1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAGISel class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "llvm/CodeGen/SelectionDAGISel.h" 16 #include "ScheduleDAGSDNodes.h" 17 #include "SelectionDAGBuilder.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 34 #include "llvm/CodeGen/SchedulerRegistry.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/DebugInfo.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetIntrinsicInfo.h" 52 #include "llvm/Target/TargetLibraryInfo.h" 53 #include "llvm/Target/TargetLowering.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 63 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 64 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 65 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 66 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 67 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 68 STATISTIC(NumFastIselFailLowerArguments, 69 "Number of entry blocks where fast isel failed to lower arguments"); 70 71 #ifndef NDEBUG 72 static cl::opt<bool> 73 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden, 74 cl::desc("Enable extra verbose messages in the \"fast\" " 75 "instruction selector")); 76 77 // Terminators 78 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret"); 79 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br"); 80 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch"); 81 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr"); 82 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke"); 83 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume"); 84 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable"); 85 86 // Standard binary operators... 87 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add"); 88 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd"); 89 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub"); 90 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub"); 91 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul"); 92 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul"); 93 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv"); 94 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv"); 95 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv"); 96 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem"); 97 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem"); 98 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem"); 99 100 // Logical operators... 101 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And"); 102 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or"); 103 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor"); 104 105 // Memory instructions... 106 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca"); 107 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load"); 108 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store"); 109 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg"); 110 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM"); 111 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence"); 112 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr"); 113 114 // Convert instructions... 115 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc"); 116 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt"); 117 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt"); 118 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc"); 119 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt"); 120 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI"); 121 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI"); 122 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP"); 123 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP"); 124 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr"); 125 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt"); 126 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast"); 127 128 // Other instructions... 129 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp"); 130 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp"); 131 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI"); 132 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select"); 133 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call"); 134 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl"); 135 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr"); 136 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr"); 137 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg"); 138 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement"); 139 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement"); 140 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector"); 141 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue"); 142 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue"); 143 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad"); 144 #endif 145 146 static cl::opt<bool> 147 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, 148 cl::desc("Enable verbose messages in the \"fast\" " 149 "instruction selector")); 150 static cl::opt<bool> 151 EnableFastISelAbort("fast-isel-abort", cl::Hidden, 152 cl::desc("Enable abort calls when \"fast\" instruction selection " 153 "fails to lower an instruction")); 154 static cl::opt<bool> 155 EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden, 156 cl::desc("Enable abort calls when \"fast\" instruction selection " 157 "fails to lower a formal argument")); 158 159 static cl::opt<bool> 160 UseMBPI("use-mbpi", 161 cl::desc("use Machine Branch Probability Info"), 162 cl::init(true), cl::Hidden); 163 164 #ifndef NDEBUG 165 static cl::opt<bool> 166 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 167 cl::desc("Pop up a window to show dags before the first " 168 "dag combine pass")); 169 static cl::opt<bool> 170 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 171 cl::desc("Pop up a window to show dags before legalize types")); 172 static cl::opt<bool> 173 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 174 cl::desc("Pop up a window to show dags before legalize")); 175 static cl::opt<bool> 176 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 177 cl::desc("Pop up a window to show dags before the second " 178 "dag combine pass")); 179 static cl::opt<bool> 180 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 181 cl::desc("Pop up a window to show dags before the post legalize types" 182 " dag combine pass")); 183 static cl::opt<bool> 184 ViewISelDAGs("view-isel-dags", cl::Hidden, 185 cl::desc("Pop up a window to show isel dags as they are selected")); 186 static cl::opt<bool> 187 ViewSchedDAGs("view-sched-dags", cl::Hidden, 188 cl::desc("Pop up a window to show sched dags as they are processed")); 189 static cl::opt<bool> 190 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 191 cl::desc("Pop up a window to show SUnit dags after they are processed")); 192 #else 193 static const bool ViewDAGCombine1 = false, 194 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 195 ViewDAGCombine2 = false, 196 ViewDAGCombineLT = false, 197 ViewISelDAGs = false, ViewSchedDAGs = false, 198 ViewSUnitDAGs = false; 199 #endif 200 201 //===---------------------------------------------------------------------===// 202 /// 203 /// RegisterScheduler class - Track the registration of instruction schedulers. 204 /// 205 //===---------------------------------------------------------------------===// 206 MachinePassRegistry RegisterScheduler::Registry; 207 208 //===---------------------------------------------------------------------===// 209 /// 210 /// ISHeuristic command line option for instruction schedulers. 211 /// 212 //===---------------------------------------------------------------------===// 213 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 214 RegisterPassParser<RegisterScheduler> > 215 ISHeuristic("pre-RA-sched", 216 cl::init(&createDefaultScheduler), 217 cl::desc("Instruction schedulers available (before register" 218 " allocation):")); 219 220 static RegisterScheduler 221 defaultListDAGScheduler("default", "Best scheduler for the target", 222 createDefaultScheduler); 223 224 namespace llvm { 225 //===--------------------------------------------------------------------===// 226 /// createDefaultScheduler - This creates an instruction scheduler appropriate 227 /// for the target. 228 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 229 CodeGenOpt::Level OptLevel) { 230 const TargetLowering *TLI = IS->getTargetLowering(); 231 const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>(); 232 233 if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() || 234 TLI->getSchedulingPreference() == Sched::Source) 235 return createSourceListDAGScheduler(IS, OptLevel); 236 if (TLI->getSchedulingPreference() == Sched::RegPressure) 237 return createBURRListDAGScheduler(IS, OptLevel); 238 if (TLI->getSchedulingPreference() == Sched::Hybrid) 239 return createHybridListDAGScheduler(IS, OptLevel); 240 if (TLI->getSchedulingPreference() == Sched::VLIW) 241 return createVLIWDAGScheduler(IS, OptLevel); 242 assert(TLI->getSchedulingPreference() == Sched::ILP && 243 "Unknown sched type!"); 244 return createILPListDAGScheduler(IS, OptLevel); 245 } 246 } 247 248 // EmitInstrWithCustomInserter - This method should be implemented by targets 249 // that mark instructions with the 'usesCustomInserter' flag. These 250 // instructions are special in various ways, which require special support to 251 // insert. The specified MachineInstr is created but not inserted into any 252 // basic blocks, and this method is called to expand it into a sequence of 253 // instructions, potentially also creating new basic blocks and control flow. 254 // When new basic blocks are inserted and the edges from MBB to its successors 255 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 256 // DenseMap. 257 MachineBasicBlock * 258 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 259 MachineBasicBlock *MBB) const { 260 #ifndef NDEBUG 261 dbgs() << "If a target marks an instruction with " 262 "'usesCustomInserter', it must implement " 263 "TargetLowering::EmitInstrWithCustomInserter!"; 264 #endif 265 llvm_unreachable(0); 266 } 267 268 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 269 SDNode *Node) const { 270 assert(!MI->hasPostISelHook() && 271 "If a target marks an instruction with 'hasPostISelHook', " 272 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 273 } 274 275 //===----------------------------------------------------------------------===// 276 // SelectionDAGISel code 277 //===----------------------------------------------------------------------===// 278 279 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 280 CodeGenOpt::Level OL) : 281 MachineFunctionPass(ID), TM(tm), 282 FuncInfo(new FunctionLoweringInfo(TM)), 283 CurDAG(new SelectionDAG(tm, OL)), 284 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), 285 GFI(), 286 OptLevel(OL), 287 DAGSize(0) { 288 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 289 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry()); 290 initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry()); 291 initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry()); 292 } 293 294 SelectionDAGISel::~SelectionDAGISel() { 295 delete SDB; 296 delete CurDAG; 297 delete FuncInfo; 298 } 299 300 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 301 AU.addRequired<AliasAnalysis>(); 302 AU.addPreserved<AliasAnalysis>(); 303 AU.addRequired<GCModuleInfo>(); 304 AU.addPreserved<GCModuleInfo>(); 305 AU.addRequired<TargetLibraryInfo>(); 306 if (UseMBPI && OptLevel != CodeGenOpt::None) 307 AU.addRequired<BranchProbabilityInfo>(); 308 MachineFunctionPass::getAnalysisUsage(AU); 309 } 310 311 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 312 /// may trap on it. In this case we have to split the edge so that the path 313 /// through the predecessor block that doesn't go to the phi block doesn't 314 /// execute the possibly trapping instruction. 315 /// 316 /// This is required for correctness, so it must be done at -O0. 317 /// 318 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) { 319 // Loop for blocks with phi nodes. 320 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 321 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 322 if (PN == 0) continue; 323 324 ReprocessBlock: 325 // For each block with a PHI node, check to see if any of the input values 326 // are potentially trapping constant expressions. Constant expressions are 327 // the only potentially trapping value that can occur as the argument to a 328 // PHI. 329 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 330 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 331 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 332 if (CE == 0 || !CE->canTrap()) continue; 333 334 // The only case we have to worry about is when the edge is critical. 335 // Since this block has a PHI Node, we assume it has multiple input 336 // edges: check to see if the pred has multiple successors. 337 BasicBlock *Pred = PN->getIncomingBlock(i); 338 if (Pred->getTerminator()->getNumSuccessors() == 1) 339 continue; 340 341 // Okay, we have to split this edge. 342 SplitCriticalEdge(Pred->getTerminator(), 343 GetSuccessorNumber(Pred, BB), SDISel, true); 344 goto ReprocessBlock; 345 } 346 } 347 } 348 349 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 350 // Do some sanity-checking on the command-line options. 