Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the SelectionDAGISel class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel"
     15 #include "llvm/CodeGen/SelectionDAGISel.h"
     16 #include "ScheduleDAGSDNodes.h"
     17 #include "SelectionDAGBuilder.h"
     18 #include "llvm/ADT/PostOrderIterator.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/BranchProbabilityInfo.h"
     22 #include "llvm/Analysis/CFG.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/CodeGen/FastISel.h"
     25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     26 #include "llvm/CodeGen/GCMetadata.h"
     27 #include "llvm/CodeGen/GCStrategy.h"
     28 #include "llvm/CodeGen/MachineFrameInfo.h"
     29 #include "llvm/CodeGen/MachineFunction.h"
     30 #include "llvm/CodeGen/MachineInstrBuilder.h"
     31 #include "llvm/CodeGen/MachineModuleInfo.h"
     32 #include "llvm/CodeGen/MachineRegisterInfo.h"
     33 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     34 #include "llvm/CodeGen/SchedulerRegistry.h"
     35 #include "llvm/CodeGen/SelectionDAG.h"
     36 #include "llvm/DebugInfo.h"
     37 #include "llvm/IR/Constants.h"
     38 #include "llvm/IR/Function.h"
     39 #include "llvm/IR/InlineAsm.h"
     40 #include "llvm/IR/Instructions.h"
     41 #include "llvm/IR/IntrinsicInst.h"
     42 #include "llvm/IR/Intrinsics.h"
     43 #include "llvm/IR/LLVMContext.h"
     44 #include "llvm/IR/Module.h"
     45 #include "llvm/Support/Compiler.h"
     46 #include "llvm/Support/Debug.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/Timer.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 #include "llvm/Target/TargetInstrInfo.h"
     51 #include "llvm/Target/TargetIntrinsicInfo.h"
     52 #include "llvm/Target/TargetLibraryInfo.h"
     53 #include "llvm/Target/TargetLowering.h"
     54 #include "llvm/Target/TargetMachine.h"
     55 #include "llvm/Target/TargetOptions.h"
     56 #include "llvm/Target/TargetRegisterInfo.h"
     57 #include "llvm/Target/TargetSubtargetInfo.h"
     58 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     59 #include <algorithm>
     60 using namespace llvm;
     61 
     62 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
     63 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
     64 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
     65 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
     66 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
     67 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
     68 STATISTIC(NumFastIselFailLowerArguments,
     69           "Number of entry blocks where fast isel failed to lower arguments");
     70 
     71 #ifndef NDEBUG
     72 static cl::opt<bool>
     73 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
     74           cl::desc("Enable extra verbose messages in the \"fast\" "
     75                    "instruction selector"));
     76 
     77   // Terminators
     78 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
     79 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
     80 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
     81 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
     82 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
     83 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
     84 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
     85 
     86   // Standard binary operators...
     87 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
     88 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
     89 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
     90 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
     91 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
     92 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
     93 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
     94 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
     95 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
     96 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
     97 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
     98 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
     99 
    100   // Logical operators...
    101 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
    102 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
    103 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
    104 
    105   // Memory instructions...
    106 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
    107 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
    108 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
    109 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
    110 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
    111 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
    112 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
    113 
    114   // Convert instructions...
    115 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
    116 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
    117 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
    118 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
    119 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
    120 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
    121 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
    122 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
    123 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
    124 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
    125 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
    126 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
    127 
    128   // Other instructions...
    129 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
    130 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
    131 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
    132 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
    133 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
    134 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
    135 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
    136 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
    137 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
    138 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
    139 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
    140 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
    141 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
    142 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
    143 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
    144 #endif
    145 
    146 static cl::opt<bool>
    147 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
    148           cl::desc("Enable verbose messages in the \"fast\" "
    149                    "instruction selector"));
    150 static cl::opt<bool>
    151 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
    152           cl::desc("Enable abort calls when \"fast\" instruction selection "
    153                    "fails to lower an instruction"));
    154 static cl::opt<bool>
    155 EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
    156           cl::desc("Enable abort calls when \"fast\" instruction selection "
    157                    "fails to lower a formal argument"));
    158 
    159 static cl::opt<bool>
    160 UseMBPI("use-mbpi",
    161         cl::desc("use Machine Branch Probability Info"),
    162         cl::init(true), cl::Hidden);
    163 
    164 #ifndef NDEBUG
    165 static cl::opt<bool>
    166 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
    167           cl::desc("Pop up a window to show dags before the first "
    168                    "dag combine pass"));
    169 static cl::opt<bool>
    170 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
    171           cl::desc("Pop up a window to show dags before legalize types"));
    172 static cl::opt<bool>
    173 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
    174           cl::desc("Pop up a window to show dags before legalize"));
    175 static cl::opt<bool>
    176 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
    177           cl::desc("Pop up a window to show dags before the second "
    178                    "dag combine pass"));
    179 static cl::opt<bool>
    180 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
    181           cl::desc("Pop up a window to show dags before the post legalize types"
    182                    " dag combine pass"));
    183 static cl::opt<bool>
    184 ViewISelDAGs("view-isel-dags", cl::Hidden,
    185           cl::desc("Pop up a window to show isel dags as they are selected"));
    186 static cl::opt<bool>
    187 ViewSchedDAGs("view-sched-dags", cl::Hidden,
    188           cl::desc("Pop up a window to show sched dags as they are processed"));
    189 static cl::opt<bool>
    190 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
    191       cl::desc("Pop up a window to show SUnit dags after they are processed"));
    192 #else
    193 static const bool ViewDAGCombine1 = false,
    194                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
    195                   ViewDAGCombine2 = false,
    196                   ViewDAGCombineLT = false,
    197                   ViewISelDAGs = false, ViewSchedDAGs = false,
    198                   ViewSUnitDAGs = false;
    199 #endif
    200 
    201 //===---------------------------------------------------------------------===//
    202 ///
    203 /// RegisterScheduler class - Track the registration of instruction schedulers.
    204 ///
    205 //===---------------------------------------------------------------------===//
    206 MachinePassRegistry RegisterScheduler::Registry;
    207 
    208 //===---------------------------------------------------------------------===//
    209 ///
    210 /// ISHeuristic command line option for instruction schedulers.
    211 ///
    212 //===---------------------------------------------------------------------===//
    213 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
    214                RegisterPassParser<RegisterScheduler> >
    215 ISHeuristic("pre-RA-sched",
    216             cl::init(&createDefaultScheduler),
    217             cl::desc("Instruction schedulers available (before register"
    218                      " allocation):"));
    219 
    220 static RegisterScheduler
    221 defaultListDAGScheduler("default", "Best scheduler for the target",
    222                         createDefaultScheduler);
    223 
    224 namespace llvm {
    225   //===--------------------------------------------------------------------===//
    226   /// createDefaultScheduler - This creates an instruction scheduler appropriate
    227   /// for the target.
    228   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
    229                                              CodeGenOpt::Level OptLevel) {
    230     const TargetLowering *TLI = IS->getTargetLowering();
    231     const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
    232 
    233     if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
    234         TLI->getSchedulingPreference() == Sched::Source)
    235       return createSourceListDAGScheduler(IS, OptLevel);
    236     if (TLI->getSchedulingPreference() == Sched::RegPressure)
    237       return createBURRListDAGScheduler(IS, OptLevel);
    238     if (TLI->getSchedulingPreference() == Sched::Hybrid)
    239       return createHybridListDAGScheduler(IS, OptLevel);
    240     if (TLI->getSchedulingPreference() == Sched::VLIW)
    241       return createVLIWDAGScheduler(IS, OptLevel);
    242     assert(TLI->getSchedulingPreference() == Sched::ILP &&
    243            "Unknown sched type!");
    244     return createILPListDAGScheduler(IS, OptLevel);
    245   }
    246 }
    247 
    248 // EmitInstrWithCustomInserter - This method should be implemented by targets
    249 // that mark instructions with the 'usesCustomInserter' flag.  These
    250 // instructions are special in various ways, which require special support to
    251 // insert.  The specified MachineInstr is created but not inserted into any
    252 // basic blocks, and this method is called to expand it into a sequence of
    253 // instructions, potentially also creating new basic blocks and control flow.
    254 // When new basic blocks are inserted and the edges from MBB to its successors
    255 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
    256 // DenseMap.
    257 MachineBasicBlock *
    258 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    259                                             MachineBasicBlock *MBB) const {
    260 #ifndef NDEBUG
    261   dbgs() << "If a target marks an instruction with "
    262           "'usesCustomInserter', it must implement "
    263           "TargetLowering::EmitInstrWithCustomInserter!";
    264 #endif
    265   llvm_unreachable(0);
    266 }
    267 
    268 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
    269                                                    SDNode *Node) const {
    270   assert(!MI->hasPostISelHook() &&
    271          "If a target marks an instruction with 'hasPostISelHook', "
    272          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
    273 }
    274 
    275 //===----------------------------------------------------------------------===//
    276 // SelectionDAGISel code
    277 //===----------------------------------------------------------------------===//
    278 
    279 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
    280                                    CodeGenOpt::Level OL) :
    281   MachineFunctionPass(ID), TM(tm),
    282   FuncInfo(new FunctionLoweringInfo(TM)),
    283   CurDAG(new SelectionDAG(tm, OL)),
    284   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
    285   GFI(),
    286   OptLevel(OL),
    287   DAGSize(0) {
    288     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
    289     initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
    290     initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
    291     initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
    292   }
    293 
    294 SelectionDAGISel::~SelectionDAGISel() {
    295   delete SDB;
    296   delete CurDAG;
    297   delete FuncInfo;
    298 }
    299 
    300 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
    301   AU.addRequired<AliasAnalysis>();
    302   AU.addPreserved<AliasAnalysis>();
    303   AU.addRequired<GCModuleInfo>();
    304   AU.addPreserved<GCModuleInfo>();
    305   AU.addRequired<TargetLibraryInfo>();
    306   if (UseMBPI && OptLevel != CodeGenOpt::None)
    307     AU.addRequired<BranchProbabilityInfo>();
    308   MachineFunctionPass::getAnalysisUsage(AU);
    309 }
    310 
    311 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
    312 /// may trap on it.  In this case we have to split the edge so that the path
    313 /// through the predecessor block that doesn't go to the phi block doesn't
    314 /// execute the possibly trapping instruction.
    315 ///
    316 /// This is required for correctness, so it must be done at -O0.
    317 ///
    318 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
    319   // Loop for blocks with phi nodes.
    320   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    321     PHINode *PN = dyn_cast<PHINode>(BB->begin());
    322     if (PN == 0) continue;
    323 
    324   ReprocessBlock:
    325     // For each block with a PHI node, check to see if any of the input values
    326     // are potentially trapping constant expressions.  Constant expressions are
    327     // the only potentially trapping value that can occur as the argument to a
    328     // PHI.
    329     for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
    330       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    331         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
    332         if (CE == 0 || !CE->canTrap()) continue;
    333 
    334         // The only case we have to worry about is when the edge is critical.
    335         // Since this block has a PHI Node, we assume it has multiple input
    336         // edges: check to see if the pred has multiple successors.
    337         BasicBlock *Pred = PN->getIncomingBlock(i);
    338         if (Pred->getTerminator()->getNumSuccessors() == 1)
    339           continue;
    340 
    341         // Okay, we have to split this edge.
    342         SplitCriticalEdge(Pred->getTerminator(),
    343                           GetSuccessorNumber(Pred, BB), SDISel, true);
    344         goto ReprocessBlock;
    345       }
    346   }
    347 }
    348 
    349 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
    350   // Do some sanity-checking on the command-line options.
    351   assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
    352          "-fast-isel-verbose requires -fast-isel");
    353   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
    354          "-fast-isel-abort requires -fast-isel");
    355 
    356   const Function &Fn = *mf.getFunction();
    357   const TargetInstrInfo &TII = *TM.getInstrInfo();
    358   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
    359 
    360   MF = &mf;
    361   RegInfo = &MF->getRegInfo();
    362   AA = &getAnalysis<AliasAnalysis>();
    363   LibInfo = &getAnalysis<TargetLibraryInfo>();
    364   TTI = getAnalysisIfAvailable<TargetTransformInfo>();
    365   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
    366 
    367   TargetSubtargetInfo &ST =
    368     const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
    369   ST.resetSubtargetFeatures(MF);
    370   TM.resetTargetOptions(MF);
    371 
    372   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
    373 
    374   SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
    375 
    376   CurDAG->init(*MF, TTI);
    377   FuncInfo->set(Fn, *MF);
    378 
    379   if (UseMBPI && OptLevel != CodeGenOpt::None)
    380     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
    381   else
    382     FuncInfo->BPI = 0;
    383 
    384   SDB->init(GFI, *AA, LibInfo);
    385 
    386   MF->setHasMSInlineAsm(false);
    387   SelectAllBasicBlocks(Fn);
    388 
    389   // If the first basic block in the function has live ins that need to be
    390   // copied into vregs, emit the copies into the top of the block before
    391   // emitting the code for the block.
