122     return RHS->isZero();
    123   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    124     TrueIfSigned = true;
    125     return RHS->isAllOnesValue();
    126   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    127     TrueIfSigned = false;
    128     return RHS->isAllOnesValue();
    129   case ICmpInst::ICMP_UGT:
    130     // True if LHS u> RHS and RHS == high-bit-mask - 1
    131     TrueIfSigned = true;
    132     return RHS->isMaxValue(true);
    133   case ICmpInst::ICMP_UGE:
    134     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    135     TrueIfSigned = true;
    136     return RHS->getValue().isSignBit();
    137   default:
    138     return false;
    139   }
    140 }
    141 
    142 /// Returns true if the exploded icmp can be expressed as a signed comparison
    143 /// to zero and updates the predicate accordingly.
    144 /// The signedness of the comparison is preserved.
    145 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
    146   if (!ICmpInst::isSigned(pred))
    147     return false;
    148 
    149   if (RHS->isZero())
    150     return ICmpInst::isRelational(pred);
    151 
    152   if (RHS->isOne()) {
    153     if (pred == ICmpInst::ICMP_SLT) {
    154       pred = ICmpInst::ICMP_SLE;
    155       return true;
    156     }
    157   } else if (RHS->isAllOnesValue()) {
    158     if (pred == ICmpInst::ICMP_SGT) {
    159       pred = ICmpInst::ICMP_SGE;
    160       return true;
    161     }
    162   }
    163 
    164   return false;
    165 }
    166 
    167 // isHighOnes - Return true if the constant is of the form 1+0+.
    168 // This is the same as lowones(~X).
    169 static bool isHighOnes(const ConstantInt *CI) {
    170   return (~CI->getValue() + 1).isPowerOf2();
    171 }
    172 
    173 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    174 /// set of known zero and one bits, compute the maximum and minimum values that
    175 /// could have the specified known zero and known one bits, returning them in
    176 /// min/max.
    177 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    178                                                    const APInt& KnownOne,
    179                                                    APInt& Min, APInt& Max) {
    180   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    181          KnownZero.getBitWidth() == Min.getBitWidth() &&
    182          KnownZero.getBitWidth() == Max.getBitWidth() &&
    183          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    184   APInt UnknownBits = ~(KnownZero|KnownOne);
    185 
    186   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    187   // bit if it is unknown.
    188   Min = KnownOne;
    189   Max = KnownOne|UnknownBits;
    190 
    191   if (UnknownBits.isNegative()) { // Sign bit is unknown
    192     Min.setBit(Min.getBitWidth()-1);
    193     Max.clearBit(Max.getBitWidth()-1);
    194   }
    195 }
    196 
    197 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    198 // a set of known zero and one bits, compute the maximum and minimum values that
    199 // could have the specified known zero and known one bits, returning them in
    200 // min/max.
    201 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    202                                                      const APInt &KnownOne,
    203                                                      APInt &Min, APInt &Max) {
    204   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    205          KnownZero.getBitWidth() == Min.getBitWidth() &&
    206          KnownZero.getBitWidth() == Max.getBitWidth() &&
    207          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    208   APInt UnknownBits = ~(KnownZero|KnownOne);
    209 
    210   // The minimum value is when the unknown bits are all zeros.
    211   Min = KnownOne;
    212   // The maximum value is when the unknown bits are all ones.
    213   Max = KnownOne|UnknownBits;
    214 }
    215 
    216 
    217 
    218 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    219 ///   cmp pred (load (gep GV, ...)), cmpcst
    220 /// where GV is a global variable with a constant initializer.  Try to simplify
    221 /// this into some simple computation that does not need the load.  For example
    222 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    223 ///
    224 /// If AndCst is non-null, then the loaded value is masked with that constant
    225 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    226 Instruction *InstCombiner::
    227 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    228                              CmpInst &ICI, ConstantInt *AndCst) {
    229   // We need TD information to know the pointer size unless this is inbounds.
    230   if (!GEP->isInBounds() && TD == 0) return 0;
    231 
    232   Constant *Init = GV->getInitializer();
    233   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    234     return 0;
    235 
    236   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
    237   if (ArrayElementCount > 1024) return 0;  // Don't blow up on huge arrays.
    238 
    239   // There are many forms of this optimization we can handle, for now, just do
    240   // the simple index into a single-dimensional array.
    241   //
    242   // Require: GEP GV, 0, i {{, constant indices}}
    243   if (GEP->getNumOperands() < 3 ||
    244       !isa<ConstantInt>(GEP->getOperand(1)) ||
    245       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    246       isa<Constant>(GEP->getOperand(2)))
    247     return 0;
    248 
    249   // Check that indices after the variable are constants and in-range for the
    250   // type they index.  Collect the indices.  This is typically for arrays of
    251   // structs.
    252   SmallVector<unsigned, 4> LaterIndices;
    253 
    254   Type *EltTy = Init->getType()->getArrayElementType();
    255   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    256     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    257     if (Idx == 0) return 0;  // Variable index.
    258 
    259     uint64_t IdxVal = Idx->getZExtValue();
    260     if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
    261 
    262     if (StructType *STy = dyn_cast<StructType>(EltTy))
    263       EltTy = STy->getElementType(IdxVal);
    264     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    265       if (IdxVal >= ATy->getNumElements()) return 0;
    266       EltTy = ATy->getElementType();
    267     } else {
    268       return 0; // Unknown type.
    269     }
    270 
    271     LaterIndices.push_back(IdxVal);
    272   }
    273 
    274   enum { Overdefined = -3, Undefined = -2 };
    275 
    276   // Variables for our state machines.
    277 
    278   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    279   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    280   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    281   // undefined, otherwise set to the first true element.  SecondTrueElement is
    282   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    283   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    284 
    285   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    286   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    287   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    288 
    289   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    290   /// define a state machine that triggers for ranges of values that the index
    291   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    292   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    293   /// index in the range (inclusive).  We use -2 for undefined here because we
    294   /// use relative comparisons and don't want 0-1 to match -1.
    295   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    296 
    297   // MagicBitvector - This is a magic bitvector where we set a bit if the
    298   // comparison is true for element 'i'.  If there are 64 elements or less in
    299   // the array, this will fully represent all the comparison results.
    300   uint64_t MagicBitvector = 0;
    301 
    302 
    303   // Scan the array and see if one of our patterns matches.
    304   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    305   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    306     Constant *Elt = Init->getAggregateElement(i);
    307     if (Elt == 0) return 0;
    308 
    309     // If this is indexing an array of structures, get the structure element.
    310     if (!LaterIndices.empty())
    311       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    312 
    313     // If the element is masked, handle it.
    314     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    315 
    316     // Find out if the comparison would be true or false for the i'th element.
    317     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    318                                                   CompareRHS, TD, TLI);
    319     // If the result is undef for this element, ignore it.
    320     if (isa<UndefValue>(C)) {
    321       // Extend range state machines to cover this element in case there is an
    322       // undef in the middle of the range.
    323       if (TrueRangeEnd == (int)i-1)
    324         TrueRangeEnd = i;
    325       if (FalseRangeEnd == (int)i-1)
    326         FalseRangeEnd = i;
    327       continue;
    328     }
    329 
    330     // If we can't compute the result for any of the elements, we have to give
    331     // up evaluating the entire conditional.
    332     if (!isa<ConstantInt>(C)) return 0;
    333 
    334     // Otherwise, we know if the comparison is true or false for this element,
    335     // update our state machines.
    336     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    337 
    338     // State machine for single/double/range index comparison.
    339     if (IsTrueForElt) {
    340       // Update the TrueElement state machine.
    341       if (FirstTrueElement == Undefined)
    342         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    343       else {
    344         // Update double-compare state machine.
    345         if (SecondTrueElement == Undefined)
    346           SecondTrueElement = i;
    347         else
    348           SecondTrueElement = Overdefined;
    349 
    350         // Update range state machine.
    351         if (TrueRangeEnd == (int)i-1)
    352           TrueRangeEnd = i;
    353         else
    354           TrueRangeEnd = Overdefined;
    355       }
    356     } else {
    357       // Update the FalseElement state machine.
    358       if (FirstFalseElement == Undefined)
    359         FirstFalseElement = FalseRangeEnd = i; // First false element.
    360       else {
    361         // Update double-compare state machine.
    362         if (SecondFalseElement == Undefined)
    363           SecondFalseElement = i;
    364         else
    365           SecondFalseElement = Overdefined;
    366 
    367         // Update range state machine.
    368         if (FalseRangeEnd == (int)i-1)
    369           FalseRangeEnd = i;
    370         else
    371           FalseRangeEnd = Overdefined;
    372       }
    373     }
    374 
    375 
    376     // If this element is in range, update our magic bitvector.
    377     if (i < 64 && IsTrueForElt)
    378       MagicBitvector |= 1ULL << i;
    379 
    380     // If all of our states become overdefined, bail out early.  Since the
    381     // predicate is expensive, only check it every 8 elements.  This is only
    382     // really useful for really huge arrays.
    383     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    384         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    385         FalseRangeEnd == Overdefined)
    386       return 0;
    387   }
    388 
    389   // Now that we've scanned the entire array, emit our new comparison(s).  We
    390   // order the state machines in complexity of the generated code.
    391   Value *Idx = GEP->getOperand(2);
    392 
    393   // If the index is larger than the pointer size of the target, truncate the
    394   // index down like the GEP would do implicitly.  We don't have to do this for
    395   // an inbounds GEP because the index can't be out of range.
    396   if (!GEP->isInBounds() &&
    397       Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
    398     Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
    399 
    400   // If the comparison is only true for one or two elements, emit direct
    401   // comparisons.
    402   if (SecondTrueElement != Overdefined) {
    403     // None true -> false.
    404     if (FirstTrueElement == Undefined)
    405       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    406 
    407     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    408 
    409     // True for one element -> 'i == 47'.
    410     if (SecondTrueElement == Undefined)
    411       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    412 
    413     // True for two elements -> 'i == 47 | i == 72'.
    414     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    415     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    416     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    417     return BinaryOperator::CreateOr(C1, C2);
    418   }
    419 
    420   // If the comparison is only false for one or two elements, emit direct
    421   // comparisons.
    422   if (SecondFalseElement != Overdefined) {
    423     // None false -> true.
    424     if (FirstFalseElement == Undefined)
    425       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    426 
    427     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    428 
    429     // False for one element -> 'i != 47'.
    430     if (SecondFalseElement == Undefined)
    431       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    432 
    433     // False for two elements -> 'i != 47 & i != 72'.
    434     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    435     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    436     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    437     return BinaryOperator::CreateAnd(C1, C2);
    438   }
    439 
    440   // If the comparison can be replaced with a range comparison for the elements
    441   // where it is true, emit the range check.
    442   if (TrueRangeEnd != Overdefined) {
    443     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    444 
    445     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    446     if (FirstTrueElement) {
    447       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    448       Idx = Builder->CreateAdd(Idx, Offs);
    449     }
    450 
    451     Value *End = ConstantInt::get(Idx->getType(),
    452                                   TrueRangeEnd-FirstTrueElement+1);
    453     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    454   }
    455 
    456   // False range check.
    457   if (FalseRangeEnd != Overdefined) {
    458     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    459     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    460     if (FirstFalseElement) {
    461       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    462       Idx = Builder->CreateAdd(Idx, Offs);
    463     }
    464 
    465     Value *End = ConstantInt::get(Idx->getType(),
    466                                   FalseRangeEnd-FirstFalseElement);
    467     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    468   }
    469 
    470 
    471   // If a magic bitvector captures the entire comparison state
    472   // of this load, replace it with computation that does:
    473   //   ((magic_cst >> i) & 1) != 0
    474   {
    475     Type *Ty = 0;
    476 
    477     // Look for an appropriate type:
    478     // - The type of Idx if the magic fits
    479     // - The smallest fitting legal type if we have a DataLayout
    480     // - Default to i32
    481     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
    482       Ty = Idx->getType();
    483     else if (TD)
    484       Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
    485     else if (ArrayElementCount <= 32)
    486       Ty = Type::getInt32Ty(Init->getContext());
    487 
    488     if (Ty != 0) {
    489       Value *V = Builder->CreateIntCast(Idx, Ty, false);
    490       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    491       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    492       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    493     }
    494   }
    495 
    496   return 0;
    497 }
    498 
    499 
    500 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    501 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    502 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    503 /// be complex, and scales are involved.  The above expression would also be
    504 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    505 /// This later form is less amenable to optimization though, and we are allowed
    506 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    507 ///
    508 /// If we can't emit an optimized form for this expression, this returns null.
    509 ///
    510 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
    511   DataLayout &TD = *IC.getDataLayout();
    512   gep_type_iterator GTI = gep_type_begin(GEP);
    513 
    514   // Check to see if this gep only has a single variable index.  If so, and if
    515   // any constant indices are a multiple of its scale, then we can compute this
    516   // in terms of the scale of the variable index.  For example, if the GEP
    517   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    518   // because the expression will cross zero at the same point.
    519   unsigned i, e = GEP->getNumOperands();
    520   int64_t Offset = 0;
    521   for (i = 1; i != e; ++i, ++GTI) {
    522     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    523       // Compute the aggregate offset of constant indices.