351 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) && 352 "-fast-isel-verbose requires -fast-isel"); 353 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 354 "-fast-isel-abort requires -fast-isel"); 355 356 const Function &Fn = *mf.getFunction(); 357 const TargetInstrInfo &TII = *TM.getInstrInfo(); 358 const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); 359 360 MF = &mf; 361 RegInfo = &MF->getRegInfo(); 362 AA = &getAnalysis<AliasAnalysis>(); 363 LibInfo = &getAnalysis<TargetLibraryInfo>(); 364 TTI = getAnalysisIfAvailable<TargetTransformInfo>(); 365 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0; 366 367 TargetSubtargetInfo &ST = 368 const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>()); 369 ST.resetSubtargetFeatures(MF); 370 TM.resetTargetOptions(MF); 371 372 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 373 374 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this); 375 376 CurDAG->init(*MF, TTI); 377 FuncInfo->set(Fn, *MF); 378 379 if (UseMBPI && OptLevel != CodeGenOpt::None) 380 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>(); 381 else 382 FuncInfo->BPI = 0; 383 384 SDB->init(GFI, *AA, LibInfo); 385 386 MF->setHasMSInlineAsm(false); 387 SelectAllBasicBlocks(Fn); 388 389 // If the first basic block in the function has live ins that need to be 390 // copied into vregs, emit the copies into the top of the block before 391 // emitting the code for the block. 392 MachineBasicBlock *EntryMBB = MF->begin(); 393 RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII); 394 395 DenseMap<unsigned, unsigned> LiveInMap; 396 if (!FuncInfo->ArgDbgValues.empty()) 397 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), 398 E = RegInfo->livein_end(); LI != E; ++LI) 399 if (LI->second) 400 LiveInMap.insert(std::make_pair(LI->first, LI->second)); 401 402 // Insert DBG_VALUE instructions for function arguments to the entry block. 403 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 404 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 405 bool hasFI = MI->getOperand(0).isFI(); 406 unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 407 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 408 EntryMBB->insert(EntryMBB->begin(), MI); 409 else { 410 MachineInstr *Def = RegInfo->getVRegDef(Reg); 411 MachineBasicBlock::iterator InsertPos = Def; 412 // FIXME: VR def may not be in entry block. 413 Def->getParent()->insert(llvm::next(InsertPos), MI); 414 } 415 416 // If Reg is live-in then update debug info to track its copy in a vreg. 417 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 418 if (LDI != LiveInMap.end()) { 419 assert(!hasFI && "There's no handling of frame pointer updating here yet " 420 "- add if needed"); 421 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 422 MachineBasicBlock::iterator InsertPos = Def; 423 const MDNode *Variable = 424 MI->getOperand(MI->getNumOperands()-1).getMetadata(); 425 bool IsIndirect = MI->getOperand(1).isImm(); 426 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 427 // Def is never a terminator here, so it is ok to increment InsertPos. 428 BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(), 429 TII.get(TargetOpcode::DBG_VALUE), 430 IsIndirect, 431 LDI->second, Offset, Variable); 432 433 // If this vreg is directly copied into an exported register then 434 // that COPY instructions also need DBG_VALUE, if it is the only 435 // user of LDI->second. 436 MachineInstr *CopyUseMI = NULL; 437 for (MachineRegisterInfo::use_iterator 438 UI = RegInfo->use_begin(LDI->second); 439 MachineInstr *UseMI = UI.skipInstruction();) { 440 if (UseMI->isDebugValue()) continue; 441 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 442 CopyUseMI = UseMI; continue; 443 } 444 // Otherwise this is another use or second copy use. 445 CopyUseMI = NULL; break; 446 } 447 if (CopyUseMI) { 448 MachineInstr *NewMI = 449 BuildMI(*MF, CopyUseMI->getDebugLoc(), 450 TII.get(TargetOpcode::DBG_VALUE), 451 IsIndirect, 452 CopyUseMI->getOperand(0).getReg(), 453 Offset, Variable); 454 MachineBasicBlock::iterator Pos = CopyUseMI; 455 EntryMBB->insertAfter(Pos, NewMI); 456 } 457 } 458 } 459 460 // Determine if there are any calls in this machine function. 461 MachineFrameInfo *MFI = MF->getFrameInfo(); 462 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; 463 ++I) { 464 465 if (MFI->hasCalls() && MF->hasMSInlineAsm()) 466 break; 467 468 const MachineBasicBlock *MBB = I; 469 for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end(); 470 II != IE; ++II) { 471 const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode()); 472 if ((MCID.isCall() && !MCID.isReturn()) || 473 II->isStackAligningInlineAsm()) { 474 MFI->setHasCalls(true); 475 } 476 if (II->isMSInlineAsm()) { 477 MF->setHasMSInlineAsm(true); 478 } 479 } 480 } 481 482 // Determine if there is a call to setjmp in the machine function. 483 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 484 485 // Replace forward-declared registers with the registers containing 486 // the desired value. 487 MachineRegisterInfo &MRI = MF->getRegInfo(); 488 for (DenseMap<unsigned, unsigned>::iterator 489 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 490 I != E; ++I) { 491 unsigned From = I->first; 492 unsigned To = I->second; 493 // If To is also scheduled to be replaced, find what its ultimate 494 // replacement is. 495 for (;;) { 496 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 497 if (J == E) break; 498 To = J->second; 499 } 500 // Replace it. 501 MRI.replaceRegWith(From, To); 502 } 503 504 // Freeze the set of reserved registers now that MachineFrameInfo has been 505 // set up. All the information required by getReservedRegs() should be 506 // available now. 507 MRI.freezeReservedRegs(*MF); 508 509 // Release function-specific state. SDB and CurDAG are already cleared 510 // at this point. 511 FuncInfo->clear(); 512 513 return true; 514 } 515 516 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 517 BasicBlock::const_iterator End, 518 bool &HadTailCall) { 519 // Lower all of the non-terminator instructions. If a call is emitted 520 // as a tail call, cease emitting nodes for this block. Terminators 521 // are handled below. 522 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) 523 SDB->visit(*I); 524 525 // Make sure the root of the DAG is up-to-date. 526 CurDAG->setRoot(SDB->getControlRoot()); 527 HadTailCall = SDB->HasTailCall; 528 SDB->clear(); 529 530 // Final step, emit the lowered DAG as machine code. 531 CodeGenAndEmitDAG(); 532 } 533 534 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 535 SmallPtrSet<SDNode*, 128> VisitedNodes; 536 SmallVector<SDNode*, 128> Worklist; 537 538 Worklist.push_back(CurDAG->getRoot().getNode()); 539 540 APInt KnownZero; 541 APInt KnownOne; 542 543 do { 544 SDNode *N = Worklist.pop_back_val(); 545 546 // If we've already seen this node, ignore it. 547 if (!VisitedNodes.insert(N)) 548 continue; 549 550 // Otherwise, add all chain operands to the worklist. 551 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 552 if (N->getOperand(i).getValueType() == MVT::Other) 553 Worklist.push_back(N->getOperand(i).getNode()); 554 555 // If this is a CopyToReg with a vreg dest, process it. 556 if (N->getOpcode() != ISD::CopyToReg) 557 continue; 558 559 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 560 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 561 continue; 562 563 // Ignore non-scalar or non-integer values. 564 SDValue Src = N->getOperand(2); 565 EVT SrcVT = Src.getValueType(); 566 if (!SrcVT.isInteger() || SrcVT.isVector()) 567 continue; 568 569 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 570 CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne); 571 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); 572 } while (!Worklist.empty()); 573 } 574 575 void SelectionDAGISel::CodeGenAndEmitDAG() { 576 std::string GroupName; 577 if (TimePassesIsEnabled) 578 GroupName = "Instruction Selection and Scheduling"; 579 std::string BlockName; 580 int BlockNumber = -1; 581 (void)BlockNumber; 582 #ifdef NDEBUG 583 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 584 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 585 ViewSUnitDAGs) 586 #endif 587 { 588 BlockNumber = FuncInfo->MBB->getNumber(); 589 BlockName = MF->getName().str() + ":" + 590 FuncInfo->MBB->getBasicBlock()->getName().str(); 591 } 592 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber 593 << " '" << BlockName << "'\n"; CurDAG->dump()); 594 595 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); 596 597 // Run the DAG combiner in pre-legalize mode. 598 { 599 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); 600 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel); 601 } 602 603 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber 604 << " '" << BlockName << "'\n"; CurDAG->dump()); 605 606 // Second step, hack on the DAG until it only uses operations and types that 607 // the target supports. 608 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + 609 BlockName); 610 611 bool Changed; 612 { 613 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); 614 Changed = CurDAG->LegalizeTypes(); 615 } 616 617 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber 618 << " '" << BlockName << "'\n"; CurDAG->dump()); 619 620 if (Changed) { 621 if (ViewDAGCombineLT) 622 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 623 624 // Run the DAG combiner in post-type-legalize mode. 625 { 626 NamedRegionTimer T("DAG Combining after legalize types", GroupName, 627 TimePassesIsEnabled); 628 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel); 629 } 630 631 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber 632 << " '" << BlockName << "'\n"; CurDAG->dump()); 633 634 } 635 636 { 637 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); 638 Changed = CurDAG->LegalizeVectors(); 639 } 640 641 if (Changed) { 642 { 643 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); 644 CurDAG->LegalizeTypes(); 645 } 646 647 if (ViewDAGCombineLT) 648 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 649 650 // Run the DAG combiner in post-type-legalize mode. 651 { 652 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, 653 TimePassesIsEnabled); 654 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel); 655 } 656 657 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" 658 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); 659 } 660 661 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); 662 663 { 664 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); 665 CurDAG->Legalize(); 666 } 667 668 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber 669 << " '" << BlockName << "'\n"; CurDAG->dump()); 670 671 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); 672 673 // Run the DAG combiner in post-legalize mode. 674 { 675 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); 676 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel); 677 } 678 679 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber 680 << " '" << BlockName << "'\n"; CurDAG->dump()); 681 682 if (OptLevel != CodeGenOpt::None) 683 ComputeLiveOutVRegInfo(); 684 685 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); 686 687 // Third, instruction select all of the operations to machine code, adding the 688 // code to the MachineBasicBlock. 689 { 690 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); 691 DoInstructionSelection(); 692 } 693 694 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber 695 << " '" << BlockName << "'\n"; CurDAG->dump()); 696 697 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); 698 699 // Schedule machine code. 700 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 701 { 702 NamedRegionTimer T("Instruction Scheduling", GroupName, 703 TimePassesIsEnabled); 704 Scheduler->Run(CurDAG, FuncInfo->MBB); 705 } 706 707 if (ViewSUnitDAGs) Scheduler->viewGraph(); 708 709 // Emit machine code to BB. This can change 'BB' to the last block being 710 // inserted into. 711 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 712 { 713 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); 714 715 // FuncInfo->InsertPt is passed by reference and set to the end of the 716 // scheduled instructions. 717 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 718 } 719 720 // If the block was split, make sure we update any references that are used to 721 // update PHI nodes later on. 722 if (FirstMBB != LastMBB) 723 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 724 725 // Free the scheduler state. 726 { 727 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, 728 TimePassesIsEnabled); 729 delete Scheduler; 730 } 731 732 // Free the SelectionDAG state, now that we're finished with it. 733 CurDAG->clear(); 734 } 735 736 namespace { 737 /// ISelUpdater - helper class to handle updates of the instruction selection 738 /// graph. 739 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 740 SelectionDAG::allnodes_iterator &ISelPosition; 741 public: 742 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 743 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 744 745 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 746 /// deleted is the current ISelPosition node, update ISelPosition. 747 /// 748 virtual void NodeDeleted(SDNode *N, SDNode *E) { 749 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 750 ++ISelPosition; 751 } 752 }; 753 } // end anonymous namespace 754 755 void SelectionDAGISel::DoInstructionSelection() { 756 DEBUG(dbgs() << "===== Instruction selection begins: BB#" 757 << FuncInfo->MBB->getNumber() 758 << " '" << FuncInfo->MBB->getName() << "'\n"); 759 760 PreprocessISelDAG(); 761 762 // Select target instructions for the DAG. 763 { 764 // Number all nodes with a topological order and set DAGSize. 