    392   MachineBasicBlock *EntryMBB = MF->begin();
    393   RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
    394 
    395   DenseMap<unsigned, unsigned> LiveInMap;
    396   if (!FuncInfo->ArgDbgValues.empty())
    397     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
    398            E = RegInfo->livein_end(); LI != E; ++LI)
    399       if (LI->second)
    400         LiveInMap.insert(std::make_pair(LI->first, LI->second));
    401 
    402   // Insert DBG_VALUE instructions for function arguments to the entry block.
    403   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
    404     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
    405     bool hasFI = MI->getOperand(0).isFI();
    406     unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
    407     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    408       EntryMBB->insert(EntryMBB->begin(), MI);
    409     else {
    410       MachineInstr *Def = RegInfo->getVRegDef(Reg);
    411       MachineBasicBlock::iterator InsertPos = Def;
    412       // FIXME: VR def may not be in entry block.
    413       Def->getParent()->insert(llvm::next(InsertPos), MI);
    414     }
    415 
    416     // If Reg is live-in then update debug info to track its copy in a vreg.
    417     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
    418     if (LDI != LiveInMap.end()) {
    419       assert(!hasFI && "There's no handling of frame pointer updating here yet "
    420                        "- add if needed");
    421       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
    422       MachineBasicBlock::iterator InsertPos = Def;
    423       const MDNode *Variable =
    424         MI->getOperand(MI->getNumOperands()-1).getMetadata();
    425       bool IsIndirect = MI->getOperand(1).isImm();
    426       unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
    427       // Def is never a terminator here, so it is ok to increment InsertPos.
    428       BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
    429               TII.get(TargetOpcode::DBG_VALUE),
    430               IsIndirect,
    431               LDI->second, Offset, Variable);
    432 
    433       // If this vreg is directly copied into an exported register then
    434       // that COPY instructions also need DBG_VALUE, if it is the only
    435       // user of LDI->second.
    436       MachineInstr *CopyUseMI = NULL;
    437       for (MachineRegisterInfo::use_iterator
    438              UI = RegInfo->use_begin(LDI->second);
    439            MachineInstr *UseMI = UI.skipInstruction();) {
    440         if (UseMI->isDebugValue()) continue;
    441         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
    442           CopyUseMI = UseMI; continue;
    443         }
    444         // Otherwise this is another use or second copy use.
    445         CopyUseMI = NULL; break;
    446       }
    447       if (CopyUseMI) {
    448         MachineInstr *NewMI =
    449           BuildMI(*MF, CopyUseMI->getDebugLoc(),
    450                   TII.get(TargetOpcode::DBG_VALUE),
    451                   IsIndirect,
    452                   CopyUseMI->getOperand(0).getReg(),
    453                   Offset, Variable);
    454         MachineBasicBlock::iterator Pos = CopyUseMI;
    455         EntryMBB->insertAfter(Pos, NewMI);
    456       }
    457     }
    458   }
    459 
    460   // Determine if there are any calls in this machine function.
    461   MachineFrameInfo *MFI = MF->getFrameInfo();
    462   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
    463        ++I) {
    464 
    465     if (MFI->hasCalls() && MF->hasMSInlineAsm())
    466       break;
    467 
    468     const MachineBasicBlock *MBB = I;
    469     for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
    470          II != IE; ++II) {
    471       const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
    472       if ((MCID.isCall() && !MCID.isReturn()) ||
    473           II->isStackAligningInlineAsm()) {
    474         MFI->setHasCalls(true);
    475       }
    476       if (II->isMSInlineAsm()) {
    477         MF->setHasMSInlineAsm(true);
    478       }
    479     }
    480   }
    481 
    482   // Determine if there is a call to setjmp in the machine function.
    483   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
    484 
    485   // Replace forward-declared registers with the registers containing
    486   // the desired value.
    487   MachineRegisterInfo &MRI = MF->getRegInfo();
    488   for (DenseMap<unsigned, unsigned>::iterator
    489        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
    490        I != E; ++I) {
    491     unsigned From = I->first;
    492     unsigned To = I->second;
    493     // If To is also scheduled to be replaced, find what its ultimate
    494     // replacement is.
    495     for (;;) {
    496       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
    497       if (J == E) break;
    498       To = J->second;
    499     }
    500     // Replace it.
    501     MRI.replaceRegWith(From, To);
    502   }
    503 
    504   // Freeze the set of reserved registers now that MachineFrameInfo has been
    505   // set up. All the information required by getReservedRegs() should be
    506   // available now.
    507   MRI.freezeReservedRegs(*MF);
    508 
    509   // Release function-specific state. SDB and CurDAG are already cleared
    510   // at this point.
    511   FuncInfo->clear();
    512 
    513   return true;
    514 }
    515 
    516 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
    517                                         BasicBlock::const_iterator End,
    518                                         bool &HadTailCall) {
    519   // Lower all of the non-terminator instructions. If a call is emitted
    520   // as a tail call, cease emitting nodes for this block. Terminators
    521   // are handled below.
    522   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
    523     SDB->visit(*I);
    524 
    525   // Make sure the root of the DAG is up-to-date.
    526   CurDAG->setRoot(SDB->getControlRoot());
    527   HadTailCall = SDB->HasTailCall;
    528   SDB->clear();
    529 
    530   // Final step, emit the lowered DAG as machine code.
    531   CodeGenAndEmitDAG();
    532 }
    533 
    534 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
    535   SmallPtrSet<SDNode*, 128> VisitedNodes;
    536   SmallVector<SDNode*, 128> Worklist;
    537 
    538   Worklist.push_back(CurDAG->getRoot().getNode());
    539 
    540   APInt KnownZero;
    541   APInt KnownOne;
    542 
    543   do {
    544     SDNode *N = Worklist.pop_back_val();
    545 
    546     // If we've already seen this node, ignore it.
    547     if (!VisitedNodes.insert(N))
    548       continue;
    549 
    550     // Otherwise, add all chain operands to the worklist.
    551     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    552       if (N->getOperand(i).getValueType() == MVT::Other)
    553         Worklist.push_back(N->getOperand(i).getNode());
    554 
    555     // If this is a CopyToReg with a vreg dest, process it.
    556     if (N->getOpcode() != ISD::CopyToReg)
    557       continue;
    558 
    559     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
    560     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    561       continue;
    562 
    563     // Ignore non-scalar or non-integer values.
    564     SDValue Src = N->getOperand(2);
    565     EVT SrcVT = Src.getValueType();
    566     if (!SrcVT.isInteger() || SrcVT.isVector())
    567       continue;
    568 
    569     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
    570     CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
    571     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
    572   } while (!Worklist.empty());
    573 }
    574 
    575 void SelectionDAGISel::CodeGenAndEmitDAG() {
    576   std::string GroupName;
    577   if (TimePassesIsEnabled)
    578     GroupName = "Instruction Selection and Scheduling";
    579   std::string BlockName;
    580   int BlockNumber = -1;
    581   (void)BlockNumber;
    582 #ifdef NDEBUG
    583   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
    584       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
    585       ViewSUnitDAGs)
    586 #endif
    587   {
    588     BlockNumber = FuncInfo->MBB->getNumber();
    589     BlockName = MF->getName().str() + ":" +
    590                 FuncInfo->MBB->getBasicBlock()->getName().str();
    591   }
    592   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
    593         << " '" << BlockName << "'\n"; CurDAG->dump());
    594 
    595   if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
    596 
    597   // Run the DAG combiner in pre-legalize mode.
    598   {
    599     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
    600     CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
    601   }
    602 
    603   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
    604         << " '" << BlockName << "'\n"; CurDAG->dump());
    605 
    606   // Second step, hack on the DAG until it only uses operations and types that
    607   // the target supports.
    608   if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
    609                                                BlockName);
    610 
    611   bool Changed;
    612   {
    613     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
    614     Changed = CurDAG->LegalizeTypes();
    615   }
    616 
    617   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
    618         << " '" << BlockName << "'\n"; CurDAG->dump());
    619 
    620   if (Changed) {
    621     if (ViewDAGCombineLT)
    622       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
    623 
    624     // Run the DAG combiner in post-type-legalize mode.
    625     {
    626       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
    627                          TimePassesIsEnabled);
    628       CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
    629     }
    630 
    631     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
    632           << " '" << BlockName << "'\n"; CurDAG->dump());
    633 
    634   }
    635 
    636   {
    637     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
    638     Changed = CurDAG->LegalizeVectors();
    639   }
    640 
    641   if (Changed) {
    642     {
    643       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
    644       CurDAG->LegalizeTypes();
    645     }
    646 
    647     if (ViewDAGCombineLT)
    648       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
    649 
    650     // Run the DAG combiner in post-type-legalize mode.
    651     {
    652       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
    653                          TimePassesIsEnabled);
    654       CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
    655     }
    656 
    657     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
    658           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
    659   }
    660 
    661   if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
    662 
    663   {
    664     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
    665     CurDAG->Legalize();
    666   }
    667 
    668   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
    669         << " '" << BlockName << "'\n"; CurDAG->dump());
    670 
    671   if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
    672 
    673   // Run the DAG combiner in post-legalize mode.
    674   {
    675     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
    676     CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
    677   }
    678 
    679   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
    680         << " '" << BlockName << "'\n"; CurDAG->dump());
    681 
    682   if (OptLevel != CodeGenOpt::None)
    683     ComputeLiveOutVRegInfo();
    684 
    685   if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
    686 
    687   // Third, instruction select all of the operations to machine code, adding the
    688   // code to the MachineBasicBlock.
    689   {
    690     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
    691     DoInstructionSelection();
    692   }
    693 
    694   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
    695         << " '" << BlockName << "'\n"; CurDAG->dump());
    696 
    697   if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
    698 
    699   // Schedule machine code.
    700   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
    701   {
    702     NamedRegionTimer T("Instruction Scheduling", GroupName,
    703                        TimePassesIsEnabled);
    704     Scheduler->Run(CurDAG, FuncInfo->MBB);
    705   }
    706 
    707   if (ViewSUnitDAGs) Scheduler->viewGraph();
    708 
    709   // Emit machine code to BB.  This can change 'BB' to the last block being
    710   // inserted into.
    711   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
    712   {
    713     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
    714 
    715     // FuncInfo->InsertPt is passed by reference and set to the end of the
    716     // scheduled instructions.
    717     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
    718   }
    719 
    720   // If the block was split, make sure we update any references that are used to
    721   // update PHI nodes later on.
    722   if (FirstMBB != LastMBB)
    723     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
    724 
    725   // Free the scheduler state.
    726   {
    727     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
    728                        TimePassesIsEnabled);
    729     delete Scheduler;
    730   }
    731 
    732   // Free the SelectionDAG state, now that we're finished with it.
    733   CurDAG->clear();
    734 }
    735 
    736 namespace {
    737 /// ISelUpdater - helper class to handle updates of the instruction selection
    738 /// graph.
    739 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
    740   SelectionDAG::allnodes_iterator &ISelPosition;
    741 public:
    742   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
    743     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
    744 
    745   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
    746   /// deleted is the current ISelPosition node, update ISelPosition.
    747   ///
    748   virtual void NodeDeleted(SDNode *N, SDNode *E) {
    749     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
    750       ++ISelPosition;
    751   }
    752 };
    753 } // end anonymous namespace
    754 
    755 void SelectionDAGISel::DoInstructionSelection() {
    756   DEBUG(dbgs() << "===== Instruction selection begins: BB#"
    757         << FuncInfo->MBB->getNumber()
    758         << " '" << FuncInfo->MBB->getName() << "'\n");
    759 
    760   PreprocessISelDAG();
    761 
    762   // Select target instructions for the DAG.
    763   {
    764     // Number all nodes with a topological order and set DAGSize.
    765     DAGSize = CurDAG->AssignTopologicalOrder();
    766 
    767     // Create a dummy node (which is not added to allnodes), that adds
    768     // a reference to the root node, preventing it from being deleted,
    769     // and tracking any changes of the root.
    770     HandleSDNode Dummy(CurDAG->getRoot());
    771     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
    772     ++ISelPosition;
    773 
    774     // Make sure that ISelPosition gets properly updated when nodes are deleted
    775     // in calls made from this function.
    776     ISelUpdater ISU(*CurDAG, ISelPosition);
    777 
    778     // The AllNodes list is now topological-sorted. Visit the
    779     // nodes by starting at the end of the list (the root of the
    780     // graph) and preceding back toward the beginning (the entry
    781     // node).
    782     while (ISelPosition != CurDAG->allnodes_begin()) {
    783       SDNode *Node = --ISelPosition;
    784       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
    785       // but there are currently some corner cases that it misses. Also, this
    786       // makes it theoretically possible to disable the DAGCombiner.
    787       if (Node->use_empty())
    788         continue;
    789 
    790       SDNode *ResNode = Select(Node);
    791 
    792       // FIXME: This is pretty gross.  'Select' should be changed to not return
    793       // anything at all and this code should be nuked with a tactical strike.
    794 
    795       // If node should not be replaced, continue with the next one.