    524       if (CI->isZero()) continue;
    525 
    526       // Handle a struct index, which adds its field offset to the pointer.
    527       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    528         Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    529       } else {
    530         uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    531         Offset += Size*CI->getSExtValue();
    532       }
    533     } else {
    534       // Found our variable index.
    535       break;
    536     }
    537   }
    538 
    539   // If there are no variable indices, we must have a constant offset, just
    540   // evaluate it the general way.
    541   if (i == e) return 0;
    542 
    543   Value *VariableIdx = GEP->getOperand(i);
    544   // Determine the scale factor of the variable element.  For example, this is
    545   // 4 if the variable index is into an array of i32.
    546   uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
    547 
    548   // Verify that there are no other variable indices.  If so, emit the hard way.
    549   for (++i, ++GTI; i != e; ++i, ++GTI) {
    550     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    551     if (!CI) return 0;
    552 
    553     // Compute the aggregate offset of constant indices.
    554     if (CI->isZero()) continue;
    555 
    556     // Handle a struct index, which adds its field offset to the pointer.
    557     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    558       Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    559     } else {
    560       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    561       Offset += Size*CI->getSExtValue();
    562     }
    563   }
    564 
    565   // Okay, we know we have a single variable index, which must be a
    566   // pointer/array/vector index.  If there is no offset, life is simple, return
    567   // the index.
    568   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    569   if (Offset == 0) {
    570     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    571     // we don't need to bother extending: the extension won't affect where the
    572     // computation crosses zero.
    573     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    574       Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    575       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    576     }
    577     return VariableIdx;
    578   }
    579 
    580   // Otherwise, there is an index.  The computation we will do will be modulo
    581   // the pointer size, so get it.
    582   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    583 
    584   Offset &= PtrSizeMask;
    585   VariableScale &= PtrSizeMask;
    586 
    587   // To do this transformation, any constant index must be a multiple of the
    588   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    589   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    590   // multiple of the variable scale.
    591   int64_t NewOffs = Offset / (int64_t)VariableScale;
    592   if (Offset != NewOffs*(int64_t)VariableScale)
    593     return 0;
    594 
    595   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    596   Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    597   if (VariableIdx->getType() != IntPtrTy)
    598     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    599                                             true /*Signed*/);
    600   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    601   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    602 }
    603 
    604 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    605 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    606 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    607                                        ICmpInst::Predicate Cond,
    608                                        Instruction &I) {
    609   // Don't transform signed compares of GEPs into index compares. Even if the
    610   // GEP is inbounds, the final add of the base pointer can have signed overflow
    611   // and would change the result of the icmp.
    612   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
    613   // the maximum signed value for the pointer type.
    614   if (ICmpInst::isSigned(Cond))
    615     return 0;
    616 
    617   // Look through bitcasts.
    618   if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
    619     RHS = BCI->getOperand(0);
    620 
    621   Value *PtrBase = GEPLHS->getOperand(0);
    622   if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
    623     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    624     // This transformation (ignoring the base and scales) is valid because we
    625     // know pointers can't overflow since the gep is inbounds.  See if we can
    626     // output an optimized form.
    627     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
    628 
    629     // If not, synthesize the offset the hard way.
    630     if (Offset == 0)
    631       Offset = EmitGEPOffset(GEPLHS);
    632     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    633                         Constant::getNullValue(Offset->getType()));
    634   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    635     // If the base pointers are different, but the indices are the same, just
    636     // compare the base pointer.
    637     if (PtrBase != GEPRHS->getOperand(0)) {
    638       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    639       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    640                         GEPRHS->getOperand(0)->getType();
    641       if (IndicesTheSame)
    642         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    643           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    644             IndicesTheSame = false;
    645             break;
    646           }
    647 
    648       // If all indices are the same, just compare the base pointers.
    649       if (IndicesTheSame)
    650         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    651 
    652       // If we're comparing GEPs with two base pointers that only differ in type
    653       // and both GEPs have only constant indices or just one use, then fold
    654       // the compare with the adjusted indices.
    655       if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
    656           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
    657           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
    658           PtrBase->stripPointerCasts() ==
    659             GEPRHS->getOperand(0)->stripPointerCasts()) {
    660         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
    661                                          EmitGEPOffset(GEPLHS),
    662                                          EmitGEPOffset(GEPRHS));
    663         return ReplaceInstUsesWith(I, Cmp);
    664       }
    665 
    666       // Otherwise, the base pointers are different and the indices are
    667       // different, bail out.
    668       return 0;
    669     }
    670 
    671     // If one of the GEPs has all zero indices, recurse.
    672     bool AllZeros = true;
    673     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    674       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
    675           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
    676         AllZeros = false;
    677         break;
    678       }
    679     if (AllZeros)
    680       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    681                          ICmpInst::getSwappedPredicate(Cond), I);
    682 
    683     // If the other GEP has all zero indices, recurse.
    684     AllZeros = true;
    685     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    686       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
    687           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
    688         AllZeros = false;
    689         break;
    690       }
    691     if (AllZeros)
    692       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    693 
    694     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    695     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    696       // If the GEPs only differ by one index, compare it.
    697       unsigned NumDifferences = 0;  // Keep track of # differences.
    698       unsigned DiffOperand = 0;     // The operand that differs.
    699       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    700         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    701           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    702                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    703             // Irreconcilable differences.
    704             NumDifferences = 2;
    705             break;
    706           } else {
    707             if (NumDifferences++) break;
    708             DiffOperand = i;
    709           }
    710         }
    711 
    712       if (NumDifferences == 0)   // SAME GEP?
    713         return ReplaceInstUsesWith(I, // No comparison is needed here.
    714                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
    715 
    716       else if (NumDifferences == 1 && GEPsInBounds) {
    717         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    718         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    719         // Make sure we do a signed comparison here.
    720         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    721       }
    722     }
    723 
    724     // Only lower this if the icmp is the only user of the GEP or if we expect
    725     // the result to fold to a constant!
    726     if (TD &&
    727         GEPsInBounds &&
    728         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    729         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    730       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    731       Value *L = EmitGEPOffset(GEPLHS);
    732       Value *R = EmitGEPOffset(GEPRHS);
    733       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    734     }
    735   }
    736   return 0;
    737 }
    738 
    739 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    740 Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
    741                                             Value *X, ConstantInt *CI,
    742                                             ICmpInst::Predicate Pred,
    743                                             Value *TheAdd) {
    744   // If we have X+0, exit early (simplifying logic below) and let it get folded
    745   // elsewhere.   icmp X+0, X  -> icmp X, X
    746   if (CI->isZero()) {
    747     bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
    748     return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
    749   }
    750 
    751   // (X+4) == X -> false.
    752   if (Pred == ICmpInst::ICMP_EQ)
    753     return ReplaceInstUsesWith(ICI, Builder->getFalse());
    754 
    755   // (X+4) != X -> true.
    756   if (Pred == ICmpInst::ICMP_NE)
    757     return ReplaceInstUsesWith(ICI, Builder->getTrue());
    758 
    759   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    760   // so the values can never be equal.  Similarly for all other "or equals"
    761   // operators.
    762 
    763   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    764   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    765   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    766   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    767     Value *R =
    768       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    769     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    770   }
    771 
    772   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    773   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    774   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    775   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    776     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    777 
    778   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    779   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    780                                        APInt::getSignedMaxValue(BitWidth));
    781 
    782   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    783   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    784   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    785   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    786   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    787   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    788   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    789     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    790 
    791   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    792   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    793   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    794   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    795   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    796   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    797 
    798   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    799   Constant *C = Builder->getInt(CI->getValue()-1);
    800   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    801 }
    802 
    803 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    804 /// and CmpRHS are both known to be integer constants.
    805 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    806                                           ConstantInt *DivRHS) {
    807   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    808   const APInt &CmpRHSV = CmpRHS->getValue();
    809 
    810   // FIXME: If the operand types don't match the type of the divide
    811   // then don't attempt this transform. The code below doesn't have the
    812   // logic to deal with a signed divide and an unsigned compare (and
    813   // vice versa). This is because (x /s C1) <s C2  produces different
    814   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    815   // (x /u C1) <u C2.  Simply casting the operands and result won't
    816   // work. :(  The if statement below tests that condition and bails
    817   // if it finds it.
    818   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    819   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    820     return 0;
    821   if (DivRHS->isZero())
    822     return 0; // The ProdOV computation fails on divide by zero.
    823   if (DivIsSigned && DivRHS->isAllOnesValue())
    824     return 0; // The overflow computation also screws up here
    825   if (DivRHS->isOne()) {
    826     // This eliminates some funny cases with INT_MIN.
    827     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    828     return &ICI;
    829   }
    830 
    831   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    832   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    833   // C2 (CI). By solving for X we can turn this into a range check
    834   // instead of computing a divide.
    835   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    836 
    837   // Determine if the product overflows by seeing if the product is
    838   // not equal to the divide. Make sure we do the same kind of divide
    839   // as in the LHS instruction that we're folding.
    840   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    841                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    842 
    843   // Get the ICmp opcode
    844   ICmpInst::Predicate Pred = ICI.getPredicate();
    845 
    846   /// If the division is known to be exact, then there is no remainder from the
    847   /// divide, so the covered range size is unit, otherwise it is the divisor.
    848   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    849 
    850   // Figure out the interval that is being checked.  For example, a comparison
    851   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    852   // Compute this interval based on the constants involved and the signedness of
    853   // the compare/divide.  This computes a half-open interval, keeping track of
    854   // whether either value in the interval overflows.  After analysis each
    855   // overflow variable is set to 0 if it's corresponding bound variable is valid
    856   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    857   int LoOverflow = 0, HiOverflow = 0;
    858   Constant *LoBound = 0, *HiBound = 0;
    859 
    860   if (!DivIsSigned) {  // udiv
    861     // e.g. X/5 op 3  --> [15, 20)
    862     LoBound = Prod;
    863     HiOverflow = LoOverflow = ProdOV;
    864     if (!HiOverflow) {
    865       // If this is not an exact divide, then many values in the range collapse
    866       // to the same result value.
    867       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    868     }
    869 
    870   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    871     if (CmpRHSV == 0) {       // (X / pos) op 0
    872       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    873       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    874       HiBound = RangeSize;
    875     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    876       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    877       HiOverflow = LoOverflow = ProdOV;
    878       if (!HiOverflow)
    879         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    880     } else {                       // (X / pos) op neg
    881       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    882       HiBound = AddOne(Prod);
    883       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    884       if (!LoOverflow) {
    885         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    886         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    887       }
    888     }
    889   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    890     if (DivI->isExact())
    891       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    892     if (CmpRHSV == 0) {       // (X / neg) op 0
    893       // e.g. X/-5 op 0  --> [-4, 5)
    894       LoBound = AddOne(RangeSize);
    895       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    896       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    897         HiOverflow = 1;            // [INTMIN+1, overflow)
    898         HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
    899       }
    900     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    901       // e.g. X/-5 op 3  --> [-19, -14)
    902       HiBound = AddOne(Prod);
    903       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    904       if (!LoOverflow)
    905         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    906     } else {                       // (X / neg) op neg
    907       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    908       LoOverflow = HiOverflow = ProdOV;
    909       if (!HiOverflow)
    910         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    911     }
    912 
    913     // Dividing by a negative swaps the condition.  LT <-> GT
    914     Pred = ICmpInst::getSwappedPredicate(Pred);
    915   }
    916 
    917   Value *X = DivI->getOperand(0);
    918   switch (Pred) {
    919   default: llvm_unreachable("Unhandled icmp opcode!");
    920   case ICmpInst::ICMP_EQ:
    921     if (LoOverflow && HiOverflow)
    922       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    923     if (HiOverflow)
    924       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    925                           ICmpInst::ICMP_UGE, X, LoBound);
    926     if (LoOverflow)
    927       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    928                           ICmpInst::ICMP_ULT, X, HiBound);
    929     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    930                                                     DivIsSigned, true));
    931   case ICmpInst::ICMP_NE:
    932     if (LoOverflow && HiOverflow)
    933       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    934     if (HiOverflow)
    935       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    936                           ICmpInst::ICMP_ULT, X, LoBound);
    937     if (LoOverflow)
    938       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    939                           ICmpInst::ICMP_UGE, X, HiBound);
    940     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    941                                                     DivIsSigned, false));
    942   case ICmpInst::ICMP_ULT:
    943   case ICmpInst::ICMP_SLT:
    944     if (LoOverflow == +1)   // Low bound is greater than input range.
    945       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    946     if (LoOverflow == -1)   // Low bound is less than input range.
    947       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    948     return new ICmpInst(Pred, X, LoBound);
    949   case ICmpInst::ICMP_UGT:
    950   case ICmpInst::ICMP_SGT:
    951     if (HiOverflow == +1)       // High bound greater than input range.
    952       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    953     if (HiOverflow == -1)       // High bound less than input range.
    954       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    955     if (Pred == ICmpInst::ICMP_UGT)
    956       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    957     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
    958   }
    959 }
    960 
    961 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
    962 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
    963                                           ConstantInt *ShAmt) {
    964   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
    965 
    966   // Check that the shift amount is in range.  If not, don't perform
    967   // undefined shifts.  When the shift is visited it will be
    968   // simplified.