765 DAGSize = CurDAG->AssignTopologicalOrder(); 766 767 // Create a dummy node (which is not added to allnodes), that adds 768 // a reference to the root node, preventing it from being deleted, 769 // and tracking any changes of the root. 770 HandleSDNode Dummy(CurDAG->getRoot()); 771 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 772 ++ISelPosition; 773 774 // Make sure that ISelPosition gets properly updated when nodes are deleted 775 // in calls made from this function. 776 ISelUpdater ISU(*CurDAG, ISelPosition); 777 778 // The AllNodes list is now topological-sorted. Visit the 779 // nodes by starting at the end of the list (the root of the 780 // graph) and preceding back toward the beginning (the entry 781 // node). 782 while (ISelPosition != CurDAG->allnodes_begin()) { 783 SDNode *Node = --ISelPosition; 784 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 785 // but there are currently some corner cases that it misses. Also, this 786 // makes it theoretically possible to disable the DAGCombiner. 787 if (Node->use_empty()) 788 continue; 789 790 SDNode *ResNode = Select(Node); 791 792 // FIXME: This is pretty gross. 'Select' should be changed to not return 793 // anything at all and this code should be nuked with a tactical strike. 794 795 // If node should not be replaced, continue with the next one. 796 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) 797 continue; 798 // Replace node. 799 if (ResNode) { 800 ReplaceUses(Node, ResNode); 801 } 802 803 // If after the replacement this node is not used any more, 804 // remove this dead node. 805 if (Node->use_empty()) // Don't delete EntryToken, etc. 806 CurDAG->RemoveDeadNode(Node); 807 } 808 809 CurDAG->setRoot(Dummy.getValue()); 810 } 811 812 DEBUG(dbgs() << "===== Instruction selection ends:\n"); 813 814 PostprocessISelDAG(); 815 } 816 817 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 818 /// do other setup for EH landing-pad blocks. 819 void SelectionDAGISel::PrepareEHLandingPad() { 820 MachineBasicBlock *MBB = FuncInfo->MBB; 821 822 // Add a label to mark the beginning of the landing pad. Deletion of the 823 // landing pad can thus be detected via the MachineModuleInfo. 824 MCSymbol *Label = MF->getMMI().addLandingPad(MBB); 825 826 // Assign the call site to the landing pad's begin label. 827 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 828 829 const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); 830 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 831 .addSym(Label); 832 833 // Mark exception register as live in. 834 const TargetLowering *TLI = getTargetLowering(); 835 const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy()); 836 if (unsigned Reg = TLI->getExceptionPointerRegister()) 837 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 838 839 // Mark exception selector register as live in. 840 if (unsigned Reg = TLI->getExceptionSelectorRegister()) 841 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 842 } 843 844 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 845 /// side-effect free and is either dead or folded into a generated instruction. 846 /// Return false if it needs to be emitted. 847 static bool isFoldedOrDeadInstruction(const Instruction *I, 848 FunctionLoweringInfo *FuncInfo) { 849 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 850 !isa<TerminatorInst>(I) && // Terminators aren't folded. 851 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 852 !isa<LandingPadInst>(I) && // Landingpad instructions aren't folded. 853 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 854 } 855 856 #ifndef NDEBUG 857 // Collect per Instruction statistics for fast-isel misses. Only those 858 // instructions that cause the bail are accounted for. It does not account for 859 // instructions higher in the block. Thus, summing the per instructions stats 860 // will not add up to what is reported by NumFastIselFailures. 861 static void collectFailStats(const Instruction *I) { 862 switch (I->getOpcode()) { 863 default: assert (0 && "<Invalid operator> "); 864 865 // Terminators 866 case Instruction::Ret: NumFastIselFailRet++; return; 867 case Instruction::Br: NumFastIselFailBr++; return; 868 case Instruction::Switch: NumFastIselFailSwitch++; return; 869 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return; 870 case Instruction::Invoke: NumFastIselFailInvoke++; return; 871 case Instruction::Resume: NumFastIselFailResume++; return; 872 case Instruction::Unreachable: NumFastIselFailUnreachable++; return; 873 874 // Standard binary operators... 875 case Instruction::Add: NumFastIselFailAdd++; return; 876 case Instruction::FAdd: NumFastIselFailFAdd++; return; 877 case Instruction::Sub: NumFastIselFailSub++; return; 878 case Instruction::FSub: NumFastIselFailFSub++; return; 879 case Instruction::Mul: NumFastIselFailMul++; return; 880 case Instruction::FMul: NumFastIselFailFMul++; return; 881 case Instruction::UDiv: NumFastIselFailUDiv++; return; 882 case Instruction::SDiv: NumFastIselFailSDiv++; return; 883 case Instruction::FDiv: NumFastIselFailFDiv++; return; 884 case Instruction::URem: NumFastIselFailURem++; return; 885 case Instruction::SRem: NumFastIselFailSRem++; return; 886 case Instruction::FRem: NumFastIselFailFRem++; return; 887 888 // Logical operators... 889 case Instruction::And: NumFastIselFailAnd++; return; 890 case Instruction::Or: NumFastIselFailOr++; return; 891 case Instruction::Xor: NumFastIselFailXor++; return; 892 893 // Memory instructions... 894 case Instruction::Alloca: NumFastIselFailAlloca++; return; 895 case Instruction::Load: NumFastIselFailLoad++; return; 896 case Instruction::Store: NumFastIselFailStore++; return; 897 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return; 898 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return; 899 case Instruction::Fence: NumFastIselFailFence++; return; 900 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return; 901 902 // Convert instructions... 903 case Instruction::Trunc: NumFastIselFailTrunc++; return; 904 case Instruction::ZExt: NumFastIselFailZExt++; return; 905 case Instruction::SExt: NumFastIselFailSExt++; return; 906 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return; 907 case Instruction::FPExt: NumFastIselFailFPExt++; return; 908 case Instruction::FPToUI: NumFastIselFailFPToUI++; return; 909 case Instruction::FPToSI: NumFastIselFailFPToSI++; return; 910 case Instruction::UIToFP: NumFastIselFailUIToFP++; return; 911 case Instruction::SIToFP: NumFastIselFailSIToFP++; return; 912 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return; 913 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return; 914 case Instruction::BitCast: NumFastIselFailBitCast++; return; 915 916 // Other instructions... 917 case Instruction::ICmp: NumFastIselFailICmp++; return; 918 case Instruction::FCmp: NumFastIselFailFCmp++; return; 919 case Instruction::PHI: NumFastIselFailPHI++; return; 920 case Instruction::Select: NumFastIselFailSelect++; return; 921 case Instruction::Call: NumFastIselFailCall++; return; 922 case Instruction::Shl: NumFastIselFailShl++; return; 923 case Instruction::LShr: NumFastIselFailLShr++; return; 924 case Instruction::AShr: NumFastIselFailAShr++; return; 925 case Instruction::VAArg: NumFastIselFailVAArg++; return; 926 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return; 927 case Instruction::InsertElement: NumFastIselFailInsertElement++; return; 928 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return; 929 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return; 930 case Instruction::InsertValue: NumFastIselFailInsertValue++; return; 931 case Instruction::LandingPad: NumFastIselFailLandingPad++; return; 932 } 933 } 934 #endif 935 936 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 937 // Initialize the Fast-ISel state, if needed. 938 FastISel *FastIS = 0; 939 if (TM.Options.EnableFastISel) 940 FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo); 941 942 // Iterate over all basic blocks in the function. 943 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 944 for (ReversePostOrderTraversal<const Function*>::rpo_iterator 945 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { 946 const BasicBlock *LLVMBB = *I; 947 948 if (OptLevel != CodeGenOpt::None) { 949 bool AllPredsVisited = true; 950 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 951 PI != PE; ++PI) { 952 if (!FuncInfo->VisitedBBs.count(*PI)) { 953 AllPredsVisited = false; 954 break; 955 } 956 } 957 958 if (AllPredsVisited) { 959 for (BasicBlock::const_iterator I = LLVMBB->begin(); 960 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 961 FuncInfo->ComputePHILiveOutRegInfo(PN); 962 } else { 963 for (BasicBlock::const_iterator I = LLVMBB->begin(); 964 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 965 FuncInfo->InvalidatePHILiveOutRegInfo(PN); 966 } 967 968 FuncInfo->VisitedBBs.insert(LLVMBB); 969 } 970 971 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); 972 BasicBlock::const_iterator const End = LLVMBB->end(); 973 BasicBlock::const_iterator BI = End; 974 975 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 976 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 977 978 // Setup an EH landing-pad block. 979 FuncInfo->ExceptionPointerVirtReg = 0; 980 FuncInfo->ExceptionSelectorVirtReg = 0; 981 if (FuncInfo->MBB->isLandingPad()) 982 PrepareEHLandingPad(); 983 984 // Before doing SelectionDAG ISel, see if FastISel has been requested. 985 if (FastIS) { 986 FastIS->startNewBlock(); 987 988 // Emit code for any incoming arguments. This must happen before 989 // beginning FastISel on the entry block. 990 if (LLVMBB == &Fn.getEntryBlock()) { 991 ++NumEntryBlocks; 992 993 // Lower any arguments needed in this block if this is the entry block. 994 if (!FastIS->LowerArguments()) { 995 // Fast isel failed to lower these arguments 996 ++NumFastIselFailLowerArguments; 997 if (EnableFastISelAbortArgs) 998 llvm_unreachable("FastISel didn't lower all arguments"); 999 1000 // Use SelectionDAG argument lowering 1001 LowerArguments(Fn); 1002 CurDAG->setRoot(SDB->getControlRoot()); 1003 SDB->clear(); 1004 CodeGenAndEmitDAG(); 1005 } 1006 1007 // If we inserted any instructions at the beginning, make a note of 1008 // where they are, so we can be sure to emit subsequent instructions 1009 // after them. 1010 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1011 FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt)); 1012 else 1013 FastIS->setLastLocalValue(0); 1014 } 1015 1016 unsigned NumFastIselRemaining = std::distance(Begin, End); 1017 // Do FastISel on as many instructions as possible. 1018 for (; BI != Begin; --BI) { 1019 const Instruction *Inst = llvm::prior(BI); 1020 1021 // If we no longer require this instruction, skip it. 1022 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) { 1023 --NumFastIselRemaining; 1024 continue; 1025 } 1026 1027 // Bottom-up: reset the insert pos at the top, after any local-value 1028 // instructions. 1029 FastIS->recomputeInsertPt(); 1030 1031 // Try to select the instruction with FastISel. 1032 if (FastIS->SelectInstruction(Inst)) { 1033 --NumFastIselRemaining; 1034 ++NumFastIselSuccess; 1035 // If fast isel succeeded, skip over all the folded instructions, and 1036 // then see if there is a load right before the selected instructions. 1037 // Try to fold the load if so. 1038 const Instruction *BeforeInst = Inst; 1039 while (BeforeInst != Begin) { 1040 BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst)); 1041 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1042 break; 1043 } 1044 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1045 BeforeInst->hasOneUse() && 1046 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1047 // If we succeeded, don't re-select the load. 1048 BI = llvm::next(BasicBlock::const_iterator(BeforeInst)); 1049 --NumFastIselRemaining; 1050 ++NumFastIselSuccess; 1051 } 1052 continue; 1053 } 1054 1055 #ifndef NDEBUG 1056 if (EnableFastISelVerbose2) 1057 collectFailStats(Inst); 1058 #endif 1059 1060 // Then handle certain instructions as single-LLVM-Instruction blocks. 1061 if (isa<CallInst>(Inst)) { 1062 1063 if (EnableFastISelVerbose || EnableFastISelAbort) { 1064 dbgs() << "FastISel missed call: "; 1065 Inst->dump(); 1066 } 1067 1068 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) { 1069 unsigned &R = FuncInfo->ValueMap[Inst]; 1070 if (!R) 1071 R = FuncInfo->CreateRegs(Inst->getType()); 1072 } 1073 1074 bool HadTailCall = false; 1075 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1076 SelectBasicBlock(Inst, BI, HadTailCall); 1077 1078 // If the call was emitted as a tail call, we're done with the block. 1079 // We also need to delete any previously emitted instructions. 1080 if (HadTailCall) { 1081 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1082 --BI; 1083 break; 1084 } 1085 1086 // Recompute NumFastIselRemaining as Selection DAG instruction 1087 // selection may have handled the call, input args, etc. 1088 unsigned RemainingNow = std::distance(Begin, BI); 1089 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1090 NumFastIselRemaining = RemainingNow; 1091 continue; 1092 } 1093 1094 if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) { 1095 // Don't abort, and use a different message for terminator misses. 1096 NumFastIselFailures += NumFastIselRemaining; 1097 if (EnableFastISelVerbose || EnableFastISelAbort) { 1098 dbgs() << "FastISel missed terminator: "; 1099 Inst->dump(); 1100 } 1101 } else { 1102 NumFastIselFailures += NumFastIselRemaining; 1103 if (EnableFastISelVerbose || EnableFastISelAbort) { 1104 dbgs() << "FastISel miss: "; 1105 Inst->dump(); 1106 } 1107 if (EnableFastISelAbort) 1108 // The "fast" selector couldn't handle something and bailed. 1109 // For the purpose of debugging, just abort. 