    796       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
    797         continue;
    798       // Replace node.
    799       if (ResNode) {
    800         ReplaceUses(Node, ResNode);
    801       }
    802 
    803       // If after the replacement this node is not used any more,
    804       // remove this dead node.
    805       if (Node->use_empty()) // Don't delete EntryToken, etc.
    806         CurDAG->RemoveDeadNode(Node);
    807     }
    808 
    809     CurDAG->setRoot(Dummy.getValue());
    810   }
    811 
    812   DEBUG(dbgs() << "===== Instruction selection ends:\n");
    813 
    814   PostprocessISelDAG();
    815 }
    816 
    817 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
    818 /// do other setup for EH landing-pad blocks.
    819 void SelectionDAGISel::PrepareEHLandingPad() {
    820   MachineBasicBlock *MBB = FuncInfo->MBB;
    821 
    822   // Add a label to mark the beginning of the landing pad.  Deletion of the
    823   // landing pad can thus be detected via the MachineModuleInfo.
    824   MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
    825 
    826   // Assign the call site to the landing pad's begin label.
    827   MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
    828 
    829   const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
    830   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
    831     .addSym(Label);
    832 
    833   // Mark exception register as live in.
    834   const TargetLowering *TLI = getTargetLowering();
    835   const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
    836   if (unsigned Reg = TLI->getExceptionPointerRegister())
    837     FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
    838 
    839   // Mark exception selector register as live in.
    840   if (unsigned Reg = TLI->getExceptionSelectorRegister())
    841     FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
    842 }
    843 
    844 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
    845 /// side-effect free and is either dead or folded into a generated instruction.
    846 /// Return false if it needs to be emitted.
    847 static bool isFoldedOrDeadInstruction(const Instruction *I,
    848                                       FunctionLoweringInfo *FuncInfo) {
    849   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
    850          !isa<TerminatorInst>(I) && // Terminators aren't folded.
    851          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
    852          !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
    853          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
    854 }
    855 
    856 #ifndef NDEBUG
    857 // Collect per Instruction statistics for fast-isel misses.  Only those
    858 // instructions that cause the bail are accounted for.  It does not account for
    859 // instructions higher in the block.  Thus, summing the per instructions stats
    860 // will not add up to what is reported by NumFastIselFailures.
    861 static void collectFailStats(const Instruction *I) {
    862   switch (I->getOpcode()) {
    863   default: assert (0 && "<Invalid operator> ");
    864 
    865   // Terminators
    866   case Instruction::Ret:         NumFastIselFailRet++; return;
    867   case Instruction::Br:          NumFastIselFailBr++; return;
    868   case Instruction::Switch:      NumFastIselFailSwitch++; return;
    869   case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
    870   case Instruction::Invoke:      NumFastIselFailInvoke++; return;
    871   case Instruction::Resume:      NumFastIselFailResume++; return;
    872   case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
    873 
    874   // Standard binary operators...
    875   case Instruction::Add:  NumFastIselFailAdd++; return;
    876   case Instruction::FAdd: NumFastIselFailFAdd++; return;
    877   case Instruction::Sub:  NumFastIselFailSub++; return;
    878   case Instruction::FSub: NumFastIselFailFSub++; return;
    879   case Instruction::Mul:  NumFastIselFailMul++; return;
    880   case Instruction::FMul: NumFastIselFailFMul++; return;
    881   case Instruction::UDiv: NumFastIselFailUDiv++; return;
    882   case Instruction::SDiv: NumFastIselFailSDiv++; return;
    883   case Instruction::FDiv: NumFastIselFailFDiv++; return;
    884   case Instruction::URem: NumFastIselFailURem++; return;
    885   case Instruction::SRem: NumFastIselFailSRem++; return;
    886   case Instruction::FRem: NumFastIselFailFRem++; return;
    887 
    888   // Logical operators...
    889   case Instruction::And: NumFastIselFailAnd++; return;
    890   case Instruction::Or:  NumFastIselFailOr++; return;
    891   case Instruction::Xor: NumFastIselFailXor++; return;
    892 
    893   // Memory instructions...
    894   case Instruction::Alloca:        NumFastIselFailAlloca++; return;
    895   case Instruction::Load:          NumFastIselFailLoad++; return;
    896   case Instruction::Store:         NumFastIselFailStore++; return;
    897   case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
    898   case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
    899   case Instruction::Fence:         NumFastIselFailFence++; return;
    900   case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
    901 
    902   // Convert instructions...
    903   case Instruction::Trunc:    NumFastIselFailTrunc++; return;
    904   case Instruction::ZExt:     NumFastIselFailZExt++; return;
    905   case Instruction::SExt:     NumFastIselFailSExt++; return;
    906   case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
    907   case Instruction::FPExt:    NumFastIselFailFPExt++; return;
    908   case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
    909   case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
    910   case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
    911   case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
    912   case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
    913   case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
    914   case Instruction::BitCast:  NumFastIselFailBitCast++; return;
    915 
    916   // Other instructions...
    917   case Instruction::ICmp:           NumFastIselFailICmp++; return;
    918   case Instruction::FCmp:           NumFastIselFailFCmp++; return;
    919   case Instruction::PHI:            NumFastIselFailPHI++; return;
    920   case Instruction::Select:         NumFastIselFailSelect++; return;
    921   case Instruction::Call:           NumFastIselFailCall++; return;
    922   case Instruction::Shl:            NumFastIselFailShl++; return;
    923   case Instruction::LShr:           NumFastIselFailLShr++; return;
    924   case Instruction::AShr:           NumFastIselFailAShr++; return;
    925   case Instruction::VAArg:          NumFastIselFailVAArg++; return;
    926   case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
    927   case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
    928   case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
    929   case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
    930   case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
    931   case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
    932   }
    933 }
    934 #endif
    935 
    936 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
    937   // Initialize the Fast-ISel state, if needed.
    938   FastISel *FastIS = 0;
    939   if (TM.Options.EnableFastISel)
    940     FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
    941 
    942   // Iterate over all basic blocks in the function.
    943   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
    944   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
    945        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
    946     const BasicBlock *LLVMBB = *I;
    947 
    948     if (OptLevel != CodeGenOpt::None) {
    949       bool AllPredsVisited = true;
    950       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
    951            PI != PE; ++PI) {
    952         if (!FuncInfo->VisitedBBs.count(*PI)) {
    953           AllPredsVisited = false;
    954           break;
    955         }
    956       }
    957 
    958       if (AllPredsVisited) {
    959         for (BasicBlock::const_iterator I = LLVMBB->begin();
    960              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
    961           FuncInfo->ComputePHILiveOutRegInfo(PN);
    962       } else {
    963         for (BasicBlock::const_iterator I = LLVMBB->begin();
    964              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
    965           FuncInfo->InvalidatePHILiveOutRegInfo(PN);
    966       }
    967 
    968       FuncInfo->VisitedBBs.insert(LLVMBB);
    969     }
    970 
    971     BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
    972     BasicBlock::const_iterator const End = LLVMBB->end();
    973     BasicBlock::const_iterator BI = End;
    974 
    975     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
    976     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
    977 
    978     // Setup an EH landing-pad block.
    979     FuncInfo->ExceptionPointerVirtReg = 0;
    980     FuncInfo->ExceptionSelectorVirtReg = 0;
    981     if (FuncInfo->MBB->isLandingPad())
    982       PrepareEHLandingPad();
    983 
    984     // Before doing SelectionDAG ISel, see if FastISel has been requested.
    985     if (FastIS) {
    986       FastIS->startNewBlock();
    987 
    988       // Emit code for any incoming arguments. This must happen before
    989       // beginning FastISel on the entry block.
    990       if (LLVMBB == &Fn.getEntryBlock()) {
    991         ++NumEntryBlocks;
    992 
    993         // Lower any arguments needed in this block if this is the entry block.
    994         if (!FastIS->LowerArguments()) {
    995           // Fast isel failed to lower these arguments
    996           ++NumFastIselFailLowerArguments;
    997           if (EnableFastISelAbortArgs)
    998             llvm_unreachable("FastISel didn't lower all arguments");
    999 
   1000           // Use SelectionDAG argument lowering
   1001           LowerArguments(Fn);
   1002           CurDAG->setRoot(SDB->getControlRoot());
   1003           SDB->clear();
   1004           CodeGenAndEmitDAG();
   1005         }
   1006 
   1007         // If we inserted any instructions at the beginning, make a note of
   1008         // where they are, so we can be sure to emit subsequent instructions
   1009         // after them.
   1010         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
   1011           FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
   1012         else
   1013           FastIS->setLastLocalValue(0);
   1014       }
   1015 
   1016       unsigned NumFastIselRemaining = std::distance(Begin, End);
   1017       // Do FastISel on as many instructions as possible.
   1018       for (; BI != Begin; --BI) {
   1019         const Instruction *Inst = llvm::prior(BI);
   1020 
   1021         // If we no longer require this instruction, skip it.
   1022         if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
   1023           --NumFastIselRemaining;
   1024           continue;
   1025         }
   1026 
   1027         // Bottom-up: reset the insert pos at the top, after any local-value
   1028         // instructions.
   1029         FastIS->recomputeInsertPt();
   1030 
   1031         // Try to select the instruction with FastISel.
   1032         if (FastIS->SelectInstruction(Inst)) {
   1033           --NumFastIselRemaining;
   1034           ++NumFastIselSuccess;
   1035           // If fast isel succeeded, skip over all the folded instructions, and
   1036           // then see if there is a load right before the selected instructions.
   1037           // Try to fold the load if so.
   1038           const Instruction *BeforeInst = Inst;
   1039           while (BeforeInst != Begin) {
   1040             BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
   1041             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
   1042               break;
   1043           }
   1044           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
   1045               BeforeInst->hasOneUse() &&
   1046               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
   1047             // If we succeeded, don't re-select the load.
   1048             BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
   1049             --NumFastIselRemaining;
   1050             ++NumFastIselSuccess;
   1051           }
   1052           continue;
   1053         }
   1054 
   1055 #ifndef NDEBUG
   1056         if (EnableFastISelVerbose2)
   1057           collectFailStats(Inst);
   1058 #endif
   1059 
   1060         // Then handle certain instructions as single-LLVM-Instruction blocks.
   1061         if (isa<CallInst>(Inst)) {
   1062 
   1063           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1064             dbgs() << "FastISel missed call: ";
   1065             Inst->dump();
   1066           }
   1067 
   1068           if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
   1069             unsigned &R = FuncInfo->ValueMap[Inst];
   1070             if (!R)
   1071               R = FuncInfo->CreateRegs(Inst->getType());
   1072           }
   1073 
   1074           bool HadTailCall = false;
   1075           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
   1076           SelectBasicBlock(Inst, BI, HadTailCall);
   1077 
   1078           // If the call was emitted as a tail call, we're done with the block.
   1079           // We also need to delete any previously emitted instructions.
   1080           if (HadTailCall) {
   1081             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
   1082             --BI;
   1083             break;
   1084           }
   1085 
   1086           // Recompute NumFastIselRemaining as Selection DAG instruction
   1087           // selection may have handled the call, input args, etc.
   1088           unsigned RemainingNow = std::distance(Begin, BI);
   1089           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
   1090           NumFastIselRemaining = RemainingNow;
   1091           continue;
   1092         }
   1093 
   1094         if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
   1095           // Don't abort, and use a different message for terminator misses.
   1096           NumFastIselFailures += NumFastIselRemaining;
   1097           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1098             dbgs() << "FastISel missed terminator: ";
   1099             Inst->dump();
   1100           }
   1101         } else {
   1102           NumFastIselFailures += NumFastIselRemaining;
   1103           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1104             dbgs() << "FastISel miss: ";
   1105             Inst->dump();
   1106           }
   1107           if (EnableFastISelAbort)
   1108             // The "fast" selector couldn't handle something and bailed.
   1109             // For the purpose of debugging, just abort.
   1110             llvm_unreachable("FastISel didn't select the entire block");
   1111         }
   1112         break;
   1113       }
   1114 
   1115       FastIS->recomputeInsertPt();
   1116     } else {
   1117       // Lower any arguments needed in this block if this is the entry block.
   1118       if (LLVMBB == &Fn.getEntryBlock()) {
   1119         ++NumEntryBlocks;
   1120         LowerArguments(Fn);
   1121       }
   1122     }
   1123 
   1124     if (Begin != BI)
   1125       ++NumDAGBlocks;
   1126     else
   1127       ++NumFastIselBlocks;
   1128 
   1129     if (Begin != BI) {
   1130       // Run SelectionDAG instruction selection on the remainder of the block
   1131       // not handled by FastISel. If FastISel is not run, this is the entire
   1132       // block.