    969   uint32_t TypeBits = CmpRHSV.getBitWidth();
    970   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
    971   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    972     return 0;
    973 
    974   if (!ICI.isEquality()) {
    975     // If we have an unsigned comparison and an ashr, we can't simplify this.
    976     // Similarly for signed comparisons with lshr.
    977     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
    978       return 0;
    979 
    980     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
    981     // by a power of 2.  Since we already have logic to simplify these,
    982     // transform to div and then simplify the resultant comparison.
    983     if (Shr->getOpcode() == Instruction::AShr &&
    984         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
    985       return 0;
    986 
    987     // Revisit the shift (to delete it).
    988     Worklist.Add(Shr);
    989 
    990     Constant *DivCst =
    991       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
    992 
    993     Value *Tmp =
    994       Shr->getOpcode() == Instruction::AShr ?
    995       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
    996       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
    997 
    998     ICI.setOperand(0, Tmp);
    999 
   1000     // If the builder folded the binop, just return it.
   1001     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
   1002     if (TheDiv == 0)
   1003       return &ICI;
   1004 
   1005     // Otherwise, fold this div/compare.
   1006     assert(TheDiv->getOpcode() == Instruction::SDiv ||
   1007            TheDiv->getOpcode() == Instruction::UDiv);
   1008 
   1009     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
   1010     assert(Res && "This div/cst should have folded!");
   1011     return Res;
   1012   }
   1013 
   1014 
   1015   // If we are comparing against bits always shifted out, the
   1016   // comparison cannot succeed.
   1017   APInt Comp = CmpRHSV << ShAmtVal;
   1018   ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
   1019   if (Shr->getOpcode() == Instruction::LShr)
   1020     Comp = Comp.lshr(ShAmtVal);
   1021   else
   1022     Comp = Comp.ashr(ShAmtVal);
   1023 
   1024   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
   1025     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1026     Constant *Cst = Builder->getInt1(IsICMP_NE);
   1027     return ReplaceInstUsesWith(ICI, Cst);
   1028   }
   1029 
   1030   // Otherwise, check to see if the bits shifted out are known to be zero.
   1031   // If so, we can compare against the unshifted value:
   1032   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
   1033   if (Shr->hasOneUse() && Shr->isExact())
   1034     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
   1035 
   1036   if (Shr->hasOneUse()) {
   1037     // Otherwise strength reduce the shift into an and.
   1038     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
   1039     Constant *Mask = Builder->getInt(Val);
   1040 
   1041     Value *And = Builder->CreateAnd(Shr->getOperand(0),
   1042                                     Mask, Shr->getName()+".mask");
   1043     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
   1044   }
   1045   return 0;
   1046 }
   1047 
   1048 
   1049 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
   1050 ///
   1051 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
   1052                                                           Instruction *LHSI,
   1053                                                           ConstantInt *RHS) {
   1054   const APInt &RHSV = RHS->getValue();
   1055 
   1056   switch (LHSI->getOpcode()) {
   1057   case Instruction::Trunc:
   1058     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1059       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1060       // of the high bits truncated out of x are known.
   1061       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1062              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1063       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1064       ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
   1065 
   1066       // If all the high bits are known, we can do this xform.
   1067       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1068         // Pull in the high bits from known-ones set.
   1069         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1070         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
   1071         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1072                             Builder->getInt(NewRHS));
   1073       }
   1074     }
   1075     break;
   1076 
   1077   case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
   1078     if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1079       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1080       // fold the xor.
   1081       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1082           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1083         Value *CompareVal = LHSI->getOperand(0);
   1084 
   1085         // If the sign bit of the XorCST is not set, there is no change to
   1086         // the operation, just stop using the Xor.
   1087         if (!XorCST->isNegative()) {
   1088           ICI.setOperand(0, CompareVal);
   1089           Worklist.Add(LHSI);
   1090           return &ICI;
   1091         }
   1092 
   1093         // Was the old condition true if the operand is positive?
   1094         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1095 
   1096         // If so, the new one isn't.
   1097         isTrueIfPositive ^= true;
   1098 
   1099         if (isTrueIfPositive)
   1100           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1101                               SubOne(RHS));
   1102         else
   1103           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1104                               AddOne(RHS));
   1105       }
   1106 
   1107       if (LHSI->hasOneUse()) {
   1108         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1109         if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
   1110           const APInt &SignBit = XorCST->getValue();
   1111           ICmpInst::Predicate Pred = ICI.isSigned()
   1112                                          ? ICI.getUnsignedPredicate()
   1113                                          : ICI.getSignedPredicate();
   1114           return new ICmpInst(Pred, LHSI->getOperand(0),
   1115                               Builder->getInt(RHSV ^ SignBit));
   1116         }
   1117 
   1118         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1119         if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
   1120           const APInt &NotSignBit = XorCST->getValue();
   1121           ICmpInst::Predicate Pred = ICI.isSigned()
   1122                                          ? ICI.getUnsignedPredicate()
   1123                                          : ICI.getSignedPredicate();
   1124           Pred = ICI.getSwappedPredicate(Pred);
   1125           return new ICmpInst(Pred, LHSI->getOperand(0),
   1126                               Builder->getInt(RHSV ^ NotSignBit));
   1127         }
   1128       }
   1129 
   1130       // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
   1131       //   iff -C is a power of 2
   1132       if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
   1133           XorCST->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
   1134         return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCST);
   1135 
   1136       // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
   1137       //   iff -C is a power of 2
   1138       if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
   1139           XorCST->getValue() == -RHSV && RHSV.isPowerOf2())
   1140         return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCST);
   1141     }
   1142     break;
   1143   case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
   1144     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1145         LHSI->getOperand(0)->hasOneUse()) {
   1146       ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
   1147 
   1148       // If the LHS is an AND of a truncating cast, we can widen the
   1149       // and/compare to be the input width without changing the value
   1150       // produced, eliminating a cast.
   1151       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1152         // We can do this transformation if either the AND constant does not
   1153         // have its sign bit set or if it is an equality comparison.
   1154         // Extending a relational comparison when we're checking the sign
   1155         // bit would not work.
   1156         if (ICI.isEquality() ||
   1157             (!AndCST->isNegative() && RHSV.isNonNegative())) {
   1158           Value *NewAnd =
   1159             Builder->CreateAnd(Cast->getOperand(0),
   1160                                ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
   1161           NewAnd->takeName(LHSI);
   1162           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1163                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1164         }
   1165       }
   1166 
   1167       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1168       // shrink the and/compare to the smaller type, eliminating the cast.
   1169       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1170         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1171         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1172         // should fold the icmp to true/false in that case.
   1173         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1174           Value *NewAnd =
   1175             Builder->CreateAnd(Cast->getOperand(0),
   1176                                ConstantExpr::getTrunc(AndCST, Ty));
   1177           NewAnd->takeName(LHSI);
   1178           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1179                               ConstantExpr::getTrunc(RHS, Ty));
   1180         }
   1181       }
   1182 
   1183       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1184       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1185       // happens a LOT in code produced by the C front-end, for bitfield
   1186       // access.
   1187       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1188       if (Shift && !Shift->isShift())
   1189         Shift = 0;
   1190 
   1191       ConstantInt *ShAmt;
   1192       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
   1193       Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
   1194       Type *AndTy = AndCST->getType();          // Type of the and.
   1195 
   1196       // We can fold this as long as we can't shift unknown bits
   1197       // into the mask.  This can only happen with signed shift
   1198       // rights, as they sign-extend.
   1199       if (ShAmt) {
   1200         bool CanFold = Shift->isLogicalShift();
   1201         if (!CanFold) {
   1202           // To test for the bad case of the signed shr, see if any
   1203           // of the bits shifted in could be tested after the mask.
   1204           uint32_t TyBits = Ty->getPrimitiveSizeInBits();
   1205           int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
   1206 
   1207           uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
   1208           if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
   1209                AndCST->getValue()) == 0)
   1210             CanFold = true;
   1211         }
   1212 
   1213         if (CanFold) {
   1214           Constant *NewCst;
   1215           if (Shift->getOpcode() == Instruction::Shl)
   1216             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1217           else
   1218             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1219 
   1220           // Check to see if we are shifting out any of the bits being
   1221           // compared.
   1222           if (ConstantExpr::get(Shift->getOpcode(),
   1223                                        NewCst, ShAmt) != RHS) {
   1224             // If we shifted bits out, the fold is not going to work out.
   1225             // As a special case, check to see if this means that the
   1226             // result is always true or false now.
   1227             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1228               return ReplaceInstUsesWith(ICI, Builder->getFalse());
   1229             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1230               return ReplaceInstUsesWith(ICI, Builder->getTrue());
   1231           } else {
   1232             ICI.setOperand(1, NewCst);
   1233             Constant *NewAndCST;
   1234             if (Shift->getOpcode() == Instruction::Shl)
   1235               NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
   1236             else
   1237               NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
   1238             LHSI->setOperand(1, NewAndCST);
   1239             LHSI->setOperand(0, Shift->getOperand(0));
   1240             Worklist.Add(Shift); // Shift is dead.
   1241             return &ICI;
   1242           }
   1243         }
   1244       }
   1245 
   1246       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1247       // preferable because it allows the C<<Y expression to be hoisted out
   1248       // of a loop if Y is invariant and X is not.
   1249       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1250           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1251           !isa<Constant>(Shift->getOperand(0))) {
   1252         // Compute C << Y.
   1253         Value *NS;
   1254         if (Shift->getOpcode() == Instruction::LShr) {
   1255           NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
   1256         } else {
   1257           // Insert a logical shift.
   1258           NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
   1259         }
   1260 
   1261         // Compute X & (C << Y).
   1262         Value *NewAnd =
   1263           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1264 
   1265         ICI.setOperand(0, NewAnd);
   1266         return &ICI;
   1267       }
   1268 
   1269       // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
   1270       // bit set in (X & AndCST) will produce a result greater than RHSV.
   1271       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
   1272         unsigned NTZ = AndCST->getValue().countTrailingZeros();
   1273         if ((NTZ < AndCST->getBitWidth()) &&
   1274             APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
   1275           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
   1276                               Constant::getNullValue(RHS->getType()));
   1277       }
   1278     }
   1279 
   1280     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1281     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1282       if (GetElementPtrInst *GEP =
   1283           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1284         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1285           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1286               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1287             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1288             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1289               return Res;
   1290           }
   1291     }
   1292 
   1293     // X & -C == -C -> X >  u ~C
   1294     // X & -C != -C -> X <= u ~C
   1295     //   iff C is a power of 2
   1296     if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
   1297       return new ICmpInst(
   1298           ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
   1299                                                   : ICmpInst::ICMP_ULE,
   1300           LHSI->getOperand(0), SubOne(RHS));
   1301     break;
   1302 
   1303   case Instruction::Or: {
   1304     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1305       break;
   1306     Value *P, *Q;
   1307     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1308       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1309       // -> and (icmp eq P, null), (icmp eq Q, null).
   1310       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1311                                         Constant::getNullValue(P->getType()));
   1312       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1313                                         Constant::getNullValue(Q->getType()));
   1314       Instruction *Op;
   1315       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1316         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1317       else
   1318         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1319       return Op;
   1320     }
   1321     break;
   1322   }
   1323 
   1324   case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
   1325     ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1326     if (!Val) break;
   1327 
   1328     // If this is a signed comparison to 0 and the mul is sign preserving,
   1329     // use the mul LHS operand instead.
   1330     ICmpInst::Predicate pred = ICI.getPredicate();
   1331     if (isSignTest(pred, RHS) && !Val->isZero() &&
   1332         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1333       return new ICmpInst(Val->isNegative() ?