1110 llvm_unreachable("FastISel didn't select the entire block"); 1111 } 1112 break; 1113 } 1114 1115 FastIS->recomputeInsertPt(); 1116 } else { 1117 // Lower any arguments needed in this block if this is the entry block. 1118 if (LLVMBB == &Fn.getEntryBlock()) { 1119 ++NumEntryBlocks; 1120 LowerArguments(Fn); 1121 } 1122 } 1123 1124 if (Begin != BI) 1125 ++NumDAGBlocks; 1126 else 1127 ++NumFastIselBlocks; 1128 1129 if (Begin != BI) { 1130 // Run SelectionDAG instruction selection on the remainder of the block 1131 // not handled by FastISel. If FastISel is not run, this is the entire 1132 // block. 1133 bool HadTailCall; 1134 SelectBasicBlock(Begin, BI, HadTailCall); 1135 } 1136 1137 FinishBasicBlock(); 1138 FuncInfo->PHINodesToUpdate.clear(); 1139 } 1140 1141 delete FastIS; 1142 SDB->clearDanglingDebugInfo(); 1143 } 1144 1145 void 1146 SelectionDAGISel::FinishBasicBlock() { 1147 1148 DEBUG(dbgs() << "Total amount of phi nodes to update: " 1149 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1150 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) 1151 dbgs() << "Node " << i << " : (" 1152 << FuncInfo->PHINodesToUpdate[i].first 1153 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1154 1155 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1156 // PHI nodes in successors. 1157 if (SDB->SwitchCases.empty() && 1158 SDB->JTCases.empty() && 1159 SDB->BitTestCases.empty()) { 1160 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1161 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1162 assert(PHI->isPHI() && 1163 "This is not a machine PHI node that we are updating!"); 1164 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1165 continue; 1166 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1167 } 1168 return; 1169 } 1170 1171 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { 1172 // Lower header first, if it wasn't already lowered 1173 if (!SDB->BitTestCases[i].Emitted) { 1174 // Set the current basic block to the mbb we wish to insert the code into 1175 FuncInfo->MBB = SDB->BitTestCases[i].Parent; 1176 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1177 // Emit the code 1178 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); 1179 CurDAG->setRoot(SDB->getRoot()); 1180 SDB->clear(); 1181 CodeGenAndEmitDAG(); 1182 } 1183 1184 uint32_t UnhandledWeight = 0; 1185 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) 1186 UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight; 1187 1188 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { 1189 UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight; 1190 // Set the current basic block to the mbb we wish to insert the code into 1191 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1192 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1193 // Emit the code 1194 if (j+1 != ej) 1195 SDB->visitBitTestCase(SDB->BitTestCases[i], 1196 SDB->BitTestCases[i].Cases[j+1].ThisBB, 1197 UnhandledWeight, 1198 SDB->BitTestCases[i].Reg, 1199 SDB->BitTestCases[i].Cases[j], 1200 FuncInfo->MBB); 1201 else 1202 SDB->visitBitTestCase(SDB->BitTestCases[i], 1203 SDB->BitTestCases[i].Default, 1204 UnhandledWeight, 1205 SDB->BitTestCases[i].Reg, 1206 SDB->BitTestCases[i].Cases[j], 1207 FuncInfo->MBB); 1208 1209 1210 CurDAG->setRoot(SDB->getRoot()); 1211 SDB->clear(); 1212 CodeGenAndEmitDAG(); 1213 } 1214 1215 // Update PHI Nodes 1216 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1217 pi != pe; ++pi) { 1218 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1219 MachineBasicBlock *PHIBB = PHI->getParent(); 1220 assert(PHI->isPHI() && 1221 "This is not a machine PHI node that we are updating!"); 1222 // This is "default" BB. We have two jumps to it. From "header" BB and 1223 // from last "case" BB. 1224 if (PHIBB == SDB->BitTestCases[i].Default) 1225 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1226 .addMBB(SDB->BitTestCases[i].Parent) 1227 .addReg(FuncInfo->PHINodesToUpdate[pi].second) 1228 .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB); 1229 // One of "cases" BB. 1230 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); 1231 j != ej; ++j) { 1232 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1233 if (cBB->isSuccessor(PHIBB)) 1234 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1235 } 1236 } 1237 } 1238 SDB->BitTestCases.clear(); 1239 1240 // If the JumpTable record is filled in, then we need to emit a jump table. 1241 // Updating the PHI nodes is tricky in this case, since we need to determine 1242 // whether the PHI is a successor of the range check MBB or the jump table MBB 1243 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { 1244 // Lower header first, if it wasn't already lowered 1245 if (!SDB->JTCases[i].first.Emitted) { 1246 // Set the current basic block to the mbb we wish to insert the code into 1247 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; 1248 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1249 // Emit the code 1250 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, 1251 FuncInfo->MBB); 1252 CurDAG->setRoot(SDB->getRoot()); 1253 SDB->clear(); 1254 CodeGenAndEmitDAG(); 1255 } 1256 1257 // Set the current basic block to the mbb we wish to insert the code into 1258 FuncInfo->MBB = SDB->JTCases[i].second.MBB; 1259 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1260 // Emit the code 1261 SDB->visitJumpTable(SDB->JTCases[i].second); 1262 CurDAG->setRoot(SDB->getRoot()); 1263 SDB->clear(); 1264 CodeGenAndEmitDAG(); 1265 1266 // Update PHI Nodes 1267 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1268 pi != pe; ++pi) { 1269 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1270 MachineBasicBlock *PHIBB = PHI->getParent(); 1271 assert(PHI->isPHI() && 1272 "This is not a machine PHI node that we are updating!"); 1273 // "default" BB. We can go there only from header BB. 1274 if (PHIBB == SDB->JTCases[i].second.Default) 1275 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1276 .addMBB(SDB->JTCases[i].first.HeaderBB); 1277 // JT BB. Just iterate over successors here 1278 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1279 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1280 } 1281 } 1282 SDB->JTCases.clear(); 1283 1284 // If the switch block involved a branch to one of the actual successors, we 1285 // need to update PHI nodes in that block. 1286 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1287 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1288 assert(PHI->isPHI() && 1289 "This is not a machine PHI node that we are updating!"); 1290 if (FuncInfo->MBB->isSuccessor(PHI->getParent())) 1291 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1292 } 1293 1294 // If we generated any switch lowering information, build and codegen any 1295 // additional DAGs necessary. 1296 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { 1297 // Set the current basic block to the mbb we wish to insert the code into 1298 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; 1299 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1300 1301 // Determine the unique successors. 1302 SmallVector<MachineBasicBlock *, 2> Succs; 1303 Succs.push_back(SDB->SwitchCases[i].TrueBB); 1304 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) 1305 Succs.push_back(SDB->SwitchCases[i].FalseBB); 1306 1307 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1308 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); 1309 CurDAG->setRoot(SDB->getRoot()); 1310 SDB->clear(); 1311 CodeGenAndEmitDAG(); 1312 1313 // Remember the last block, now that any splitting is done, for use in 1314 // populating PHI nodes in successors. 1315 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1316 1317 // Handle any PHI nodes in successors of this chunk, as if we were coming 1318 // from the original BB before switch expansion. Note that PHI nodes can 1319 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1320 // handle them the right number of times. 1321 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1322 FuncInfo->MBB = Succs[i]; 1323 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1324 // FuncInfo->MBB may have been removed from the CFG if a branch was 1325 // constant folded. 1326 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1327 for (MachineBasicBlock::iterator 1328 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1329 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1330 MachineInstrBuilder PHI(*MF, MBBI); 1331 // This value for this PHI node is recorded in PHINodesToUpdate. 1332 for (unsigned pn = 0; ; ++pn) { 1333 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1334 "Didn't find PHI entry!"); 1335 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1336 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1337 break; 1338 } 1339 } 1340 } 1341 } 1342 } 1343 } 1344 SDB->SwitchCases.clear(); 1345 } 1346 1347 1348 /// Create the scheduler. If a specific scheduler was specified 1349 /// via the SchedulerRegistry, use it, otherwise select the 1350 /// one preferred by the target. 1351 /// 1352 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1353 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); 1354 1355 if (!Ctor) { 1356 Ctor = ISHeuristic; 1357 RegisterScheduler::setDefault(Ctor); 1358 } 1359 1360 return Ctor(this, OptLevel); 1361 } 1362 1363 //===----------------------------------------------------------------------===// 1364 // Helper functions used by the generated instruction selector. 1365 //===----------------------------------------------------------------------===// 1366 // Calls to these methods are generated by tblgen. 1367 1368 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1369 /// the dag combiner simplified the 255, we still want to match. RHS is the 1370 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1371 /// specified in the .td file (e.g. 255). 1372 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1373 int64_t DesiredMaskS) const { 1374 const APInt &ActualMask = RHS->getAPIntValue(); 1375 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1376 1377 // If the actual mask exactly matches, success! 1378 if (ActualMask == DesiredMask) 1379 return true; 1380 1381 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1382 if (ActualMask.intersects(~DesiredMask)) 1383 return false; 1384 1385 // Otherwise, the DAG Combiner may have proven that the value coming in is 1386 // either already zero or is not demanded. Check for known zero input bits. 1387 APInt NeededMask = DesiredMask & ~ActualMask; 1388 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1389 return true; 1390 1391 // TODO: check to see if missing bits are just not demanded. 1392 1393 // Otherwise, this pattern doesn't match. 1394 return false; 1395 } 1396 1397 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1398 /// the dag combiner simplified the 255, we still want to match. RHS is the 1399 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1400 /// specified in the .td file (e.g. 255). 1401 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1402 int64_t DesiredMaskS) const { 1403 const APInt &ActualMask = RHS->getAPIntValue(); 1404 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1405 1406 // If the actual mask exactly matches, success! 1407 if (ActualMask == DesiredMask) 1408 return true; 1409 1410 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1411 if (ActualMask.intersects(~DesiredMask)) 1412 return false; 1413 1414 // Otherwise, the DAG Combiner may have proven that the value coming in is 1415 // either already zero or is not demanded. Check for known zero input bits. 1416 APInt NeededMask = DesiredMask & ~ActualMask; 1417 1418 APInt KnownZero, KnownOne; 1419 CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne); 1420 1421 // If all the missing bits in the or are already known to be set, match! 1422 if ((NeededMask & KnownOne) == NeededMask) 1423 return true; 1424 1425 // TODO: check to see if missing bits are just not demanded. 1426 1427 // Otherwise, this pattern doesn't match. 1428 return false; 1429 } 1430 1431 1432 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1433 /// by tblgen. Others should not call it. 1434 void SelectionDAGISel:: 1435 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { 1436 std::vector<SDValue> InOps; 1437 std::swap(InOps, Ops); 1438 1439 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1440 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1441 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1442 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1443 1444 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1445 if (InOps[e-1].getValueType() == MVT::Glue) 1446 --e; // Don't process a glue operand if it is here. 1447 1448 while (i != e) { 1449 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 1450 if (!InlineAsm::isMemKind(Flags)) { 1451 // Just skip over this operand, copying the operands verbatim. 1452 Ops.insert(Ops.end(), InOps.begin()+i, 1453 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 1454 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 1455 } else { 1456 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 1457 "Memory operand with multiple values?"); 1458 // Otherwise, this is a memory operand. Ask the target to select it. 1459 std::vector<SDValue> SelOps; 1460 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) 1461 report_fatal_error("Could not match memory address. Inline asm" 1462 " failure!"); 1463 1464 // Add this to the output node. 1465 unsigned NewFlags = 1466 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 1467 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); 1468 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 1469 i += 2; 1470 } 1471 } 1472 1473 // Add the glue input back if present. 