   1133       bool HadTailCall;
   1134       SelectBasicBlock(Begin, BI, HadTailCall);
   1135     }
   1136 
   1137     FinishBasicBlock();
   1138     FuncInfo->PHINodesToUpdate.clear();
   1139   }
   1140 
   1141   delete FastIS;
   1142   SDB->clearDanglingDebugInfo();
   1143 }
   1144 
   1145 void
   1146 SelectionDAGISel::FinishBasicBlock() {
   1147 
   1148   DEBUG(dbgs() << "Total amount of phi nodes to update: "
   1149                << FuncInfo->PHINodesToUpdate.size() << "\n";
   1150         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
   1151           dbgs() << "Node " << i << " : ("
   1152                  << FuncInfo->PHINodesToUpdate[i].first
   1153                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
   1154 
   1155   // Next, now that we know what the last MBB the LLVM BB expanded is, update
   1156   // PHI nodes in successors.
   1157   if (SDB->SwitchCases.empty() &&
   1158       SDB->JTCases.empty() &&
   1159       SDB->BitTestCases.empty()) {
   1160     for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1161       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
   1162       assert(PHI->isPHI() &&
   1163              "This is not a machine PHI node that we are updating!");
   1164       if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
   1165         continue;
   1166       PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
   1167     }
   1168     return;
   1169   }
   1170 
   1171   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
   1172     // Lower header first, if it wasn't already lowered
   1173     if (!SDB->BitTestCases[i].Emitted) {
   1174       // Set the current basic block to the mbb we wish to insert the code into
   1175       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
   1176       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1177       // Emit the code
   1178       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
   1179       CurDAG->setRoot(SDB->getRoot());
   1180       SDB->clear();
   1181       CodeGenAndEmitDAG();
   1182     }
   1183 
   1184     uint32_t UnhandledWeight = 0;
   1185     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
   1186       UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
   1187 
   1188     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
   1189       UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
   1190       // Set the current basic block to the mbb we wish to insert the code into
   1191       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1192       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1193       // Emit the code
   1194       if (j+1 != ej)
   1195         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1196                               SDB->BitTestCases[i].Cases[j+1].ThisBB,
   1197                               UnhandledWeight,
   1198                               SDB->BitTestCases[i].Reg,
   1199                               SDB->BitTestCases[i].Cases[j],
   1200                               FuncInfo->MBB);
   1201       else
   1202         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1203                               SDB->BitTestCases[i].Default,
   1204                               UnhandledWeight,
   1205                               SDB->BitTestCases[i].Reg,
   1206                               SDB->BitTestCases[i].Cases[j],
   1207                               FuncInfo->MBB);
   1208 
   1209 
   1210       CurDAG->setRoot(SDB->getRoot());
   1211       SDB->clear();
   1212       CodeGenAndEmitDAG();
   1213     }
   1214 
   1215     // Update PHI Nodes
   1216     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1217          pi != pe; ++pi) {
   1218       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
   1219       MachineBasicBlock *PHIBB = PHI->getParent();
   1220       assert(PHI->isPHI() &&
   1221              "This is not a machine PHI node that we are updating!");
   1222       // This is "default" BB. We have two jumps to it. From "header" BB and
   1223       // from last "case" BB.
   1224       if (PHIBB == SDB->BitTestCases[i].Default)
   1225         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1226            .addMBB(SDB->BitTestCases[i].Parent)
   1227            .addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1228            .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
   1229       // One of "cases" BB.
   1230       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
   1231            j != ej; ++j) {
   1232         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1233         if (cBB->isSuccessor(PHIBB))
   1234           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
   1235       }
   1236     }
   1237   }
   1238   SDB->BitTestCases.clear();
   1239 
   1240   // If the JumpTable record is filled in, then we need to emit a jump table.
   1241   // Updating the PHI nodes is tricky in this case, since we need to determine
   1242   // whether the PHI is a successor of the range check MBB or the jump table MBB
   1243   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
   1244     // Lower header first, if it wasn't already lowered
   1245     if (!SDB->JTCases[i].first.Emitted) {
   1246       // Set the current basic block to the mbb we wish to insert the code into
   1247       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
   1248       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1249       // Emit the code
   1250       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
   1251                                 FuncInfo->MBB);
   1252       CurDAG->setRoot(SDB->getRoot());
   1253       SDB->clear();
   1254       CodeGenAndEmitDAG();
   1255     }
   1256 
   1257     // Set the current basic block to the mbb we wish to insert the code into
   1258     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
   1259     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1260     // Emit the code
   1261     SDB->visitJumpTable(SDB->JTCases[i].second);
   1262     CurDAG->setRoot(SDB->getRoot());
   1263     SDB->clear();
   1264     CodeGenAndEmitDAG();
   1265 
   1266     // Update PHI Nodes
   1267     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1268          pi != pe; ++pi) {
   1269       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
   1270       MachineBasicBlock *PHIBB = PHI->getParent();
   1271       assert(PHI->isPHI() &&
   1272              "This is not a machine PHI node that we are updating!");
   1273       // "default" BB. We can go there only from header BB.
   1274       if (PHIBB == SDB->JTCases[i].second.Default)
   1275         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1276            .addMBB(SDB->JTCases[i].first.HeaderBB);
   1277       // JT BB. Just iterate over successors here
   1278       if (FuncInfo->MBB->isSuccessor(PHIBB))
   1279         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
   1280     }
   1281   }
   1282   SDB->JTCases.clear();
   1283 
   1284   // If the switch block involved a branch to one of the actual successors, we
   1285   // need to update PHI nodes in that block.
   1286   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1287     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
   1288     assert(PHI->isPHI() &&
   1289            "This is not a machine PHI node that we are updating!");
   1290     if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
   1291       PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
   1292   }
   1293 
   1294   // If we generated any switch lowering information, build and codegen any
   1295   // additional DAGs necessary.
   1296   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
   1297     // Set the current basic block to the mbb we wish to insert the code into
   1298     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
   1299     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1300 
   1301     // Determine the unique successors.
   1302     SmallVector<MachineBasicBlock *, 2> Succs;
   1303     Succs.push_back(SDB->SwitchCases[i].TrueBB);
   1304     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
   1305       Succs.push_back(SDB->SwitchCases[i].FalseBB);
   1306 
   1307     // Emit the code. Note that this could result in FuncInfo->MBB being split.
   1308     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
   1309     CurDAG->setRoot(SDB->getRoot());
   1310     SDB->clear();
   1311     CodeGenAndEmitDAG();
   1312 
   1313     // Remember the last block, now that any splitting is done, for use in
   1314     // populating PHI nodes in successors.
   1315     MachineBasicBlock *ThisBB = FuncInfo->MBB;
   1316 
   1317     // Handle any PHI nodes in successors of this chunk, as if we were coming
   1318     // from the original BB before switch expansion.  Note that PHI nodes can
   1319     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
   1320     // handle them the right number of times.
   1321     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
   1322       FuncInfo->MBB = Succs[i];
   1323       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1324       // FuncInfo->MBB may have been removed from the CFG if a branch was
   1325       // constant folded.
   1326       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
   1327         for (MachineBasicBlock::iterator
   1328              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
   1329              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
   1330           MachineInstrBuilder PHI(*MF, MBBI);
   1331           // This value for this PHI node is recorded in PHINodesToUpdate.
   1332           for (unsigned pn = 0; ; ++pn) {
   1333             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
   1334                    "Didn't find PHI entry!");
   1335             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
   1336               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
   1337               break;
   1338             }
   1339           }
   1340         }
   1341       }
   1342     }
   1343   }
   1344   SDB->SwitchCases.clear();
   1345 }
   1346 
   1347 
   1348 /// Create the scheduler. If a specific scheduler was specified
   1349 /// via the SchedulerRegistry, use it, otherwise select the
   1350 /// one preferred by the target.
   1351 ///
   1352 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
   1353   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
   1354 
   1355   if (!Ctor) {
   1356     Ctor = ISHeuristic;
   1357     RegisterScheduler::setDefault(Ctor);
   1358   }
   1359 
   1360   return Ctor(this, OptLevel);
   1361 }
   1362 
   1363 //===----------------------------------------------------------------------===//
   1364 // Helper functions used by the generated instruction selector.
   1365 //===----------------------------------------------------------------------===//
   1366 // Calls to these methods are generated by tblgen.
   1367 
   1368 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
   1369 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1370 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
   1371 /// specified in the .td file (e.g. 255).
   1372 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
   1373                                     int64_t DesiredMaskS) const {
   1374   const APInt &ActualMask = RHS->getAPIntValue();
   1375   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1376 
   1377   // If the actual mask exactly matches, success!
   1378   if (ActualMask == DesiredMask)
   1379     return true;
   1380 
   1381   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1382   if (ActualMask.intersects(~DesiredMask))
   1383     return false;
   1384 
   1385   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1386   // either already zero or is not demanded.  Check for known zero input bits.
   1387   APInt NeededMask = DesiredMask & ~ActualMask;
   1388   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
   1389     return true;
   1390 
   1391   // TODO: check to see if missing bits are just not demanded.
   1392 
   1393   // Otherwise, this pattern doesn't match.
   1394   return false;
   1395 }
   1396 
   1397 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
   1398 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1399 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
   1400 /// specified in the .td file (e.g. 255).
   1401 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
   1402                                    int64_t DesiredMaskS) const {
   1403   const APInt &ActualMask = RHS->getAPIntValue();
   1404   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1405 
   1406   // If the actual mask exactly matches, success!
   1407   if (ActualMask == DesiredMask)
   1408     return true;
   1409 
   1410   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1411   if (ActualMask.intersects(~DesiredMask))
   1412     return false;
   1413 
   1414   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1415   // either already zero or is not demanded.  Check for known zero input bits.
   1416   APInt NeededMask = DesiredMask & ~ActualMask;
   1417 
   1418   APInt KnownZero, KnownOne;
   1419   CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
   1420 
   1421   // If all the missing bits in the or are already known to be set, match!
   1422   if ((NeededMask & KnownOne) == NeededMask)
   1423     return true;
   1424 
   1425   // TODO: check to see if missing bits are just not demanded.
   1426 
   1427   // Otherwise, this pattern doesn't match.
   1428   return false;
   1429 }
   1430 
   1431 
   1432 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
   1433 /// by tblgen.  Others should not call it.
   1434 void SelectionDAGISel::
   1435 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
   1436   std::vector<SDValue> InOps;
   1437   std::swap(InOps, Ops);
   1438 
   1439   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
   1440   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
   1441   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
   1442   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
   1443 
   1444   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
   1445   if (InOps[e-1].getValueType() == MVT::Glue)
   1446     --e;  // Don't process a glue operand if it is here.
   1447 
   1448   while (i != e) {
   1449     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
   1450     if (!InlineAsm::isMemKind(Flags)) {
   1451       // Just skip over this operand, copying the operands verbatim.
   1452       Ops.insert(Ops.end(), InOps.begin()+i,
   1453                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
   1454       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
   1455     } else {
   1456       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
   1457              "Memory operand with multiple values?");
   1458       // Otherwise, this is a memory operand.  Ask the target to select it.
   1459       std::vector<SDValue> SelOps;
   1460       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
   1461         report_fatal_error("Could not match memory address.  Inline asm"
   1462                            " failure!");
   1463 
   1464       // Add this to the output node.
   1465       unsigned NewFlags =
   1466         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
   1467       Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
   1468       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
   1469       i += 2;
   1470     }
   1471   }
   1472 
   1473   // Add the glue input back if present.
   1474   if (e != InOps.size())
   1475     Ops.push_back(InOps.back());
   1476 }
   1477 
   1478 /// findGlueUse - Return use of MVT::Glue value produced by the specified
   1479 /// SDNode.
   1480 ///
   1481 static SDNode *findGlueUse(SDNode *N) {
   1482   unsigned FlagResNo = N->getNumValues()-1;
   1483   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
   1484     SDUse &Use = I.getUse();
   1485     if (Use.getResNo() == FlagResNo)
   1486       return Use.getUser();
   1487   }
   1488   return NULL;
   1489 }
   1490 
   1491 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
   1492 /// This function recursively traverses up the operand chain, ignoring
   1493 /// certain nodes.
   1494 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
   1495                           SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
   1496                           bool IgnoreChains) {
   1497   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
   1498   // greater than all of its (recursive) operands.  If we scan to a point where
   1499   // 'use' is smaller than the node we're scanning for, then we know we will
   1500   // never find it.
   1501   //
   1502   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
   1503   // happen because we scan down to newly selected nodes in the case of glue
   1504   // uses.
   1505   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
   1506     return false;
   1507 
   1508   // Don't revisit nodes if we already scanned it and didn't fail, we know we
   1509   // won't fail if we scan it again.
   1510   if (!Visited.insert(Use))
   1511     return false;
   1512 
   1513   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
   1514     // Ignore chain uses, they are validated by HandleMergeInputChains.
   1515     if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
   1516       continue;
   1517 
   1518     SDNode *N = Use->getOperand(i).getNode();
   1519     if (N == Def) {
   1520       if (Use == ImmedUse || Use == Root)
   1521         continue;  // We are not looking for immediate use.
   1522       assert(N != Root);
   1523       return true;
   1524     }
   1525 
   1526     // Traverse up the operand chain.
   1527     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
   1528       return true;
   1529   }
   1530   return false;
   1531 }
   1532 
   1533 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
   1534 /// operand node N of U during instruction selection that starts at Root.