   1334                           ICmpInst::getSwappedPredicate(pred) : pred,
   1335                           LHSI->getOperand(0),
   1336                           Constant::getNullValue(RHS->getType()));
   1337 
   1338     break;
   1339   }
   1340 
   1341   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1342     uint32_t TypeBits = RHSV.getBitWidth();
   1343     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1344     if (!ShAmt) {
   1345       Value *X;
   1346       // (1 << X) pred P2 -> X pred Log2(P2)
   1347       if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
   1348         bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
   1349         ICmpInst::Predicate Pred = ICI.getPredicate();
   1350         if (ICI.isUnsigned()) {
   1351           if (!RHSVIsPowerOf2) {
   1352             // (1 << X) <  30 -> X <= 4
   1353             // (1 << X) <= 30 -> X <= 4
   1354             // (1 << X) >= 30 -> X >  4
   1355             // (1 << X) >  30 -> X >  4
   1356             if (Pred == ICmpInst::ICMP_ULT)
   1357               Pred = ICmpInst::ICMP_ULE;
   1358             else if (Pred == ICmpInst::ICMP_UGE)
   1359               Pred = ICmpInst::ICMP_UGT;
   1360           }
   1361           unsigned RHSLog2 = RHSV.logBase2();
   1362 
   1363           // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
   1364           // (1 << X) >  2147483648 -> X >  31 -> false
   1365           // (1 << X) <= 2147483648 -> X <= 31 -> true
   1366           // (1 << X) <  2147483648 -> X <  31 -> X != 31
   1367           if (RHSLog2 == TypeBits-1) {
   1368             if (Pred == ICmpInst::ICMP_UGE)
   1369               Pred = ICmpInst::ICMP_EQ;
   1370             else if (Pred == ICmpInst::ICMP_UGT)
   1371               return ReplaceInstUsesWith(ICI, Builder->getFalse());
   1372             else if (Pred == ICmpInst::ICMP_ULE)
   1373               return ReplaceInstUsesWith(ICI, Builder->getTrue());
   1374             else if (Pred == ICmpInst::ICMP_ULT)
   1375               Pred = ICmpInst::ICMP_NE;
   1376           }
   1377 
   1378           return new ICmpInst(Pred, X,
   1379                               ConstantInt::get(RHS->getType(), RHSLog2));
   1380         } else if (ICI.isSigned()) {
   1381           if (RHSV.isAllOnesValue()) {
   1382             // (1 << X) <= -1 -> X == 31
   1383             if (Pred == ICmpInst::ICMP_SLE)
   1384               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1385                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1386 
   1387             // (1 << X) >  -1 -> X != 31
   1388             if (Pred == ICmpInst::ICMP_SGT)
   1389               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1390                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1391           } else if (!RHSV) {
   1392             // (1 << X) <  0 -> X == 31
   1393             // (1 << X) <= 0 -> X == 31
   1394             if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
   1395               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1396                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1397 
   1398             // (1 << X) >= 0 -> X != 31
   1399             // (1 << X) >  0 -> X != 31
   1400             if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
   1401               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1402                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1403           }
   1404         } else if (ICI.isEquality()) {
   1405           if (RHSVIsPowerOf2)
   1406             return new ICmpInst(
   1407                 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
   1408 
   1409           return ReplaceInstUsesWith(
   1410               ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
   1411                                              : Builder->getTrue());
   1412         }
   1413       }
   1414       break;
   1415     }
   1416 
   1417     // Check that the shift amount is in range.  If not, don't perform
   1418     // undefined shifts.  When the shift is visited it will be
   1419     // simplified.
   1420     if (ShAmt->uge(TypeBits))
   1421       break;
   1422 
   1423     if (ICI.isEquality()) {
   1424       // If we are comparing against bits always shifted out, the
   1425       // comparison cannot succeed.
   1426       Constant *Comp =
   1427         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1428                                                                  ShAmt);
   1429       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1430         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1431         Constant *Cst = Builder->getInt1(IsICMP_NE);
   1432         return ReplaceInstUsesWith(ICI, Cst);
   1433       }
   1434 
   1435       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1436       // AND.
   1437       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1438         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1439                             ConstantExpr::getLShr(RHS, ShAmt));
   1440 
   1441       // If the shift is NSW and we compare to 0, then it is just shifting out
   1442       // sign bits, no need for an AND either.
   1443       if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
   1444         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1445                             ConstantExpr::getLShr(RHS, ShAmt));
   1446 
   1447       if (LHSI->hasOneUse()) {
   1448         // Otherwise strength reduce the shift into an and.
   1449         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1450         Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
   1451                                                           TypeBits - ShAmtVal));
   1452 
   1453         Value *And =
   1454           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1455         return new ICmpInst(ICI.getPredicate(), And,
   1456                             ConstantExpr::getLShr(RHS, ShAmt));
   1457       }
   1458     }
   1459 
   1460     // If this is a signed comparison to 0 and the shift is sign preserving,
   1461     // use the shift LHS operand instead.
   1462     ICmpInst::Predicate pred = ICI.getPredicate();
   1463     if (isSignTest(pred, RHS) &&
   1464         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1465       return new ICmpInst(pred,
   1466                           LHSI->getOperand(0),
   1467                           Constant::getNullValue(RHS->getType()));
   1468 
   1469     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1470     bool TrueIfSigned = false;
   1471     if (LHSI->hasOneUse() &&
   1472         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1473       // (X << 31) <s 0  --> (X&1) != 0
   1474       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1475                                         APInt::getOneBitSet(TypeBits,
   1476                                             TypeBits-ShAmt->getZExtValue()-1));
   1477       Value *And =
   1478         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1479       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1480                           And, Constant::getNullValue(And->getType()));
   1481     }
   1482 
   1483     // Transform (icmp pred iM (shl iM %v, N), CI)
   1484     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
   1485     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
   1486     // This enables to get rid of the shift in favor of a trunc which can be
   1487     // free on the target. It has the additional benefit of comparing to a
   1488     // smaller constant, which will be target friendly.
   1489     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
   1490     if (LHSI->hasOneUse() &&
   1491         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
   1492       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
   1493       Constant *NCI = ConstantExpr::getTrunc(
   1494                         ConstantExpr::getAShr(RHS,
   1495                           ConstantInt::get(RHS->getType(), Amt)),
   1496                         NTy);
   1497       return new ICmpInst(ICI.getPredicate(),
   1498                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
   1499                           NCI);
   1500     }
   1501 
   1502     break;
   1503   }
   1504 
   1505   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1506   case Instruction::AShr: {
   1507     // Handle equality comparisons of shift-by-constant.
   1508     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1509     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1510       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1511         return Res;
   1512     }
   1513 
   1514     // Handle exact shr's.
   1515     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1516       if (RHSV.isMinValue())
   1517         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1518     }
   1519     break;
   1520   }
   1521 
   1522   case Instruction::SDiv:
   1523   case Instruction::UDiv:
   1524     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1525     // Fold this div into the comparison, producing a range check.
   1526     // Determine, based on the divide type, what the range is being
   1527     // checked.  If there is an overflow on the low or high side, remember
   1528     // it, otherwise compute the range [low, hi) bounding the new value.
   1529     // See: InsertRangeTest above for the kinds of replacements possible.
   1530     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1531       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1532                                           DivRHS))
   1533         return R;
   1534     break;
   1535 
   1536   case Instruction::Sub: {
   1537     ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
   1538     if (!LHSC) break;
   1539     const APInt &LHSV = LHSC->getValue();
   1540 
   1541     // C1-X <u C2 -> (X|(C2-1)) == C1
   1542     //   iff C1 & (C2-1) == C2-1
   1543     //       C2 is a power of 2
   1544     if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   1545         RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
   1546       return new ICmpInst(ICmpInst::ICMP_EQ,
   1547                           Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
   1548                           LHSC);
   1549 
   1550     // C1-X >u C2 -> (X|C2) != C1
   1551     //   iff C1 & C2 == C2
   1552     //       C2+1 is a power of 2
   1553     if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   1554         (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
   1555       return new ICmpInst(ICmpInst::ICMP_NE,
   1556                           Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
   1557     break;
   1558   }
   1559 
   1560   case Instruction::Add:
   1561     // Fold: icmp pred (add X, C1), C2
   1562     if (!ICI.isEquality()) {
   1563       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1564       if (!LHSC) break;
   1565       const APInt &LHSV = LHSC->getValue();
   1566 
   1567       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1568                             .subtract(LHSV);
   1569 
   1570       if (ICI.isSigned()) {
   1571         if (CR.getLower().isSignBit()) {
   1572           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1573                               Builder->getInt(CR.getUpper()));
   1574         } else if (CR.getUpper().isSignBit()) {
   1575           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1576                               Builder->getInt(CR.getLower()));
   1577         }
   1578       } else {
   1579         if (CR.getLower().isMinValue()) {
   1580           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1581                               Builder->getInt(CR.getUpper()));
   1582         } else if (CR.getUpper().isMinValue()) {
   1583           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1584                               Builder->getInt(CR.getLower()));
   1585         }
   1586       }
   1587 
   1588       // X-C1 <u C2 -> (X & -C2) == C1
   1589       //   iff C1 & (C2-1) == 0
   1590       //       C2 is a power of 2
   1591       if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   1592           RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
   1593         return new ICmpInst(ICmpInst::ICMP_EQ,
   1594                             Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
   1595                             ConstantExpr::getNeg(LHSC));
   1596 
   1597       // X-C1 >u C2 -> (X & ~C2) != C1
   1598       //   iff C1 & C2 == 0
   1599       //       C2+1 is a power of 2
   1600       if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   1601           (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
   1602         return new ICmpInst(ICmpInst::ICMP_NE,
   1603                             Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
   1604                             ConstantExpr::getNeg(LHSC));
   1605     }
   1606     break;
   1607   }
   1608 
   1609   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1610   if (ICI.isEquality()) {
   1611     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1612 
   1613     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1614     // the second operand is a constant, simplify a bit.
   1615     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1616       switch (BO->getOpcode()) {
   1617       case Instruction::SRem:
   1618         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1619         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1620           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1621           if (V.sgt(1) && V.isPowerOf2()) {
   1622             Value *NewRem =
   1623               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1624                                   BO->getName());
   1625             return new ICmpInst(ICI.getPredicate(), NewRem,
   1626                                 Constant::getNullValue(BO->getType()));
   1627           }
   1628         }
   1629         break;
   1630       case Instruction::Add:
   1631         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1632         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1633           if (BO->hasOneUse())
   1634             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1635                                 ConstantExpr::getSub(RHS, BOp1C));
   1636         } else if (RHSV == 0) {
   1637           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1638           // efficiently invertible, or if the add has just this one use.
   1639           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1640 
   1641           if (Value *NegVal = dyn_castNegVal(BOp1))
   1642             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1643           if (Value *NegVal = dyn_castNegVal(BOp0))
   1644             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1645           if (BO->hasOneUse()) {
   1646             Value *Neg = Builder->CreateNeg(BOp1);
   1647             Neg->takeName(BO);
   1648             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1649           }
   1650         }
   1651         break;
   1652       case Instruction::Xor:
   1653         // For the xor case, we can xor two constants together, eliminating
   1654         // the explicit xor.
   1655         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1656           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1657                               ConstantExpr::getXor(RHS, BOC));
   1658         } else if (RHSV == 0) {
   1659           // Replace ((xor A, B) != 0) with (A != B)
   1660           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1661                               BO->getOperand(1));
   1662         }
   1663         break;
   1664       case Instruction::Sub:
   1665         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1666         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1667           if (BO->hasOneUse())
   1668             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1669                                 ConstantExpr::getSub(BOp0C, RHS));
   1670         } else if (RHSV == 0) {
   1671           // Replace ((sub A, B) != 0) with (A != B)
   1672           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1673                               BO->getOperand(1));
   1674         }
   1675         break;
   1676       case Instruction::Or:
   1677         // If bits are being or'd in that are not present in the constant we
   1678         // are comparing against, then the comparison could never succeed!
   1679         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1680           Constant *NotCI = ConstantExpr::getNot(RHS);
   1681           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1682             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   1683         }
   1684         break;
   1685 
   1686       case Instruction::And:
   1687         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1688           // If bits are being compared against that are and'd out, then the
   1689           // comparison can never succeed!
   1690           if ((RHSV & ~BOC->getValue()) != 0)
   1691             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   1692 
   1693           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1694           if (RHS == BOC && RHSV.isPowerOf2())
   1695             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1696                                 ICmpInst::ICMP_NE, LHSI,
   1697                                 Constant::getNullValue(RHS->getType()));
   1698 
   1699           // Don't perform the following transforms if the AND has multiple uses
   1700           if (!BO->hasOneUse())
   1701             break;
   1702 
   1703           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1704           if (BOC->getValue().isSignBit()) {
   1705             Value *X = BO->getOperand(0);
   1706             Constant *Zero = Constant::getNullValue(X->getType());
   1707             ICmpInst::Predicate pred = isICMP_NE ?
   1708               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1709             return new ICmpInst(pred, X, Zero);
   1710           }
   1711 
   1712           // ((X & ~7) == 0) --> X < 8
   1713           if (RHSV == 0 && isHighOnes(BOC)) {
   1714             Value *X = BO->getOperand(0);
   1715             Constant *NegX = ConstantExpr::getNeg(BOC);
   1716             ICmpInst::Predicate pred = isICMP_NE ?
   1717               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1718             return new ICmpInst(pred, X, NegX);
   1719           }
   1720         }
   1721         break;
   1722       case Instruction::Mul:
   1723         if (RHSV == 0 && BO->hasNoSignedWrap()) {
   1724           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1725             // The trivial case (mul X, 0) is handled by InstSimplify
   1726             // General case : (mul X, C) != 0 iff X != 0
   1727             //                (mul X, C) == 0 iff X == 0
   1728             if (!BOC->isZero())
   1729               return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1730                                   Constant::getNullValue(RHS->getType()));
   1731           }
   1732         }
   1733         break;
   1734       default: break;
   1735       }
   1736     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1737       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1738       switch (II->getIntrinsicID()) {
   1739       case Intrinsic::bswap:
   1740         Worklist.Add(II);
   1741         ICI.setOperand(0, II->getArgOperand(0));
   1742         ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
   1743         return &ICI;
   1744       case Intrinsic::ctlz:
   1745       case Intrinsic::cttz:
   1746         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1747         if (RHSV == RHS->getType()->getBitWidth()) {
   1748           Worklist.Add(II);
   1749           ICI.setOperand(0, II->getArgOperand(0));
   1750           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1751           return &ICI;
   1752         }
   1753         break;
   1754       case Intrinsic::ctpop:
   1755         // popcount(A) == 0  ->  A == 0 and likewise for !=
   1756         if (RHS->isZero()) {
   1757           Worklist.Add(II);
   1758           ICI.setOperand(0, II->getArgOperand(0));
   1759           ICI.setOperand(1, RHS);
   1760           return &ICI;
   1761         }
   1762         break;
   1763       default:
   1764         break;
   1765       }
   1766     }
   1767   }
   1768   return 0;
   1769 }
   1770 
   1771 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   1772 /// We only handle extending casts so far.