1474 if (e != InOps.size()) 1475 Ops.push_back(InOps.back()); 1476 } 1477 1478 /// findGlueUse - Return use of MVT::Glue value produced by the specified 1479 /// SDNode. 1480 /// 1481 static SDNode *findGlueUse(SDNode *N) { 1482 unsigned FlagResNo = N->getNumValues()-1; 1483 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1484 SDUse &Use = I.getUse(); 1485 if (Use.getResNo() == FlagResNo) 1486 return Use.getUser(); 1487 } 1488 return NULL; 1489 } 1490 1491 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". 1492 /// This function recursively traverses up the operand chain, ignoring 1493 /// certain nodes. 1494 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, 1495 SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, 1496 bool IgnoreChains) { 1497 // The NodeID's are given uniques ID's where a node ID is guaranteed to be 1498 // greater than all of its (recursive) operands. If we scan to a point where 1499 // 'use' is smaller than the node we're scanning for, then we know we will 1500 // never find it. 1501 // 1502 // The Use may be -1 (unassigned) if it is a newly allocated node. This can 1503 // happen because we scan down to newly selected nodes in the case of glue 1504 // uses. 1505 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) 1506 return false; 1507 1508 // Don't revisit nodes if we already scanned it and didn't fail, we know we 1509 // won't fail if we scan it again. 1510 if (!Visited.insert(Use)) 1511 return false; 1512 1513 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { 1514 // Ignore chain uses, they are validated by HandleMergeInputChains. 1515 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) 1516 continue; 1517 1518 SDNode *N = Use->getOperand(i).getNode(); 1519 if (N == Def) { 1520 if (Use == ImmedUse || Use == Root) 1521 continue; // We are not looking for immediate use. 1522 assert(N != Root); 1523 return true; 1524 } 1525 1526 // Traverse up the operand chain. 1527 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) 1528 return true; 1529 } 1530 return false; 1531 } 1532 1533 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 1534 /// operand node N of U during instruction selection that starts at Root. 1535 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 1536 SDNode *Root) const { 1537 if (OptLevel == CodeGenOpt::None) return false; 1538 return N.hasOneUse(); 1539 } 1540 1541 /// IsLegalToFold - Returns true if the specific operand node N of 1542 /// U can be folded during instruction selection that starts at Root. 1543 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 1544 CodeGenOpt::Level OptLevel, 1545 bool IgnoreChains) { 1546 if (OptLevel == CodeGenOpt::None) return false; 1547 1548 // If Root use can somehow reach N through a path that that doesn't contain 1549 // U then folding N would create a cycle. e.g. In the following 1550 // diagram, Root can reach N through X. If N is folded into into Root, then 1551 // X is both a predecessor and a successor of U. 1552 // 1553 // [N*] // 1554 // ^ ^ // 1555 // / \ // 1556 // [U*] [X]? // 1557 // ^ ^ // 1558 // \ / // 1559 // \ / // 1560 // [Root*] // 1561 // 1562 // * indicates nodes to be folded together. 1563 // 1564 // If Root produces glue, then it gets (even more) interesting. Since it 1565 // will be "glued" together with its glue use in the scheduler, we need to 1566 // check if it might reach N. 1567 // 1568 // [N*] // 1569 // ^ ^ // 1570 // / \ // 1571 // [U*] [X]? // 1572 // ^ ^ // 1573 // \ \ // 1574 // \ | // 1575 // [Root*] | // 1576 // ^ | // 1577 // f | // 1578 // | / // 1579 // [Y] / // 1580 // ^ / // 1581 // f / // 1582 // | / // 1583 // [GU] // 1584 // 1585 // If GU (glue use) indirectly reaches N (the load), and Root folds N 1586 // (call it Fold), then X is a predecessor of GU and a successor of 1587 // Fold. But since Fold and GU are glued together, this will create 1588 // a cycle in the scheduling graph. 1589 1590 // If the node has glue, walk down the graph to the "lowest" node in the 1591 // glueged set. 1592 EVT VT = Root->getValueType(Root->getNumValues()-1); 1593 while (VT == MVT::Glue) { 1594 SDNode *GU = findGlueUse(Root); 1595 if (GU == NULL) 1596 break; 1597 Root = GU; 1598 VT = Root->getValueType(Root->getNumValues()-1); 1599 1600 // If our query node has a glue result with a use, we've walked up it. If 1601 // the user (which has already been selected) has a chain or indirectly uses 1602 // the chain, our WalkChainUsers predicate will not consider it. Because of 1603 // this, we cannot ignore chains in this predicate. 1604 IgnoreChains = false; 1605 } 1606 1607 1608 SmallPtrSet<SDNode*, 16> Visited; 1609 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); 1610 } 1611 1612 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { 1613 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 1614 SelectInlineAsmMemoryOperands(Ops); 1615 1616 EVT VTs[] = { MVT::Other, MVT::Glue }; 1617 SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N), 1618 VTs, &Ops[0], Ops.size()); 1619 New->setNodeId(-1); 1620 return New.getNode(); 1621 } 1622 1623 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { 1624 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); 1625 } 1626 1627 /// GetVBR - decode a vbr encoding whose top bit is set. 1628 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 1629 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 1630 assert(Val >= 128 && "Not a VBR"); 1631 Val &= 127; // Remove first vbr bit. 1632 1633 unsigned Shift = 7; 1634 uint64_t NextBits; 1635 do { 1636 NextBits = MatcherTable[Idx++]; 1637 Val |= (NextBits&127) << Shift; 1638 Shift += 7; 1639 } while (NextBits & 128); 1640 1641 return Val; 1642 } 1643 1644 1645 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of 1646 /// interior glue and chain results to use the new glue and chain results. 1647 void SelectionDAGISel:: 1648 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, 1649 const SmallVectorImpl<SDNode*> &ChainNodesMatched, 1650 SDValue InputGlue, 1651 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, 1652 bool isMorphNodeTo) { 1653 SmallVector<SDNode*, 4> NowDeadNodes; 1654 1655 // Now that all the normal results are replaced, we replace the chain and 1656 // glue results if present. 1657 if (!ChainNodesMatched.empty()) { 1658 assert(InputChain.getNode() != 0 && 1659 "Matched input chains but didn't produce a chain"); 1660 // Loop over all of the nodes we matched that produced a chain result. 1661 // Replace all the chain results with the final chain we ended up with. 1662 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1663 SDNode *ChainNode = ChainNodesMatched[i]; 1664 1665 // If this node was already deleted, don't look at it. 1666 if (ChainNode->getOpcode() == ISD::DELETED_NODE) 1667 continue; 1668 1669 // Don't replace the results of the root node if we're doing a 1670 // MorphNodeTo. 1671 if (ChainNode == NodeToMatch && isMorphNodeTo) 1672 continue; 1673 1674 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 1675 if (ChainVal.getValueType() == MVT::Glue) 1676 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 1677 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 1678 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); 1679 1680 // If the node became dead and we haven't already seen it, delete it. 1681 if (ChainNode->use_empty() && 1682 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 1683 NowDeadNodes.push_back(ChainNode); 1684 } 1685 } 1686 1687 // If the result produces glue, update any glue results in the matched 1688 // pattern with the glue result. 1689 if (InputGlue.getNode() != 0) { 1690 // Handle any interior nodes explicitly marked. 1691 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { 1692 SDNode *FRN = GlueResultNodesMatched[i]; 1693 1694 // If this node was already deleted, don't look at it. 1695 if (FRN->getOpcode() == ISD::DELETED_NODE) 1696 continue; 1697 1698 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && 1699 "Doesn't have a glue result"); 1700 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), 1701 InputGlue); 1702 1703 // If the node became dead and we haven't already seen it, delete it. 1704 if (FRN->use_empty() && 1705 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) 1706 NowDeadNodes.push_back(FRN); 1707 } 1708 } 1709 1710 if (!NowDeadNodes.empty()) 1711 CurDAG->RemoveDeadNodes(NowDeadNodes); 1712 1713 DEBUG(dbgs() << "ISEL: Match complete!\n"); 1714 } 1715 1716 enum ChainResult { 1717 CR_Simple, 1718 CR_InducesCycle, 1719 CR_LeadsToInteriorNode 1720 }; 1721 1722 /// WalkChainUsers - Walk down the users of the specified chained node that is 1723 /// part of the pattern we're matching, looking at all of the users we find. 1724 /// This determines whether something is an interior node, whether we have a 1725 /// non-pattern node in between two pattern nodes (which prevent folding because 1726 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched 1727 /// between pattern nodes (in which case the TF becomes part of the pattern). 1728 /// 1729 /// The walk we do here is guaranteed to be small because we quickly get down to 1730 /// already selected nodes "below" us. 1731 static ChainResult 1732 WalkChainUsers(const SDNode *ChainedNode, 1733 SmallVectorImpl<SDNode*> &ChainedNodesInPattern, 1734 SmallVectorImpl<SDNode*> &InteriorChainedNodes) { 1735 ChainResult Result = CR_Simple; 1736 1737 for (SDNode::use_iterator UI = ChainedNode->use_begin(), 1738 E = ChainedNode->use_end(); UI != E; ++UI) { 1739 // Make sure the use is of the chain, not some other value we produce. 1740 if (UI.getUse().getValueType() != MVT::Other) continue; 1741 1742 SDNode *User = *UI; 1743 1744 // If we see an already-selected machine node, then we've gone beyond the 1745 // pattern that we're selecting down into the already selected chunk of the 1746 // DAG. 1747 if (User->isMachineOpcode() || 1748 User->getOpcode() == ISD::HANDLENODE) // Root of the graph. 1749 continue; 1750 1751 unsigned UserOpcode = User->getOpcode(); 1752 if (UserOpcode == ISD::CopyToReg || 1753 UserOpcode == ISD::CopyFromReg || 1754 UserOpcode == ISD::INLINEASM || 1755 UserOpcode == ISD::EH_LABEL || 1756 UserOpcode == ISD::LIFETIME_START || 1757 UserOpcode == ISD::LIFETIME_END) { 1758 // If their node ID got reset to -1 then they've already been selected. 1759 // Treat them like a MachineOpcode. 1760 if (User->getNodeId() == -1) 1761 continue; 1762 } 1763 1764 // If we have a TokenFactor, we handle it specially. 1765 if (User->getOpcode() != ISD::TokenFactor) { 1766 // If the node isn't a token factor and isn't part of our pattern, then it 1767 // must be a random chained node in between two nodes we're selecting. 1768 // This happens when we have something like: 1769 // x = load ptr 1770 // call 1771 // y = x+4 1772 // store y -> ptr 1773 // Because we structurally match the load/store as a read/modify/write, 1774 // but the call is chained between them. We cannot fold in this case 1775 // because it would induce a cycle in the graph. 1776 if (!std::count(ChainedNodesInPattern.begin(), 1777 ChainedNodesInPattern.end(), User)) 1778 return CR_InducesCycle; 1779 1780 // Otherwise we found a node that is part of our pattern. For example in: 1781 // x = load ptr 1782 // y = x+4 1783 // store y -> ptr 1784 // This would happen when we're scanning down from the load and see the 1785 // store as a user. Record that there is a use of ChainedNode that is 1786 // part of the pattern and keep scanning uses. 1787 Result = CR_LeadsToInteriorNode; 1788 InteriorChainedNodes.push_back(User); 1789 continue; 1790 } 1791 1792 // If we found a TokenFactor, there are two cases to consider: first if the 1793 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no 1794 // uses of the TF are in our pattern) we just want to ignore it. Second, 1795 // the TokenFactor can be sandwiched in between two chained nodes, like so: 1796 // [Load chain] 1797 // ^ 1798 // | 1799 // [Load] 1800 // ^ ^ 1801 // | \ DAG's like cheese 1802 // / \ do you? 1803 // / | 1804 // [TokenFactor] [Op] 1805 // ^ ^ 1806 // | | 1807 // \ / 1808 // \ / 1809 // [Store] 1810 // 1811 // In this case, the TokenFactor becomes part of our match and we rewrite it 1812 // as a new TokenFactor. 1813 // 1814 // To distinguish these two cases, do a recursive walk down the uses. 1815 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { 1816 case CR_Simple: 1817 // If the uses of the TokenFactor are just already-selected nodes, ignore 1818 // it, it is "below" our pattern. 1819 continue; 1820 case CR_InducesCycle: 1821 // If the uses of the TokenFactor lead to nodes that are not part of our 1822 // pattern that are not selected, folding would turn this into a cycle, 1823 // bail out now. 1824 return CR_InducesCycle; 1825 case CR_LeadsToInteriorNode: 1826 break; // Otherwise, keep processing. 1827 } 1828 1829 // Okay, we know we're in the interesting interior case. The TokenFactor 1830 // is now going to be considered part of the pattern so that we rewrite its 1831 // uses (it may have uses that are not part of the pattern) with the 1832 // ultimate chain result of the generated code. We will also add its chain 1833 // inputs as inputs to the ultimate TokenFactor we create. 1834 Result = CR_LeadsToInteriorNode; 1835 ChainedNodesInPattern.push_back(User); 1836 InteriorChainedNodes.push_back(User); 1837 continue; 1838 } 1839 1840 return Result; 1841 } 1842 1843 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 1844 /// operation for when the pattern matched at least one node with a chains. The 1845 /// input vector contains a list of all of the chained nodes that we match. We 1846 /// must determine if this is a valid thing to cover (i.e. matching it won't 1847 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 1848 /// be used as the input node chain for the generated nodes. 