   1535 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
   1536                                           SDNode *Root) const {
   1537   if (OptLevel == CodeGenOpt::None) return false;
   1538   return N.hasOneUse();
   1539 }
   1540 
   1541 /// IsLegalToFold - Returns true if the specific operand node N of
   1542 /// U can be folded during instruction selection that starts at Root.
   1543 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
   1544                                      CodeGenOpt::Level OptLevel,
   1545                                      bool IgnoreChains) {
   1546   if (OptLevel == CodeGenOpt::None) return false;
   1547 
   1548   // If Root use can somehow reach N through a path that that doesn't contain
   1549   // U then folding N would create a cycle. e.g. In the following
   1550   // diagram, Root can reach N through X. If N is folded into into Root, then
   1551   // X is both a predecessor and a successor of U.
   1552   //
   1553   //          [N*]           //
   1554   //         ^   ^           //
   1555   //        /     \          //
   1556   //      [U*]    [X]?       //
   1557   //        ^     ^          //
   1558   //         \   /           //
   1559   //          \ /            //
   1560   //         [Root*]         //
   1561   //
   1562   // * indicates nodes to be folded together.
   1563   //
   1564   // If Root produces glue, then it gets (even more) interesting. Since it
   1565   // will be "glued" together with its glue use in the scheduler, we need to
   1566   // check if it might reach N.
   1567   //
   1568   //          [N*]           //
   1569   //         ^   ^           //
   1570   //        /     \          //
   1571   //      [U*]    [X]?       //
   1572   //        ^       ^        //
   1573   //         \       \       //
   1574   //          \      |       //
   1575   //         [Root*] |       //
   1576   //          ^      |       //
   1577   //          f      |       //
   1578   //          |      /       //
   1579   //         [Y]    /        //
   1580   //           ^   /         //
   1581   //           f  /          //
   1582   //           | /           //
   1583   //          [GU]           //
   1584   //
   1585   // If GU (glue use) indirectly reaches N (the load), and Root folds N
   1586   // (call it Fold), then X is a predecessor of GU and a successor of
   1587   // Fold. But since Fold and GU are glued together, this will create
   1588   // a cycle in the scheduling graph.
   1589 
   1590   // If the node has glue, walk down the graph to the "lowest" node in the
   1591   // glueged set.
   1592   EVT VT = Root->getValueType(Root->getNumValues()-1);
   1593   while (VT == MVT::Glue) {
   1594     SDNode *GU = findGlueUse(Root);
   1595     if (GU == NULL)
   1596       break;
   1597     Root = GU;
   1598     VT = Root->getValueType(Root->getNumValues()-1);
   1599 
   1600     // If our query node has a glue result with a use, we've walked up it.  If
   1601     // the user (which has already been selected) has a chain or indirectly uses
   1602     // the chain, our WalkChainUsers predicate will not consider it.  Because of
   1603     // this, we cannot ignore chains in this predicate.
   1604     IgnoreChains = false;
   1605   }
   1606 
   1607 
   1608   SmallPtrSet<SDNode*, 16> Visited;
   1609   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
   1610 }
   1611 
   1612 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
   1613   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
   1614   SelectInlineAsmMemoryOperands(Ops);
   1615 
   1616   EVT VTs[] = { MVT::Other, MVT::Glue };
   1617   SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
   1618                                 VTs, &Ops[0], Ops.size());
   1619   New->setNodeId(-1);
   1620   return New.getNode();
   1621 }
   1622 
   1623 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
   1624   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
   1625 }
   1626 
   1627 /// GetVBR - decode a vbr encoding whose top bit is set.
   1628 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
   1629 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
   1630   assert(Val >= 128 && "Not a VBR");
   1631   Val &= 127;  // Remove first vbr bit.
   1632 
   1633   unsigned Shift = 7;
   1634   uint64_t NextBits;
   1635   do {
   1636     NextBits = MatcherTable[Idx++];
   1637     Val |= (NextBits&127) << Shift;
   1638     Shift += 7;
   1639   } while (NextBits & 128);
   1640 
   1641   return Val;
   1642 }
   1643 
   1644 
   1645 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
   1646 /// interior glue and chain results to use the new glue and chain results.
   1647 void SelectionDAGISel::
   1648 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
   1649                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1650                     SDValue InputGlue,
   1651                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
   1652                     bool isMorphNodeTo) {
   1653   SmallVector<SDNode*, 4> NowDeadNodes;
   1654 
   1655   // Now that all the normal results are replaced, we replace the chain and
   1656   // glue results if present.
   1657   if (!ChainNodesMatched.empty()) {
   1658     assert(InputChain.getNode() != 0 &&
   1659            "Matched input chains but didn't produce a chain");
   1660     // Loop over all of the nodes we matched that produced a chain result.
   1661     // Replace all the chain results with the final chain we ended up with.
   1662     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1663       SDNode *ChainNode = ChainNodesMatched[i];
   1664 
   1665       // If this node was already deleted, don't look at it.
   1666       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
   1667         continue;
   1668 
   1669       // Don't replace the results of the root node if we're doing a
   1670       // MorphNodeTo.
   1671       if (ChainNode == NodeToMatch && isMorphNodeTo)
   1672         continue;
   1673 
   1674       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
   1675       if (ChainVal.getValueType() == MVT::Glue)
   1676         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
   1677       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
   1678       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
   1679 
   1680       // If the node became dead and we haven't already seen it, delete it.
   1681       if (ChainNode->use_empty() &&
   1682           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
   1683         NowDeadNodes.push_back(ChainNode);
   1684     }
   1685   }
   1686 
   1687   // If the result produces glue, update any glue results in the matched
   1688   // pattern with the glue result.
   1689   if (InputGlue.getNode() != 0) {
   1690     // Handle any interior nodes explicitly marked.
   1691     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
   1692       SDNode *FRN = GlueResultNodesMatched[i];
   1693 
   1694       // If this node was already deleted, don't look at it.
   1695       if (FRN->getOpcode() == ISD::DELETED_NODE)
   1696         continue;
   1697 
   1698       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
   1699              "Doesn't have a glue result");
   1700       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
   1701                                         InputGlue);
   1702 
   1703       // If the node became dead and we haven't already seen it, delete it.
   1704       if (FRN->use_empty() &&
   1705           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
   1706         NowDeadNodes.push_back(FRN);
   1707     }
   1708   }
   1709 
   1710   if (!NowDeadNodes.empty())
   1711     CurDAG->RemoveDeadNodes(NowDeadNodes);
   1712 
   1713   DEBUG(dbgs() << "ISEL: Match complete!\n");
   1714 }
   1715 
   1716 enum ChainResult {
   1717   CR_Simple,
   1718   CR_InducesCycle,
   1719   CR_LeadsToInteriorNode
   1720 };
   1721 
   1722 /// WalkChainUsers - Walk down the users of the specified chained node that is
   1723 /// part of the pattern we're matching, looking at all of the users we find.
   1724 /// This determines whether something is an interior node, whether we have a
   1725 /// non-pattern node in between two pattern nodes (which prevent folding because
   1726 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
   1727 /// between pattern nodes (in which case the TF becomes part of the pattern).
   1728 ///
   1729 /// The walk we do here is guaranteed to be small because we quickly get down to
   1730 /// already selected nodes "below" us.
   1731 static ChainResult
   1732 WalkChainUsers(const SDNode *ChainedNode,
   1733                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
   1734                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
   1735   ChainResult Result = CR_Simple;
   1736 
   1737   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
   1738          E = ChainedNode->use_end(); UI != E; ++UI) {
   1739     // Make sure the use is of the chain, not some other value we produce.
   1740     if (UI.getUse().getValueType() != MVT::Other) continue;
   1741 
   1742     SDNode *User = *UI;
   1743 
   1744     // If we see an already-selected machine node, then we've gone beyond the
   1745     // pattern that we're selecting down into the already selected chunk of the
   1746     // DAG.
   1747     if (User->isMachineOpcode() ||
   1748         User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
   1749       continue;
   1750 
   1751     unsigned UserOpcode = User->getOpcode();
   1752     if (UserOpcode == ISD::CopyToReg ||
   1753         UserOpcode == ISD::CopyFromReg ||
   1754         UserOpcode == ISD::INLINEASM ||
   1755         UserOpcode == ISD::EH_LABEL ||
   1756         UserOpcode == ISD::LIFETIME_START ||
   1757         UserOpcode == ISD::LIFETIME_END) {
   1758       // If their node ID got reset to -1 then they've already been selected.
   1759       // Treat them like a MachineOpcode.
   1760       if (User->getNodeId() == -1)
   1761         continue;
   1762     }
   1763 
   1764     // If we have a TokenFactor, we handle it specially.
   1765     if (User->getOpcode() != ISD::TokenFactor) {
   1766       // If the node isn't a token factor and isn't part of our pattern, then it
   1767       // must be a random chained node in between two nodes we're selecting.
   1768       // This happens when we have something like:
   1769       //   x = load ptr
   1770       //   call
   1771       //   y = x+4
   1772       //   store y -> ptr
   1773       // Because we structurally match the load/store as a read/modify/write,
   1774       // but the call is chained between them.  We cannot fold in this case
   1775       // because it would induce a cycle in the graph.
   1776       if (!std::count(ChainedNodesInPattern.begin(),
   1777                       ChainedNodesInPattern.end(), User))
   1778         return CR_InducesCycle;
   1779 
   1780       // Otherwise we found a node that is part of our pattern.  For example in:
   1781       //   x = load ptr
   1782       //   y = x+4
   1783       //   store y -> ptr
   1784       // This would happen when we're scanning down from the load and see the
   1785       // store as a user.  Record that there is a use of ChainedNode that is
   1786       // part of the pattern and keep scanning uses.
   1787       Result = CR_LeadsToInteriorNode;
   1788       InteriorChainedNodes.push_back(User);
   1789       continue;
   1790     }
   1791 
   1792     // If we found a TokenFactor, there are two cases to consider: first if the
   1793     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
   1794     // uses of the TF are in our pattern) we just want to ignore it.  Second,
   1795     // the TokenFactor can be sandwiched in between two chained nodes, like so:
   1796     //     [Load chain]
   1797     //         ^
   1798     //         |
   1799     //       [Load]
   1800     //       ^    ^
   1801     //       |    \                    DAG's like cheese
   1802     //      /       \                       do you?
   1803     //     /         |
   1804     // [TokenFactor] [Op]
   1805     //     ^          ^
   1806     //     |          |
   1807     //      \        /
   1808     //       \      /
   1809     //       [Store]
   1810     //
   1811     // In this case, the TokenFactor becomes part of our match and we rewrite it
   1812     // as a new TokenFactor.
   1813     //
   1814     // To distinguish these two cases, do a recursive walk down the uses.
   1815     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
   1816     case CR_Simple:
   1817       // If the uses of the TokenFactor are just already-selected nodes, ignore
   1818       // it, it is "below" our pattern.
   1819       continue;
   1820     case CR_InducesCycle:
   1821       // If the uses of the TokenFactor lead to nodes that are not part of our
   1822       // pattern that are not selected, folding would turn this into a cycle,
   1823       // bail out now.
   1824       return CR_InducesCycle;
   1825     case CR_LeadsToInteriorNode:
   1826       break;  // Otherwise, keep processing.
   1827     }
   1828 
   1829     // Okay, we know we're in the interesting interior case.  The TokenFactor
   1830     // is now going to be considered part of the pattern so that we rewrite its
   1831     // uses (it may have uses that are not part of the pattern) with the
   1832     // ultimate chain result of the generated code.  We will also add its chain
   1833     // inputs as inputs to the ultimate TokenFactor we create.
   1834     Result = CR_LeadsToInteriorNode;
   1835     ChainedNodesInPattern.push_back(User);
   1836     InteriorChainedNodes.push_back(User);
   1837     continue;
   1838   }
   1839 
   1840   return Result;
   1841 }
   1842 
   1843 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
   1844 /// operation for when the pattern matched at least one node with a chains.  The
   1845 /// input vector contains a list of all of the chained nodes that we match.  We
   1846 /// must determine if this is a valid thing to cover (i.e. matching it won't
   1847 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
   1848 /// be used as the input node chain for the generated nodes.
   1849 static SDValue
   1850 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1851                        SelectionDAG *CurDAG) {
   1852   // Walk all of the chained nodes we've matched, recursively scanning down the
   1853   // users of the chain result. This adds any TokenFactor nodes that are caught
   1854   // in between chained nodes to the chained and interior nodes list.
   1855   SmallVector<SDNode*, 3> InteriorChainedNodes;
   1856   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1857     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
   1858                        InteriorChainedNodes) == CR_InducesCycle)
   1859       return SDValue(); // Would induce a cycle.
   1860   }
   1861 
   1862   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
   1863   // that we are interested in.  Form our input TokenFactor node.
   1864   SmallVector<SDValue, 3> InputChains;
   1865   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1866     // Add the input chain of this node to the InputChains list (which will be
   1867     // the operands of the generated TokenFactor) if it's not an interior node.