   1773 ///
   1774 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   1775   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   1776   Value *LHSCIOp        = LHSCI->getOperand(0);
   1777   Type *SrcTy     = LHSCIOp->getType();
   1778   Type *DestTy    = LHSCI->getType();
   1779   Value *RHSCIOp;
   1780 
   1781   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   1782   // integer type is the same size as the pointer type.
   1783   if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
   1784       TD->getPointerSizeInBits() ==
   1785          cast<IntegerType>(DestTy)->getBitWidth()) {
   1786     Value *RHSOp = 0;
   1787     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
   1788       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   1789     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
   1790       RHSOp = RHSC->getOperand(0);
   1791       // If the pointer types don't match, insert a bitcast.
   1792       if (LHSCIOp->getType() != RHSOp->getType())
   1793         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   1794     }
   1795 
   1796     if (RHSOp)
   1797       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   1798   }
   1799 
   1800   // The code below only handles extension cast instructions, so far.
   1801   // Enforce this.
   1802   if (LHSCI->getOpcode() != Instruction::ZExt &&
   1803       LHSCI->getOpcode() != Instruction::SExt)
   1804     return 0;
   1805 
   1806   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   1807   bool isSignedCmp = ICI.isSigned();
   1808 
   1809   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   1810     // Not an extension from the same type?
   1811     RHSCIOp = CI->getOperand(0);
   1812     if (RHSCIOp->getType() != LHSCIOp->getType())
   1813       return 0;
   1814 
   1815     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   1816     // and the other is a zext), then we can't handle this.
   1817     if (CI->getOpcode() != LHSCI->getOpcode())
   1818       return 0;
   1819 
   1820     // Deal with equality cases early.
   1821     if (ICI.isEquality())
   1822       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1823 
   1824     // A signed comparison of sign extended values simplifies into a
   1825     // signed comparison.
   1826     if (isSignedCmp && isSignedExt)
   1827       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1828 
   1829     // The other three cases all fold into an unsigned comparison.
   1830     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   1831   }
   1832 
   1833   // If we aren't dealing with a constant on the RHS, exit early
   1834   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   1835   if (!CI)
   1836     return 0;
   1837 
   1838   // Compute the constant that would happen if we truncated to SrcTy then
   1839   // reextended to DestTy.
   1840   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   1841   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   1842                                                 Res1, DestTy);
   1843 
   1844   // If the re-extended constant didn't change...
   1845   if (Res2 == CI) {
   1846     // Deal with equality cases early.
   1847     if (ICI.isEquality())
   1848       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1849 
   1850     // A signed comparison of sign extended values simplifies into a
   1851     // signed comparison.
   1852     if (isSignedExt && isSignedCmp)
   1853       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1854 
   1855     // The other three cases all fold into an unsigned comparison.
   1856     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   1857   }
   1858 
   1859   // The re-extended constant changed so the constant cannot be represented
   1860   // in the shorter type. Consequently, we cannot emit a simple comparison.
   1861   // All the cases that fold to true or false will have already been handled
   1862   // by SimplifyICmpInst, so only deal with the tricky case.
   1863 
   1864   if (isSignedCmp || !isSignedExt)
   1865     return 0;
   1866 
   1867   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   1868   // should have been folded away previously and not enter in here.
   1869 
   1870   // We're performing an unsigned comp with a sign extended value.
   1871   // This is true if the input is >= 0. [aka >s -1]
   1872   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   1873   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   1874 
   1875   // Finally, return the value computed.
   1876   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   1877     return ReplaceInstUsesWith(ICI, Result);
   1878 
   1879   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   1880   return BinaryOperator::CreateNot(Result);
   1881 }
   1882 
   1883 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   1884 ///   I = icmp ugt (add (add A, B), CI2), CI1
   1885 /// If this is of the form:
   1886 ///   sum = a + b
   1887 ///   if (sum+128 >u 255)
   1888 /// Then replace it with llvm.sadd.with.overflow.i8.
   1889 ///
   1890 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   1891                                           ConstantInt *CI2, ConstantInt *CI1,
   1892                                           InstCombiner &IC) {
   1893   // The transformation we're trying to do here is to transform this into an
   1894   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   1895   // with a narrower add, and discard the add-with-constant that is part of the
   1896   // range check (if we can't eliminate it, this isn't profitable).
   1897 
   1898   // In order to eliminate the add-with-constant, the compare can be its only
   1899   // use.
   1900   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   1901   if (!AddWithCst->hasOneUse()) return 0;
   1902 
   1903   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   1904   if (!CI2->getValue().isPowerOf2()) return 0;
   1905   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   1906   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
   1907 
   1908   // The width of the new add formed is 1 more than the bias.
   1909   ++NewWidth;
   1910 
   1911   // Check to see that CI1 is an all-ones value with NewWidth bits.
   1912   if (CI1->getBitWidth() == NewWidth ||
   1913       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   1914     return 0;
   1915 
   1916   // This is only really a signed overflow check if the inputs have been
   1917   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
   1918   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
   1919   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
   1920   if (IC.ComputeNumSignBits(A) < NeededSignBits ||
   1921       IC.ComputeNumSignBits(B) < NeededSignBits)
   1922     return 0;
   1923 
   1924   // In order to replace the original add with a narrower
   1925   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   1926   // and truncates that discard the high bits of the add.  Verify that this is
   1927   // the case.
   1928   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   1929   for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
   1930        UI != E; ++UI) {
   1931     if (*UI == AddWithCst) continue;
   1932 
   1933     // Only accept truncates for now.  We would really like a nice recursive
   1934     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   1935     // chain to see which bits of a value are actually demanded.  If the
   1936     // original add had another add which was then immediately truncated, we
   1937     // could still do the transformation.
   1938     TruncInst *TI = dyn_cast<TruncInst>(*UI);
   1939     if (TI == 0 ||
   1940         TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
   1941   }
   1942 
   1943   // If the pattern matches, truncate the inputs to the narrower type and
   1944   // use the sadd_with_overflow intrinsic to efficiently compute both the
   1945   // result and the overflow bit.
   1946   Module *M = I.getParent()->getParent()->getParent();
   1947 
   1948   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   1949   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
   1950                                        NewType);
   1951 
   1952   InstCombiner::BuilderTy *Builder = IC.Builder;
   1953 
   1954   // Put the new code above the original add, in case there are any uses of the
   1955   // add between the add and the compare.
   1956   Builder->SetInsertPoint(OrigAdd);
   1957 
   1958   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   1959   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   1960   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
   1961   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   1962   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   1963 
   1964   // The inner add was the result of the narrow add, zero extended to the
   1965   // wider type.  Replace it with the result computed by the intrinsic.
   1966   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   1967 
   1968   // The original icmp gets replaced with the overflow value.
   1969   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   1970 }
   1971 
   1972 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
   1973                                      InstCombiner &IC) {
   1974   // Don't bother doing this transformation for pointers, don't do it for
   1975   // vectors.
   1976   if (!isa<IntegerType>(OrigAddV->getType())) return 0;
   1977 
   1978   // If the add is a constant expr, then we don't bother transforming it.
   1979   Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
   1980   if (OrigAdd == 0) return 0;
   1981 
   1982   Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
   1983 
   1984   // Put the new code above the original add, in case there are any uses of the
   1985   // add between the add and the compare.
   1986   InstCombiner::BuilderTy *Builder = IC.Builder;
   1987   Builder->SetInsertPoint(OrigAdd);
   1988 
   1989   Module *M = I.getParent()->getParent()->getParent();
   1990   Type *Ty = LHS->getType();
   1991   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
   1992   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
   1993   Value *Add = Builder->CreateExtractValue(Call, 0);
   1994 
   1995   IC.ReplaceInstUsesWith(*OrigAdd, Add);
   1996 
   1997   // The original icmp gets replaced with the overflow value.
   1998   return ExtractValueInst::Create(Call, 1, "uadd.overflow");
   1999 }
   2000 
   2001 // DemandedBitsLHSMask - When performing a comparison against a constant,
   2002 // it is possible that not all the bits in the LHS are demanded.  This helper
   2003 // method computes the mask that IS demanded.
   2004 static APInt DemandedBitsLHSMask(ICmpInst &I,
   2005                                  unsigned BitWidth, bool isSignCheck) {
   2006   if (isSignCheck)
   2007     return APInt::getSignBit(BitWidth);
   2008 
   2009   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   2010   if (!CI) return APInt::getAllOnesValue(BitWidth);
   2011   const APInt &RHS = CI->getValue();
   2012 
   2013   switch (I.getPredicate()) {
   2014   // For a UGT comparison, we don't care about any bits that
   2015   // correspond to the trailing ones of the comparand.  The value of these
   2016   // bits doesn't impact the outcome of the comparison, because any value
   2017   // greater than the RHS must differ in a bit higher than these due to carry.
   2018   case ICmpInst::ICMP_UGT: {
   2019     unsigned trailingOnes = RHS.countTrailingOnes();
   2020     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   2021     return ~lowBitsSet;
   2022   }
   2023 
   2024   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   2025   // Any value less than the RHS must differ in a higher bit because of carries.
   2026   case ICmpInst::ICMP_ULT: {
   2027     unsigned trailingZeros = RHS.countTrailingZeros();
   2028     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   2029     return ~lowBitsSet;
   2030   }
   2031 
   2032   default:
   2033     return APInt::getAllOnesValue(BitWidth);
   2034   }
   2035 
   2036 }
   2037 
   2038 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   2039   bool Changed = false;
   2040   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2041 
   2042   /// Orders the operands of the compare so that they are listed from most
   2043   /// complex to least complex.  This puts constants before unary operators,
   2044   /// before binary operators.
   2045   if (getComplexity(Op0) < getComplexity(Op1)) {
   2046     I.swapOperands();
   2047     std::swap(Op0, Op1);
   2048     Changed = true;
   2049   }
   2050 
   2051   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
   2052     return ReplaceInstUsesWith(I, V);
   2053 
   2054   // comparing -val or val with non-zero is the same as just comparing val
   2055   // ie, abs(val) != 0 -> val != 0
   2056   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
   2057   {
   2058     Value *Cond, *SelectTrue, *SelectFalse;
   2059     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
   2060                             m_Value(SelectFalse)))) {
   2061       if (Value *V = dyn_castNegVal(SelectTrue)) {
   2062         if (V == SelectFalse)
   2063           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   2064       }
   2065       else if (Value *V = dyn_castNegVal(SelectFalse)) {
   2066         if (V == SelectTrue)
   2067           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   2068       }
   2069     }
   2070   }
   2071 
   2072   Type *Ty = Op0->getType();
   2073 
   2074   // icmp's with boolean values can always be turned into bitwise operations
   2075   if (Ty->isIntegerTy(1)) {
   2076     switch (I.getPredicate()) {
   2077     default: llvm_unreachable("Invalid icmp instruction!");
   2078     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   2079       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   2080       return BinaryOperator::CreateNot(Xor);
   2081     }
   2082     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   2083       return BinaryOperator::CreateXor(Op0, Op1);
   2084 
   2085     case ICmpInst::ICMP_UGT:
   2086       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   2087       // FALL THROUGH
   2088     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   2089       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   2090       return BinaryOperator::CreateAnd(Not, Op1);
   2091     }
   2092     case ICmpInst::ICMP_SGT:
   2093       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   2094       // FALL THROUGH
   2095     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   2096       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   2097       return BinaryOperator::CreateAnd(Not, Op0);
   2098     }
   2099     case ICmpInst::ICMP_UGE:
   2100       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   2101       // FALL THROUGH
   2102     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   2103       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   2104       return BinaryOperator::CreateOr(Not, Op1);
   2105     }
   2106     case ICmpInst::ICMP_SGE:
   2107       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   2108       // FALL THROUGH
   2109     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   2110       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   2111       return BinaryOperator::CreateOr(Not, Op0);
   2112     }
   2113     }
   2114   }
   2115 
   2116   unsigned BitWidth = 0;
   2117   if (Ty->isIntOrIntVectorTy())
   2118     BitWidth = Ty->getScalarSizeInBits();
   2119   else if (TD)  // Pointers require TD info to get their size.
   2120     BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
   2121 
   2122   bool isSignBit = false;
   2123 
   2124   // See if we are doing a comparison with a constant.
   2125   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2126     Value *A = 0, *B = 0;
   2127 
   2128     // Match the following pattern, which is a common idiom when writing
   2129     // overflow-safe integer arithmetic function.  The source performs an
   2130     // addition in wider type, and explicitly checks for overflow using
   2131     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   2132     // sadd_with_overflow intrinsic.
   2133     //
   2134     // TODO: This could probably be generalized to handle other overflow-safe
   2135     // operations if we worked out the formulas to compute the appropriate
   2136     // magic constants.