1849 static SDValue 1850 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 1851 SelectionDAG *CurDAG) { 1852 // Walk all of the chained nodes we've matched, recursively scanning down the 1853 // users of the chain result. This adds any TokenFactor nodes that are caught 1854 // in between chained nodes to the chained and interior nodes list. 1855 SmallVector<SDNode*, 3> InteriorChainedNodes; 1856 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1857 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, 1858 InteriorChainedNodes) == CR_InducesCycle) 1859 return SDValue(); // Would induce a cycle. 1860 } 1861 1862 // Okay, we have walked all the matched nodes and collected TokenFactor nodes 1863 // that we are interested in. Form our input TokenFactor node. 1864 SmallVector<SDValue, 3> InputChains; 1865 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1866 // Add the input chain of this node to the InputChains list (which will be 1867 // the operands of the generated TokenFactor) if it's not an interior node. 1868 SDNode *N = ChainNodesMatched[i]; 1869 if (N->getOpcode() != ISD::TokenFactor) { 1870 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) 1871 continue; 1872 1873 // Otherwise, add the input chain. 1874 SDValue InChain = ChainNodesMatched[i]->getOperand(0); 1875 assert(InChain.getValueType() == MVT::Other && "Not a chain"); 1876 InputChains.push_back(InChain); 1877 continue; 1878 } 1879 1880 // If we have a token factor, we want to add all inputs of the token factor 1881 // that are not part of the pattern we're matching. 1882 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { 1883 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), 1884 N->getOperand(op).getNode())) 1885 InputChains.push_back(N->getOperand(op)); 1886 } 1887 } 1888 1889 SDValue Res; 1890 if (InputChains.size() == 1) 1891 return InputChains[0]; 1892 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 1893 MVT::Other, &InputChains[0], InputChains.size()); 1894 } 1895 1896 /// MorphNode - Handle morphing a node in place for the selector. 1897 SDNode *SelectionDAGISel:: 1898 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 1899 const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { 1900 // It is possible we're using MorphNodeTo to replace a node with no 1901 // normal results with one that has a normal result (or we could be 1902 // adding a chain) and the input could have glue and chains as well. 1903 // In this case we need to shift the operands down. 1904 // FIXME: This is a horrible hack and broken in obscure cases, no worse 1905 // than the old isel though. 1906 int OldGlueResultNo = -1, OldChainResultNo = -1; 1907 1908 unsigned NTMNumResults = Node->getNumValues(); 1909 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 1910 OldGlueResultNo = NTMNumResults-1; 1911 if (NTMNumResults != 1 && 1912 Node->getValueType(NTMNumResults-2) == MVT::Other) 1913 OldChainResultNo = NTMNumResults-2; 1914 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 1915 OldChainResultNo = NTMNumResults-1; 1916 1917 // Call the underlying SelectionDAG routine to do the transmogrification. Note 1918 // that this deletes operands of the old node that become dead. 1919 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); 1920 1921 // MorphNodeTo can operate in two ways: if an existing node with the 1922 // specified operands exists, it can just return it. Otherwise, it 1923 // updates the node in place to have the requested operands. 1924 if (Res == Node) { 1925 // If we updated the node in place, reset the node ID. To the isel, 1926 // this should be just like a newly allocated machine node. 1927 Res->setNodeId(-1); 1928 } 1929 1930 unsigned ResNumResults = Res->getNumValues(); 1931 // Move the glue if needed. 1932 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 1933 (unsigned)OldGlueResultNo != ResNumResults-1) 1934 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), 1935 SDValue(Res, ResNumResults-1)); 1936 1937 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 1938 --ResNumResults; 1939 1940 // Move the chain reference if needed. 1941 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 1942 (unsigned)OldChainResultNo != ResNumResults-1) 1943 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), 1944 SDValue(Res, ResNumResults-1)); 1945 1946 // Otherwise, no replacement happened because the node already exists. Replace 1947 // Uses of the old node with the new one. 1948 if (Res != Node) 1949 CurDAG->ReplaceAllUsesWith(Node, Res); 1950 1951 return Res; 1952 } 1953 1954 /// CheckSame - Implements OP_CheckSame. 1955 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1956 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1957 SDValue N, 1958 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 1959 // Accept if it is exactly the same as a previously recorded node. 1960 unsigned RecNo = MatcherTable[MatcherIndex++]; 1961 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 1962 return N == RecordedNodes[RecNo].first; 1963 } 1964 1965 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 1966 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1967 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1968 const SelectionDAGISel &SDISel) { 1969 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 1970 } 1971 1972 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 1973 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1974 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1975 const SelectionDAGISel &SDISel, SDNode *N) { 1976 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 1977 } 1978 1979 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1980 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1981 SDNode *N) { 1982 uint16_t Opc = MatcherTable[MatcherIndex++]; 1983 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 1984 return N->getOpcode() == Opc; 1985 } 1986 1987 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1988 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1989 SDValue N, const TargetLowering *TLI) { 1990 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 1991 if (N.getValueType() == VT) return true; 1992 1993 // Handle the case when VT is iPTR. 1994 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(); 1995 } 1996 1997 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 1998 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 1999 SDValue N, const TargetLowering *TLI, 2000 unsigned ChildNo) { 2001 if (ChildNo >= N.getNumOperands()) 2002 return false; // Match fails if out of range child #. 2003 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); 2004 } 2005 2006 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2007 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2008 SDValue N) { 2009 return cast<CondCodeSDNode>(N)->get() == 2010 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2011 } 2012 2013 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2014 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2015 SDValue N, const TargetLowering *TLI) { 2016 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2017 if (cast<VTSDNode>(N)->getVT() == VT) 2018 return true; 2019 2020 // Handle the case when VT is iPTR. 2021 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(); 2022 } 2023 2024 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2025 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2026 SDValue N) { 2027 int64_t Val = MatcherTable[MatcherIndex++]; 2028 if (Val & 128) 2029 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2030 2031 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2032 return C != 0 && C->getSExtValue() == Val; 2033 } 2034 2035 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2036 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2037 SDValue N, const SelectionDAGISel &SDISel) { 2038 int64_t Val = MatcherTable[MatcherIndex++]; 2039 if (Val & 128) 2040 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2041 2042 if (N->getOpcode() != ISD::AND) return false; 2043 2044 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2045 return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2046 } 2047 2048 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2049 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2050 SDValue N, const SelectionDAGISel &SDISel) { 2051 int64_t Val = MatcherTable[MatcherIndex++]; 2052 if (Val & 128) 2053 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2054 2055 if (N->getOpcode() != ISD::OR) return false; 2056 2057 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2058 return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2059 } 2060 2061 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2062 /// scope, evaluate the current node. If the current predicate is known to 2063 /// fail, set Result=true and return anything. If the current predicate is 2064 /// known to pass, set Result=false and return the MatcherIndex to continue 2065 /// with. If the current predicate is unknown, set Result=false and return the 2066 /// MatcherIndex to continue with. 2067 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2068 unsigned Index, SDValue N, 2069 bool &Result, 2070 const SelectionDAGISel &SDISel, 2071 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2072 switch (Table[Index++]) { 2073 default: 2074 Result = false; 2075 return Index-1; // Could not evaluate this predicate. 2076 case SelectionDAGISel::OPC_CheckSame: 2077 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2078 return Index; 2079 case SelectionDAGISel::OPC_CheckPatternPredicate: 2080 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2081 return Index; 2082 case SelectionDAGISel::OPC_CheckPredicate: 2083 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2084 return Index; 2085 case SelectionDAGISel::OPC_CheckOpcode: 2086 Result = !::CheckOpcode(Table, Index, N.getNode()); 2087 return Index; 2088 case SelectionDAGISel::OPC_CheckType: 2089 Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering()); 2090 return Index; 2091 case SelectionDAGISel::OPC_CheckChild0Type: 2092 case SelectionDAGISel::OPC_CheckChild1Type: 2093 case SelectionDAGISel::OPC_CheckChild2Type: 2094 case SelectionDAGISel::OPC_CheckChild3Type: 2095 case SelectionDAGISel::OPC_CheckChild4Type: 2096 case SelectionDAGISel::OPC_CheckChild5Type: 2097 case SelectionDAGISel::OPC_CheckChild6Type: 2098 case SelectionDAGISel::OPC_CheckChild7Type: 2099 Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(), 2100 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); 2101 return Index; 2102 case SelectionDAGISel::OPC_CheckCondCode: 2103 Result = !::CheckCondCode(Table, Index, N); 2104 return Index; 2105 case SelectionDAGISel::OPC_CheckValueType: 2106 Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering()); 2107 return Index; 2108 case SelectionDAGISel::OPC_CheckInteger: 2109 Result = !::CheckInteger(Table, Index, N); 2110 return Index; 2111 case SelectionDAGISel::OPC_CheckAndImm: 2112 Result = !::CheckAndImm(Table, Index, N, SDISel); 2113 return Index; 2114 case SelectionDAGISel::OPC_CheckOrImm: 2115 Result = !::CheckOrImm(Table, Index, N, SDISel); 2116 return Index; 2117 } 2118 } 2119 2120 namespace { 2121 2122 struct MatchScope { 2123 /// FailIndex - If this match fails, this is the index to continue with. 2124 unsigned FailIndex; 2125 2126 /// NodeStack - The node stack when the scope was formed. 2127 SmallVector<SDValue, 4> NodeStack; 2128 2129 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2130 unsigned NumRecordedNodes; 2131 2132 /// NumMatchedMemRefs - The number of matched memref entries. 2133 unsigned NumMatchedMemRefs; 2134 2135 /// InputChain/InputGlue - The current chain/glue 2136 SDValue InputChain, InputGlue; 2137 2138 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2139 bool HasChainNodesMatched, HasGlueResultNodesMatched; 2140 }; 2141 2142 } 2143 2144 SDNode *SelectionDAGISel:: 2145 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, 2146 unsigned TableSize) { 2147 // FIXME: Should these even be selected? Handle these cases in the caller? 2148 switch (NodeToMatch->getOpcode()) { 2149 default: 2150 break; 2151 case ISD::EntryToken: // These nodes remain the same. 2152 case ISD::BasicBlock: 2153 case ISD::Register: 2154 case ISD::RegisterMask: 2155 //case ISD::VALUETYPE: 2156 //case ISD::CONDCODE: 2157 case ISD::HANDLENODE: 2158 case ISD::MDNODE_SDNODE: 2159 case ISD::TargetConstant: 2160 case ISD::TargetConstantFP: 2161 case ISD::TargetConstantPool: 2162 case ISD::TargetFrameIndex: 2163 case ISD::TargetExternalSymbol: 2164 case ISD::TargetBlockAddress: 2165 case ISD::TargetJumpTable: 2166 case ISD::TargetGlobalTLSAddress: 2167 case ISD::TargetGlobalAddress: 2168 case ISD::TokenFactor: 2169 case ISD::CopyFromReg: 2170 case ISD::CopyToReg: 2171 case ISD::EH_LABEL: 2172 case ISD::LIFETIME_START: 2173 case ISD::LIFETIME_END: 2174 NodeToMatch->setNodeId(-1); // Mark selected. 2175 return 0; 2176 case ISD::AssertSext: 2177 case ISD::AssertZext: 2178 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), 2179 NodeToMatch->getOperand(0)); 2180 return 0; 2181 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); 2182 case ISD::UNDEF: return Select_UNDEF(NodeToMatch); 2183 } 2184 2185 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2186 2187 // Set up the node stack with NodeToMatch as the only node on the stack. 2188 SmallVector<SDValue, 8> NodeStack; 2189 SDValue N = SDValue(NodeToMatch, 0); 2190 NodeStack.push_back(N); 2191 2192 // MatchScopes - Scopes used when matching, if a match failure happens, this 2193 // indicates where to continue checking. 