   1868     SDNode *N = ChainNodesMatched[i];
   1869     if (N->getOpcode() != ISD::TokenFactor) {
   1870       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
   1871         continue;
   1872 
   1873       // Otherwise, add the input chain.
   1874       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
   1875       assert(InChain.getValueType() == MVT::Other && "Not a chain");
   1876       InputChains.push_back(InChain);
   1877       continue;
   1878     }
   1879 
   1880     // If we have a token factor, we want to add all inputs of the token factor
   1881     // that are not part of the pattern we're matching.
   1882     for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
   1883       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
   1884                       N->getOperand(op).getNode()))
   1885         InputChains.push_back(N->getOperand(op));
   1886     }
   1887   }
   1888 
   1889   SDValue Res;
   1890   if (InputChains.size() == 1)
   1891     return InputChains[0];
   1892   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
   1893                          MVT::Other, &InputChains[0], InputChains.size());
   1894 }
   1895 
   1896 /// MorphNode - Handle morphing a node in place for the selector.
   1897 SDNode *SelectionDAGISel::
   1898 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
   1899           const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
   1900   // It is possible we're using MorphNodeTo to replace a node with no
   1901   // normal results with one that has a normal result (or we could be
   1902   // adding a chain) and the input could have glue and chains as well.
   1903   // In this case we need to shift the operands down.
   1904   // FIXME: This is a horrible hack and broken in obscure cases, no worse
   1905   // than the old isel though.
   1906   int OldGlueResultNo = -1, OldChainResultNo = -1;
   1907 
   1908   unsigned NTMNumResults = Node->getNumValues();
   1909   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
   1910     OldGlueResultNo = NTMNumResults-1;
   1911     if (NTMNumResults != 1 &&
   1912         Node->getValueType(NTMNumResults-2) == MVT::Other)
   1913       OldChainResultNo = NTMNumResults-2;
   1914   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
   1915     OldChainResultNo = NTMNumResults-1;
   1916 
   1917   // Call the underlying SelectionDAG routine to do the transmogrification. Note
   1918   // that this deletes operands of the old node that become dead.
   1919   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
   1920 
   1921   // MorphNodeTo can operate in two ways: if an existing node with the
   1922   // specified operands exists, it can just return it.  Otherwise, it
   1923   // updates the node in place to have the requested operands.
   1924   if (Res == Node) {
   1925     // If we updated the node in place, reset the node ID.  To the isel,
   1926     // this should be just like a newly allocated machine node.
   1927     Res->setNodeId(-1);
   1928   }
   1929 
   1930   unsigned ResNumResults = Res->getNumValues();
   1931   // Move the glue if needed.
   1932   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
   1933       (unsigned)OldGlueResultNo != ResNumResults-1)
   1934     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
   1935                                       SDValue(Res, ResNumResults-1));
   1936 
   1937   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
   1938     --ResNumResults;
   1939 
   1940   // Move the chain reference if needed.
   1941   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
   1942       (unsigned)OldChainResultNo != ResNumResults-1)
   1943     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
   1944                                       SDValue(Res, ResNumResults-1));
   1945 
   1946   // Otherwise, no replacement happened because the node already exists. Replace
   1947   // Uses of the old node with the new one.
   1948   if (Res != Node)
   1949     CurDAG->ReplaceAllUsesWith(Node, Res);
   1950 
   1951   return Res;
   1952 }
   1953 
   1954 /// CheckSame - Implements OP_CheckSame.
   1955 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1956 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1957           SDValue N,
   1958           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   1959   // Accept if it is exactly the same as a previously recorded node.
   1960   unsigned RecNo = MatcherTable[MatcherIndex++];
   1961   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   1962   return N == RecordedNodes[RecNo].first;
   1963 }
   1964 
   1965 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   1966 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1967 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1968                       const SelectionDAGISel &SDISel) {
   1969   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
   1970 }
   1971 
   1972 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
   1973 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1974 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1975                    const SelectionDAGISel &SDISel, SDNode *N) {
   1976   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
   1977 }
   1978 
   1979 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1980 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1981             SDNode *N) {
   1982   uint16_t Opc = MatcherTable[MatcherIndex++];
   1983   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   1984   return N->getOpcode() == Opc;
   1985 }
   1986 
   1987 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1988 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1989           SDValue N, const TargetLowering *TLI) {
   1990   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   1991   if (N.getValueType() == VT) return true;
   1992 
   1993   // Handle the case when VT is iPTR.
   1994   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
   1995 }
   1996 
   1997 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1998 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1999                SDValue N, const TargetLowering *TLI,
   2000                unsigned ChildNo) {
   2001   if (ChildNo >= N.getNumOperands())
   2002     return false;  // Match fails if out of range child #.
   2003   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
   2004 }
   2005 
   2006 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2007 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2008               SDValue N) {
   2009   return cast<CondCodeSDNode>(N)->get() ==
   2010       (ISD::CondCode)MatcherTable[MatcherIndex++];
   2011 }
   2012 
   2013 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2014 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2015                SDValue N, const TargetLowering *TLI) {
   2016   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2017   if (cast<VTSDNode>(N)->getVT() == VT)
   2018     return true;
   2019 
   2020   // Handle the case when VT is iPTR.
   2021   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
   2022 }
   2023 
   2024 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2025 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2026              SDValue N) {
   2027   int64_t Val = MatcherTable[MatcherIndex++];
   2028   if (Val & 128)
   2029     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2030 
   2031   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   2032   return C != 0 && C->getSExtValue() == Val;
   2033 }
   2034 
   2035 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2036 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2037             SDValue N, const SelectionDAGISel &SDISel) {
   2038   int64_t Val = MatcherTable[MatcherIndex++];
   2039   if (Val & 128)
   2040     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2041 
   2042   if (N->getOpcode() != ISD::AND) return false;
   2043 
   2044   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2045   return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
   2046 }
   2047 
   2048 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2049 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2050            SDValue N, const SelectionDAGISel &SDISel) {
   2051   int64_t Val = MatcherTable[MatcherIndex++];
   2052   if (Val & 128)
   2053     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2054 
   2055   if (N->getOpcode() != ISD::OR) return false;
   2056 
   2057   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2058   return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
   2059 }
   2060 
   2061 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
   2062 /// scope, evaluate the current node.  If the current predicate is known to
   2063 /// fail, set Result=true and return anything.  If the current predicate is
   2064 /// known to pass, set Result=false and return the MatcherIndex to continue
   2065 /// with.  If the current predicate is unknown, set Result=false and return the
   2066 /// MatcherIndex to continue with.
   2067 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
   2068                                        unsigned Index, SDValue N,
   2069                                        bool &Result,
   2070                                        const SelectionDAGISel &SDISel,
   2071                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   2072   switch (Table[Index++]) {
   2073   default:
   2074     Result = false;
   2075     return Index-1;  // Could not evaluate this predicate.
   2076   case SelectionDAGISel::OPC_CheckSame:
   2077     Result = !::CheckSame(Table, Index, N, RecordedNodes);
   2078     return Index;
   2079   case SelectionDAGISel::OPC_CheckPatternPredicate:
   2080     Result = !::CheckPatternPredicate(Table, Index, SDISel);
   2081     return Index;
   2082   case SelectionDAGISel::OPC_CheckPredicate:
   2083     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
   2084     return Index;
   2085   case SelectionDAGISel::OPC_CheckOpcode:
   2086     Result = !::CheckOpcode(Table, Index, N.getNode());
   2087     return Index;
   2088   case SelectionDAGISel::OPC_CheckType:
   2089     Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
   2090     return Index;
   2091   case SelectionDAGISel::OPC_CheckChild0Type:
   2092   case SelectionDAGISel::OPC_CheckChild1Type:
   2093   case SelectionDAGISel::OPC_CheckChild2Type:
   2094   case SelectionDAGISel::OPC_CheckChild3Type:
   2095   case SelectionDAGISel::OPC_CheckChild4Type:
   2096   case SelectionDAGISel::OPC_CheckChild5Type:
   2097   case SelectionDAGISel::OPC_CheckChild6Type:
   2098   case SelectionDAGISel::OPC_CheckChild7Type:
   2099     Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
   2100                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
   2101     return Index;
   2102   case SelectionDAGISel::OPC_CheckCondCode:
   2103     Result = !::CheckCondCode(Table, Index, N);
   2104     return Index;
   2105   case SelectionDAGISel::OPC_CheckValueType:
   2106     Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
   2107     return Index;
   2108   case SelectionDAGISel::OPC_CheckInteger:
   2109     Result = !::CheckInteger(Table, Index, N);
   2110     return Index;
   2111   case SelectionDAGISel::OPC_CheckAndImm:
   2112     Result = !::CheckAndImm(Table, Index, N, SDISel);
   2113     return Index;
   2114   case SelectionDAGISel::OPC_CheckOrImm:
   2115     Result = !::CheckOrImm(Table, Index, N, SDISel);
   2116     return Index;
   2117   }
   2118 }
   2119 
   2120 namespace {
   2121 
   2122 struct MatchScope {
   2123   /// FailIndex - If this match fails, this is the index to continue with.
   2124   unsigned FailIndex;
   2125 
   2126   /// NodeStack - The node stack when the scope was formed.
   2127   SmallVector<SDValue, 4> NodeStack;
   2128 
   2129   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
   2130   unsigned NumRecordedNodes;
   2131 
   2132   /// NumMatchedMemRefs - The number of matched memref entries.
   2133   unsigned NumMatchedMemRefs;
   2134 
   2135   /// InputChain/InputGlue - The current chain/glue
   2136   SDValue InputChain, InputGlue;
   2137 
   2138   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
   2139   bool HasChainNodesMatched, HasGlueResultNodesMatched;
   2140 };
   2141 
   2142 }
   2143 
   2144 SDNode *SelectionDAGISel::
   2145 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
   2146                  unsigned TableSize) {
   2147   // FIXME: Should these even be selected?  Handle these cases in the caller?
   2148   switch (NodeToMatch->getOpcode()) {
   2149   default:
   2150     break;
   2151   case ISD::EntryToken:       // These nodes remain the same.
   2152   case ISD::BasicBlock:
   2153   case ISD::Register:
   2154   case ISD::RegisterMask:
   2155   //case ISD::VALUETYPE:
   2156   //case ISD::CONDCODE:
   2157   case ISD::HANDLENODE:
   2158   case ISD::MDNODE_SDNODE:
   2159   case ISD::TargetConstant:
   2160   case ISD::TargetConstantFP:
   2161   case ISD::TargetConstantPool:
   2162   case ISD::TargetFrameIndex:
   2163   case ISD::TargetExternalSymbol:
   2164   case ISD::TargetBlockAddress:
   2165   case ISD::TargetJumpTable:
   2166   case ISD::TargetGlobalTLSAddress:
   2167   case ISD::TargetGlobalAddress:
   2168   case ISD::TokenFactor:
   2169   case ISD::CopyFromReg:
   2170   case ISD::CopyToReg:
   2171   case ISD::EH_LABEL:
   2172   case ISD::LIFETIME_START:
   2173   case ISD::LIFETIME_END:
   2174     NodeToMatch->setNodeId(-1); // Mark selected.
   2175     return 0;
   2176   case ISD::AssertSext:
   2177   case ISD::AssertZext:
   2178     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
   2179                                       NodeToMatch->getOperand(0));
   2180     return 0;
   2181   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
   2182   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
   2183   }
   2184 
   2185   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
   2186 
   2187   // Set up the node stack with NodeToMatch as the only node on the stack.
   2188   SmallVector<SDValue, 8> NodeStack;
   2189   SDValue N = SDValue(NodeToMatch, 0);
   2190   NodeStack.push_back(N);
   2191 
   2192   // MatchScopes - Scopes used when matching, if a match failure happens, this
   2193   // indicates where to continue checking.
   2194   SmallVector<MatchScope, 8> MatchScopes;
   2195 
   2196   // RecordedNodes - This is the set of nodes that have been recorded by the
   2197   // state machine.  The second value is the parent of the node, or null if the
   2198   // root is recorded.
   2199   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
   2200 
   2201   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
   2202   // pattern.
   2203   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
   2204 
   2205   // These are the current input chain and glue for use when generating nodes.
   2206   // Various Emit operations change these.  For example, emitting a copytoreg
   2207   // uses and updates these.
   2208   SDValue InputChain, InputGlue;
   2209 
   2210   // ChainNodesMatched - If a pattern matches nodes that have input/output
   2211   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
   2212   // which ones they are.  The result is captured into this list so that we can
   2213   // update the chain results when the pattern is complete.
   2214   SmallVector<SDNode*, 3> ChainNodesMatched;
   2215   SmallVector<SDNode*, 3> GlueResultNodesMatched;
   2216 
   2217   DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
   2218         NodeToMatch->dump(CurDAG);
   2219         dbgs() << '\n');
   2220 
   2221   // Determine where to start the interpreter.  Normally we start at opcode #0,
   2222   // but if the state machine starts with an OPC_SwitchOpcode, then we
   2223   // accelerate the first lookup (which is guaranteed to be hot) with the
   2224   // OpcodeOffset table.