   2137     //
   2138     // sum = a + b
   2139     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   2140     {
   2141     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   2142     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2143         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   2144       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   2145         return Res;
   2146     }
   2147 
   2148     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   2149     if (I.isEquality() && CI->isZero() &&
   2150         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
   2151       // (icmp cond A B) if cond is equality
   2152       return new ICmpInst(I.getPredicate(), A, B);
   2153     }
   2154 
   2155     // If we have an icmp le or icmp ge instruction, turn it into the
   2156     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   2157     // them being folded in the code below.  The SimplifyICmpInst code has
   2158     // already handled the edge cases for us, so we just assert on them.
   2159     switch (I.getPredicate()) {
   2160     default: break;
   2161     case ICmpInst::ICMP_ULE:
   2162       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   2163       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   2164                           Builder->getInt(CI->getValue()+1));
   2165     case ICmpInst::ICMP_SLE:
   2166       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   2167       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2168                           Builder->getInt(CI->getValue()+1));
   2169     case ICmpInst::ICMP_UGE:
   2170       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   2171       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   2172                           Builder->getInt(CI->getValue()-1));
   2173     case ICmpInst::ICMP_SGE:
   2174       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   2175       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2176                           Builder->getInt(CI->getValue()-1));
   2177     }
   2178 
   2179     // If this comparison is a normal comparison, it demands all
   2180     // bits, if it is a sign bit comparison, it only demands the sign bit.
   2181     bool UnusedBit;
   2182     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   2183   }
   2184 
   2185   // See if we can fold the comparison based on range information we can get
   2186   // by checking whether bits are known to be zero or one in the input.
   2187   if (BitWidth != 0) {
   2188     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   2189     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   2190 
   2191     if (SimplifyDemandedBits(I.getOperandUse(0),
   2192                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   2193                              Op0KnownZero, Op0KnownOne, 0))
   2194       return &I;
   2195     if (SimplifyDemandedBits(I.getOperandUse(1),
   2196                              APInt::getAllOnesValue(BitWidth),
   2197                              Op1KnownZero, Op1KnownOne, 0))
   2198       return &I;
   2199 
   2200     // Given the known and unknown bits, compute a range that the LHS could be
   2201     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   2202     // EQ and NE we use unsigned values.
   2203     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   2204     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   2205     if (I.isSigned()) {
   2206       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2207                                              Op0Min, Op0Max);
   2208       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2209                                              Op1Min, Op1Max);
   2210     } else {
   2211       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2212                                                Op0Min, Op0Max);
   2213       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2214                                                Op1Min, Op1Max);
   2215     }
   2216 
   2217     // If Min and Max are known to be the same, then SimplifyDemandedBits
   2218     // figured out that the LHS is a constant.  Just constant fold this now so
   2219     // that code below can assume that Min != Max.
   2220     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   2221       return new ICmpInst(I.getPredicate(),
   2222                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   2223     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   2224       return new ICmpInst(I.getPredicate(), Op0,
   2225                           ConstantInt::get(Op1->getType(), Op1Min));
   2226 
   2227     // Based on the range information we know about the LHS, see if we can
   2228     // simplify this comparison.  For example, (x&4) < 8 is always true.
   2229     switch (I.getPredicate()) {
   2230     default: llvm_unreachable("Unknown icmp opcode!");
   2231     case ICmpInst::ICMP_EQ: {
   2232       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2233         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2234 
   2235       // If all bits are known zero except for one, then we know at most one
   2236       // bit is set.   If the comparison is against zero, then this is a check
   2237       // to see if *that* bit is set.
   2238       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2239       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   2240         // If the LHS is an AND with the same constant, look through it.
   2241         Value *LHS = 0;
   2242         ConstantInt *LHSC = 0;
   2243         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2244             LHSC->getValue() != Op0KnownZeroInverted)
   2245           LHS = Op0;
   2246 
   2247         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2248         // then turn "((1 << x)&8) == 0" into "x != 3".
   2249         Value *X = 0;
   2250         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2251           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2252           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2253                               ConstantInt::get(X->getType(), CmpVal));
   2254         }
   2255 
   2256         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2257         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   2258         const APInt *CI;
   2259         if (Op0KnownZeroInverted == 1 &&
   2260             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2261           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2262                               ConstantInt::get(X->getType(),
   2263                                                CI->countTrailingZeros()));
   2264       }
   2265 
   2266       break;
   2267     }
   2268     case ICmpInst::ICMP_NE: {
   2269       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2270         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2271 
   2272       // If all bits are known zero except for one, then we know at most one
   2273       // bit is set.   If the comparison is against zero, then this is a check
   2274       // to see if *that* bit is set.
   2275       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2276       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   2277         // If the LHS is an AND with the same constant, look through it.
   2278         Value *LHS = 0;
   2279         ConstantInt *LHSC = 0;
   2280         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2281             LHSC->getValue() != Op0KnownZeroInverted)
   2282           LHS = Op0;
   2283 
   2284         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2285         // then turn "((1 << x)&8) != 0" into "x == 3".
   2286         Value *X = 0;
   2287         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2288           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2289           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2290                               ConstantInt::get(X->getType(), CmpVal));
   2291         }
   2292 
   2293         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2294         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   2295         const APInt *CI;
   2296         if (Op0KnownZeroInverted == 1 &&
   2297             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2298           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2299                               ConstantInt::get(X->getType(),
   2300                                                CI->countTrailingZeros()));
   2301       }
   2302 
   2303       break;
   2304     }
   2305     case ICmpInst::ICMP_ULT:
   2306       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   2307         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2308       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   2309         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2310       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   2311         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2312       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2313         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   2314           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2315                               Builder->getInt(CI->getValue()-1));
   2316 
   2317         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   2318         if (CI->isMinValue(true))
   2319           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2320                            Constant::getAllOnesValue(Op0->getType()));
   2321       }
   2322       break;
   2323     case ICmpInst::ICMP_UGT:
   2324       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   2325         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2326       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   2327         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2328 
   2329       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   2330         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2331       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2332         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   2333           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2334                               Builder->getInt(CI->getValue()+1));
   2335 
   2336         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   2337         if (CI->isMaxValue(true))
   2338           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2339                               Constant::getNullValue(Op0->getType()));
   2340       }
   2341       break;
   2342     case ICmpInst::ICMP_SLT:
   2343       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   2344         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2345       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   2346         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2347       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   2348         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2349       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2350         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   2351           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2352                               Builder->getInt(CI->getValue()-1));
   2353       }
   2354       break;
   2355     case ICmpInst::ICMP_SGT:
   2356       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   2357         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2358       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   2359         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2360 
   2361       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   2362         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2363       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2364         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   2365           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2366                               Builder->getInt(CI->getValue()+1));
   2367       }
   2368       break;
   2369     case ICmpInst::ICMP_SGE:
   2370       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   2371       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   2372         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2373       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   2374         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2375       break;
   2376     case ICmpInst::ICMP_SLE:
   2377       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   2378       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   2379         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2380       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   2381         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2382       break;
   2383     case ICmpInst::ICMP_UGE:
   2384       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   2385       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   2386         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2387       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   2388         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2389       break;
   2390     case ICmpInst::ICMP_ULE:
   2391       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   2392       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   2393         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2394       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   2395         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2396       break;
   2397     }
   2398 
   2399     // Turn a signed comparison into an unsigned one if both operands
   2400     // are known to have the same sign.
   2401     if (I.isSigned() &&
   2402         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   2403          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   2404       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   2405   }
   2406 
   2407   // Test if the ICmpInst instruction is used exclusively by a select as
   2408   // part of a minimum or maximum operation. If so, refrain from doing
   2409   // any other folding. This helps out other analyses which understand
   2410   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   2411   // and CodeGen. And in this case, at least one of the comparison
   2412   // operands has at least one user besides the compare (the select),
   2413   // which would often largely negate the benefit of folding anyway.
   2414   if (I.hasOneUse())
   2415     if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
   2416       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   2417           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   2418         return 0;
   2419 
   2420   // See if we are doing a comparison between a constant and an instruction that
   2421   // can be folded into the comparison.
   2422   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2423     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   2424     // instruction, see if that instruction also has constants so that the
   2425     // instruction can be folded into the icmp
   2426     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2427       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   2428         return Res;
   2429   }
   2430 
   2431   // Handle icmp with constant (but not simple integer constant) RHS
   2432   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2433     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2434       switch (LHSI->getOpcode()) {
   2435       case Instruction::GetElementPtr:
   2436           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   2437         if (RHSC->isNullValue() &&
   2438             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   2439           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2440                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2441         break;
   2442       case Instruction::PHI:
   2443         // Only fold icmp into the PHI if the phi and icmp are in the same
   2444         // block.  If in the same block, we're encouraging jump threading.  If
   2445         // not, we are just pessimizing the code by making an i1 phi.
   2446         if (LHSI->getParent() == I.getParent())
   2447           if (Instruction *NV = FoldOpIntoPhi(I))
   2448             return NV;
   2449         break;
   2450       case Instruction::Select: {
   2451         // If either operand of the select is a constant, we can fold the
   2452         // comparison into the select arms, which will cause one to be
   2453         // constant folded and the select turned into a bitwise or.
   2454         Value *Op1 = 0, *Op2 = 0;
   2455         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
   2456           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2457         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
   2458           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2459 
   2460         // We only want to perform this transformation if it will not lead to
   2461         // additional code. This is true if either both sides of the select
   2462         // fold to a constant (in which case the icmp is replaced with a select
   2463         // which will usually simplify) or this is the only user of the
   2464         // select (in which case we are trading a select+icmp for a simpler
   2465         // select+icmp).
   2466         if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
   2467           if (!Op1)
   2468             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   2469                                       RHSC, I.getName());
   2470           if (!Op2)
   2471             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   2472                                       RHSC, I.getName());
   2473           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2474         }
   2475         break;
   2476       }
   2477       case Instruction::IntToPtr:
   2478         // icmp pred inttoptr(X), null -> icmp pred X, 0
   2479         if (RHSC->isNullValue() && TD &&
   2480             TD->getIntPtrType(RHSC->getContext()) ==
   2481                LHSI->getOperand(0)->getType())
   2482           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2483                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2484         break;
   2485 
   2486       case Instruction::Load:
   2487         // Try to optimize things like "A[i] > 4" to index computations.
   2488         if (GetElementPtrInst *GEP =
   2489               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2490           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2491             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2492                 !cast<LoadInst>(LHSI)->isVolatile())
   2493               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2494                 return Res;
   2495         }
   2496         break;
   2497       }
   2498   }
   2499 
   2500   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   2501   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   2502     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   2503       return NI;
   2504   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   2505     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   2506                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   2507       return NI;
   2508 
   2509   // Test to see if the operands of the icmp are casted versions of other
   2510   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   2511   // now.
   2512   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   2513     if (Op0->getType()->isPointerTy() &&
   2514         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   2515       // We keep moving the cast from the left operand over to the right
   2516       // operand, where it can often be eliminated completely.
   2517       Op0 = CI->getOperand(0);
   2518 
   2519       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   2520       // so eliminate it as well.
   2521       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   2522         Op1 = CI2->getOperand(0);
   2523 
   2524       // If Op1 is a constant, we can fold the cast into the constant.
   2525       if (Op0->getType() != Op1->getType()) {
   2526         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   2527           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   2528         } else {
   2529           // Otherwise, cast the RHS right before the icmp
   2530           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   2531         }
   2532       }
   2533       return new ICmpInst(I.getPredicate(), Op0, Op1);
   2534     }
   2535   }
   2536 
   2537   if (isa<CastInst>(Op0)) {
   2538     // Handle the special case of: icmp (cast bool to X), <cst>
   2539     // This comes up when you have code like
   2540     //   int X = A < B;
   2541     //   if (X) ...
   2542     // For generality, we handle any zero-extension of any operand comparison
   2543     // with a constant or another cast from the same type.
   2544     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   2545       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   2546         return R;
   2547   }
   2548 
   2549   // Special logic for binary operators.
   2550   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   2551   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   2552   if (BO0 || BO1) {
   2553     CmpInst::Predicate Pred = I.getPredicate();
   2554     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   2555     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   2556       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   2557         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   2558         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   2559     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   2560       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   2561         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   2562         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   2563 
   2564     // Analyze the case when either Op0 or Op1 is an add instruction.
   2565     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   2566     Value *A = 0, *B = 0, *C = 0, *D = 0;
   2567     if (BO0 && BO0->getOpcode() == Instruction::Add)
   2568       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2569     if (BO1 && BO1->getOpcode() == Instruction::Add)
   2570       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2571 
   2572     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2573     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   2574       return new ICmpInst(Pred, A == Op1 ? B : A,
   2575                           Constant::getNullValue(Op1->getType()));
   2576 
   2577     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2578     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   2579       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   2580                           C == Op0 ? D : C);
   2581 
   2582     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   2583     if (A && C && (A == C || A == D || B == C || B == D) &&
   2584         NoOp0WrapProblem && NoOp1WrapProblem &&
   2585         // Try not to increase register pressure.