2194 SmallVector<MatchScope, 8> MatchScopes; 2195 2196 // RecordedNodes - This is the set of nodes that have been recorded by the 2197 // state machine. The second value is the parent of the node, or null if the 2198 // root is recorded. 2199 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2200 2201 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2202 // pattern. 2203 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2204 2205 // These are the current input chain and glue for use when generating nodes. 2206 // Various Emit operations change these. For example, emitting a copytoreg 2207 // uses and updates these. 2208 SDValue InputChain, InputGlue; 2209 2210 // ChainNodesMatched - If a pattern matches nodes that have input/output 2211 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2212 // which ones they are. The result is captured into this list so that we can 2213 // update the chain results when the pattern is complete. 2214 SmallVector<SDNode*, 3> ChainNodesMatched; 2215 SmallVector<SDNode*, 3> GlueResultNodesMatched; 2216 2217 DEBUG(dbgs() << "ISEL: Starting pattern match on root node: "; 2218 NodeToMatch->dump(CurDAG); 2219 dbgs() << '\n'); 2220 2221 // Determine where to start the interpreter. Normally we start at opcode #0, 2222 // but if the state machine starts with an OPC_SwitchOpcode, then we 2223 // accelerate the first lookup (which is guaranteed to be hot) with the 2224 // OpcodeOffset table. 2225 unsigned MatcherIndex = 0; 2226 2227 if (!OpcodeOffset.empty()) { 2228 // Already computed the OpcodeOffset table, just index into it. 2229 if (N.getOpcode() < OpcodeOffset.size()) 2230 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2231 DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2232 2233 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2234 // Otherwise, the table isn't computed, but the state machine does start 2235 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2236 // is the first time we're selecting an instruction. 2237 unsigned Idx = 1; 2238 while (1) { 2239 // Get the size of this case. 2240 unsigned CaseSize = MatcherTable[Idx++]; 2241 if (CaseSize & 128) 2242 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2243 if (CaseSize == 0) break; 2244 2245 // Get the opcode, add the index to the table. 2246 uint16_t Opc = MatcherTable[Idx++]; 2247 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2248 if (Opc >= OpcodeOffset.size()) 2249 OpcodeOffset.resize((Opc+1)*2); 2250 OpcodeOffset[Opc] = Idx; 2251 Idx += CaseSize; 2252 } 2253 2254 // Okay, do the lookup for the first opcode. 2255 if (N.getOpcode() < OpcodeOffset.size()) 2256 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2257 } 2258 2259 while (1) { 2260 assert(MatcherIndex < TableSize && "Invalid index"); 2261 #ifndef NDEBUG 2262 unsigned CurrentOpcodeIndex = MatcherIndex; 2263 #endif 2264 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2265 switch (Opcode) { 2266 case OPC_Scope: { 2267 // Okay, the semantics of this operation are that we should push a scope 2268 // then evaluate the first child. However, pushing a scope only to have 2269 // the first check fail (which then pops it) is inefficient. If we can 2270 // determine immediately that the first check (or first several) will 2271 // immediately fail, don't even bother pushing a scope for them. 2272 unsigned FailIndex; 2273 2274 while (1) { 2275 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2276 if (NumToSkip & 128) 2277 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2278 // Found the end of the scope with no match. 2279 if (NumToSkip == 0) { 2280 FailIndex = 0; 2281 break; 2282 } 2283 2284 FailIndex = MatcherIndex+NumToSkip; 2285 2286 unsigned MatcherIndexOfPredicate = MatcherIndex; 2287 (void)MatcherIndexOfPredicate; // silence warning. 2288 2289 // If we can't evaluate this predicate without pushing a scope (e.g. if 2290 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2291 // push the scope and evaluate the full predicate chain. 2292 bool Result; 2293 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2294 Result, *this, RecordedNodes); 2295 if (!Result) 2296 break; 2297 2298 DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at " 2299 << "index " << MatcherIndexOfPredicate 2300 << ", continuing at " << FailIndex << "\n"); 2301 ++NumDAGIselRetries; 2302 2303 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2304 // move to the next case. 2305 MatcherIndex = FailIndex; 2306 } 2307 2308 // If the whole scope failed to match, bail. 2309 if (FailIndex == 0) break; 2310 2311 // Push a MatchScope which indicates where to go if the first child fails 2312 // to match. 2313 MatchScope NewEntry; 2314 NewEntry.FailIndex = FailIndex; 2315 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2316 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2317 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2318 NewEntry.InputChain = InputChain; 2319 NewEntry.InputGlue = InputGlue; 2320 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2321 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); 2322 MatchScopes.push_back(NewEntry); 2323 continue; 2324 } 2325 case OPC_RecordNode: { 2326 // Remember this node, it may end up being an operand in the pattern. 2327 SDNode *Parent = 0; 2328 if (NodeStack.size() > 1) 2329 Parent = NodeStack[NodeStack.size()-2].getNode(); 2330 RecordedNodes.push_back(std::make_pair(N, Parent)); 2331 continue; 2332 } 2333 2334 case OPC_RecordChild0: case OPC_RecordChild1: 2335 case OPC_RecordChild2: case OPC_RecordChild3: 2336 case OPC_RecordChild4: case OPC_RecordChild5: 2337 case OPC_RecordChild6: case OPC_RecordChild7: { 2338 unsigned ChildNo = Opcode-OPC_RecordChild0; 2339 if (ChildNo >= N.getNumOperands()) 2340 break; // Match fails if out of range child #. 2341 2342 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2343 N.getNode())); 2344 continue; 2345 } 2346 case OPC_RecordMemRef: 2347 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); 2348 continue; 2349 2350 case OPC_CaptureGlueInput: 2351 // If the current node has an input glue, capture it in InputGlue. 2352 if (N->getNumOperands() != 0 && 2353 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2354 InputGlue = N->getOperand(N->getNumOperands()-1); 2355 continue; 2356 2357 case OPC_MoveChild: { 2358 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2359 if (ChildNo >= N.getNumOperands()) 2360 break; // Match fails if out of range child #. 2361 N = N.getOperand(ChildNo); 2362 NodeStack.push_back(N); 2363 continue; 2364 } 2365 2366 case OPC_MoveParent: 2367 // Pop the current node off the NodeStack. 2368 NodeStack.pop_back(); 2369 assert(!NodeStack.empty() && "Node stack imbalance!"); 2370 N = NodeStack.back(); 2371 continue; 2372 2373 case OPC_CheckSame: 2374 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2375 continue; 2376 case OPC_CheckPatternPredicate: 2377 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 2378 continue; 2379 case OPC_CheckPredicate: 2380 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 2381 N.getNode())) 2382 break; 2383 continue; 2384 case OPC_CheckComplexPat: { 2385 unsigned CPNum = MatcherTable[MatcherIndex++]; 2386 unsigned RecNo = MatcherTable[MatcherIndex++]; 2387 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 2388 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 2389 RecordedNodes[RecNo].first, CPNum, 2390 RecordedNodes)) 2391 break; 2392 continue; 2393 } 2394 case OPC_CheckOpcode: 2395 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 2396 continue; 2397 2398 case OPC_CheckType: 2399 if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering())) 2400 break; 2401 continue; 2402 2403 case OPC_SwitchOpcode: { 2404 unsigned CurNodeOpcode = N.getOpcode(); 2405 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2406 unsigned CaseSize; 2407 while (1) { 2408 // Get the size of this case. 2409 CaseSize = MatcherTable[MatcherIndex++]; 2410 if (CaseSize & 128) 2411 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2412 if (CaseSize == 0) break; 2413 2414 uint16_t Opc = MatcherTable[MatcherIndex++]; 2415 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2416 2417 // If the opcode matches, then we will execute this case. 2418 if (CurNodeOpcode == Opc) 2419 break; 2420 2421 // Otherwise, skip over this case. 2422 MatcherIndex += CaseSize; 2423 } 2424 2425 // If no cases matched, bail out. 2426 if (CaseSize == 0) break; 2427 2428 // Otherwise, execute the case we found. 2429 DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart 2430 << " to " << MatcherIndex << "\n"); 2431 continue; 2432 } 2433 2434 case OPC_SwitchType: { 2435 MVT CurNodeVT = N.getValueType().getSimpleVT(); 2436 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2437 unsigned CaseSize; 2438 while (1) { 2439 // Get the size of this case. 2440 CaseSize = MatcherTable[MatcherIndex++]; 2441 if (CaseSize & 128) 2442 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2443 if (CaseSize == 0) break; 2444 2445 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2446 if (CaseVT == MVT::iPTR) 2447 CaseVT = getTargetLowering()->getPointerTy(); 2448 2449 // If the VT matches, then we will execute this case. 2450 if (CurNodeVT == CaseVT) 2451 break; 2452 2453 // Otherwise, skip over this case. 2454 MatcherIndex += CaseSize; 2455 } 2456 2457 // If no cases matched, bail out. 2458 if (CaseSize == 0) break; 2459 2460 // Otherwise, execute the case we found. 2461 DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 2462 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); 2463 continue; 2464 } 2465 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 2466 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 2467 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 2468 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 2469 if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(), 2470 Opcode-OPC_CheckChild0Type)) 2471 break; 2472 continue; 2473 case OPC_CheckCondCode: 2474 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 2475 continue; 2476 case OPC_CheckValueType: 2477 if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering())) 2478 break; 2479 continue; 2480 case OPC_CheckInteger: 2481 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 2482 continue; 2483 case OPC_CheckAndImm: 2484 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 2485 continue; 2486 case OPC_CheckOrImm: 2487 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 2488 continue; 2489 2490 case OPC_CheckFoldableChainNode: { 2491 assert(NodeStack.size() != 1 && "No parent node"); 2492 // Verify that all intermediate nodes between the root and this one have 2493 // a single use. 2494 bool HasMultipleUses = false; 2495 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 2496 if (!NodeStack[i].hasOneUse()) { 2497 HasMultipleUses = true; 2498 break; 2499 } 2500 if (HasMultipleUses) break; 2501 2502 // Check to see that the target thinks this is profitable to fold and that 2503 // we can fold it without inducing cycles in the graph. 2504 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2505 NodeToMatch) || 2506 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2507 NodeToMatch, OptLevel, 2508 true/*We validate our own chains*/)) 2509 break; 2510 2511 continue; 2512 } 2513 case OPC_EmitInteger: { 2514 MVT::SimpleValueType VT = 2515 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2516 int64_t Val = MatcherTable[MatcherIndex++]; 2517 if (Val & 128) 2518 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2519 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2520 CurDAG->getTargetConstant(Val, VT), (SDNode*)0)); 2521 continue; 2522 } 2523 case OPC_EmitRegister: { 2524 MVT::SimpleValueType VT = 2525 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2526 unsigned RegNo = MatcherTable[MatcherIndex++]; 2527 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2528 CurDAG->getRegister(RegNo, VT), (SDNode*)0)); 2529 continue; 2530 } 2531 case OPC_EmitRegister2: { 2532 // For targets w/ more than 256 register names, the register enum 2533 // values are stored in two bytes in the matcher table (just like 2534 // opcodes). 2535 MVT::SimpleValueType VT = 2536 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2537 unsigned RegNo = MatcherTable[MatcherIndex++]; 2538 RegNo |= MatcherTable[MatcherIndex++] << 8; 2539 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2540 CurDAG->getRegister(RegNo, VT), (SDNode*)0)); 2541 continue; 2542 } 2543 2544 case OPC_EmitConvertToTarget: { 2545 // Convert from IMM/FPIMM to target version. 2546 unsigned RecNo = MatcherTable[MatcherIndex++]; 2547 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2548 SDValue Imm = RecordedNodes[RecNo].first; 2549 2550 if (Imm->getOpcode() == ISD::Constant) { 2551 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 2552 Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true); 2553 } else if (Imm->getOpcode() == ISD::ConstantFP) { 2554 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 2555 Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true); 2556 } 2557 2558 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 2559 continue; 2560 } 2561 2562 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 2563 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 2564 // These are space-optimized forms of OPC_EmitMergeInputChains. 2565 assert(InputChain.getNode() == 0 && 2566 "EmitMergeInputChains should be the first chain producing node"); 2567 assert(ChainNodesMatched.empty() && 2568 "Should only have one EmitMergeInputChains per match"); 2569 2570 // Read all of the chained nodes. 