   2225   unsigned MatcherIndex = 0;
   2226 
   2227   if (!OpcodeOffset.empty()) {
   2228     // Already computed the OpcodeOffset table, just index into it.
   2229     if (N.getOpcode() < OpcodeOffset.size())
   2230       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2231     DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
   2232 
   2233   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
   2234     // Otherwise, the table isn't computed, but the state machine does start
   2235     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
   2236     // is the first time we're selecting an instruction.
   2237     unsigned Idx = 1;
   2238     while (1) {
   2239       // Get the size of this case.
   2240       unsigned CaseSize = MatcherTable[Idx++];
   2241       if (CaseSize & 128)
   2242         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
   2243       if (CaseSize == 0) break;
   2244 
   2245       // Get the opcode, add the index to the table.
   2246       uint16_t Opc = MatcherTable[Idx++];
   2247       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
   2248       if (Opc >= OpcodeOffset.size())
   2249         OpcodeOffset.resize((Opc+1)*2);
   2250       OpcodeOffset[Opc] = Idx;
   2251       Idx += CaseSize;
   2252     }
   2253 
   2254     // Okay, do the lookup for the first opcode.
   2255     if (N.getOpcode() < OpcodeOffset.size())
   2256       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2257   }
   2258 
   2259   while (1) {
   2260     assert(MatcherIndex < TableSize && "Invalid index");
   2261 #ifndef NDEBUG
   2262     unsigned CurrentOpcodeIndex = MatcherIndex;
   2263 #endif
   2264     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
   2265     switch (Opcode) {
   2266     case OPC_Scope: {
   2267       // Okay, the semantics of this operation are that we should push a scope
   2268       // then evaluate the first child.  However, pushing a scope only to have
   2269       // the first check fail (which then pops it) is inefficient.  If we can
   2270       // determine immediately that the first check (or first several) will
   2271       // immediately fail, don't even bother pushing a scope for them.
   2272       unsigned FailIndex;
   2273 
   2274       while (1) {
   2275         unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2276         if (NumToSkip & 128)
   2277           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2278         // Found the end of the scope with no match.
   2279         if (NumToSkip == 0) {
   2280           FailIndex = 0;
   2281           break;
   2282         }
   2283 
   2284         FailIndex = MatcherIndex+NumToSkip;
   2285 
   2286         unsigned MatcherIndexOfPredicate = MatcherIndex;
   2287         (void)MatcherIndexOfPredicate; // silence warning.
   2288 
   2289         // If we can't evaluate this predicate without pushing a scope (e.g. if
   2290         // it is a 'MoveParent') or if the predicate succeeds on this node, we
   2291         // push the scope and evaluate the full predicate chain.
   2292         bool Result;
   2293         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
   2294                                               Result, *this, RecordedNodes);
   2295         if (!Result)
   2296           break;
   2297 
   2298         DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
   2299                      << "index " << MatcherIndexOfPredicate
   2300                      << ", continuing at " << FailIndex << "\n");
   2301         ++NumDAGIselRetries;
   2302 
   2303         // Otherwise, we know that this case of the Scope is guaranteed to fail,
   2304         // move to the next case.
   2305         MatcherIndex = FailIndex;
   2306       }
   2307 
   2308       // If the whole scope failed to match, bail.
   2309       if (FailIndex == 0) break;
   2310 
   2311       // Push a MatchScope which indicates where to go if the first child fails
   2312       // to match.
   2313       MatchScope NewEntry;
   2314       NewEntry.FailIndex = FailIndex;
   2315       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
   2316       NewEntry.NumRecordedNodes = RecordedNodes.size();
   2317       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
   2318       NewEntry.InputChain = InputChain;
   2319       NewEntry.InputGlue = InputGlue;
   2320       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
   2321       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
   2322       MatchScopes.push_back(NewEntry);
   2323       continue;
   2324     }
   2325     case OPC_RecordNode: {
   2326       // Remember this node, it may end up being an operand in the pattern.
   2327       SDNode *Parent = 0;
   2328       if (NodeStack.size() > 1)
   2329         Parent = NodeStack[NodeStack.size()-2].getNode();
   2330       RecordedNodes.push_back(std::make_pair(N, Parent));
   2331       continue;
   2332     }
   2333 
   2334     case OPC_RecordChild0: case OPC_RecordChild1:
   2335     case OPC_RecordChild2: case OPC_RecordChild3:
   2336     case OPC_RecordChild4: case OPC_RecordChild5:
   2337     case OPC_RecordChild6: case OPC_RecordChild7: {
   2338       unsigned ChildNo = Opcode-OPC_RecordChild0;
   2339       if (ChildNo >= N.getNumOperands())
   2340         break;  // Match fails if out of range child #.
   2341 
   2342       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
   2343                                              N.getNode()));
   2344       continue;
   2345     }
   2346     case OPC_RecordMemRef:
   2347       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
   2348       continue;
   2349 
   2350     case OPC_CaptureGlueInput:
   2351       // If the current node has an input glue, capture it in InputGlue.
   2352       if (N->getNumOperands() != 0 &&
   2353           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
   2354         InputGlue = N->getOperand(N->getNumOperands()-1);
   2355       continue;
   2356 
   2357     case OPC_MoveChild: {
   2358       unsigned ChildNo = MatcherTable[MatcherIndex++];
   2359       if (ChildNo >= N.getNumOperands())
   2360         break;  // Match fails if out of range child #.
   2361       N = N.getOperand(ChildNo);
   2362       NodeStack.push_back(N);
   2363       continue;
   2364     }
   2365 
   2366     case OPC_MoveParent:
   2367       // Pop the current node off the NodeStack.
   2368       NodeStack.pop_back();
   2369       assert(!NodeStack.empty() && "Node stack imbalance!");
   2370       N = NodeStack.back();
   2371       continue;
   2372 
   2373     case OPC_CheckSame:
   2374       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
   2375       continue;
   2376     case OPC_CheckPatternPredicate:
   2377       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
   2378       continue;
   2379     case OPC_CheckPredicate:
   2380       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
   2381                                 N.getNode()))
   2382         break;
   2383       continue;
   2384     case OPC_CheckComplexPat: {
   2385       unsigned CPNum = MatcherTable[MatcherIndex++];
   2386       unsigned RecNo = MatcherTable[MatcherIndex++];
   2387       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
   2388       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
   2389                                RecordedNodes[RecNo].first, CPNum,
   2390                                RecordedNodes))
   2391         break;
   2392       continue;
   2393     }
   2394     case OPC_CheckOpcode:
   2395       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
   2396       continue;
   2397 
   2398     case OPC_CheckType:
   2399       if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
   2400         break;
   2401       continue;
   2402 
   2403     case OPC_SwitchOpcode: {
   2404       unsigned CurNodeOpcode = N.getOpcode();
   2405       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2406       unsigned CaseSize;
   2407       while (1) {
   2408         // Get the size of this case.
   2409         CaseSize = MatcherTable[MatcherIndex++];
   2410         if (CaseSize & 128)
   2411           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2412         if (CaseSize == 0) break;
   2413 
   2414         uint16_t Opc = MatcherTable[MatcherIndex++];
   2415         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2416 
   2417         // If the opcode matches, then we will execute this case.
   2418         if (CurNodeOpcode == Opc)
   2419           break;
   2420 
   2421         // Otherwise, skip over this case.
   2422         MatcherIndex += CaseSize;
   2423       }
   2424 
   2425       // If no cases matched, bail out.
   2426       if (CaseSize == 0) break;
   2427 
   2428       // Otherwise, execute the case we found.
   2429       DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
   2430                    << " to " << MatcherIndex << "\n");
   2431       continue;
   2432     }
   2433 
   2434     case OPC_SwitchType: {
   2435       MVT CurNodeVT = N.getValueType().getSimpleVT();
   2436       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2437       unsigned CaseSize;
   2438       while (1) {
   2439         // Get the size of this case.
   2440         CaseSize = MatcherTable[MatcherIndex++];
   2441         if (CaseSize & 128)
   2442           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2443         if (CaseSize == 0) break;
   2444 
   2445         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2446         if (CaseVT == MVT::iPTR)
   2447           CaseVT = getTargetLowering()->getPointerTy();
   2448 
   2449         // If the VT matches, then we will execute this case.
   2450         if (CurNodeVT == CaseVT)
   2451           break;
   2452 
   2453         // Otherwise, skip over this case.
   2454         MatcherIndex += CaseSize;
   2455       }
   2456 
   2457       // If no cases matched, bail out.
   2458       if (CaseSize == 0) break;
   2459 
   2460       // Otherwise, execute the case we found.
   2461       DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
   2462                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
   2463       continue;
   2464     }
   2465     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
   2466     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
   2467     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
   2468     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
   2469       if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
   2470                             Opcode-OPC_CheckChild0Type))
   2471         break;
   2472       continue;
   2473     case OPC_CheckCondCode:
   2474       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
   2475       continue;
   2476     case OPC_CheckValueType:
   2477       if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
   2478         break;
   2479       continue;
   2480     case OPC_CheckInteger:
   2481       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
   2482       continue;
   2483     case OPC_CheckAndImm:
   2484       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
   2485       continue;
   2486     case OPC_CheckOrImm:
   2487       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
   2488       continue;
   2489 
   2490     case OPC_CheckFoldableChainNode: {
   2491       assert(NodeStack.size() != 1 && "No parent node");
   2492       // Verify that all intermediate nodes between the root and this one have
   2493       // a single use.
   2494       bool HasMultipleUses = false;
   2495       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
   2496         if (!NodeStack[i].hasOneUse()) {
   2497           HasMultipleUses = true;
   2498           break;
   2499         }
   2500       if (HasMultipleUses) break;
   2501 
   2502       // Check to see that the target thinks this is profitable to fold and that
   2503       // we can fold it without inducing cycles in the graph.
   2504       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2505                               NodeToMatch) ||
   2506           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2507                          NodeToMatch, OptLevel,
   2508                          true/*We validate our own chains*/))
   2509         break;
   2510 
   2511       continue;
   2512     }
   2513     case OPC_EmitInteger: {
   2514       MVT::SimpleValueType VT =
   2515         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2516       int64_t Val = MatcherTable[MatcherIndex++];
   2517       if (Val & 128)
   2518         Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2519       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2520                               CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
   2521       continue;
   2522     }
   2523     case OPC_EmitRegister: {
   2524       MVT::SimpleValueType VT =
   2525         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2526       unsigned RegNo = MatcherTable[MatcherIndex++];
   2527       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2528                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2529       continue;
   2530     }
   2531     case OPC_EmitRegister2: {
   2532       // For targets w/ more than 256 register names, the register enum
   2533       // values are stored in two bytes in the matcher table (just like
   2534       // opcodes).
   2535       MVT::SimpleValueType VT =
   2536         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2537       unsigned RegNo = MatcherTable[MatcherIndex++];
   2538       RegNo |= MatcherTable[MatcherIndex++] << 8;
   2539       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2540                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2541       continue;
   2542     }
   2543 
   2544     case OPC_EmitConvertToTarget:  {
   2545       // Convert from IMM/FPIMM to target version.
   2546       unsigned RecNo = MatcherTable[MatcherIndex++];
   2547       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2548       SDValue Imm = RecordedNodes[RecNo].first;
   2549 
   2550       if (Imm->getOpcode() == ISD::Constant) {
   2551         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
   2552         Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
   2553       } else if (Imm->getOpcode() == ISD::ConstantFP) {
   2554         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
   2555         Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
   2556       }
   2557 
   2558       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
   2559       continue;
   2560     }
   2561 
   2562     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
   2563     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
   2564       // These are space-optimized forms of OPC_EmitMergeInputChains.
   2565       assert(InputChain.getNode() == 0 &&
   2566              "EmitMergeInputChains should be the first chain producing node");
   2567       assert(ChainNodesMatched.empty() &&
   2568              "Should only have one EmitMergeInputChains per match");
   2569 
   2570       // Read all of the chained nodes.
   2571       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
   2572       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2573       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2574 
   2575       // FIXME: What if other value results of the node have uses not matched
   2576       // by this pattern?
   2577       if (ChainNodesMatched.back() != NodeToMatch &&
   2578           !RecordedNodes[RecNo].first.hasOneUse()) {
   2579         ChainNodesMatched.clear();
   2580         break;
   2581       }
   2582 
   2583       // Merge the input chains if they are not intra-pattern references.
   2584       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2585 
   2586       if (InputChain.getNode() == 0)
   2587         break;  // Failed to merge.
   2588       continue;
   2589     }
   2590 
   2591     case OPC_EmitMergeInputChains: {
   2592       assert(InputChain.getNode() == 0 &&
   2593              "EmitMergeInputChains should be the first chain producing node");
   2594       // This node gets a list of nodes we matched in the input that have
   2595       // chains.  We want to token factor all of the input chains to these nodes
   2596       // together.  However, if any of the input chains is actually one of the
   2597       // nodes matched in this pattern, then we have an intra-match reference.