   2586         BO0->hasOneUse() && BO1->hasOneUse()) {
   2587       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2588       Value *Y, *Z;
   2589       if (A == C) {
   2590         // C + B == C + D  ->  B == D
   2591         Y = B;
   2592         Z = D;
   2593       } else if (A == D) {
   2594         // D + B == C + D  ->  B == C
   2595         Y = B;
   2596         Z = C;
   2597       } else if (B == C) {
   2598         // A + C == C + D  ->  A == D
   2599         Y = A;
   2600         Z = D;
   2601       } else {
   2602         assert(B == D);
   2603         // A + D == C + D  ->  A == C
   2604         Y = A;
   2605         Z = C;
   2606       }
   2607       return new ICmpInst(Pred, Y, Z);
   2608     }
   2609 
   2610     // icmp slt (X + -1), Y -> icmp sle X, Y
   2611     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
   2612         match(B, m_AllOnes()))
   2613       return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
   2614 
   2615     // icmp sge (X + -1), Y -> icmp sgt X, Y
   2616     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
   2617         match(B, m_AllOnes()))
   2618       return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
   2619 
   2620     // icmp sle (X + 1), Y -> icmp slt X, Y
   2621     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
   2622         match(B, m_One()))
   2623       return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
   2624 
   2625     // icmp sgt (X + 1), Y -> icmp sge X, Y
   2626     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
   2627         match(B, m_One()))
   2628       return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
   2629 
   2630     // if C1 has greater magnitude than C2:
   2631     //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
   2632     //  s.t. C3 = C1 - C2
   2633     //
   2634     // if C2 has greater magnitude than C1:
   2635     //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
   2636     //  s.t. C3 = C2 - C1
   2637     if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2638         (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
   2639       if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
   2640         if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
   2641           const APInt &AP1 = C1->getValue();
   2642           const APInt &AP2 = C2->getValue();
   2643           if (AP1.isNegative() == AP2.isNegative()) {
   2644             APInt AP1Abs = C1->getValue().abs();
   2645             APInt AP2Abs = C2->getValue().abs();
   2646             if (AP1Abs.uge(AP2Abs)) {
   2647               ConstantInt *C3 = Builder->getInt(AP1 - AP2);
   2648               Value *NewAdd = Builder->CreateNSWAdd(A, C3);
   2649               return new ICmpInst(Pred, NewAdd, C);
   2650             } else {
   2651               ConstantInt *C3 = Builder->getInt(AP2 - AP1);
   2652               Value *NewAdd = Builder->CreateNSWAdd(C, C3);
   2653               return new ICmpInst(Pred, A, NewAdd);
   2654             }
   2655           }
   2656         }
   2657 
   2658 
   2659     // Analyze the case when either Op0 or Op1 is a sub instruction.
   2660     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   2661     A = 0; B = 0; C = 0; D = 0;
   2662     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   2663       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2664     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   2665       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2666 
   2667     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   2668     if (A == Op1 && NoOp0WrapProblem)
   2669       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   2670 
   2671     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   2672     if (C == Op0 && NoOp1WrapProblem)
   2673       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   2674 
   2675     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   2676     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   2677         // Try not to increase register pressure.
   2678         BO0->hasOneUse() && BO1->hasOneUse())
   2679       return new ICmpInst(Pred, A, C);
   2680 
   2681     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   2682     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2683         // Try not to increase register pressure.
   2684         BO0->hasOneUse() && BO1->hasOneUse())
   2685       return new ICmpInst(Pred, D, B);
   2686 
   2687     BinaryOperator *SRem = NULL;
   2688     // icmp (srem X, Y), Y
   2689     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   2690         Op1 == BO0->getOperand(1))
   2691       SRem = BO0;
   2692     // icmp Y, (srem X, Y)
   2693     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   2694              Op0 == BO1->getOperand(1))
   2695       SRem = BO1;
   2696     if (SRem) {
   2697       // We don't check hasOneUse to avoid increasing register pressure because
   2698       // the value we use is the same value this instruction was already using.
   2699       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   2700         default: break;
   2701         case ICmpInst::ICMP_EQ:
   2702           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2703         case ICmpInst::ICMP_NE:
   2704           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2705         case ICmpInst::ICMP_SGT:
   2706         case ICmpInst::ICMP_SGE:
   2707           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   2708                               Constant::getAllOnesValue(SRem->getType()));
   2709         case ICmpInst::ICMP_SLT:
   2710         case ICmpInst::ICMP_SLE:
   2711           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   2712                               Constant::getNullValue(SRem->getType()));
   2713       }
   2714     }
   2715 
   2716     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   2717         BO0->hasOneUse() && BO1->hasOneUse() &&
   2718         BO0->getOperand(1) == BO1->getOperand(1)) {
   2719       switch (BO0->getOpcode()) {
   2720       default: break;
   2721       case Instruction::Add:
   2722       case Instruction::Sub:
   2723       case Instruction::Xor:
   2724         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   2725           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2726                               BO1->getOperand(0));
   2727         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   2728         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2729           if (CI->getValue().isSignBit()) {
   2730             ICmpInst::Predicate Pred = I.isSigned()
   2731                                            ? I.getUnsignedPredicate()
   2732                                            : I.getSignedPredicate();
   2733             return new ICmpInst(Pred, BO0->getOperand(0),
   2734                                 BO1->getOperand(0));
   2735           }
   2736 
   2737           if (CI->isMaxValue(true)) {
   2738             ICmpInst::Predicate Pred = I.isSigned()
   2739                                            ? I.getUnsignedPredicate()
   2740                                            : I.getSignedPredicate();
   2741             Pred = I.getSwappedPredicate(Pred);
   2742             return new ICmpInst(Pred, BO0->getOperand(0),
   2743                                 BO1->getOperand(0));
   2744           }
   2745         }
   2746         break;
   2747       case Instruction::Mul:
   2748         if (!I.isEquality())
   2749           break;
   2750 
   2751         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2752           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   2753           // Mask = -1 >> count-trailing-zeros(Cst).
   2754           if (!CI->isZero() && !CI->isOne()) {
   2755             const APInt &AP = CI->getValue();
   2756             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   2757                                     APInt::getLowBitsSet(AP.getBitWidth(),
   2758                                                          AP.getBitWidth() -
   2759                                                     AP.countTrailingZeros()));
   2760             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   2761             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   2762             return new ICmpInst(I.getPredicate(), And1, And2);
   2763           }
   2764         }
   2765         break;
   2766       case Instruction::UDiv:
   2767       case Instruction::LShr:
   2768         if (I.isSigned())
   2769           break;
   2770         // fall-through
   2771       case Instruction::SDiv:
   2772       case Instruction::AShr:
   2773         if (!BO0->isExact() || !BO1->isExact())
   2774           break;
   2775         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2776                             BO1->getOperand(0));
   2777       case Instruction::Shl: {
   2778         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   2779         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   2780         if (!NUW && !NSW)
   2781           break;
   2782         if (!NSW && I.isSigned())
   2783           break;
   2784         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2785                             BO1->getOperand(0));
   2786       }
   2787       }
   2788     }
   2789   }
   2790 
   2791   { Value *A, *B;
   2792     // Transform (A & ~B) == 0 --> (A & B) != 0
   2793     // and       (A & ~B) != 0 --> (A & B) == 0
   2794     // if A is a power of 2.
   2795     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   2796         match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
   2797       return new ICmpInst(I.getInversePredicate(),
   2798                           Builder->CreateAnd(A, B),
   2799                           Op1);
   2800 
   2801     // ~x < ~y --> y < x
   2802     // ~x < cst --> ~cst < x
   2803     if (match(Op0, m_Not(m_Value(A)))) {
   2804       if (match(Op1, m_Not(m_Value(B))))
   2805         return new ICmpInst(I.getPredicate(), B, A);
   2806       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   2807         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   2808     }
   2809 
   2810     // (a+b) <u a  --> llvm.uadd.with.overflow.
   2811     // (a+b) <u b  --> llvm.uadd.with.overflow.
   2812     if (I.getPredicate() == ICmpInst::ICMP_ULT &&
   2813         match(Op0, m_Add(m_Value(A), m_Value(B))) &&
   2814         (Op1 == A || Op1 == B))
   2815       if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
   2816         return R;
   2817 
   2818     // a >u (a+b)  --> llvm.uadd.with.overflow.
   2819     // b >u (a+b)  --> llvm.uadd.with.overflow.
   2820     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2821         match(Op1, m_Add(m_Value(A), m_Value(B))) &&
   2822         (Op0 == A || Op0 == B))
   2823       if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
   2824         return R;
   2825   }
   2826 
   2827   if (I.isEquality()) {
   2828     Value *A, *B, *C, *D;
   2829 
   2830     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   2831       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   2832         Value *OtherVal = A == Op1 ? B : A;
   2833         return new ICmpInst(I.getPredicate(), OtherVal,
   2834                             Constant::getNullValue(A->getType()));
   2835       }
   2836 
   2837       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   2838         // A^c1 == C^c2 --> A == C^(c1^c2)
   2839         ConstantInt *C1, *C2;
   2840         if (match(B, m_ConstantInt(C1)) &&
   2841             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   2842           Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
   2843           Value *Xor = Builder->CreateXor(C, NC);
   2844           return new ICmpInst(I.getPredicate(), A, Xor);
   2845         }
   2846 
   2847         // A^B == A^D -> B == D
   2848         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   2849         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   2850         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   2851         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   2852       }
   2853     }
   2854 
   2855     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   2856         (A == Op0 || B == Op0)) {
   2857       // A == (A^B)  ->  B == 0
   2858       Value *OtherVal = A == Op0 ? B : A;
   2859       return new ICmpInst(I.getPredicate(), OtherVal,
   2860                           Constant::getNullValue(A->getType()));
   2861     }
   2862 
   2863     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   2864     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   2865         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   2866       Value *X = 0, *Y = 0, *Z = 0;
   2867 
   2868       if (A == C) {
   2869         X = B; Y = D; Z = A;
   2870       } else if (A == D) {
   2871         X = B; Y = C; Z = A;
   2872       } else if (B == C) {
   2873         X = A; Y = D; Z = B;
   2874       } else if (B == D) {
   2875         X = A; Y = C; Z = B;
   2876       }
   2877 
   2878       if (X) {   // Build (X^Y) & Z
   2879         Op1 = Builder->CreateXor(X, Y);
   2880         Op1 = Builder->CreateAnd(Op1, Z);
   2881         I.setOperand(0, Op1);
   2882         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   2883         return &I;
   2884       }
   2885     }
   2886 
   2887     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
   2888     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
   2889     ConstantInt *Cst1;
   2890     if ((Op0->hasOneUse() &&
   2891          match(Op0, m_ZExt(m_Value(A))) &&
   2892          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
   2893         (Op1->hasOneUse() &&
   2894          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
   2895          match(Op1, m_ZExt(m_Value(A))))) {
   2896       APInt Pow2 = Cst1->getValue() + 1;
   2897       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
   2898           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
   2899         return new ICmpInst(I.getPredicate(), A,
   2900                             Builder->CreateTrunc(B, A->getType()));
   2901     }
   2902 
   2903     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   2904     // "icmp (and X, mask), cst"
   2905     uint64_t ShAmt = 0;
   2906     if (Op0->hasOneUse() &&
   2907         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   2908                                            m_ConstantInt(ShAmt))))) &&
   2909         match(Op1, m_ConstantInt(Cst1)) &&
   2910         // Only do this when A has multiple uses.  This is most important to do
   2911         // when it exposes other optimizations.
   2912         !A->hasOneUse()) {
   2913       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   2914 
   2915       if (ShAmt < ASize) {
   2916         APInt MaskV =
   2917           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   2918         MaskV <<= ShAmt;
   2919 
   2920         APInt CmpV = Cst1->getValue().zext(ASize);
   2921         CmpV <<= ShAmt;
   2922 
   2923         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   2924         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   2925       }
   2926     }
   2927   }
   2928 
   2929   {
   2930     Value *X; ConstantInt *Cst;
   2931     // icmp X+Cst, X
   2932     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   2933       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
   2934 
   2935     // icmp X, X+Cst
   2936     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   2937       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
   2938   }
   2939   return Changed ? &I : 0;
   2940 }
   2941 
   2942 
   2943 
   2944 
   2945 
   2946 
   2947 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   2948 ///
   2949 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   2950                                                 Instruction *LHSI,
   2951                                                 Constant *RHSC) {
   2952   if (!isa<ConstantFP>(RHSC)) return 0;
   2953   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   2954 
   2955   // Get the width of the mantissa.  We don't want to hack on conversions that
   2956   // might lose information from the integer, e.g. "i64 -> float"
   2957   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   2958   if (MantissaWidth == -1) return 0;  // Unknown.
   2959 
   2960   // Check to see that the input is converted from an integer type that is small
   2961   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   2962   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   2963   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
   2964 
   2965   // If this is a uitofp instruction, we need an extra bit to hold the sign.
   2966   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   2967   if (LHSUnsigned)
   2968     ++InputSize;
   2969 
   2970   // If the conversion would lose info, don't hack on this.
   2971   if ((int)InputSize > MantissaWidth)
   2972     return 0;
   2973 
   2974   // Otherwise, we can potentially simplify the comparison.  We know that it
   2975   // will always come through as an integer value and we know the constant is
   2976   // not a NAN (it would have been previously simplified).