2571 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; 2572 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2573 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2574 2575 // FIXME: What if other value results of the node have uses not matched 2576 // by this pattern? 2577 if (ChainNodesMatched.back() != NodeToMatch && 2578 !RecordedNodes[RecNo].first.hasOneUse()) { 2579 ChainNodesMatched.clear(); 2580 break; 2581 } 2582 2583 // Merge the input chains if they are not intra-pattern references. 2584 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 2585 2586 if (InputChain.getNode() == 0) 2587 break; // Failed to merge. 2588 continue; 2589 } 2590 2591 case OPC_EmitMergeInputChains: { 2592 assert(InputChain.getNode() == 0 && 2593 "EmitMergeInputChains should be the first chain producing node"); 2594 // This node gets a list of nodes we matched in the input that have 2595 // chains. We want to token factor all of the input chains to these nodes 2596 // together. However, if any of the input chains is actually one of the 2597 // nodes matched in this pattern, then we have an intra-match reference. 2598 // Ignore these because the newly token factored chain should not refer to 2599 // the old nodes. 2600 unsigned NumChains = MatcherTable[MatcherIndex++]; 2601 assert(NumChains != 0 && "Can't TF zero chains"); 2602 2603 assert(ChainNodesMatched.empty() && 2604 "Should only have one EmitMergeInputChains per match"); 2605 2606 // Read all of the chained nodes. 2607 for (unsigned i = 0; i != NumChains; ++i) { 2608 unsigned RecNo = MatcherTable[MatcherIndex++]; 2609 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2610 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2611 2612 // FIXME: What if other value results of the node have uses not matched 2613 // by this pattern? 2614 if (ChainNodesMatched.back() != NodeToMatch && 2615 !RecordedNodes[RecNo].first.hasOneUse()) { 2616 ChainNodesMatched.clear(); 2617 break; 2618 } 2619 } 2620 2621 // If the inner loop broke out, the match fails. 2622 if (ChainNodesMatched.empty()) 2623 break; 2624 2625 // Merge the input chains if they are not intra-pattern references. 2626 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 2627 2628 if (InputChain.getNode() == 0) 2629 break; // Failed to merge. 2630 2631 continue; 2632 } 2633 2634 case OPC_EmitCopyToReg: { 2635 unsigned RecNo = MatcherTable[MatcherIndex++]; 2636 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2637 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 2638 2639 if (InputChain.getNode() == 0) 2640 InputChain = CurDAG->getEntryNode(); 2641 2642 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 2643 DestPhysReg, RecordedNodes[RecNo].first, 2644 InputGlue); 2645 2646 InputGlue = InputChain.getValue(1); 2647 continue; 2648 } 2649 2650 case OPC_EmitNodeXForm: { 2651 unsigned XFormNo = MatcherTable[MatcherIndex++]; 2652 unsigned RecNo = MatcherTable[MatcherIndex++]; 2653 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2654 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 2655 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0)); 2656 continue; 2657 } 2658 2659 case OPC_EmitNode: 2660 case OPC_MorphNodeTo: { 2661 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 2662 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2663 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 2664 // Get the result VT list. 2665 unsigned NumVTs = MatcherTable[MatcherIndex++]; 2666 SmallVector<EVT, 4> VTs; 2667 for (unsigned i = 0; i != NumVTs; ++i) { 2668 MVT::SimpleValueType VT = 2669 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2670 if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy; 2671 VTs.push_back(VT); 2672 } 2673 2674 if (EmitNodeInfo & OPFL_Chain) 2675 VTs.push_back(MVT::Other); 2676 if (EmitNodeInfo & OPFL_GlueOutput) 2677 VTs.push_back(MVT::Glue); 2678 2679 // This is hot code, so optimize the two most common cases of 1 and 2 2680 // results. 2681 SDVTList VTList; 2682 if (VTs.size() == 1) 2683 VTList = CurDAG->getVTList(VTs[0]); 2684 else if (VTs.size() == 2) 2685 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 2686 else 2687 VTList = CurDAG->getVTList(VTs.data(), VTs.size()); 2688 2689 // Get the operand list. 2690 unsigned NumOps = MatcherTable[MatcherIndex++]; 2691 SmallVector<SDValue, 8> Ops; 2692 for (unsigned i = 0; i != NumOps; ++i) { 2693 unsigned RecNo = MatcherTable[MatcherIndex++]; 2694 if (RecNo & 128) 2695 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 2696 2697 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 2698 Ops.push_back(RecordedNodes[RecNo].first); 2699 } 2700 2701 // If there are variadic operands to add, handle them now. 2702 if (EmitNodeInfo & OPFL_VariadicInfo) { 2703 // Determine the start index to copy from. 2704 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 2705 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 2706 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 2707 "Invalid variadic node"); 2708 // Copy all of the variadic operands, not including a potential glue 2709 // input. 2710 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 2711 i != e; ++i) { 2712 SDValue V = NodeToMatch->getOperand(i); 2713 if (V.getValueType() == MVT::Glue) break; 2714 Ops.push_back(V); 2715 } 2716 } 2717 2718 // If this has chain/glue inputs, add them. 2719 if (EmitNodeInfo & OPFL_Chain) 2720 Ops.push_back(InputChain); 2721 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0) 2722 Ops.push_back(InputGlue); 2723 2724 // Create the node. 2725 SDNode *Res = 0; 2726 if (Opcode != OPC_MorphNodeTo) { 2727 // If this is a normal EmitNode command, just create the new node and 2728 // add the results to the RecordedNodes list. 2729 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 2730 VTList, Ops); 2731 2732 // Add all the non-glue/non-chain results to the RecordedNodes list. 2733 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 2734 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 2735 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 2736 (SDNode*) 0)); 2737 } 2738 2739 } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) { 2740 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), 2741 EmitNodeInfo); 2742 } else { 2743 // NodeToMatch was eliminated by CSE when the target changed the DAG. 2744 // We will visit the equivalent node later. 2745 DEBUG(dbgs() << "Node was eliminated by CSE\n"); 2746 return 0; 2747 } 2748 2749 // If the node had chain/glue results, update our notion of the current 2750 // chain and glue. 2751 if (EmitNodeInfo & OPFL_GlueOutput) { 2752 InputGlue = SDValue(Res, VTs.size()-1); 2753 if (EmitNodeInfo & OPFL_Chain) 2754 InputChain = SDValue(Res, VTs.size()-2); 2755 } else if (EmitNodeInfo & OPFL_Chain) 2756 InputChain = SDValue(Res, VTs.size()-1); 2757 2758 // If the OPFL_MemRefs glue is set on this node, slap all of the 2759 // accumulated memrefs onto it. 2760 // 2761 // FIXME: This is vastly incorrect for patterns with multiple outputs 2762 // instructions that access memory and for ComplexPatterns that match 2763 // loads. 2764 if (EmitNodeInfo & OPFL_MemRefs) { 2765 // Only attach load or store memory operands if the generated 2766 // instruction may load or store. 2767 const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc); 2768 bool mayLoad = MCID.mayLoad(); 2769 bool mayStore = MCID.mayStore(); 2770 2771 unsigned NumMemRefs = 0; 2772 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 2773 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 2774 if ((*I)->isLoad()) { 2775 if (mayLoad) 2776 ++NumMemRefs; 2777 } else if ((*I)->isStore()) { 2778 if (mayStore) 2779 ++NumMemRefs; 2780 } else { 2781 ++NumMemRefs; 2782 } 2783 } 2784 2785 MachineSDNode::mmo_iterator MemRefs = 2786 MF->allocateMemRefsArray(NumMemRefs); 2787 2788 MachineSDNode::mmo_iterator MemRefsPos = MemRefs; 2789 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 2790 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 2791 if ((*I)->isLoad()) { 2792 if (mayLoad) 2793 *MemRefsPos++ = *I; 2794 } else if ((*I)->isStore()) { 2795 if (mayStore) 2796 *MemRefsPos++ = *I; 2797 } else { 2798 *MemRefsPos++ = *I; 2799 } 2800 } 2801 2802 cast<MachineSDNode>(Res) 2803 ->setMemRefs(MemRefs, MemRefs + NumMemRefs); 2804 } 2805 2806 DEBUG(dbgs() << " " 2807 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") 2808 << " node: "; Res->dump(CurDAG); dbgs() << "\n"); 2809 2810 // If this was a MorphNodeTo then we're completely done! 2811 if (Opcode == OPC_MorphNodeTo) { 2812 // Update chain and glue uses. 2813 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 2814 InputGlue, GlueResultNodesMatched, true); 2815 return Res; 2816 } 2817 2818 continue; 2819 } 2820 2821 case OPC_MarkGlueResults: { 2822 unsigned NumNodes = MatcherTable[MatcherIndex++]; 2823 2824 // Read and remember all the glue-result nodes. 2825 for (unsigned i = 0; i != NumNodes; ++i) { 2826 unsigned RecNo = MatcherTable[MatcherIndex++]; 2827 if (RecNo & 128) 2828 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 2829 2830 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2831 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2832 } 2833 continue; 2834 } 2835 2836 case OPC_CompleteMatch: { 2837 // The match has been completed, and any new nodes (if any) have been 2838 // created. Patch up references to the matched dag to use the newly 2839 // created nodes. 2840 unsigned NumResults = MatcherTable[MatcherIndex++]; 2841 2842 for (unsigned i = 0; i != NumResults; ++i) { 2843 unsigned ResSlot = MatcherTable[MatcherIndex++]; 2844 if (ResSlot & 128) 2845 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 2846 2847 assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); 2848 SDValue Res = RecordedNodes[ResSlot].first; 2849 2850 assert(i < NodeToMatch->getNumValues() && 2851 NodeToMatch->getValueType(i) != MVT::Other && 2852 NodeToMatch->getValueType(i) != MVT::Glue && 2853 "Invalid number of results to complete!"); 2854 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 2855 NodeToMatch->getValueType(i) == MVT::iPTR || 2856 Res.getValueType() == MVT::iPTR || 2857 NodeToMatch->getValueType(i).getSizeInBits() == 2858 Res.getValueType().getSizeInBits()) && 2859 "invalid replacement"); 2860 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); 2861 } 2862 2863 // If the root node defines glue, add it to the glue nodes to update list. 2864 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) 2865 GlueResultNodesMatched.push_back(NodeToMatch); 2866 2867 // Update chain and glue uses. 2868 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 2869 InputGlue, GlueResultNodesMatched, false); 2870 2871 assert(NodeToMatch->use_empty() && 2872 "Didn't replace all uses of the node?"); 2873 2874 // FIXME: We just return here, which interacts correctly with SelectRoot 2875 // above. We should fix this to not return an SDNode* anymore. 2876 return 0; 2877 } 2878 } 2879 2880 // If the code reached this point, then the match failed. See if there is 2881 // another child to try in the current 'Scope', otherwise pop it until we 2882 // find a case to check. 2883 DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); 2884 ++NumDAGIselRetries; 2885 while (1) { 2886 if (MatchScopes.empty()) { 2887 CannotYetSelect(NodeToMatch); 2888 return 0; 2889 } 2890 2891 // Restore the interpreter state back to the point where the scope was 2892 // formed. 2893 MatchScope &LastScope = MatchScopes.back(); 2894 RecordedNodes.resize(LastScope.NumRecordedNodes); 2895 NodeStack.clear(); 2896 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 2897 N = NodeStack.back(); 2898 2899 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 2900 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 2901 MatcherIndex = LastScope.FailIndex; 2902 2903 DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 2904 2905 InputChain = LastScope.InputChain; 2906 InputGlue = LastScope.InputGlue; 2907 if (!LastScope.HasChainNodesMatched) 2908 ChainNodesMatched.clear(); 2909 if (!LastScope.HasGlueResultNodesMatched) 2910 GlueResultNodesMatched.clear(); 2911 2912 // Check to see what the offset is at the new MatcherIndex. If it is zero 2913 // we have reached the end of this scope, otherwise we have another child 2914 // in the current scope to try. 2915 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2916 if (NumToSkip & 128) 2917 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2918 2919 // If we have another child in this scope to match, update FailIndex and 2920 // try it. 2921 if (NumToSkip != 0) { 2922 LastScope.FailIndex = MatcherIndex+NumToSkip; 2923 break; 2924 } 2925 2926 // End of this scope, pop it and try the next child in the containing 2927 // scope. 2928 MatchScopes.pop_back(); 2929 } 2930 } 2931 } 2932 2933 2934 2935 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 2936 std::string msg; 2937 raw_string_ostream Msg(msg); 2938 Msg << "Cannot select: "; 2939 2940 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 2941 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 2942 N->getOpcode() != ISD::INTRINSIC_VOID) { 2943 N->printrFull(Msg, CurDAG); 2944 Msg << "\nIn function: " << MF->getName(); 2945 } else { 2946 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 2947 unsigned iid = 2948 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 2949 if (iid < Intrinsic::num_intrinsics) 2950 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); 2951 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 2952 Msg << "target intrinsic %" << TII->getName(iid); 2953 else 2954 Msg << "unknown intrinsic #" << iid; 2955 } 2956 report_fatal_error(Msg.str()); 2957 } 2958 2959 char SelectionDAGISel::ID = 0; 2960