   2598       // Ignore these because the newly token factored chain should not refer to
   2599       // the old nodes.
   2600       unsigned NumChains = MatcherTable[MatcherIndex++];
   2601       assert(NumChains != 0 && "Can't TF zero chains");
   2602 
   2603       assert(ChainNodesMatched.empty() &&
   2604              "Should only have one EmitMergeInputChains per match");
   2605 
   2606       // Read all of the chained nodes.
   2607       for (unsigned i = 0; i != NumChains; ++i) {
   2608         unsigned RecNo = MatcherTable[MatcherIndex++];
   2609         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2610         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2611 
   2612         // FIXME: What if other value results of the node have uses not matched
   2613         // by this pattern?
   2614         if (ChainNodesMatched.back() != NodeToMatch &&
   2615             !RecordedNodes[RecNo].first.hasOneUse()) {
   2616           ChainNodesMatched.clear();
   2617           break;
   2618         }
   2619       }
   2620 
   2621       // If the inner loop broke out, the match fails.
   2622       if (ChainNodesMatched.empty())
   2623         break;
   2624 
   2625       // Merge the input chains if they are not intra-pattern references.
   2626       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2627 
   2628       if (InputChain.getNode() == 0)
   2629         break;  // Failed to merge.
   2630 
   2631       continue;
   2632     }
   2633 
   2634     case OPC_EmitCopyToReg: {
   2635       unsigned RecNo = MatcherTable[MatcherIndex++];
   2636       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2637       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
   2638 
   2639       if (InputChain.getNode() == 0)
   2640         InputChain = CurDAG->getEntryNode();
   2641 
   2642       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
   2643                                         DestPhysReg, RecordedNodes[RecNo].first,
   2644                                         InputGlue);
   2645 
   2646       InputGlue = InputChain.getValue(1);
   2647       continue;
   2648     }
   2649 
   2650     case OPC_EmitNodeXForm: {
   2651       unsigned XFormNo = MatcherTable[MatcherIndex++];
   2652       unsigned RecNo = MatcherTable[MatcherIndex++];
   2653       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2654       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
   2655       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
   2656       continue;
   2657     }
   2658 
   2659     case OPC_EmitNode:
   2660     case OPC_MorphNodeTo: {
   2661       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
   2662       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2663       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
   2664       // Get the result VT list.
   2665       unsigned NumVTs = MatcherTable[MatcherIndex++];
   2666       SmallVector<EVT, 4> VTs;
   2667       for (unsigned i = 0; i != NumVTs; ++i) {
   2668         MVT::SimpleValueType VT =
   2669           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2670         if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
   2671         VTs.push_back(VT);
   2672       }
   2673 
   2674       if (EmitNodeInfo & OPFL_Chain)
   2675         VTs.push_back(MVT::Other);
   2676       if (EmitNodeInfo & OPFL_GlueOutput)
   2677         VTs.push_back(MVT::Glue);
   2678 
   2679       // This is hot code, so optimize the two most common cases of 1 and 2
   2680       // results.
   2681       SDVTList VTList;
   2682       if (VTs.size() == 1)
   2683         VTList = CurDAG->getVTList(VTs[0]);
   2684       else if (VTs.size() == 2)
   2685         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
   2686       else
   2687         VTList = CurDAG->getVTList(VTs.data(), VTs.size());
   2688 
   2689       // Get the operand list.
   2690       unsigned NumOps = MatcherTable[MatcherIndex++];
   2691       SmallVector<SDValue, 8> Ops;
   2692       for (unsigned i = 0; i != NumOps; ++i) {
   2693         unsigned RecNo = MatcherTable[MatcherIndex++];
   2694         if (RecNo & 128)
   2695           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2696 
   2697         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
   2698         Ops.push_back(RecordedNodes[RecNo].first);
   2699       }
   2700 
   2701       // If there are variadic operands to add, handle them now.
   2702       if (EmitNodeInfo & OPFL_VariadicInfo) {
   2703         // Determine the start index to copy from.
   2704         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
   2705         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
   2706         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
   2707                "Invalid variadic node");
   2708         // Copy all of the variadic operands, not including a potential glue
   2709         // input.
   2710         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
   2711              i != e; ++i) {
   2712           SDValue V = NodeToMatch->getOperand(i);
   2713           if (V.getValueType() == MVT::Glue) break;
   2714           Ops.push_back(V);
   2715         }
   2716       }
   2717 
   2718       // If this has chain/glue inputs, add them.
   2719       if (EmitNodeInfo & OPFL_Chain)
   2720         Ops.push_back(InputChain);
   2721       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
   2722         Ops.push_back(InputGlue);
   2723 
   2724       // Create the node.
   2725       SDNode *Res = 0;
   2726       if (Opcode != OPC_MorphNodeTo) {
   2727         // If this is a normal EmitNode command, just create the new node and
   2728         // add the results to the RecordedNodes list.
   2729         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
   2730                                      VTList, Ops);
   2731 
   2732         // Add all the non-glue/non-chain results to the RecordedNodes list.
   2733         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
   2734           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
   2735           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
   2736                                                              (SDNode*) 0));
   2737         }
   2738 
   2739       } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
   2740         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
   2741                         EmitNodeInfo);
   2742       } else {
   2743         // NodeToMatch was eliminated by CSE when the target changed the DAG.
   2744         // We will visit the equivalent node later.
   2745         DEBUG(dbgs() << "Node was eliminated by CSE\n");
   2746         return 0;
   2747       }
   2748 
   2749       // If the node had chain/glue results, update our notion of the current
   2750       // chain and glue.
   2751       if (EmitNodeInfo & OPFL_GlueOutput) {
   2752         InputGlue = SDValue(Res, VTs.size()-1);
   2753         if (EmitNodeInfo & OPFL_Chain)
   2754           InputChain = SDValue(Res, VTs.size()-2);
   2755       } else if (EmitNodeInfo & OPFL_Chain)
   2756         InputChain = SDValue(Res, VTs.size()-1);
   2757 
   2758       // If the OPFL_MemRefs glue is set on this node, slap all of the
   2759       // accumulated memrefs onto it.
   2760       //
   2761       // FIXME: This is vastly incorrect for patterns with multiple outputs
   2762       // instructions that access memory and for ComplexPatterns that match
   2763       // loads.
   2764       if (EmitNodeInfo & OPFL_MemRefs) {
   2765         // Only attach load or store memory operands if the generated
   2766         // instruction may load or store.
   2767         const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
   2768         bool mayLoad = MCID.mayLoad();
   2769         bool mayStore = MCID.mayStore();
   2770 
   2771         unsigned NumMemRefs = 0;
   2772         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
   2773                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2774           if ((*I)->isLoad()) {
   2775             if (mayLoad)
   2776               ++NumMemRefs;
   2777           } else if ((*I)->isStore()) {
   2778             if (mayStore)
   2779               ++NumMemRefs;
   2780           } else {
   2781             ++NumMemRefs;
   2782           }
   2783         }
   2784 
   2785         MachineSDNode::mmo_iterator MemRefs =
   2786           MF->allocateMemRefsArray(NumMemRefs);
   2787 
   2788         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
   2789         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
   2790                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2791           if ((*I)->isLoad()) {
   2792             if (mayLoad)
   2793               *MemRefsPos++ = *I;
   2794           } else if ((*I)->isStore()) {
   2795             if (mayStore)
   2796               *MemRefsPos++ = *I;
   2797           } else {
   2798             *MemRefsPos++ = *I;
   2799           }
   2800         }
   2801 
   2802         cast<MachineSDNode>(Res)
   2803           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
   2804       }
   2805 
   2806       DEBUG(dbgs() << "  "
   2807                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
   2808                    << " node: "; Res->dump(CurDAG); dbgs() << "\n");
   2809 
   2810       // If this was a MorphNodeTo then we're completely done!
   2811       if (Opcode == OPC_MorphNodeTo) {
   2812         // Update chain and glue uses.
   2813         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2814                             InputGlue, GlueResultNodesMatched, true);
   2815         return Res;
   2816       }
   2817 
   2818       continue;
   2819     }
   2820 
   2821     case OPC_MarkGlueResults: {
   2822       unsigned NumNodes = MatcherTable[MatcherIndex++];
   2823 
   2824       // Read and remember all the glue-result nodes.
   2825       for (unsigned i = 0; i != NumNodes; ++i) {
   2826         unsigned RecNo = MatcherTable[MatcherIndex++];
   2827         if (RecNo & 128)
   2828           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2829 
   2830         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2831         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2832       }
   2833       continue;
   2834     }
   2835 
   2836     case OPC_CompleteMatch: {
   2837       // The match has been completed, and any new nodes (if any) have been
   2838       // created.  Patch up references to the matched dag to use the newly
   2839       // created nodes.
   2840       unsigned NumResults = MatcherTable[MatcherIndex++];
   2841 
   2842       for (unsigned i = 0; i != NumResults; ++i) {
   2843         unsigned ResSlot = MatcherTable[MatcherIndex++];
   2844         if (ResSlot & 128)
   2845           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
   2846 
   2847         assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
   2848         SDValue Res = RecordedNodes[ResSlot].first;
   2849 
   2850         assert(i < NodeToMatch->getNumValues() &&
   2851                NodeToMatch->getValueType(i) != MVT::Other &&
   2852                NodeToMatch->getValueType(i) != MVT::Glue &&
   2853                "Invalid number of results to complete!");
   2854         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
   2855                 NodeToMatch->getValueType(i) == MVT::iPTR ||
   2856                 Res.getValueType() == MVT::iPTR ||
   2857                 NodeToMatch->getValueType(i).getSizeInBits() ==
   2858                     Res.getValueType().getSizeInBits()) &&
   2859                "invalid replacement");
   2860         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
   2861       }
   2862 
   2863       // If the root node defines glue, add it to the glue nodes to update list.
   2864       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
   2865         GlueResultNodesMatched.push_back(NodeToMatch);
   2866 
   2867       // Update chain and glue uses.
   2868       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2869                           InputGlue, GlueResultNodesMatched, false);
   2870 
   2871       assert(NodeToMatch->use_empty() &&
   2872              "Didn't replace all uses of the node?");
   2873 
   2874       // FIXME: We just return here, which interacts correctly with SelectRoot
   2875       // above.  We should fix this to not return an SDNode* anymore.
   2876       return 0;
   2877     }
   2878     }
   2879 
   2880     // If the code reached this point, then the match failed.  See if there is
   2881     // another child to try in the current 'Scope', otherwise pop it until we
   2882     // find a case to check.
   2883     DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
   2884     ++NumDAGIselRetries;
   2885     while (1) {
   2886       if (MatchScopes.empty()) {
   2887         CannotYetSelect(NodeToMatch);
   2888         return 0;
   2889       }
   2890 
   2891       // Restore the interpreter state back to the point where the scope was
   2892       // formed.
   2893       MatchScope &LastScope = MatchScopes.back();
   2894       RecordedNodes.resize(LastScope.NumRecordedNodes);
   2895       NodeStack.clear();
   2896       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
   2897       N = NodeStack.back();
   2898 
   2899       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
   2900         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
   2901       MatcherIndex = LastScope.FailIndex;
   2902 
   2903       DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
   2904 
   2905       InputChain = LastScope.InputChain;
   2906       InputGlue = LastScope.InputGlue;
   2907       if (!LastScope.HasChainNodesMatched)
   2908         ChainNodesMatched.clear();
   2909       if (!LastScope.HasGlueResultNodesMatched)
   2910         GlueResultNodesMatched.clear();
   2911 
   2912       // Check to see what the offset is at the new MatcherIndex.  If it is zero
   2913       // we have reached the end of this scope, otherwise we have another child
   2914       // in the current scope to try.
   2915       unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2916       if (NumToSkip & 128)
   2917         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2918 
   2919       // If we have another child in this scope to match, update FailIndex and
   2920       // try it.
   2921       if (NumToSkip != 0) {
   2922         LastScope.FailIndex = MatcherIndex+NumToSkip;
   2923         break;
   2924       }
   2925 
   2926       // End of this scope, pop it and try the next child in the containing
   2927       // scope.
   2928       MatchScopes.pop_back();
   2929     }
   2930   }
   2931 }
   2932 
   2933 
   2934 
   2935 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
   2936   std::string msg;
   2937   raw_string_ostream Msg(msg);
   2938   Msg << "Cannot select: ";
   2939 
   2940   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
   2941       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
   2942       N->getOpcode() != ISD::INTRINSIC_VOID) {
   2943     N->printrFull(Msg, CurDAG);
   2944     Msg << "\nIn function: " << MF->getName();
   2945   } else {
   2946     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
   2947     unsigned iid =
   2948       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
   2949     if (iid < Intrinsic::num_intrinsics)
   2950       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
   2951     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
   2952       Msg << "target intrinsic %" << TII->getName(iid);
   2953     else
   2954       Msg << "unknown intrinsic #" << iid;
   2955   }
   2956   report_fatal_error(Msg.str());
   2957 }
   2958 
   2959 char SelectionDAGISel::ID = 0;
   2960