   2977   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   2978 
   2979   ICmpInst::Predicate Pred;
   2980   switch (I.getPredicate()) {
   2981   default: llvm_unreachable("Unexpected predicate!");
   2982   case FCmpInst::FCMP_UEQ:
   2983   case FCmpInst::FCMP_OEQ:
   2984     Pred = ICmpInst::ICMP_EQ;
   2985     break;
   2986   case FCmpInst::FCMP_UGT:
   2987   case FCmpInst::FCMP_OGT:
   2988     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   2989     break;
   2990   case FCmpInst::FCMP_UGE:
   2991   case FCmpInst::FCMP_OGE:
   2992     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   2993     break;
   2994   case FCmpInst::FCMP_ULT:
   2995   case FCmpInst::FCMP_OLT:
   2996     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   2997     break;
   2998   case FCmpInst::FCMP_ULE:
   2999   case FCmpInst::FCMP_OLE:
   3000     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   3001     break;
   3002   case FCmpInst::FCMP_UNE:
   3003   case FCmpInst::FCMP_ONE:
   3004     Pred = ICmpInst::ICMP_NE;
   3005     break;
   3006   case FCmpInst::FCMP_ORD:
   3007     return ReplaceInstUsesWith(I, Builder->getTrue());
   3008   case FCmpInst::FCMP_UNO:
   3009     return ReplaceInstUsesWith(I, Builder->getFalse());
   3010   }
   3011 
   3012   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   3013 
   3014   // Now we know that the APFloat is a normal number, zero or inf.
   3015 
   3016   // See if the FP constant is too large for the integer.  For example,
   3017   // comparing an i8 to 300.0.
   3018   unsigned IntWidth = IntTy->getScalarSizeInBits();
   3019 
   3020   if (!LHSUnsigned) {
   3021     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   3022     // and large values.
   3023     APFloat SMax(RHS.getSemantics());
   3024     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   3025                           APFloat::rmNearestTiesToEven);
   3026     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   3027       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   3028           Pred == ICmpInst::ICMP_SLE)
   3029         return ReplaceInstUsesWith(I, Builder->getTrue());
   3030       return ReplaceInstUsesWith(I, Builder->getFalse());
   3031     }
   3032   } else {
   3033     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   3034     // +INF and large values.
   3035     APFloat UMax(RHS.getSemantics());
   3036     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   3037                           APFloat::rmNearestTiesToEven);
   3038     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   3039       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   3040           Pred == ICmpInst::ICMP_ULE)
   3041         return ReplaceInstUsesWith(I, Builder->getTrue());
   3042       return ReplaceInstUsesWith(I, Builder->getFalse());
   3043     }
   3044   }
   3045 
   3046   if (!LHSUnsigned) {
   3047     // See if the RHS value is < SignedMin.
   3048     APFloat SMin(RHS.getSemantics());
   3049     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   3050                           APFloat::rmNearestTiesToEven);
   3051     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   3052       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   3053           Pred == ICmpInst::ICMP_SGE)
   3054         return ReplaceInstUsesWith(I, Builder->getTrue());
   3055       return ReplaceInstUsesWith(I, Builder->getFalse());
   3056     }
   3057   } else {
   3058     // See if the RHS value is < UnsignedMin.
   3059     APFloat SMin(RHS.getSemantics());
   3060     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
   3061                           APFloat::rmNearestTiesToEven);
   3062     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
   3063       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
   3064           Pred == ICmpInst::ICMP_UGE)
   3065         return ReplaceInstUsesWith(I, Builder->getTrue());
   3066       return ReplaceInstUsesWith(I, Builder->getFalse());
   3067     }
   3068   }
   3069 
   3070   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   3071   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   3072   // casting the FP value to the integer value and back, checking for equality.
   3073   // Don't do this for zero, because -0.0 is not fractional.
   3074   Constant *RHSInt = LHSUnsigned
   3075     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   3076     : ConstantExpr::getFPToSI(RHSC, IntTy);
   3077   if (!RHS.isZero()) {
   3078     bool Equal = LHSUnsigned
   3079       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   3080       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   3081     if (!Equal) {
   3082       // If we had a comparison against a fractional value, we have to adjust
   3083       // the compare predicate and sometimes the value.  RHSC is rounded towards
   3084       // zero at this point.
   3085       switch (Pred) {
   3086       default: llvm_unreachable("Unexpected integer comparison!");
   3087       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   3088         return ReplaceInstUsesWith(I, Builder->getTrue());
   3089       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   3090         return ReplaceInstUsesWith(I, Builder->getFalse());
   3091       case ICmpInst::ICMP_ULE:
   3092         // (float)int <= 4.4   --> int <= 4
   3093         // (float)int <= -4.4  --> false
   3094         if (RHS.isNegative())
   3095           return ReplaceInstUsesWith(I, Builder->getFalse());
   3096         break;
   3097       case ICmpInst::ICMP_SLE:
   3098         // (float)int <= 4.4   --> int <= 4
   3099         // (float)int <= -4.4  --> int < -4
   3100         if (RHS.isNegative())
   3101           Pred = ICmpInst::ICMP_SLT;
   3102         break;
   3103       case ICmpInst::ICMP_ULT:
   3104         // (float)int < -4.4   --> false
   3105         // (float)int < 4.4    --> int <= 4
   3106         if (RHS.isNegative())
   3107           return ReplaceInstUsesWith(I, Builder->getFalse());
   3108         Pred = ICmpInst::ICMP_ULE;
   3109         break;
   3110       case ICmpInst::ICMP_SLT:
   3111         // (float)int < -4.4   --> int < -4
   3112         // (float)int < 4.4    --> int <= 4
   3113         if (!RHS.isNegative())
   3114           Pred = ICmpInst::ICMP_SLE;
   3115         break;
   3116       case ICmpInst::ICMP_UGT:
   3117         // (float)int > 4.4    --> int > 4
   3118         // (float)int > -4.4   --> true
   3119         if (RHS.isNegative())
   3120           return ReplaceInstUsesWith(I, Builder->getTrue());
   3121         break;
   3122       case ICmpInst::ICMP_SGT:
   3123         // (float)int > 4.4    --> int > 4
   3124         // (float)int > -4.4   --> int >= -4
   3125         if (RHS.isNegative())
   3126           Pred = ICmpInst::ICMP_SGE;
   3127         break;
   3128       case ICmpInst::ICMP_UGE:
   3129         // (float)int >= -4.4   --> true
   3130         // (float)int >= 4.4    --> int > 4
   3131         if (RHS.isNegative())
   3132           return ReplaceInstUsesWith(I, Builder->getTrue());
   3133         Pred = ICmpInst::ICMP_UGT;
   3134         break;
   3135       case ICmpInst::ICMP_SGE:
   3136         // (float)int >= -4.4   --> int >= -4
   3137         // (float)int >= 4.4    --> int > 4
   3138         if (!RHS.isNegative())
   3139           Pred = ICmpInst::ICMP_SGT;
   3140         break;
   3141       }
   3142     }
   3143   }
   3144 
   3145   // Lower this FP comparison into an appropriate integer version of the
   3146   // comparison.
   3147   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   3148 }
   3149 
   3150 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   3151   bool Changed = false;
   3152 
   3153   /// Orders the operands of the compare so that they are listed from most
   3154   /// complex to least complex.  This puts constants before unary operators,
   3155   /// before binary operators.
   3156   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   3157     I.swapOperands();
   3158     Changed = true;
   3159   }
   3160 
   3161   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   3162 
   3163   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
   3164     return ReplaceInstUsesWith(I, V);
   3165 
   3166   // Simplify 'fcmp pred X, X'
   3167   if (Op0 == Op1) {
   3168     switch (I.getPredicate()) {
   3169     default: llvm_unreachable("Unknown predicate!");
   3170     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   3171     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   3172     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   3173     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   3174       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   3175       I.setPredicate(FCmpInst::FCMP_UNO);
   3176       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   3177       return &I;
   3178 
   3179     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   3180     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   3181     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   3182     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   3183       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   3184       I.setPredicate(FCmpInst::FCMP_ORD);
   3185       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   3186       return &I;
   3187     }
   3188   }
   3189 
   3190   // Handle fcmp with constant RHS
   3191   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   3192     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3193       switch (LHSI->getOpcode()) {
   3194       case Instruction::FPExt: {
   3195         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   3196         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   3197         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   3198         if (!RHSF)
   3199           break;
   3200 
   3201         const fltSemantics *Sem;
   3202         // FIXME: This shouldn't be here.
   3203         if (LHSExt->getSrcTy()->isHalfTy())
   3204           Sem = &APFloat::IEEEhalf;
   3205         else if (LHSExt->getSrcTy()->isFloatTy())
   3206           Sem = &APFloat::IEEEsingle;
   3207         else if (LHSExt->getSrcTy()->isDoubleTy())
   3208           Sem = &APFloat::IEEEdouble;
   3209         else if (LHSExt->getSrcTy()->isFP128Ty())
   3210           Sem = &APFloat::IEEEquad;
   3211         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   3212           Sem = &APFloat::x87DoubleExtended;
   3213         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
   3214           Sem = &APFloat::PPCDoubleDouble;
   3215         else
   3216           break;
   3217 
   3218         bool Lossy;
   3219         APFloat F = RHSF->getValueAPF();
   3220         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   3221 
   3222         // Avoid lossy conversions and denormals. Zero is a special case
   3223         // that's OK to convert.
   3224         APFloat Fabs = F;
   3225         Fabs.clearSign();
   3226         if (!Lossy &&
   3227             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   3228                  APFloat::cmpLessThan) || Fabs.isZero()))
   3229 
   3230           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   3231                               ConstantFP::get(RHSC->getContext(), F));
   3232         break;
   3233       }
   3234       case Instruction::PHI:
   3235         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   3236         // block.  If in the same block, we're encouraging jump threading.  If
   3237         // not, we are just pessimizing the code by making an i1 phi.
   3238         if (LHSI->getParent() == I.getParent())
   3239           if (Instruction *NV = FoldOpIntoPhi(I))
   3240             return NV;
   3241         break;
   3242       case Instruction::SIToFP:
   3243       case Instruction::UIToFP:
   3244         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   3245           return NV;
   3246         break;
   3247       case Instruction::Select: {
   3248         // If either operand of the select is a constant, we can fold the
   3249         // comparison into the select arms, which will cause one to be
   3250         // constant folded and the select turned into a bitwise or.
   3251         Value *Op1 = 0, *Op2 = 0;
   3252         if (LHSI->hasOneUse()) {
   3253           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   3254             // Fold the known value into the constant operand.
   3255             Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   3256             // Insert a new FCmp of the other select operand.
   3257             Op2 = Builder->CreateFCmp(I.getPredicate(),
   3258                                       LHSI->getOperand(2), RHSC, I.getName());
   3259           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   3260             // Fold the known value into the constant operand.
   3261             Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   3262             // Insert a new FCmp of the other select operand.
   3263             Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
   3264                                       RHSC, I.getName());
   3265           }
   3266         }
   3267 
   3268         if (Op1)
   3269           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   3270         break;
   3271       }
   3272       case Instruction::FSub: {
   3273         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   3274         Value *Op;
   3275         if (match(LHSI, m_FNeg(m_Value(Op))))
   3276           return new FCmpInst(I.getSwappedPredicate(), Op,
   3277                               ConstantExpr::getFNeg(RHSC));
   3278         break;
   3279       }
   3280       case Instruction::Load:
   3281         if (GetElementPtrInst *GEP =
   3282             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   3283           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   3284             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   3285                 !cast<LoadInst>(LHSI)->isVolatile())
   3286               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   3287                 return Res;
   3288         }
   3289         break;
   3290       case Instruction::Call: {
   3291         CallInst *CI = cast<CallInst>(LHSI);
   3292         LibFunc::Func Func;
   3293         // Various optimization for fabs compared with zero.
   3294         if (RHSC->isNullValue() && CI->getCalledFunction() &&
   3295             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
   3296             TLI->has(Func)) {
   3297           if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
   3298               Func == LibFunc::fabsl) {
   3299             switch (I.getPredicate()) {
   3300             default: break;
   3301             // fabs(x) < 0 --> false
   3302             case FCmpInst::FCMP_OLT:
   3303               return ReplaceInstUsesWith(I, Builder->getFalse());
   3304             // fabs(x) > 0 --> x != 0
   3305             case FCmpInst::FCMP_OGT:
   3306               return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
   3307                                   RHSC);
   3308             // fabs(x) <= 0 --> x == 0
   3309             case FCmpInst::FCMP_OLE:
   3310               return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
   3311                                   RHSC);
   3312             // fabs(x) >= 0 --> !isnan(x)
   3313             case FCmpInst::FCMP_OGE:
   3314               return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
   3315                                   RHSC);
   3316             // fabs(x) == 0 --> x == 0
   3317             // fabs(x) != 0 --> x != 0
   3318             case FCmpInst::FCMP_OEQ:
   3319             case FCmpInst::FCMP_UEQ:
   3320             case FCmpInst::FCMP_ONE:
   3321             case FCmpInst::FCMP_UNE:
   3322               return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
   3323                                   RHSC);
   3324             }
   3325           }
   3326         }
   3327       }
   3328       }
   3329   }
   3330 
   3331   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   3332   Value *X, *Y;
   3333   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   3334     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   3335 
   3336   // fcmp (fpext x), (fpext y) -> fcmp x, y
   3337   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   3338     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   3339       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   3340         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   3341                             RHSExt->getOperand(0));
   3342 
   3343   return Changed ? &I : 0;
   3344 }
   3345